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Abstract

The empirical literature on mergers, market power and collusion in

differentiated markets has mainly focused on methods relying on out-

put and/or panel data. In contrast to this literature we suggest a novel

approach that allows for the detection of collusive behavior among a

group of firms making use of information on the spatial structure of

horizontally differentiated products. By estimating best response func-

tions using a spatial econometrics approach, we focus on differences in

the strategic interaction in pricing between different groups of firms as

well as on differences in price levels. We apply our method to the market

for ski lift tickets using a unique data set on ticket prices and detailed

resort-specific characteristics covering all ski resorts in Austria. We

show that prices of ski resorts forming alliances are higher and increase

with the size and towards the spatial center of an alliance. Strategic

interaction in pricing is higher within than outside alliances. All re-

sults are in line with the findings of theoretical models on collusion in

horizontally differentiated markets.
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1 Introduction

In many retail markets consumers choose from a supply of varieties which are

scattered in geographic or product space. Thus, when making their product

choice, consumers have to consider different transportation costs (monetary,

temporal, deviation from most preferred variety). Even when offering other-

wise homogeneous products, spatially differentiated firms gain local market

power because consumers prefer supply close to their own location to reduce

transportation costs. As a consequence, irrespective of the total number of

firms in the entire market, a single firm directly competes for consumers only

with a limited number of neighboring firms. Competition is localized and

reduced to local oligopolies in which firms interact strategically. Mergers, col-

lusion and the cooperation of firms within strategic alliances may increase the

firms’ market power and therefore equilibrium prices. However, in horizontally

differentiated markets this is only true if the size of the segment in the prod-

uct or geographical market space served by the firms concerned is increased

by such cooperation as demonstrated theoretically by Levy and Reitzes (1992)

and Giraud-Heraud et al. (2003), and empirically by Pennerstorfer and Weiss

(2013).

Measuring market power in oligopolistic markets in order to evaluate the

impact of mergers, strategic alliances or collusion has been focused on by

researchers and policy makers for many years. Concentration indices have

been used to monitor market power concentration, e.g. the Lerner Index and

the Herfindahl-Hirschman Index (HHI). The latter is suggested by the Federal

Energy Regulatory Commission (2008) as well as by the horizontal merger

guidelines of the U.S. Department of Justice and the Federal Trade Commission

(2013). However, these indices are known to involve some severe disadvantages

in general (see e.g. Tremblay and Tremblay, 2012), and in particular in markets

with localized competition because they are calculated at the aggregate market
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level which may be a poor proxy to measure local market power (Levy and

Reitzes, 1992). As a result, structural models estimating demand systems have

been employed to evaluate mergers or market power in differentiated markets

(Baker and Bresnahan, 1985, Berry et al., 1995, Nevo, 2000, 2001, and Pinkse

and Slade, 2004, among others). Indeed, the dependency on output or demand

data as well as on time series, which often raises problems in empirical studies

(as pointed out by e.g. Kim and Singal, 1993 or Pennerstorfer and Weiss,

2013), is a major limitation associated with such structural models.1

In this paper we suggest a novel approach to bypass the problems associ-

ated with missing data on output/demand in detecting collusion by making

use of information on the spatial structure of horizontally differentiated mar-

kets. Further, our approach does not rely on the availability of panel data. It

can be applied to topics of (tacit) collusion, but also provides a tool for ex-post

merger evaluation in spatial markets. Instead of focusing on price levels only,

we investigate differences between groups of nearby firms in their strategic

price setting behavior by estimating best response functions using a spatial

econometrics approach. This allows us to illustrate the impact of strategic

alliances and to detect collusive behavior of firms in differentiated markets on

prices also in the framework of a cross-section and without output data. It

is important to note that our approach does not provide a tool for screening

a market for collusion. However, if there are grounds for suspicion that a

group of firms is colluding, our method allows a detection of (tacit) collusion

by comparing the group’s strategic pricing behavior with that of outsiders.

We apply our approach to the market for ski lift tickets in Austria that

is characterized by an increasing number of local alliances among nearby ski

resorts. We use a unique data set covering all ski resorts in Austria for the

2011/12 winter season. Within an alliance of nearby ski resorts, alliance mem-

1One exception is Thomadsen (2005), who estimates a model of demand and supply
without data on output.
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bers typically legally sell exclusive common multi-day ski lift tickets that are

valid in all resorts of the alliance. The exclusive provision of common single-

day tickets, however, was prohibited in an antitrust lawsuit in 2003. Still, our

results indicate that strategic interaction in pricing of single-day tickets within

groups of ski resorts forming alliances is higher than between other resorts, that

alliances resorts significantly overcharge compared to non-alliance ski resorts,

and that prices are higher at the geographical center than at the fringe of an

alliance, ceteris paribus. All our results are consistent with theoretical models

(Levy and Reitzes, 1992; Giraud-Heraud et al., 2003) that analyze multiprod-

uct firm behavior or collusion in differentiated markets. Thus, we conclude

that allowing ski resorts to form alliances selling exclusive common multi-day

ski lift tickets seems to lead to collusive behavior in pricing of single-day tick-

ets. In contrast to a number of studies on airline alliances (e.g. Brueckner and

Whalen, 2000, Brueckner, 2001, 2003, Brueckner and Pels, 2005, Bilotkach,

2007, Ito and Lee, 2007, Armantier and Richard, 2008, Gayle, 2008, Bilotkach

and Hüschelrath, 2011, and Brueckner et al., 2011) analyzing markets charac-

terized by a hub and spokes structure, our results have important implications

for cooperation in markets with a linear (Hotelling, 1929) or circular (Salop,

1979) spatial structure that describes the majority of conventional retail mar-

kets.

2 Models of cooperation and collusion in spa-

tially differentiated markets

The main reasons for firms to cooperate strategically are similar to those of

merging firms. First, cooperation can be associated with an increase in techni-

cal efficiency in the case of increasing returns to scale and/or due to knowledge

transfer. Second, firms may increase the quality of their products through co-
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operation. This, for instance, has been the major argument for the antitrust

immunity of strategic alliances in the airline industry. Third, cooperation may

aim at increasing the market power of the firms involved.

At the horizontal level and in markets with differentiated products, collu-

sive cooperation – similar to a merger – may or may not have a direct impact

on prices, depending (among other factors) on the locations of the products

supplied by the cooperating firms in the market space. If competition is local-

ized and takes place between neighboring firms (in terms of the geographical

area and/or in terms of the product space), a merger, an alliance or a cartel of

neighboring firms results in a situation in which stand-alone firms face compe-

tition with a multiproduct firm (i.e. the post-merger firm, the alliance or the

cartel, respectively). Levy and Reitzes (1992) and Giraud-Heraud et al. (2003)

analyze instances of this kind in the framework of the Salop (1979) circular

city model. Levy and Reitzes (1992) restrict their analysis to a merger of two

neighboring firms. Giraud-Heraud et al. (2003) generalize the model to an

arbitrary number of similar adjacent products offered by a multiproduct firm.

[Figure 1 about here]

Figure 1 illustrates the model by Giraud-Heraud et al. (2003), which can

also be used in the context of collusion or a post-merger market without loss

of generality. A horizontally/spatially differentiated product is offered by a

total of N equidistantly distributed firms. Out of these, n > 2 adjacent firms

cooperate and collude on prices. In Figure 1 this group of firms is denoted by

M . Each of the remaining q = N−n adjacent firms represents an independent

stand-alone firm that fully competes on prices.2 The group of stand-alone

firms is denoted by F in Figure 1. While each stand-alone firm maximizes its

individual profit, the group of cooperating firms maximizes the joint profits of

its n members. Under the assumption of fixed locations and inelastic demand

2The model by Levy and Reitzes (1992) corresponds to the case of n = 2.
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Giraud-Heraud et al. (2003) compute equilibrium prices, demand and profits

for the alliance of cooperating firms and the individual stand-alone firms in a

simultaneous Betrand game. Due to a reduction in competition all firms in the

market charge higher prices compared to the benchmark case of n = 1, which

corresponds to the standard Salop (1979) model. In Giraud-Heraud et al.

