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Abstract 
 
This study proposes a cumulative error correction model where the summing 
weights follow a geometrically decreasing function of prior deviations from 
equilibrium and are estimated from the data. It is shown that this approach is 
located in between the traditional error correction model – where no weight is 
given to deviations from steady state prior to the most recent period – and the 
error correction model based on the idea of multicointegration. 
 
The presented form of accumulation does not change the order of integration of 
the series, like in the multicointegration approach of Granger and Lee (1989). 
Based on this model type, the relationship between US private consumption and 
real disposable income of private households is estimated. The short-run forces 
setting-off last period’s deviations are much smaller than a VEC and a 
conventional single equation ECM suggests. Furthermore, the proposed model 
outperforms both others in respect of its forecasting power. 
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1. Introduction 
 
 
Since the seminal work of Granger and Newbold (1974) the idea of cointegration 
based modelling has become very popular. The reason for this is not only because 
the authors have shown that regressing integrated time series on each other can 
cause spurious results, but also that cointegrated variables possess a so called 
Error-Correction-Models (ECM) representation1

 

. Furthermore, such models have 
in many cases a reasonable economic interpretation. In ECMs, deviations from 
its long-run relationship (steady state) trigger some gravity forces which push 
back time series towards its steady state. The typical form of an ECM is 

tttt ucxy ++∆+=∆ − γαξ 1       (1) 
 
where ∆yt and ∆xt are first order differences of time series integrated of order 1. ξt 
represents the so-called error correction term, measuring the distance between 
the steady state y*t and the time series value yt 
 
 *

ttt yy −=ξ         (2) 
 
with the cointegration relation representing the steady state, y*t being derived as 
a linear function of xt and - if appropriately - of a constant and a deterministic 
time trend. The EC parameter 0>α>-1 partly settles deviations occurring at time 
t–1 in t. 
 
However, the assumption that only the deviation from steady state of the most 
recent period influences short-term movements is not adequate in several 
economic applications. Past disequilibria between income and consumption can 
lead to an accumulation of a wealth stock which determines the consumption 
behavior of the future. Similarly, the mismatch between production and sales 
leads to inventories and between money demand and production to a money 
stock. As the usual ECMs in this case would result in a misspecification error2

 

, 
Granger and Lee (1989) developed the idea of multicointegration. Apart from the 
cointegrating relationship between the flows (first-level cointegration) there may 
be another coming from stocks. This they called second-level cointegration. 
Whereas usually the number of cointegrating relationships among n variables is 
at most n–1, with multicointegration it can be n as well. 

Suppose that yt and xt are both I(1) and are cointegrated CI(1,1) so that 
 
 ttt xyz φ−=         (3) 
 
is I(0). (3) is the so-called first-level cointegration relationship. The authors 
further propose that past deviations from steady state accumulate to a stock 

                                            
1 This is called the Granger Representation Theorem (Engle and Granger, 1987). 
2 See for this Engsted and Johansen (1997) or Lee (1992). 
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. If now st cointegrates with either xt or yt we get another 

cointegration relationship (called second-level cointegration) so that st – κyt forms 
again a stationary relationship 
 

 t

t

j

t

j
tttt yxyys κφκ −−=− ∑ ∑

= =1 1

      (4) 

 
with st being I(1) as it stems from summing I(0) stock changes, and Σ yt and Σ xt 
being I(2) as both are summed I(1) variables.3

 

 Granger and Lee (1989) solved the 
estimation problem by a two step method as typically used for CI(1,1) variables. 
In a first step they estimated the first-level cointegration relation. The residuals 
as deviations from steady state were summed up and in a second stage they were 
regressed on the cumulated variables (summed yt) for estimating the second 
order integrating relationship. 

However, Engsted et al. (1997) have shown that in case of a two step method the 
first cointegrating relationship (of flows) must not be estimated. Otherwise the 
test statistics of the second one will have a different limiting distribution 
compared to normal settings. Furthermore, for I(2) based models usual 
asymptotic χ² inference is invalid and Johansen (2006) pointed out that it can be 
used only if a multicointegration relation is assumed with properties hardly met 
in reality. Engsted et al. (2007) proposed a single equation method were both 
forms of integration are teseted together and supplied tables with critical test 
levels. 
 
The model presented here does not – like in the multicointegration approach – 
sum up past deviations st with equal weights. Instead another weighting scheme 
is chosen leaving the variable I(0). Therefore, there is no second cointegrating 
relationship necessary (κ=0). Compared to the traditional ECM it does not give to 
deviations prior to (t-1) a weight of zero. It is assumed instead that the weights 
are decreasing the further they are located in the past, according to a geometric 
process. It will be shown that this is a realistic assumption (at least as realistic 
as assuming a weights of zero or one) in several cases and has the advantage that 
the compilation of I(2) variables can be avoided. Furthermore, the estimation is 
very parsimony and outperforms traditional ECM approaches in terms of their 
forecasting properties. 
 
 
2. The model 
 
Like in the multicointegration approach it is assumed here that not only the last 
deviation from steady state (t-1) plays a role in the future adjustment process 
towards the steady state but also those further back in the past. However, in 

                                            
3 In the case of multicointegration the corresponding ECM considers adjustment mechanisms for 
the stock as well as the flow variables with 

ttttttt uyxlaggedyscx +∆∆++−+=∆ −−− ),()( 12111 ξακα  
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contrast to it deviations from steady state which are located in the further past 
have less influence on the adjustment process. Therefore, they are less important 
for explaning short-run dynamics than the ones which happened in the recent 
past. A typical application in economics is past investments forming today’s 
capital stock. Depreciation reduces past investments so their contribution to 
capital stock is decreasing from period to period. Other forces reducing the 
impact of past deviations can be surprise inflation or changes in asset prices 
(house prices and securities), etc.  
 
Instead of giving each deviation of the past the constant summation weight of one 
like Granger and Lee (1989) did, our weighting parameter is estimated from the 
data and is supposed to be smaller than one4

 

. Based upon these considerations, a 
reformulation of (1) in 

 ∑
∞

=
−− ++∆+=∆

0
1

i
ttit

i
t ucxy γξλβ      (5) 

 
with the weight λ <1, can be made. 
 
Koyck (1954) was first putting forward the transformation of an ADL model of 
the type (without considering here γ∆xt ) 
 

 ∑
∞

=
− ++=

0j
tjt

j
t ScF ελδ       (6) 

 
into an ARMAX(1,0,1) model 
 

110
0)1( −−− −+++−= ttttt FScF λεελδλλ     (7) 

 
where λFt-1 represents the autoregressive [AR] part, -λεt-1 the moving average 
[MA] part and St the regressor, which is therefore called the Koyck model. 
 
In (6) the variable Ft is explained by a sum of a variable observed at consecutive 
time points in the past. The summing weights λ (called the retention rate) are 
defined over 0 ≤ λ ≤ 1 so as their size is decreasing geometrically giving less 
weight to more distant observations. One advantage of this approach is 
immediately obvious. Only one parameter more than in the conventional ECM 
has to be estimated what makes a more parsimony estimation possible as this 
costs just one degree of freedom more. It is further noticeable that if the 
parameter δ is zero (i. e. no cointegration exists between the two series) then the 
retention parameter λ can not be retrieved from the model. If λ is zero the 

                                            
4 The assumption of a retention rate λ<1 is in so far important as otherwise the summation would 
result in an I(1) variable like in the case of multicointegration. In this case our model would be 
misspecified as a possibly existing second cointegrating relationship is not considered explicitly in 
our ECM. 
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conventional ECM results and if it is 1 the multicointegration method with equal 
weights as proposed by Granger and Lee (1989) emerges.5

 
 

If we replace St-i in equation (6) and (7) for ξt-i-1 (so that St = ξt-1) Ft corresponds to 
the right hand side of equation (5)6

 
. This can be transformed into 

 
tttttt xycy ελεγλβξλ +−∆+∆++−=∆ −−− 111)1(    (8)   

 
which is the ARMAX representation of our cumulative ECM given in (5). It is 
imediately clear that as long as λ <1 then all terms on either side of the equation 
are I(0) and hence the usual test statitics can be applied in order to determine the 
cointegrating relationship.  
 
This time series representation reconciles somewhat the blame of ARIMA models 
– as introduced by Box and Jenkins (1970) – for their lack of theoretic content. At 
least this form seems to be based on economic theory as good as the conventional 
ECMs as well as the multicointegration method, as past deviations from steady 
state are considered. Equation (8) is an ARMAX model type which includes I(1) 
variables in levels – or at least their I(0) deviations from steady state – as well as 
an AR and an MA term. The only difference to pure time series model is that (8) 
demands the AR parameter to equal the MA one with a changed sign and that 
both terms are restricted to be of order one. 
 
This model has interesting features as compared to the traditional one. Let us 
define “stability” as the situation where a time series is only driven by its 
exogenous short term variables (∆xt) and the error term (εt), and steady state is 
the long run relation between flows as given by the cointegrating relationship. 
For the conventional ECM, stability is reached if tttt uxy +∆+=∆ − γαξ 1  collapses to 

ttt uxy +∆=∆ γ  i.e. ξt-1 = 0 so if the time series has reached its steady state in the 
previous period.7

 

 For cumulated ECM the condition for stability is more 
complicated and it can be achieved even out of steady state. Disregarding the 
constant term, stability in (8) at time t is given if 

 0111 =−∆+ −−− ttt y λελβξ     (9) 
 
which can be transformed (the proof is given in the appendix) into 
 

 ∑
∞

=
−−− −=

1
11

j
jt

j
t ξλξ      (10) 

 

                                            
5 As noted earlier this would not be exactly correct because the second-level cointegrating 
relationship is not considered explicitly. 
6 Apart from the regressor ∆xt. 
7 We rule out the possibility of α=0 as this would mean there is no cointegrating relationship 
among the series. 
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This means the condition for stability requires that the deviation from steady 
state in t-1 is off-set by the weighted sum of previously accumulated disequilibria 
i.e. the disequilibrium stock. 
 