(2003) the equilibrium price for the product of alliance firm i(i = 1, ..., n) is

given by

p∗i = f
(
N(−), n(+), i(+/−)

)
, (1)

and for the product of stand-alone firm k(k = 1, ..., q) by

p∗n+k = f
(
N(−), n(+), k(+/−)

)
, (2)

with p∗i > p∗n+k,∀i, k.

Hypothesis 1a: Prices of cooperating firms are higher than prices of stand-

alone firms, ceteris paribus.

Hypothesis 1b: The higher the prices of cooperating firms, the higher the

number of cooperating firms, ceteris paribus.

In case of n > 2 prices of firms differ depending on their position within the

group of cooperating firms (i). Thus, Giraud-Heraud et al. (2003) demonstrate

that the cooperating alliance sets prices for their members as a function of

their exposure to outside competition: the closer the position of a member

to the market boundary of the alliance and thus the closer to a competitive

environment, the lower its price; the closer the firm is located to the center

(m) of the alliance, the more it is shielded from outside competition and the

higher its price. Conversely, equilibrium prices of stand-alone firms decrease
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towards the center (f) of the market segment served by this group of firms.

The closer a stand-alone firm is located to the boundary of the alliance the

less competitive its environment and the higher its price. The distribution of

equilibrium prices is illustrated in Figure 2 and leads to our second hypothesis.

[Figure 2 about here]

Hypothesis 2a:: Prices within the group of cooperating firms are higher at

the geographical center than at the periphery of this group.

Hypothesis 2b:: Prices of stand-alone firms are higher the closer they are to

a group of cooperating firms.

The best response functions in Giraud-Heraud et al. (2003) expose fur-

ther differences in pricing between cooperating and stand-alone firms. In their

model the slope of the best response function between two cooperating neigh-

bors is twice the slope of the best response function between a cooperating

firm and an adjacent stand-alone firm and between two stand-alone firms. In

a Salop model a price increase of an individual firm directly affects its own

demand and that of the two adjacent firms. The impact of a price change

of one alliance member is internalized in the profitability of other members

of the alliance. While such a price change shifts demand between adjacent

alliance members, it does not affect demand faced by the inner alliance mem-

bers (firms 2 to n − 1 in Figure 1) but only affects the two firms (1 and n in

Figure 1) at the fringe of the alliance. By increasing prices, a stand-alone firm

loses consumers to both neighboring firms (two other stand-alone firms or one

alliance member and one independent firm). Conversely, a peripheral alliance

firm loses consumers to one ‘real’ competitor (the adjacent stand-alone firm)

only. As a consequence, the response to a price change within an alliance is

stronger than outside the alliance since stand-alone firms are more concerned

about the trade-off between a price increase (decrease) and the loss (gain) of
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consumers with respect to profit.

Hypothesis 3: Best response functions within a group of cooperating firms

are different from best response functions outside the group. Strategic inter-

action in pricing among cooperating firms is more intense than outside their

group.

At first glance our first hypothesis contradicts the empirical results found

for the airline industry. Brueckner and Whalen (2000) and Brueckner (2003),

for instance, estimate price reducing net effects of international airline alliances

between 17% and 30%. On the one hand, alliances result in lower fares and

higher traffic in the interline city-pair markets where the connection to a desti-

nation would require the services of different carriers. On the other hand, the

formation of an alliance implies a loss of competition in the interhub markets

that connect the hub cities of the allying partners and tends to raise fares

in these markets. Empirically, Brueckner and Whalen (2000) and Brueckner

(2003) find that the decrease in prices due to the former effect outweighs the

price increase due to the latter consequence of international airline alliances.

However, in contrast to the airline market that is characterized by a hub and

spokes network (Brueckner, 2001))3, most retail markets are characterized by

a Salop (1979) type of market structure. While there might be an increase in

efficiency due to cooperation for technological reasons, the presence of alliances

is associated with a softening in competition because only the price increasing

effect analogous to the interhub market exists in such Salop (1979) type of

markets.

In section 4 we present our estimation strategy to test the hypothesis pre-

sented above using data from Austrian ski regions. In the theoretical model of

3Brueckner (2001) analyzes the effects of international airline alliances on traffic levels,
fares, and welfare in a theoretical model.
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Giraud-Heraud et al. (2003) firms offer a spatially differentiated but otherwise

homogeneous product. To test our hypotheses in the empirical setup chosen

the inclusion of quality attributes is necessary. Therefore, we add a variety of

control variables in the estimations presented in section 5.

3 The market of ski resorts in Austria

3.1 The history of alliances

Cooperation among ski resorts occurs mainly via legally approved alliances.

From the 1970s on, chairlifts and cable cars allowing the transport of a higher

number of skiers at faster speed have successively replaced traditional t-bar

lifts. As the advanced technologies enabled skiers to ride greater distances

within one day of skiing, ski resorts were extended continuously. Additionally,

resorts that were (geographically) separated from each other have been linked

by lifts and cable cars to form so-called ski carousels. These mergers of ski re-

sorts resulted in an increase in quality due to an increased variety in landscape

and sporting amenities. They also raised the consumer and producer surplus

due to an increased demand and increasing returns to scale. Today, most of

the well-known ski resorts across Europe are ski carousels, e.g. Les Trois Valles

(France), Verbier (Switzerland), Kitzbühel (Austria) or Sellaronda (Italy).

In the late 1980s a group of physically unconnected nearby ski resorts in

Austria introduced a new way of cooperation. Ski lift tickets bought in one of

the resorts were mutually accepted by other group members. In the year 2000,

22 municipalities in that area accounting for 270 ski lifts officially founded the

company “Ski Amade” based on a written contract including agreements on

cooperation and revenue-sharing. The cooperation on ski lift tickets resulted in

an exclusive supply of common tickets and prohibited the selling of individual

tickets for the individual resorts within Ski amade.4

4Seven of the smallest resorts were exempted from the common ticket policy. However,
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The case of “Ski Amade” was investigated by the Austrian Competi-

tion Authority (BWB) in 2003/2004 (see the Austrian Competition Authority

(BWB), 2003, 2004). BWB decided that the agreements on tickets violated

Austrian antitrust-laws. The lawsuit resulted in a compromise agreement.

According to the agreement “Ski Amade” was legally obliged to remove agree-

ments on pricing and selling of common single-day tickets from the contract.

Thus, since the winter season 2004/05 all members of “Ski Amade” have been

selling individual single-day ski lift tickets but have been selling exclusive com-

mon tickets for validity periods extending to one and a half days or more.

Within the last decade the number of similar alliances among physically uncon-

nected ski resorts in the tradition of “Ski Amade” has increased dramatically.

In the winter season of 2011/12 almost one out of two ski resorts in Austria was

part of an alliance of this kind, i.e. alliance members sell individual single-day

tickets and common multi-day tickets. During the same period of time prices

for ski lift tickets have increased sharply. The average annual price increases

amounted to about twice the annual inflation rates (see Austrian Consumers’

Association (VKI), 2010, 2012, 2013).

3.2 Data

Whether alliances of this kind are having an effect on the prices of single-

day tickets is investigated by using a unique data set containing all ski re-

sorts in Austria for the winter season 2011/12. The data were collected by

combining information available at several online databases. The websites

www.bergfex.at and www.tiscover.at offer price information on ski lift tick-

ets, as well as detailed information on the characteristics of each ski resort.