Stability in steady state (ξt-1 = 0) at time t requires furthermore that either the 
retention rate is zero (i.e. the conventional ECM) or that the stock disequilibrium 
at time t-1 is zero. At this point in time the stock disequilibrium is represented by 
accumulation of deviations backward starting at t-2. 
 
 
3. Modelling US consumption with cumECM 
 
For testing the empirical relevance of this kind of cumulative ECM (cumECM) 
and comparing it to the conventional ECM method, we first use the classical 
textbook example of the cointegration between consumption and income. The 
data of US private consumption expenditure and private disposable income (both 
in nominal terms) were downloaded from the Bureau of Economic Analysis8

 

 on a 
quarterly basis beginning in the third quarter of 1954 and ending at the second 
quarter 2010. Figure 1 shows the development of both series in logs. Towards the 
end of the series the income series show a positive non-permanent shock due to 
the US Economics Stimulus Act’s tax refunds starting from the second quarter 
2008 as a policy reaction to the economic crises.  Nearly at the same time 
consumption plunged and seems not to have recovered since. We estimate the 
models up to the end of 2007 (e.g. more than 200 observations) and retain the 
rest of the observations (e.g. 10 observations) for an evaluation of the forecasts. 

According to the usual procedure both series were tested for unit roots. Table 1 
gives the statistics for the Augmented Dickey-Fuller (ADF) and the Phillips-
Perron (PP) tests9

 

 together with their critical values. Results strongly suggest 
that both variables are I(1). 

As a next step, it has to be tested whether both series are cointegrated.  In the 
past there has been developed a steadily rising number of cointegration tests. 
The most traditional is the 2-step approach proposed by Engle and Granger 
(1987) where the residuals of a linear combination of the variables supposed to be 
cointegrated (estimated by OLS regression) are tested for unit roots. Another 
very popular method is the Vector Error Correction (VEC) model as proposed by 
Johansen (1988). This allows for more than one cointegration relationship among 
the variables. Furthermore, they are capable of accounting for possible 
endogenity problems. 
 
Here we use for the sake of transparency the traditional OLS approach by Engle 
and Granger (1987), but the existence of cointegration, the test for weak 
exogenity, and the size of the cointegrating parameters are cross-checked by the 

                                            
8 www.bea.gov/national/nipaweb/SelectTable.asp?Selected=Y#S2 on the 12th Jan. 2011. 
9 Whether to include in the tested model a trend and/or an intercept was decided on the basis of 
their t-values. 

http://www.bea.gov/national/nipaweb/SelectTable.asp?Selected=Y#S2�
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VEC as well as the DOLS approach, in order to avoid the so-called second-order 
bias stemming from disregarded endogenity relations. 
 
Table 1: Stationarity tests 

 ADF (lag by SiC) PP (BW:Newey-West using Bartlett k.) 

 H0: series has a unit root H0: series has a unit root 
 T&C C none T&C C none 
log(PCE) 0.698 -1.543 3.255 0.814 -1.655 11.055 
log(PDI) 0.943 -2.874 3.060 0.713 -1.902 11.169 
D1log(PCE) -5.757 -5.505 -1.044 -10.248 -10.079 -2.630 
D1log(PDI) -7.427 -5.328 -0.882 -14.232 -13.918 -4.862 
1% level -4.000 -3.460 -2.576 -4.000 -3.460 -2.575 
5% level -3.430 -2.874 -1.942 -3.430 -2.874 -1.942 
10% level -3.139 -2.574 -1.616 -3.139 -2.574 -1.616 

Source: Own calculations 
 
 
The cointegrating relationship has been tested by three approaches. The VEC 
based method was tested for several specifications: with an intercept included in 
the long term part of the model (Type 2), with an intercept including in the long 
term as well as one in the VAR part (Type 3), and an intercept in VAR part and a 
linear deterministic time trend as well as an intercept in the long term part 
(Type 4).10

 
 

For estimating the cointegrating relationship of consumption and income a VEC 
specification of Type 3, i.e. with two constants turned out as most appropriate. 
The number of lags was determined by the Wald lag exclusion test. The income 
elasticity of the cointegrating relationship was found to be around one in the long 
term. This result was robust to different lag length and is in line with theory. 
Siliverstovos (2003) found the same empirical evidence for the US between 1953 
and 1984 using the multicointegration approach of Granger and Lee (1989). 
Table A1 in the appendix gives one of the estimation results. In the equation 
normalized for income, the EC parameter turned out to be insignificant which 
hints to weak exogenity of income. 
 
This justifies the estimation of the cointegrating relationship by the traditional 
Engle and Granger OLS method without incurring a possible endogenity bias 
problem. The OLS gave a long run income elasticity of again slightly above 1. The 
results are given in Table 3. The estimated relation can only be regarded as a 
cointegrated one if residuals do not contain a unit roots. The ADF as well as the 
PP test have been carried out using the critical levels as reported by Davidson 
and MacKinnon (1993). According to both tests the null of a unit root was 
rejected at a critical value below 5%. 
 
 
                                            
10 This means that we exclude structures as proposed by Johansen (1991) without a constant in 
the long term part (Type 1) (unless the constant turns out to be insignificant) - which is thought 
to be necessary for scaling the different variables as can be easily observed by looking at Figure 1 
- or a quadratic deterministic time trend (Type 5). 
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Figure 1: Logs of nominal Consumption and disposable Income 

  
 
Our last method to estimate the cointegration relationship is the DOLS approach 
as proposed by Phillips and Loretan (1991), Saikkonen (1992) or Stock and 
Watson (1993). As the VEC model already hinted to a weak exogenity of income, 
the DOLS results should not be far away from both others. In order to determine 
the optimal size of leads and lags11

 

 of differences in regressors (as required in the 
DOLS approach in order to get rid of a possible endogenity bias) we followed the 
suggestion of Hayakawa and Kurozumi (2008) and cut insignificant leads. Table 
3 shows that income elasticity lays again around 1 between the results of the 
VEC and the OLS. Estimation results as well as test statistics are given in Table 
2A in the appendix together with Newy-West HAC standard errors. As with the 
traditional OLS, residuals were checked for unit roots and again the null of I(1) 
was rejected significantly. 

Table 3: Long term income elasticises of consumption12

 
 

VEC Dynamic OLS OLS 
 
Parameter 1.0084*** 

 
1.0081*** 

 
1.0097*** 

se (0.0033) 
 

(0.0016) 
 

(0.0023) 
 

t-value [307.243] [615.656] [430.959] 
Source: Own calculations 

 

                                            
11 Here, the appropriate lead/lag length was determined by the Schwarz Information Criterion. 
12 For OLS and Dynamic OLS Newy-West HAC standard errors are given. 
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The next step was to set up conventional EC models in order to compare them 
with the proposed cumulated method. VEC approaches not only estimate the 
cointegrating relationship but also include an error correcting mechanism at the 
same time. This is regarded by many researchers as an advantage but here it is 
not, as we argue that specifications which consider only the deviation of the last 
period can lead to an omitted variable bias. While VECM care for auto-
correlation including several lags of the differenced series they do not for 
deviations from steady-state. A bias arises as auto-correlation of deviations from 
steady state is a phenomenon typically observed in ECM applications. 
 
As the income elasticities of the long term component derived from the DOLS and 
the traditional OLS method are virtually the same, and the method for setting up 
EC models based on them, too, we will concentrate in the following just on results 
derived by parameters estimated by OLS. In Table 4 the first two columns show 
the results for the conventional error correction models based on the VEC 
approach and the OLS approach for estimating the cointegrating relationship. 
 
Both EC parameters β are significant and have the expected sign. The OLS 
output suggests that the deviation from steady state closes somewhat quicker 
with 13 percent to be corrected within a quarter. The short run influence of the 
current income growth (as represented by the γt(0) parameter) on consumption 
growth is 0.37 in the OLS case. Using 6 parameters to be estimated, the R2 shows 
that VEC is capable to explain 30% of the variation in consumption growth. The 
OLS ECM explains 40% with just 4 parameters. 
Table 4: Error correction models explaining consumption growth 

 Conv. ECM 
 

Based onVEC 

Conv. ECM 
 

Based on OLS 

CumECM 
unrestricted 

Based on OLS 

CumECM 
restricted 

Based on OLS 
β -0.1089 

(-4.4987) 
-0.1316 
(-6.9211) 

-0.0539 
(-2.4896) 

-0.0534 
(-2.7000) 

γt(0)  0.3719 
(8.3422) 

0.3322 
(6.8940) 

0.3318 
(7.7798) 

γt(-1) 0.1049 
(1.6933) 

   

γt(-2) 0.1900 
(2.6187) 

   

λAR(1) 0.1417 
(1.9534) 

 0.4413 
(4.0638) 

0.4420 
(4.6084) 

λAR(2) -0.0025 
(-0.0422)) 

   

c 0.0099 
(6.6111) 

0.0110 
(12.7190) 

0.0040 
(2.5093) 

0.0040 
(2.8046) 

λMA(1)   -0.4508 
(-3.1413) 

-0.4420 
(4.6084) 

R² 0.3056 0.4113 0.4542 0.4339 
Skewness -0.2241 -0.0925 -0.2161 -0.2067 
Kurtosis 3.3519 3.0491 3.3626 3.3839 
Jarque-Bera 2.8810 0.3249 2.8120 2.8385 
Q-Stat(1) 0.406 0.728 0.467 0.330 
Q-Stat(2) 0.048 0.002 0.051 0.050 
Q-Stat(3) 0.107 0.005 0.113 0.110 
Q-Stat(4) 0.107 0.012 0.113 0.104 
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Source: Own calculations13

Residuals seem neither to be significantly skewed nor to have tails deviating 
from those of a normal distribution, but in the OLS-case they suffer severely from 
auto-correlation at the second order. The null of no auto-correlation up to lag 4 is 
clearly rejected according to the Q-statistics.  