These characteristics cover the number of different types of ski-lifts avail-

able (cable car, chairlift, t-bar), the total length of slopes by category (easy,

medium and difficult), as well as information on different amenities such as

prices for their tickets were also set centrally.
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ski schools.These data are combined with data on lift capacities provided by

the website www.skiresorts.info and with data on the snow levels of the pre-

vious two winter seasons (2009/10 and 2010/11) obtained from the website

www.schneehoehen.de. Capacities are used as a proxy for the costs of a ski

resort and snow levels allow us to include information on the quality and reli-

ability of snow conditions. We also include a number of demand side variables

such as regional GDP per capita, as well as data on tourism and on the local

hotel industry provided by Statistics Austria.

In addition, we use the geographic coordinates of each base station to cal-

culate the exact positions of each ski resort and measure the distance between

resorts in ArcGIS using the routing tool WIGeoNetwork.5 The distance mea-

sured relates to the driving time by car (in minutes) between base stations of

different resorts on the road network. This allows us to generate more detailed

and realistic distance measures as compared to Euclidean distances or driv-

ing distance in road kilometers. Neither of the latter two sufficiently captures

distance experienced by customers in Alpine regions. Further, we calculate

the driving time to the nearest city with a population of at least 100,000 in-

habitants for each resort to control for regional differences in the demand for

single-day ski lift tickets.

When investigating single-day tickets, a ski carousel, unlike an alliance, is

treated as one ski resort, and thus as one observation since it can be used within

one day due to the direct physical connections (lifts) between the different

parts of the resort. As many resorts and all ski carousels consist of several

base stations, distances to other ski resorts and to cities are calculated based

on the station that is closest to the respective site the resort is paired with.

Thus, the distance between ski resorts i and j is equal to the smallest distance

between any pair of base stations of i and j.

Table 1 presents some descriptive statistics for the variables used in the

5See https://www.arcgis.com and http://www.wigeogis.com for company details.
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econometric analysis below. In total, we observe 285 physically unconnected

ski resorts in Austria. The price for a single-day ticket is about 28 EUR on

average with prices ranging from 7 EUR to 45.5 EUR. In total, almost half

(46%) of the resorts are associated with an Alliance.6 The mean number of

slope kilometers (Slopekm) is around 28 km per resort. However, looking at

the minimum (0.5 km) and maximum (283 km) of Slopekm it becomes obvi-

ous that size varies substantially. As a decrease in the day-trippers’ marginal

willingness to pay for an additional slope kilometer can be expected, we use

the log of total slope kilometers as an explanatory variable for our estimations.

The variable Capacity indicates the maximum number of passengers that can

be carried per hour, which, given the differences in the number of ski-lifts

available, also varies highly among resorts and is also transformed to its logs

in the estimations. ShareDrag reflects the share of t-bar (drag) lifts in the

total number of lifts. This category of lifts is slow, uncomfortable and asso-

ciated with low capacities. Therefore, it is considered as a proxy for inferior

technology (compared to chair lifts and cable cars).

[Table 1 about here]

The maximum (minimum) altitude of the summit (SealevelMax) of a ski re-

sort is at 3,440 (403) meters, with the mean summit at 1,710 meters above

sea level. The variable SnowV alley contains the average maximum snow level

of the previous two winter seasons at the bottom (in the valley) of a resort.

SealevelMax and SnowV alley are included as proxies for the snow quality

of a ski resort. SealevelMax additionally serves as an indicator for the at-

tractiveness of the scenery. DistCity measures the driving time a ski resort is

located from the nearest Austrian city with at least 100,000 inhabitants and

can be interpreted as a proxy for differences in demand for single-day tickets.

The latter variable as well as the variables on altitude and snow levels are also

6Note that alliance membership does not imply that resorts of the same alliance set the
same price for their single-day tickets.
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transformed to logs. Besides the expected diminishing marginal willingness

to pay, all variables that are transformed to logs show a log-linear correlation

with prices. Therefore, we refrain from transforming prices to logs and use

linear prices as our dependent variable.

Around 70% of the resorts have access to snowmaking technologies such

as snow cannons or snow lances (indicated by ArtificialSnow). Since reliable

snow conditions and a long season are essential for the survival of a ski resort

(Falk, 2013), many resorts produce artificial snow, at least for the lower parts of

their slopes. We expect this variable to be an important proxy for differences

in costs. The availability of a ski school (SkiSchool) may increase parents’

willingness to pay for their own ski-lift tickets. Differences in the willingness

to pay may also stem from differences in the type of clients targeted. To control

for such differences we include the share of tourist overnight stays in luxury

accommodation (4 and 5 star) at the municipality level (ShareLux). If a ski

resort has base stations in several municipalities, we calculate the average share

weighted by the number of stations per municipality.7 Further, we include the

driving time to the nearest ski resort of similar size (DistNextSim) to control

for a resort’s degree of spatial differentiation. As resorts of the same alliance are

not necessarily genuine competitors, we ignore members of the same alliance in

constructing this variable.8 GPD is the log of the gross regional product per

capita at current prices on a NUTS-3 level to control for differences in income

and price levels in different regions of Austria.

7Note that we also estimated our models using alternative measures of differences in
touristic demand, such as the number of overnight stays in the municipalities covered by
the resort, the number of overnight stays per bed as an indicator for capacity utilization of
the local hotel industry, as well as the average number of overnight stays per arrival as an
indicator for the relevance of single-day tickets for total revenues of the ski-resort. However,
our main results are very robust to the choice of these variables.

8‘Similar size’ indicates that a pair of ski resorts belongs to the same category based on the
number of slope kilometers: micro (0 < SlopeKm < 5), small (5 ≤ SlopeKm < 20), medium
(20 ≤ SlopeKm < 50), big (50 ≤ SlopeKm < 100), giant (SlopeKm > 100); Alternatively,
we included other measures such as the distance to the nearest resort irrespective of the
category and/or alliance, and the number of (similar) ski resorts within 30/45/60/75/90
minutes’ driving time. Surprisingly, however, none of these measures were significant in any
of the specifications (see the discussion in Section 5).
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Table 5 in the appendix provides details on all 23 alliances observed.9 The

largest alliance in terms of the number of members as well as size measured by

the number of total slope kilometers is “Ski Amade”, located in Salzburg and

consisting of 17 ski resorts that amount to 6% of all resorts. Those 6% cover

more than 240 ski-lifts and about 760 slope kilometers.10 The next largest

ski alliances in terms of members are “3-Taeler Skipass Vorarlberg” with 11

members, “Murtaler Schiberge” and “Skihit Osttirol” with 8 members each,

and “Allgaeu-Tirol Skicard” (“Vitales Land”) with 7 members. Big alliances

do not necessarily consist of large ski resorts only but include small resorts

as well. Further, not all large ski resorts are part of an alliance: 38% of the

ski resorts in the fourth quartile of slope kilometers are not affiliated with

any alliance. The locations and the sizes of ski resorts are shown in Figure 3.

The diameters of the circles in Figure 3 reflect the resorts’ number of slope

kilometers. Most of the (bigger) ski regions are located in the western parts of

Austria, which is the mountainous part of the country. A light circle indicates

that a resort is part of an alliance, dark circles reflect stand-alone resorts. Each

ski resort mapped in Figure 3 accounts for one observation in our empirical

analysis.

[Figure 3 about here]

9Note that we exclude two supra-regional alliances – Salzburg Super Ski Card and
Kitzbuehler Alpen Allstarcard. The effects of these alliances are captured by considering
more local alliances that are nested within them.

10The number of total slope kilometers of an alliance is based on the sum of slope kilome-
ters of the individual alliance members in line with our online data sources and may thus
differ from the numbers published by the websites of the alliances.
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4 Econometric models and identification strat-

egy

We estimate equilibrium prices of single-day ski lift tickets using the simple

linear model

y = Xβ + u, (3)

in which y is the vector of prices, X is a matrix containing information on

alliances membership and on nearby resorts’ alliance membership, a set of

ski resort characteristics, demand side variables, as well as a constant. β is

the vector of coefficients to be estimated and u is a random error term that

captures unobserved cost and demand variables and that is assumed to be

heteroskedastic or spatially correlated.11

Equation (3) allows us to test Hypotheses 1a and 1b as well as 2a and

2b on differences in equilibrium prices between alliance members and stand-

alone resorts. In order to test Hypothesis 3 (best response functions within

the alliance are different from best response functions outside the alliance)

best response functions have to be estimated rather than equilibrium prices as

denoted in (3). The best response functions of ski resorts can be denoted as

y = ρWy + ρAWAy +Xβ + u, (4)

where W and WA are spatial weights matrices in which element wij 6= 0 if ski

resort j is a neighbor of ski resort i that is relevant in determining the price of i

and where wAij
= wij if i and j are members of the same alliance, and wAij

= 0

11The errors are regionally clustered (by NUTS-3 region). Using more local spatial units to
form clusters, for example districts, increases the number of clusters but implies the problem
that different base stations of ski resorts may belong to different districts and thus increases
the challenge of assigning a ski resort to a certain cluster. This also applies to clustering
regions at the NUTS-3 level, albeit to a much lesser extent. Additionally, in many regions
the number of resorts per cluster drops substantially if more local clusters are used. To
control for heteroskedasticiy of unknown form we also estimated our models using robust
instead of clustered errors but this modification did not affect the main results of the paper.
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otherwise. ρ and ρA are the slope parameters of the best response functions

to be estimated. ρA corresponds to the difference in the slope between same-

alliance resorts and all other resorts according to Hypothesis 3 in Section 2.

Thus, ρA can be interpreted as the marginal effect of the strategic interaction

within an alliance in addition to ρ. Recall that the higher the slope parameters

ρ and ρA the higher the strategic interaction in pricing. If an alliance colludes

the slope of best response functions within the alliance (ρ + ρA) should be

larger than the slope outside the alliance (ρ) according to Hypothesis 3. Any

ρA > 0 identifies collusive behavior among alliance members.

Prices for ski lift tickets are typically set before the start of the winter sea-

son and remain fixed throughout the season. Thus, our approach of modeling

pricing decisions in a static Bertrand game seems justified. While ski resorts

probably earn higher revenues on multi-day tickets we argue that single-day

and multi-day tickets can be regarded as different markets, as multi-day tick-

ets mainly involve touristic stays while single-day tickets are mainly sold to

day-trippers. Thus, prices for multi-day tickets can be assumed to have little

influence on prices and quantities of single-day tickets.

While unobservable local characteristics by nature rely on the geographical

location of ski resorts, the intensity of competition, as opposed to homogeneous

products, is not necessarily determined by geographical proximity only, but

also by similarity in characteristics and quality attributes of different resorts.

Imagine a valley hosting four ski resorts, two big resorts of similar size at each

end of the valley, and two very small resorts each located right next to one

of the two big resorts. The big (small) resorts are likely to care more about

the pricing decision of the other big (small) resort, even though it is further

away than the adjacent small (big) neighbor. Therefore, to account for the

fact that distance and quality jointly determine consumer choice, we construct

the spatial weights matrix W in a similar functional form as previously used to

model elements of non-physical distance (Pinkse and Slade, 2004; Pofahl and
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Richards, 2009; Richards et al., 2010; Rincke, 2010). The elements of matrix

W are constructed by

wij =
1

1 +
√

(dij)2 + (si − sj)2
. (5)

where (dij) is the driving time between resorts i and j and where s is the

total length of slopes of a ski resort in kilometers. The intensity of interaction

between resorts decreases with the increase of distance that separates them and

increases with their similarity in terms of size. To facilitate the interpretation

of the slope parameters ρ and ρA we row normalize W and WA so Wy and

WAy reflect the spatially and similarity weighted average prices of neighboring

ski resorts.

Some authors, most prominently Manski (1993), have stressed the im-

portance of exogenous weights in order to identify the interaction between

economic agents through matrices such as W . The inclusion of non-spatial el-

ements such as similarity in size may thus raise questions about the exogeneity

of the spatial weights in W . However, we provide two arguments in favor of

our approach: First, the size of ski resorts is mainly exogenously determined

by the topography of the landscape, as well as the altitude and magnitude of

the mountain or mountain range hosting a ski resort. Second, the necessity

of adding similarity to geographical distance in modeling strategic interaction

between ski resorts becomes obvious when comparing the Moran scatter plots

in Figures 4 and 5. Figure 4 shows the correlation between prices (y) and

neighbors’ prices (Wy), Figure 5 plots the same relation for y and My, where

M is a purely distance-based weights matrix with mij = 1/d2ij if dij ≤ 75

minutes of driving time and mij = 0 otherwise12. The substantially lower

12We choose 75 minutes of driving time as a cut-off distance because at this distance
each observation has at least one neighbor. This way we avoid all-zero rows and columns
while not restricting a ski resort’s number of neighbors as in a spatial weights matrix
based on k-nearest neighbors (with k ≥ 1). In W we also set wij = 0 if dij > 75 or if

1/
(

1 +
√

(dij)2 + (si − sj)2
)
< γ where γ is the smallest row-maximum in W . This again
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correlation in Figure 5 illustrates the obvious loss of information when purely

relying on spatial distance in defining neighborhood relations and their weights

(see Rincke (2010) for a similar discussion).13

[Figure 4 + Figure 5 about here]

Equation (4) implies – similarly to the theoretical foundation in Giraud-

Heraud et al. (2003), which leads to Hypothesis 3 – that ski resorts are playing

a simultaneous Bertrand game. By definition, prices and rival prices are jointly

determined. Thus, Wy and WAy are endogenous. Under the assumption that

W and WA are known to the researcher, the parameters ρ and ρA, and vector β

can be estimated either by estimating the reduced form of (4) using nonlinear

methods such as maximum likelihood (Kalnins, 2003; McMillen et al., 2007;

Richards et al., 2008; Pennerstorfer, 2009) or by estimating (4) directly using

instrumental variables (2SLS, GMM) techniques (Pinkse et al., 2002; Kalnins,

2003; Pinkse and Slade, 2004; Fell and Haynie, 2013). Recent papers by Pinkse

and Slade (2010) and Gibbons and Overman (2012) persuasively emphasize the

advantage of IV-estimation over the maximum likelihood approach because of

the strict assumptions on normally distributed and homoskedastic error terms

implied in the ML-approach to obtain unbiased and efficient results. GMM

on the other hand does not require any assumptions on the distribution of the

error terms and is less sensitive to misspecification in spatial models (see also

McMillen, 2012).

Indeed the estimation of a spatial lag of the dependent variable, which is

required to identify best response functions, imposes challenges in the speci-

ensures that each observation has at least one neighbor, but also accounts for the fact that
ski resorts that are neither close in geographical nor in product space are not likely to be
rivals at all.

13McMillen (2012) finds substantial variation in results depending on the functional form
of W and the estimation methods chosen. He thus recommends researchers to use different
functional forms of W and different estimators to illustrate the robustness of their results.
Therefore, to check the robustness of our results we also estimated equation (4) using matri-
ces based on M and on additional functional forms of the spatial weights matrix (see Section
5).
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fication of the empirical model. However, spatial data have the advantage of

usually providing a wide set of potential instruments. WX, WZ with Z ⊂ X

or higher orders such as W 2X can be used to instrument Wy. The use of

characteristics of neighboring observations as instruments can be considered

analogously to the idea of Hausman and Taylor (1981) and is in line with the

use of rival product characteristics as instruments (e.g. Berry et al., 1995).