 

 
To compare these results to the proposed cumulative ECM, the following model 
was estimated in accordance to equation (8) 
 

ttMAtARttt lpceclpdilpce εελλγβξ +−∆++∆+=∆ −−− 1)1(1)1(1    (11) 
 
with ∆lpcet as the first order differences of logged US personal consumption 
expenditures in nominal terms, ξt-1 the difference between the steady state (as 
given by the cointegrating relationship) and the logged personal consumption 
expenditures, a constant c, ∆lgdpt the first order differences of logged nominal 
GDP and an error term εt. The results for the unrestricted version where λAR(1) 
and λMA(1)  are estimated independently are shown in the third column of Table 4. 
 
The weight given to the deviation from steady state in the previous period differs 
significantly from the VEC and the conventional EC OLS approach. Their 
ignorance of deviations located in the past beyond (t-1), biased their βs for more 
than the double. The short run influence of income growth on consumption 
growth is a little bit lower than for the others. 
 
According to (7) the parameter of the AR(1) term λ (the retention rate) should be 
the same as of the MA(1) term but with an opposite sign. Table 4 shows that λ(1) 
= 0.5522 and λMA(1) = -0.4854 if both are estimated independently. A Wald test, 
testing the null that λAR(1) = -λMA(1)  can not reject this.  
 
The last column in Table 4 shows the results of the estimation of a model where 
λAR(1) and λMA(1) were restricted to be the same with a different sign, as the 
theoretical Koyck model demands. Fransens and van Oest (2007) have shown 
that such a restriction requires maximum likelihood estimation and errors are 
non-normally distributed because of the so-called Davies (1987) problem. They 
propose several alternative test statistics of which here the average absolute t-
statistics has been chosen and reported below the parameter values. 14

 

 As the 
independently estimated lambdas are quite close to each other, it is no surprise 
that parameters and test statistics are too. 

Figure 2 shows the weights of past deviations given by the cumECM method, 
where the retention parameter λ stems from the restricted model. The weight 
given to the last quarter's deviation from steady state is λ0=1, like for 
conventional ECMs. The one for the deviation two periods ago is λ1=0.442 and the 

                                            
13 VEC residuals for skewness, kurtosis and Jarque Bera were factorized according to the Dornik-
Hansen inverse square root of residual correlation matrix.  
14 Critical values for testing β=0 are taken from Fransens and van Oest (2007) Table 2 page 294. 
For a sample size of 1000 the critical value of a 95% confidence level is 1.80. 
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one three periods ago has with λ2= 0.195 already halved. The AR(1) parameter 
included in the VEC is considerably lower than the one found in the cumECM. 
 
Figure 2: Retention rate 

 
 
The Q-test statistics for auto-correlation are quite similar between both 
cumECMs and the VEC. Up to the fourth quarter in the past there exists no 
auto-correlation in residuals, with a borderline value for the second lag. 
 
The significance of the retention rate clearly rejects the null that λ=0 so the 
traditional ECM seems to be invalid. A Wald test testing for λ=1 – as it is the 
case for the multicointegration approach of Granger and Lee (1989) – is rejected, 
too15

 

. This is quite in line with a study of Lee (1996) where no evidence for 
multicointegeration between US consumption and income was found. 
Siliverstovos (2003), however, found empirical support of multicointegration 
between US consumption and income for the period 1953 – 1984, what we could 
not confirm. 

 
4. Forecasting performance 
 
In order to show the advantages of cumulative ECMs, their forecasting 
performance was evaluated. Here we focus on the simple mean squared error 
(MSE) criterion for the forecasting period from the first quarter of 2008 to the 
second quarter of 2010, e. g. ten observations. As explained above, the massive 
fiscal policy reaction of the US government in 2008, as a response to the 
international financial crises, led to a drift between income and consumption. In 
order to support private household consumption large tax credits were granted to 
private households. This innovation can reasonably be regarded as non-
permanent and should therefore not enter in the cointegration relationship 
between income and consumption. As all our estimated models are estimated till 
the end of 2007, none of them captures this innovation. So all forecasts are 
                                            
15 In case of approaching the value of  λ=1 the applied test statistics get more and more biased 
because the correct specification in this case would contain the second level cointegration term as 
required in the case of multicointegration. 



  11 

lacking this innovation and the MSE statistics are influenced for all models the 
same. The exact specification of the different tested models is as given in Table 4 
above.  
Table 5:  Forecasting performance 

 Conv. ECM 
Based onVEC 

Conv. ECM 
Based on OLS 

CumECM 
Based on OLS 
unrestricted 

CumECM 
Based on OLS 

restricted 
Root Mean Squared Error 0.0124 0.0133 0.0111 0.0111 

Theil Inequality Coefficient 0.5525 0.5372 0.5007 0.4901 

 
 
As a further measures we use the Theil’s inequality index, where our model is 
compared to the naive forecast dlpce(t+1) = dlpce(t). Values above 1 mean that 
the estimated model performs worse than the naive forecast and vice versa. 
According to Table 5 our proposed cumulated error correction model – whether 
estimated as a restricted or unrestricted form – again outperforms the 
conventional ECMs, whether based on a VEC estimation or not. 
 