Due to the fact that there is a high degree of variation in the individual

(continuous) characteristics of ski resorts even among nearby resorts, we follow

the IV-approach rather than the ML-approach because of the high quality of

the potential instruments available. However, to check the robustness of our

results with respect to the estimation technique chosen – as recommended by

McMillen (2012) – we present ML estimation results of our main specification

as well.14

Table 1 above illustrates a number of individual characteristics of ski re-

sorts that could serve as instruments. Gibbons and Overman (2012) point out

several problems associated with using a multitude of instruments and higher

order spatial lags because of the high correlation between X, WX, W 2X, etc.

Thus, in order to avoid biased and imprecise estimates in the second stage

we narrow our set of instruments and use a subset Z of X to instrument Wy

and WAy in the first stage by using the spatial lags of Z (WZ and WAZ).

In this subset Z we only include continuous variables on the ski resorts’ indi-

vidual characteristics which provides information for all resorts in the sample.

This includes the variables log(SlopeKm), log(SealevelMax) and ShareDrag.

We provide tests for weak identification and underidentification, and for po-

tential violation of the overidentification restrictions for all results based on

14Instead of clustering standard errors by NUTS-3 regions our ML estimator allows for
spatial autocorrelation in the residuals, which corresponds to the so-called general spatial
autocorrelation model (LeSage and Pace, 2009) commonly used in the ML framework. This
model extends equation (4) to y = ρWy+ ρAWAy+Xβ+u with u = λW + ε. The reduced

form of this system of equations that is estimated is given by y = (I − ρW − ρAWA)
−1
Xβ+

(I − ρW − ρAWA)
−1

(I − λW ) ε.
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IV-estimation. The OLS results on price levels in Section 5.1 include a speci-

fication that contains WZ and other spatially lagged variables as explanatory

variables. The fact that none of these variables are significant supports the

exclusion restriction for the chosen instruments.

As we are testing our hypotheses using cross-sectional data we should be

particularly concerned about the identification of our parameters of interest

because of the possibility of different competing explanations regarding the

impact of alliances on prices. Firstly, observed differences in pricing might stem

from unobserved differences in cost structures if alliance membership leads to

an increase in efficiency. However, a wide range of cost-relevant variables such

as a ski resort’s capacity, the availability of snow cannons, as well as sea level

data that reflect the costs of a reliable of snow coverage, are included in the

model. The high R2 of around 90% in all specifications reflects the high quality

of our control variables and provides arguments against a potentially omitted

variable bias.

Secondly, alliances might ask for higher prices because their marketing is

superior to that of stand-alone resorts. However, as demonstrated in the results

of Section 5 we find evidence for higher overcharge rates at the geographical

center than at the geographical fringe of an alliance (as proposed in Hypothesis

2a). If marketing techniques were the source of price differences between an

alliance and stand-alone resorts, all alliance members and not only those at

the center which are shielded from outside competition should benefit from

better marketing.

Thirdly, the assumption that alliance membership is exogenous and inde-

pendent from the price setting behavior may be seen critically. However, we

found an insignificant inverse Mills ratio in a two-stage Heckman correction

model of equation (3), which supports our assumption. Also, only two vari-

ables (SlopeKm and ShareDrag) were found to significantly predict alliance
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membership.15

5 Results

5.1 Estimation results of equilibrium prices

According to the hypotheses in Section 2, if alliances collude alliance resorts are

expected to show higher prices in general (Hypothesis 1a) which are increasing

with the number of alliance members (Hypothesis 1b) and particularly high

prices at the geographical center of an alliance (Hypothesis 2a).16 Stand-alone

resorts, on the other hand, are expected to set higher prices, ceteris paribus,

if they are close to an alliance (Hypothesis 2b). In this section we test these

hypotheses based on OLS estimation results of the model in equation (3).

Table 2 summarizes the results of this analysis.

The variable ShareSameAlliance in specifications (2), (3) and (5) includes

the spatially and similarity weighted shares (according to W ) of a ski re-

sort’s neighbors that are part of the same alliance. A value of one (zero) in

ShareSameAlliance indicates that all (none of the) neighbors of an alliance re-

sort are part of the same alliance. Similarly, ShareAllianceFringe measures

a stand-alone resort’s share of neighbors that are members of an alliance.

A value of one (zero) in ShareAllianceFringe indicates that a stand-alone

resorts is surrounded by alliance resorts only (does not have any neighbors

that are part of an alliance). ShareSameAlliance (ShareAllianceFringe)

is set to zero if a ski resort is not part of an alliance (is an alliance re-

sort) itself. We use ShareSameAlliance to measure the degree of an al-

liance member’s centrality within an alliance. Ski regions being mainly sur-

15Both variables are negatively correlated with the probability of being an alliance mem-
ber. Larger resorts and resorts with a higher share of inferior drag lifts are less likely to
be part of an alliance, ceteris paribus. The regression results drawn from this exercise are
provided by the authors on request.

16Recall that the geographic center refers to the position within the alliance relative to
other alliance members (see Figure 1) and not to centrality relative to other factors such as
the clustering of consumers around specific locations as in Anderson et al. (1997).
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rounded by other alliance members have a central position within the al-

liance. Similarly, ShareAllianceFringe serves as an indicator for the closeness

to alliances for stand-alone resorts. The dummy variable Alliance controls

for alliance membership and identifies the effect of ShareSameAlliance and

ShareAllianceFringe. Additionally, specification (3) includes the spatial lag

of the ski resorts characteristics (WC with C ⊂ X) to capture potential direct

effects of the characteristics of neighboring ski resorts on prices.17

Specification (1) in Table 2 illustrates that ski resorts that are part of

an Alliance are expected to charge prices that are on average by 1.90 EUR

higher per day. Specifications (2) and (3) reveal that the prices of alliance

resorts increase corresponding to the share of same alliance members in the

neighborhood. If all neighbors belong to the same alliance, an alliance resort

is expected to charge about 4.4 to 4.9 EUR more than an alliance resort that

does not have any neighbors associated with the same alliance.18 With the

inclusion of ShareSameAlliance the coefficients of Alliance turn negative.

However, this effect is insignificant in both specifications.

Instead of the dummy variable Alliance, specifications (4) and (5) in-

clude a variable measuring the number of alliance members within an alliance

(#AllianceMembers), which is equal to zero in case of a stand-alone resort.

As indicated by specification (4) prices are expected to increase corresponding

to the size of an alliance, which is in line with Hypothesis 1b. This effect also

holds if the share of other alliance members and the share of fringe firms in

the neighborhood are included in specification (5). There is a positive correla-

tion between the two variables #AllianceMembers and ShareSameAlliance

(by definition, larger alliances tend to have higher shares of same-alliance

17C includes SealevelMax, Slopekm, ShareDrag, Capacity, SkiSchool, ArtificialSnow
and SnowV alley.

18The mean of ShareSameAlliance for alliance resorts is 0.63. The mean of
ShareAllianceFringe for the group of stand-alone resorts is 0.3. ShareAllianceFringe = 0
for about 25% and ShareAllianceFringe = 1 for about 2% of all stand-alone resorts, while
ShareSameAlliance = 1 for about 9% of all alliance resorts.
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members than small alliances). This correlation implies that the effect of

ShareSameAlliance may be overestimated if #AllianceMembers is excluded

from the set of variables. The size of the coefficient for ShareSameAlliance is

reduced if #AllianceMembers is included in specification (5) but both vari-

ables remain significant. The closeness to alliances or rather the level of en-

circlement should also have an impact on the prices of stand-alone resorts as as-

sumed by Hypothesis 2b. But this cannot be confirmed by ShareAllianceFringe,

which is insignificant in all specifications.