 
5. Conclusions 
 
Traditional error correction models (ECM) based on cointegrating flow variables 
are specified just to balance the most recent deviation from steady state. 
Sometimes, the accumulation of past deviations forms a stock variable which are 
to be considered in the modelling process. Granger and Lee (1989) were first to 
propose a multicointegration model where not only the flows represent a 
cointegrating relationship (first-level cointegration) but also the sum of past 
deviations from steady state (second-level cointegration). The authors 
accumulated all past deviations with an equal unit weight to stock variables. As 
such an accumulation of I(1) variables leads to I(2) variables, usual statistics for 
testing the exisitence of cointegrating relationships are no longer valid. 
 
A further, more convenient method is proposed here. The presented cumulative 
ECM is based on the assumption that the importance of past disequilibria for the 
current stock is decaying according to a geometric function. Koyck (1954) has 
shown that such a model possesses an ARMAX representation with AR and MA 
being of order one with parameters of the same size but with different signs. This 
parameter is called the retention rate. It can be shown that the traditional ECM 
is nested. The one based on multicointegration is not completely nested but can 
be tested with the proposed model, at least. While the first assumes a retention 
rate of zero the latter assumes it to be one. Furthermore it can be shown that the 
proposed kind of accumulation does not lead to I(2) variables, making the usual 
statistics for cointegration tests still valid. 
 
Here our cumulative ECM was applied to estimate US consumption dynamics. It 
shows that it outperforms a VEC and a single equation EC model in respect of its 
forecasting power and parameters are estimated more parsimony. It explains at 
least the same percentage of variation by using less degrees of freedom. 



  12 

 
For US consumption expenditures, last quarter’s deviation from steady state is 
set-off by just 5% according to the cumulative ECM while the VECM gives 11% 
and the conventional single equation ECM 13%. The retention rate of the 
cumulative ECM suggests that deviations up to 6 quarters in the past are set-off 
at the same time. The estimated size of the retention rate with 0.44 rejects the 
traditional ECM (with a retention rate 0) as well as the one based on 
multicointegration (with a retention rate of 1) as being the right one. 



  13 

References 
 
Baba, Y., Hendry, D. F., Starr, R. M., 1992. The Demand for M1 in the 
U.S.A.,1960-1988, Review of Economic Studies, 59(1), 25-61. 
 
Ball, L., 1992. Short-Run Money Demand, NBER Working Paper, 9235. 
 
Box, G. E. P, Jenkins, G. M., 1970. Time Series Analysis - Forecasting and 
Control, San Francisco: Holden Day 
 
Davidson, R., MacKinnon, J. G., 1993. Estimation and inference in Econometrics, 
New York, Oxford University Press.  
 
Davies, R. B., 1997. Hypothesis testing when a nuisance parameter is present 
only under the alternative, Biometrika, 64, 247-254. 
 
Engle, R. F., Granger, C. W. J., 1987. Cointegration and Error Correction: 
Representation, Estimation, and Testing, Econometrica, 55(2), 251-277. 
 
Engsted, T., Johansen, S., 1997. Granger’s Representation Theorem and 
Multicointegration, European University Institute, Economics Working Paper, 
15. 
 
Engsted, T., Gonzalo, J., Haldrup, N., 1997. Testing for multicointegration, 
Economics Letters, 56, 259–266. 
 
Fransens, Ph. H., van Oest, R., 2007. On the econometrics of the geometric lag 
model, Economics Letters, 95, 291-296. 
 
Goldfeld, St. M., 1973. The Demand for Money Revisited, Brookings 
Papers on Economic Activity, 3, 577-638. 
 
Granger, C. W. J., Lee, T. H., 1989. Investigation of production, sales and 
inventory relations using multicointegration and non-symetric error correction 
model, Journal of Applied Econometrics, 4, 145-159. 
 
Hayakawa, K., Kurozumi, E., 2008. The role of “leads” in the dynamic OLS 
estimation of cointegrating regression models, Mathematics and Computers in 
Simulation, 79, 3, 555-560. 
 
Hess, G. D., Jones, Ch. S, Porter, R. D., 1994. The predictive failure of the Baba, 
Hendry and Starr model of the demand for M1 in the United States, Federal 
Reserve Bank of Kansas City, Research Working Paper, 06. 
 
Hoffman, D. L., Rasche, R. H., 1991. Long-run income and interest elasticities of 
money demand in the united states, Review of Economics and Statistics, 73 (4), 
665-674. 
 



  14 

Johansen, S., 1991. Cointegration and Hypothesis Testing of Cointegration 
Vectors in Gaussian Vector Autoregressive Models, Econometrica, 59, 6, 1551-
1580. 
 
Johansen, S., 1992. Determination of co-integration rank in the presence of a 
linear trend, Oxford Bulletin of Economics and Statistics, 54, 383–397. 
 
Johansen, S., 2002. The statistical analysis of hypothesis on the cointegrating 
relations linear trend, Oxford Bulletin of Economics and Statistics, 54, 383–397. 
 
Johansen, S., 2006. Statistical analysis of hypotheses on the cointegrating 
relations in the I(2) model, Journal of Econometrics, 132, 81-115. 
 
Johansen, S., Juselius, K., 1990. Maximum likelihood estimation and inference 
on cointegration-with applications to the demand for money, Oxford Bulletin of 
Economics and Statistics, 52 (2), 169-210. 
 
Kongsted, H. C., Nielsen, H. B., 2004.  Analysing I(2) Systems by Transformed 
Vector Autoregressions, Oxford Bulletin of Economics and Statistics, 66, 3, 379-
397. 
 
Koyck, L. M., 1954. Distributed Lags and Investment Analysis, North-Holland, 
Amsterdam. 
 
Lee, T. H., 1992. Stock-flow relationships in housing construction, Oxford 
Bulletin of Economics and Statistics, 54, 419-430. 
 
Lee, T. H., 1996. Stock adjustment for multicointegrated series, Empirical 
Economics, 21, 563–639. 
 
Lucas, R. E. Jr., 1988. Money Demand in the United States: A Quantitative 
Review, Carnegie-Rochester Conference Series on Public Policy, 29, 137-168. 
 
Mehra, Y. P., 1993. The Stability of the M2 Demand Function: Evidence from an 
Error-Correction Model, Journal of Money, Credit & Banking, Vol. 25. 
 
Phillips, P. C. B., Loretan, M., 1991. Estimating long-run economic equilibria, 
Review of Economic Studies, 58, 407-436. 
 
Rao, B. B., 2007. Estimating short and long-run relationships: a guide for the 
applied economist, Applied Economics, 39: 13, 1613 — 1625. 
 
Saikkonen, P., 1991. Asymptotically efficient estimation of cointegration 
regressions, Econometric Theory, 7, 1-21. 
 
Siliverstovos, B., 2003. Multicointegration in US consumption data, German 
Institute for Economic Research, DIW, Discussion papers, 382. 
Sims, C. ,(1980), Macroeconomics and reality, Econometrica, 48, 1–48. 
 



  15 

Stock, J. H., Watson, M. W, 1993. A simple estimator of cointegrating vectors in 
higher order integrated systems, Econometrica, 61, 783-820. 
 



  16 

Appendix 
 
Table 1A: VEC estimates for consumption 
 
 Vector Error Correction Estimates 
 Date: 05/23/11   Time: 15:00 
 Sample (adjusted): 1955Q2 2010Q2 
 Included observations: 221 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

   
   Cointegrating Eq:  CointEq1  
   
   LPCE(-1)  1.000000  
   

LPDI(-1) -1.004924  
  (0.00370)  
 [-271.715]  
   

C  0.142526  
   
   Error Correction: D(LPCE) D(LPDI) 
   
   CointEq1 -0.099001 -0.032630 
  (0.02372)  (0.03143) 
 [-4.17391] [-1.03807] 
   

D(LPCE(-1))  0.239445  0.498968 
  (0.07184)  (0.09521) 
 [ 3.33298] [ 5.24084] 
   

D(LPCE(-2))  0.216219  0.114452 
  (0.07020)  (0.09303) 
 [ 3.08014] [ 1.23027] 
   

D(LPDI(-1))  0.113308 -0.129635 
  (0.06160)  (0.08163) 
 [ 1.83950] [-1.58804] 
   

D(LPDI(-2)) -0.022626  0.067478 
  (0.06163)  (0.08167) 
 [-0.36714] [ 0.82622] 
   

C  0.007557  0.007550 
  (0.00134)  (0.00177) 
 [ 5.64712] [ 4.25750] 
   

D(DUM200804) -0.011571 -0.010912 
  (0.00470)  (0.00623) 
 [-2.46120] [-1.75142] 
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Table 2A : DOLS estimates for consumtption 
Dependent Variable: LPCE   
Method: Least Squares   
Date: 02/07/11   Time: 21:34   
Sample (adjusted): 1956Q4 2010Q1  
Included observations: 214 after adjustments  
Newey-West HAC Standard Errors & Covariance (lag truncation=4) 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LPDI 1.008108 0.001637 615.6556 0.0000 

C -0.120831 0.012675 -9.532662 0.0000 
DLPDI(-8) -0.360876 0.114392 -3.154734 0.0019 
DLPDI(-7) -0.404123 0.137684 -2.935157 0.0037 
DLPDI(-6) -0.346383 0.115494 -2.999141 0.0030 
DLPDI(-5) -0.327819 0.111026 -2.952633 0.0035 
DLPDI(-4) -0.297510 0.117867 -2.524108 0.0124 
DLPDI(-3) -0.318048 0.115406 -2.755901 0.0064 
DLPDI(-2) -0.262671 0.128215 -2.048675 0.0418 
DLPDI(-1) -0.233427 0.126648 -1.843120 0.0668 