[Table 2 about here]

The effect of spatial differentiation (DistNextSim) on prices remains insignif-

icant in all specifications. This contradicts theory on localized competition in

differentiated markets as well as the empirical results found for many spatially

differentiated industries. Besides the distance to the nearest similar ski resort

(not part of the same alliance) we used a number of alternative proxies to mea-

sure the degree of competition (in differentiated markets) such as the distance

to the nearest resort in general, or the number of ski resorts within radii of 30,

45, 60, 75 and 90 minutes. However, none of these variables turned out to be

significant.19

Among the remaining variables capacities, snow levels at the base stations,

facilities to produce artificial snow, and the share of (inferior) drag lifts turn

out to be the most reliable variables for predicting ticket prices. These vari-

ables are significant at least at the 5% level in all specifications. The size

of ski resorts in terms of slope kilometers and the maximum altitude of a

resort’s peaks are significant only in the specifications that do not include spa-

tial lags of the ski resorts’ characteristics (WC). All the coefficients of these

lags in specification (3) are insignificant.20 The presence of ski schools does

19Estimation results on these alternative measures are available from the authors upon
request.

20Tables including the results for WC can be provided by the authors upon request.

23



not significantly influence prices. We also included some demand side vari-

ables (DistCity, ShareLux and GDP ; see Table 1) to avoid potential omitted

variable bias resulting from differences in demand. The contribution of these

variables turned out to be rather limited and their inclusion/exclusion did not

affect the coefficients for the remaining variables with respect to sign and sig-

nificance. Thus, the results for these variables are not reported in Table 2 but

are available upon request. While the effect of the share of tourist overnight

stays in luxury accommodation on prices is weakly significant, the distance

to the nearest big city and regional GDP per capita levels are insignificant in

all specifications. In a nutshell, our results suggest that supply side variables

seem to dominate prices for ski lift tickets.

5.2 Estimation results of best response functions

Testing Hypothesis 3, claiming that strategic interaction in pricing is different

within a colluding alliance, requires the estimation of best response functions.

For this reason Table 3 provides IV-estimates of ski resorts’ best response

functions as denoted in equation (4). Specification (1) in Table 3 assumes

similar best response functions for all ski resorts and thus restricts ρA = 0.

Specifications (2) and (3) allow us to test Hypotheses 1 to 3 simultaneously.

Both specifications contain the demand side variables DistCity, ShareLux

and GDP in addition to the variables on ski resorts’ characteristics, which

are however not reported in Table 3, and the results for these variables are

available upon request.

Specification (1) in Table 3 shows that under the restriction of a common

single slope parameter for the best response functions of alliance and non-

alliance ski resorts, this parameter is equal to 0.21. This means that an average

increase in prices of all neighboring resorts by one Euro is associated with an

increase of a ski resort’s best response price by 0.21 Euros. If the restriction is
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relaxed and different slope parameters are estimated for alliance members and

non-alliance members, the slope is 0.17 [0.12] for non-alliance members and

0.28 [0.24] for alliance members (Wy + WAy) according to specification (2)

[(3)]. The fact that WAy is significantly different from zero and that a test for

the equality of the coefficients for Wy and WAy cannot be rejected supports

the findings of the underlying theoretical model and therefore Hypothesis 3.

Strategic interaction in pricing within the alliances in general suggests a pricing

behavior similar to colluding firms in spatially differentiated markets. Also, the

results of the previous section on Hypothesis 2a and 2b are confirmed. The

higher the share of neighbors that are part of the same alliance, the higher

the prices (Hypothesis 2a). ShareSameAlliance is significant at the 5% (1%)

level if the number of alliance members is (not) included. The high level of

significance of #AllianceMembers itself again confirms Hypothesis 1b, i.e.

prices increase with the size of an alliance. However, the assumption of the

presence of an alliance having a positive effect on stand-alone resorts’ prices as

expected by theory (Hypothesis 2b) is again not confirmed since the coefficient

for ShareAllianceFringe is again insignificant.

[Table 3 about here]

The negative coefficient of the dummy variable Alliance becomes highly signif-

icant once we estimate different slope parameters for alliance and stand-alone

resorts. This, however, does not mean that alliance members charge signifi-

cantly lower prices. Rather, the net effect of alliance membership consists of the

parameters ofWAy, Alliance, ShareSameAlliance (and #AllianceMembers).

Figure 6 illustrates the distribution of the total effect of alliance membership

based on the coefficients of specification (2) for these three variables times the

values of the respective variables for alliance members. With a mean of 2.06

and a median of 2.32 this net price effect of alliance membership is positive

for more than 95% of alliance members. A t-test on the mean effect being

25



equal to zero is rejected at the 1% significance level. To put it another way,

we observe two different effects of an alliance having been formed: an effi-

ciency effect and a market power effect. The former is reflected by the dummy

Alliance. While we include a number of variables controlling for differences in

costs (capacity, snow canons, etc.), the negative sign for Alliance may reflect

an efficiency increasing effect of alliance membership that lowers costs and

therefore reduces prices. However, this effect is clearly outweighed by the mar-

ket power effect reflected by the coefficients of WAy, ShareSameAlliance and

#AllianceMembers. Due to the increase in market power alliance members

charge higher prices and the net effect on prices is positive.

[Figure 6 about here]

Further, the estimates of best response functions mostly confirm the re-

sults for the remaining explanatory variables obtained in the previous section.

Capacities, artificial snow, sea level, snow conditions in the valley and the

share of inferior (t-bar) drag lifts remain highly significant in all specifications.

Additionally, compared to the OLS estimations of equilibrium prices, the in-

tercept of the best response functions is significantly shifted by the presence

of ski schools (at least at the 10% significance level), by the share of tourist

overnight stays in the luxury segment of the market and by the level of the lo-

cal GDP per capita. Again, the coefficients of the number of slope kilometers,

the distance to the nearest big city, and the distance to the nearest similar ski

resort (outside the same alliance) are insignificant. As indicated at the bottom

of Table 3 our set of instruments is valid and strong. According to the Hansen

J-statistics the null hypothesis of valid (exogenous) instruments that are cor-

rectly excluded from the estimation equation cannot be rejected. These test

statistics support our exclusion restriction that is based on the insignificance

of these variables in the estimation of equilibrium prices (specification (3) in

Table 2). The Kleinbergen-Paap LM -tests for underidentification are each re-
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jected at the 1% significance level. The Kleinbergen-Paap F -statistics for weak

identification are sufficiently high and thus also indicate strong instruments.

5.3 Checks for robustness

Table 4 demonstrates that the results for differences in price levels and strategic

interaction between alliance members and stand-alone resorts are very robust

with respect to a different estimation technique (ML) and to different func-

tional forms in specifying the spatial weights matrix, which affects the lag of

prices, the calculation of the weighted shares of (same) alliance members in

the neighborhood as well as the instruments. Specification (1) in Table 4 esti-

mates the reduced form of equation (4) using a maximum likelihood estimator.

While the coefficient of Wy remains unchanged with slightly higher standard

errors, the coefficient of WAy increases to 0.22 and remains significant at the

1% level.

Relying purely on distance (specification (2)) or on similarity only (specifi-

cation (3)) in calculating the spatial weights matrix instead of considering both

dimensions of closeness does not affect the significance of the within-alliance

component WAy in the GMM framework.21 The slope parameter for strategic

interaction outside the alliance (Wy) is significant at a 1% level (insignifi-

cant) in case of a purely similarity (distance-) based spatial weights matrix.

Constructing W based on shorter radii such as 60 or 45 minutes of driving

time (specifications (4) and (5) in Table 4) instead of 75 minutes again does

only affect the coefficient for Wy, which becomes insignificant in case of 60

minutes, but again does not affect the significance of WAy. The size of this

within-component of the slope parameter for alliance resorts increases from

0.12 to about 0.17-0.18.