DLPDI -0.431806 0.114451 -3.772846 0.0002 
DLPDI(1) 0.257808 0.107259 2.403604 0.0171 

     
     R-squared 0.999849     Mean dependent var 7.559163 

Adjusted R-squared 0.999840     S.D. dependent var 1.164032 
S.E. of regression 0.014710     Akaike info criterion -5.546129 
Sum squared resid 0.043710     Schwarz criterion -5.357382 
Log likelihood 605.4358     Hannan-Quinn criter. -5.469858 
F-statistic 121233.2     Durbin-Watson stat 0.213586 
Prob(F-statistic) 0.000000    
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Table 3A: VEC estimates for real M1 
 
 Vector Error Correction Estimates  
 Date: 02/09/11   Time: 07:35  
 Sample (adjusted): 1971Q4 2010Q4  
 Included observations: 157 after adjustments 
 Standard errors in ( ) & t-statistics in [ ] 

    
    

Cointegrating Eq:  CointEq1   
    
    

LM1R(-1)  1.000000   
    

LGDP(-1) -0.387085   
  (0.12657)   
 [-3.05827]   
    

R(-1)  0.026055   
  (0.01258)   
 [ 2.07073]   
    

C -2.139074   
  (0.60670)   
 [-3.52578]   
    

Error Correction: D(LM1R) D(LGDP) D(R) 
    

CointEq1 -0.023246 -1.75E-18 -8.50E-17 
  (0.00853)  (6.4E-18)  (3.2E-16) 
 [-2.72611] [-0.27395] [-0.26388] 
    

D(LM1R(-1))  0.603126 -6.00E-17  4.16E-15 
  (0.07365)  (6.7E-17)  (2.6E-15) 
 [ 8.18947] [-0.88927] [ 1.61412] 
    

D(LM1R(-2))  0.167913  7.72E-17 -2.47E-15 
  (0.06773)  (6.2E-17)  (2.4E-15) 
 [ 2.47916] [ 1.24475] [-1.04278] 
    

D(LGDP(-1)) -0.140968 -8.06E-16  2.58E-14 
  (0.09572)  (8.8E-17)  (3.4E-15) 
 [-1.47272] [-9.19127] [ 7.69990] 
    

D(LGDP(-2))  0.001092 -3.37E-16 -4.32E-15 
  (0.09566)  (8.8E-17)  (3.3E-15) 
 [ 0.01142] [-3.84697] [-1.28910] 
    

D(R(-1)) -0.002940  2.75E-18  3.70E-17 
  (0.00073)  (6.7E-19)  (2.6E-17) 
 [-4.03439] [ 4.11287] [ 1.45074] 
    

D(R(-2))  0.000873  3.01E-18 -7.69E-17 
  (0.00083)  (7.6E-19)  (2.9E-17) 
 [ 1.04689] [ 3.93420] [-2.63667] 
    

D(LGDP)  0.035860  1.000000 -1.96E-14 
  (0.09682)  (8.9E-17)  (3.4E-15) 
 [ 0.37039] [ 1.1e+16] [-5.78899] 
    

D(R) -0.001585 -7.93E-19  1.000000 
  (0.00070)  (6.4E-19)  (2.4E-17) 
 [-2.26742] [-1.23723] [ 4.1e+16] 
    

DUM200804  0.042059  5.01E-18  2.56E-16 
  (0.00652)  (6.0E-18)  (2.3E-16) 
 [ 6.45193] [ 0.83850] [ 1.12392] 
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Table 4A: DOLS estimates for real M1 
 
 
Dependent Variable: LM1R   
Method: Least Squares   
Date: 02/14/11   Time: 18:43   
Sample (adjusted): 1971Q3 2010Q4  
Included observations: 158 after adjustments  
Newey-West HAC Standard Errors & Covariance (lag truncation=4) 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     LGDP 0.413640 0.046096 8.973490 0.0000 

R -0.019582 0.003782 -5.177254 0.0000 
DR(-1) 0.012648 0.004864 2.600179 0.0102 

DR 0.014207 0.004677 3.038018 0.0028 
C 1.915245 0.215418 8.890831 0.0000 
     
     R-squared 0.880688     Mean dependent var 3.506615 

Adjusted R-squared 0.877569     S.D. dependent var 0.208528 
S.E. of regression 0.072964     Akaike info criterion -2.366557 
Sum squared resid 0.814541     Schwarz criterion -2.269639 
Log likelihood 191.9580     Hannan-Quinn criter. -2.327198 
F-statistic 282.3377     Durbin-Watson stat 0.056717 
Prob(F-statistic) 0.000000    
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Proof for page 4 
 
Starting from equation (4), with disregarding the exogenous regressor and the 
constant 
 

∑
∞

=
−− +=∆

0
1

i
tit

i
ty εξλβ       (1A) 

 
we get 
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Equation (7), again without constant and exogenous regressors, states that 
 

ttttt yy ελελβξ +−∆+=∆ −−− 111      (3A) 
 

If we equate now (2A) and (3A) and subtract on both sides βξt-1 and εt we get 
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A substitution of this into (8) gives 
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which represents our required stability condition in steady state 
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as given in (9). 
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