[Table 4 about here]

21In the similarity-based matrix S we also set sij = 0 if dij > 75 or if

1/
(

1 +
√

(si − sj)2
)
< γ where γ is the smallest row-maximum in S.
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The spatial structure of prices within alliances, however, does not show a

similar robustness with respect to these different modifications. The vari-

able ShareSameAlliance remains significant at a 5% level for the case of a

similarity-based neighborhood matrix (S) but is insignificant when applying

the ML estimator and when using shorter cut-off radii or the purely distance

based matrix (M), respectively. This weak robustness, however, does not nec-

essarily imply that the result does not hold. It is more likely that some of

the modifications of the spatial weights matrix in Table 4 result in a loss of

information and efficiency. As can be seen at the bottom of Table 4, the LM

test for underidentification is only significant at the 5% level in case of a cut-off

distance of 60 or 45 minutes and for the purely distance-based weights matrix,

while it is significant at the 1% level for W used in the main results of Table

3. Also the F statistics for weak identification – although it still remains rel-

atively high – drops substantially in the specifications using smaller radii for

determining the weights in W .

The shorter cut-off radii in specifications (4) and (5) of Table 4 provide

additional robustness checks with respect to changes in the sample. Due to

the shorter radii a few observations that do not have (same-alliance) neighbors

within the respective cut-off distance are dropped. As for the main results in

all specifications of Table 4 the Hansen J-statistics indicate that the overiden-

tification restrictions on our set of instruments are satisfied.

It might be the case that WAy does not capture the interaction between

alliance members, but rather reflects the fact that alliance members are often

closer neighbors than other resorts. To identify the price setting behavior be-

tween members of the same alliance it is crucial to make sure that the results

are not driven by structural differences in the neighborhood of alliances and

independent ski regions. One point in favor of our model is that the variable

measuring the distance (in driving minutes) to the nearest resort irrespective

of the category and/or alliance membership is insignificant in all specifica-
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tions. Furthermore, the null hypothesis that the similarity- and distance-based

weights of both groups, alliance members and independent ski resorts, have

equal means in the spatial weights matrix W cannot be rejected by a two-

sample t-test.22 Again, this result supports the chosen identification strategy

of the alliances’ best response to other alliance members.

6 Discussion and conclusions

In this paper we propose a novel approach to identify collusive behavior in

spatially differentiated markets that makes use of the spatial structure of the

market and does thus not rely on output or panel data. We adopt the results

of a theoretical model by Giraud-Heraud et al. (2003), which analyzes pricing

in a Salop (1979) type of market space and in the presence of a multiproduct

firm with an arbitrary number of products and an arbitrary number of fringe

firms to the case of collusion. A group of colluding firms in spatial markets

maximizes joint profits and thus sets prices the same way a multiproduct firm

does. We use a unique data set containing the characteristics and locations of

all ski resorts in Austria to test our approach empirically. Our results indicate

that allowing ski resorts to form alliances to sell exclusive common multi-day

ski lift tickets seems to lead to a softening in competition with respect to the

price setting of single-day tickets that alliance members are legally obliged

to sell individually for their own resorts. Our results provide evidence that

prices of alliance members are generally higher, increase with their size and

towards the geographical center of an alliance, and (by estimating best response

functions) we show that strategic interaction in pricing is more intense within

alliances than outside alliances, ceteris paribus. These findings are in line with

22A two sided t-test accepts the null of equal mean spatial weights wi of alliances and
of stand-alone firms to their neighboring resorts within a driving distance of 75 minutes at
a significance level of 1%. The same holds when solely the average of the distance-based
weights mi = (1/J)

∑
j (1/d2ij) are used to carry out this t-test. More details on these tests

are available upon request.
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the predictions of theoretical models (Levy and Reitzes, 1992; Giraud-Heraud

et al., 2003) that analyze the pricing behavior of colluding firms in horizontally

differentiated markets.

Further, we do not find a significant relation between the degree of spatial

differentiation and equilibrium prices. We test a number of different variables

such as the distance to the nearest (similar) ski resort (outside the same al-

liance) or the number of (similar) ski resorts (outside the same alliance) within

several cut-off radii, but none of them show any significant effect on price lev-

els. These findings contradict theory on competition in differentiated markets

as well as the findings of a broad empirical literature. Clemenz and Gugler

(2006) interpret a negative relation between the station density and prices of

gasoline stations as sufficient evidence against collusion. Analogously, it may

be concluded that not finding a significant relation between the density of ski

resorts and prices provides additional evidence for a lack of competition in this

market. In line with previous research on Austrian ski resorts (Falk, 2008) we

find that besides alliances, mainly capacity and snow levels, the share of lifts

with inferior technology, the possibility to produce artificial snow and the al-

titude of top stations drive prices for ski lift tickets. We also add a number

of demand side variables that turned out to be of little relevance in modeling

prices.

Thus, our results challenge the legal compromise obtained between the

biggest and oldest alliance (“Ski Amade”) and the Austrian Competition Au-

thority (BWB) in 2003/2004. According to this compromise an alliance of

physically unconnected nearby ski resorts is allowed to sell exclusive common

multi-day ski lift tickets whereas each alliance member is obliged to sell an

individual single-day ticket for its own resort. According to our results, con-

sumers staying in a region for several days of skiing might be better off buying

several single-day tickets for different alliance members if alliances were pro-

hibited, than buying the actual corresponding multi-day ticket of the existing
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alliance. Further, to calculate the net welfare effects of the alliances, of course,

information on quantities of tickets for different periods of validity would be

required. Indeed, these aspects should be subject to further research.

Our results seem to contradict the findings for airline alliances (e.g. Brueck-

ner and Whalen, 2000; Brueckner, 2001), which usually observe positive net

benefits associated with the cooperation of airlines serving different hub and

spokes markets. These net benefits result from two countervailing effects, with

a price decreasing effect on the interline city-pair markets (connections which

require different carriers) outweighing the loss of competition in the interhub

markets (which connect the hub cities of the partners). However, the indus-

try focused on in the present paper is not characterized by hub and spokes

networks, but rather by a linear (Hotelling, 1929) or circular (Salop, 1979)

city type of market. Thus, following the terminology of Brueckner (2001), the

effect of alliances is reduced to the price-increasing effect found for interhub

markets.

In contrast to the market structure of the airline industry, which has re-

ceived a lot of attention in the literature but is characterized by a very specific

spatial market structure, the approach to detect anti-competitive behavior in

price setting suggested in this paper can be applied to a number of different

industries provided that a group of firms is suspected of collusion. Relevant

markets are characterized by localized competition with fixed consumer loca-

tions and high relocation costs for firms. Such market conditions can be found

in many different retail and wholesale industries, such as food or gasoline mar-

kets, and entertainment or tourism services such as theaters, hotels and theme

parks. We hope that our contribution spurs further research in this direction.

While in this paper we suggest that our approach enables tracking down

collusive behavior in spatially differentiated markets with cross-sectional data,

the availability of panel data and the possibility to use a difference-in-difference

approach would simplify the detection of the causal effect of cooperation and
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collusion. This, however, requires further research. Specifically, the choice

of an appropriate reference group should be well-considered if the diff-in-diff

approach is applied to spatial markets. Particularly in the case of ski resorts

setting prices that remain unchanged throughout the season only once before

the start of the winter season, the formation of an alliance may also affect prices

of nearby “non-treated” resorts. Our approach circumvents this problem by

explicitly focusing on the spatial structure of price patterns. Thus, one way

to ensure that the price setting of the control group is not affected by the

behavior of alliance members in a difference-in-difference approach is that of

choosing similar ski resorts in countries further away (e.g. France in our case)

as reference and/or by using propensity score matching. Also synthetic control

methods could be applied to compare prices of individual alliance resorts before

and after forming or joining an alliance. Further, it may be worth analyzing the

market with respect to potential heterogeneity in pricing of different alliances.

Specifically, the question of what drives the extent to which market power can

be exploited in different groups of alliances could be investigated by applying

spatial quantile regression methods.
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Appendix

[Table 5 about here]
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Figure 1: A circular city model with a multiproduct and stand-alone firms

Source: Giraud-Heraud et al. (2003)
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Figure 2: Typical shape for equilibrium prices with n > 2

Source: Giraud-Heraud et al. (2003)
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Figure 4: Moran scatterplot of y and Wy
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Figure 5: Moran scatterplot of y and My
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Figure 6: Distribution of net price effects of alliance membership

Histogram (bars) and kernel density estimation (line) based on specification (2) in Table 3;
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max. N

Price 28.035 9.500 7 45.5 285
Alliance 0.46 0 1 285
SealevelMax 1709.758 572.621 403 3440 285
Slopekm 27.858 42.723 0.5 283 285
ShareDrag 70.615 27.242 0 100 285
Capacity 12800.744 19588.657 350 136494.5 251
SkiSchool 0.926 0 1 285
ArtificialSnow 0.726 0 1 285
SnowV alley 67.629 30.448 10 265 178
DistCity 86.101 38.304 14.16 194.5 285
ShareLux 18.5 21.576 0 93.853 201
DistNextSim 39.802 22.282 3.04 104.86 285
GDP 31040.207 6202.682 19099.166 44712.125 285
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Table 2: OLS regression results of price levels

(1) (2) (3) (4) (5)

Alliance 1.902∗∗∗ -0.534 -0.519
(3.44) (-0.66) (-0.48)

#AllianceMembers 0.263∗∗∗ 0.201∗∗

(5.05) (2.22)
ShareSameAlliance 4.853∗∗∗ 4.411∗∗ 2.026∗

(4.19) (2.60) (1.86)
ShareAllianceFringe 0.967 0.609 1.255

(0.83) (0.52) (1.27)
log(DistNextSim) 0.174 -0.00476 -0.111 0.124 0.0288

(0.36) (-0.01) (-0.25) (0.26) (0.06)
log(SlopeKm) 1.468∗∗ 1.491∗∗ 0.344 1.522∗∗∗ 1.473∗∗

(2.75) (2.55) (0.48) (2.84) (2.55)
log(Capacity) 2.344∗∗∗ 2.329∗∗∗ 2.517∗∗∗ 2.250∗∗∗ 2.296∗∗∗

(6.98) (6.84) (6.72) (6.68) (6.70)
ArtificialSnow 1.386∗∗ 1.615∗∗ 1.473∗∗ 1.446∗∗ 1.565∗∗

(2.27) (2.60) (2.53) (2.59) (2.66)
log(SealevelMax) 4.069∗∗∗ 3.764∗∗∗ 2.569 4.140∗∗∗ 3.913∗∗∗

(2.84) (2.81) (1.31) (3.00) (2.91)
log(SnowV alley) 1.026∗∗ 1.045∗∗ 1.048∗∗ 0.842∗ 0.885∗∗

(2.43) (2.66) (2.24) (1.92) (2.07)
ShareDrag -0.0739∗∗∗ -0.0735∗∗∗ -0.0760∗∗∗ -0.0737∗∗∗ -0.0724∗∗∗

(-7.56) (-7.68) (-7.36) (-7.01) (-7.19)
SkiSchool 0.573 0.515 0.660 0.753 0.631

(0.71) (0.65) (0.77) (1.00) (0.82)
Constant -22.11∗ -9.273 -10.99 -24.07∗ -14.03

(-1.82) (-0.70) (-0.46) (-2.02) (-1.11)
Demand variables Yes Yes Yes Yes Yes
WC No No Yes No No

N 285 285 285 285 285
R2 0.895 0.900 0.907 0.902 0.903

t-statistics in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01;

Standard errors clustered by NUTS-3 regions;

Demand variables include DistCity, ShareLux and GDP ;

WC = spatial lag of ski resorts characteristics with C ⊂ X;

Including dummy variables for missing values in Capacity, SnowV alley and ShareLux;
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Table 3: GMM Results of best response functions in prices

(1) (2) (3)

Wy 0.209∗∗∗ 0.165∗∗ 0.122∗

(2.85) (2.17) (1.70)
Waay 0.115∗∗∗ 0.121∗∗∗

(2.79) (2.94)
Alliance -0.773 -3.529∗∗∗ -4.450∗∗∗

(-1.03) (-2.70) (-3.24)
#AllianceMembers 0.185∗∗∗

(3.22)
ShareSameAlliance 3.799∗∗∗ 2.814∗∗∗ 1.757∗∗

(3.80) (3.40) (1.99)
ShareAllianceFringe -0.233 0.461 0.426

(-0.24) (0.45) (0.44)
log(DistNextSim) -0.202 -0.229 -0.260

(-0.58) (-0.70) (-0.79)
log(SlopeKm) 0.500 0.451 0.762∗∗

(0.93) (1.10) (1.97)
log(Capacity) 2.361∗∗∗ 2.355∗∗∗ 2.281∗∗∗

(7.92) (8.51) (8.22)
ArtificialSnow 1.717∗∗∗ 1.715∗∗∗ 1.724∗∗∗

(3.20) (3.41) (3.62)
log(SealevelMax) 3.976∗∗∗ 4.156∗∗∗ 4.268∗∗∗

(4.55) (5.00) (5.01)
log(SnowV alley) 1.334∗∗∗ 1.491∗∗∗ 1.268∗∗∗

(3.65) (4.71) (3.70)
ShareDrag -0.0743∗∗∗ -0.0784∗∗∗ -0.0771∗∗∗

(-9.51) (-13.05) (-10.56)
SkiSchool 0.888 1.007∗ 1.139∗∗

(1.45) (1.73) (2.00)
Constant -15.47 -15.18 -17.96∗

(-1.56) (-1.57) (-1.76)
Demand Variables Yes Yes Yes

N 285 285 285
R2 0.905 0.910 0.912
Hansen J-stat. 1.241 1.803 1.745
p-value 0.538 0.772 0.783
F -stat. for weak id. 163.4 103.0 117.0
LM test for underid. 15.97 16.21 15.82
p-value 0.001 0.006 0.007

t statistics in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01;

Standard errors clustered by NUTS-3 regions;

Demand variables include DistCity, ShareLux and GDP ;

Including dummy variables for missing values in Capacity,

SnowV alley and ShareLux;
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Table 5: Summary statistics of alliances

Slope kilometers
Name of Alliance No. of members total per member

Ski Amade 17 759.8 44.7
Zillertaler SuperSkipass 5 613.0 122.6
Skihit Osttirol 8 384.0 48.0
Silvretta Skipass 4 343.0 85.7
3Taeler Skipass Vorarlberg 11 300.0 27.3
Lungo 5 250.0 50.0
Skipass Montafon 5 209.0 41.8
Murtaler Schiberge 8 190.0 23.7
Schneewinkel Tirol 5 171.0 34.2
Stubaier Superskipass 4 149.0 37.2
Tiroler Top Snow Card 6 147.0 24.5
Skiverbund Dachstein West 6 138.0 23.0
Zell am See Kaprun 3 138.0 46.0
Pitz Regio Card 3 131.0 43.7
Schneebaerenland 5 119.0 23.8
Kleinwalsertal 4 88.8 22.2
Allgaeu Tirol Skicard 7 72.0 10.3
Hinterstoder Wurzeralm 2 62.0 31.0
Romantic Card Steiermark 6 57.0 9.5
Achensee 5 57.0 11.4
Schiland Voralpen 5 52.5 10.5
Seefeld 3 37.0 12.3
Schi & Langlaufregion Joglland 4 15.5 3.9

48


