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Abstract 

Markets for leaked information* 
 
 
We study markets for sensitive personal information. An agent wants to com-
municate with another party but any revealed information can be intercepted and 
sold to a third party whose reaction harms the agent. The market for information 
induces an adverse sorting effect, allocating the information to those types of 
third parties who harm the agent most. In equilibrium, this limits information 
transmission by the agent, but never fully deters it. We also consider agents who 
naively provide information to the market. Their presence renders traded infor-
mation more valuable and, thus, harms sophisticated agents by increasing the 
third party's demand for information. Halfbaked regulatory interventions may 
hurt naive agents without helping sophisticated agents. Comparing monopoly and 
oligopoly markets, we find that oligopoly is often better for the agent: it requires 
a higher value of traded information and therefore has to grant the agent more 
privacy. 
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1 Introduction

Some information travels far and often in ways that its originators fail to fore-
see. From their perspective, the information “leaks”; alternatively, an outside
observer might call the senders “naive” for providing the information in the
first place without taking care to communicate safely. New developments in
information technology breed such naivete. Few people keep pace with the
state of the art of data collection, data storage and data processing. Even
fewer can anticipate what a future agent controlling some future technology
will do with information that is recorded today. Yet many households ap-
pear not to worry and reveal sensitive information, especially in online social
media and online commerce, without taking precautionary measures.1

This paper investigates the market incentives arising from the possibility
of leaked (or intercepted) personal information. We consider a player A who
has some information to share but faces a trade-off. On the one hand, she
wants to share her information with player B because of some joint activity
that benefits from truthful revelation. On the other hand, A fears the in-
formation ending up in the wrong hands—a player C who may take actions
against A’s interest if he gets hold of her information. Such a trade-off in
information revelation features in many economic applications. For example,
a firm may want to share details of their technology with a supplier yet fears
that competitors may get access to the information. Or, friends might want
to exchange information about political, religious or sexual preferences yet
may have reason to fear that this information is obtained by their employers,
relatives or certain state agencies.

An important question is via what mechanism A’s information can end
up in C’s hands. Our model studies the case where the information is traded
in a market. There are two separate ways in which A’s data may be available
for trade that our model captures. First, player B might engage in double
dealing using the information fruitfully for his mutual business with A, but
also selling it off to C for additional private gain. Second, and analogously,
A’s information may be intercepted by another player (not B himself) who
sells it off to C. For simplicity, we model this situation also as if it was B
himself who sold the information on the market.2

1See the evidence reported in Acquisti and Grossklags, 2005, Norberg et al., 2007, Tsai
et al., 2011, and Beresford et al., 2012, as well as the survey article by Acquisti et al.,
2014.

2As there are no complementarities or other spillovers between the two actions—using
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Depending on the anticipated market allocation that arises from B’s and
C’s interaction, Player A must be careful when communicating with B. A
key variable for A to anticipate is the cost that B incurs for intercepting
and selling the information. He will offer A’s data to C if its expected mar-
ket revenue weakly exceeds the investment cost required for data processing
and marketing, including storage, formatting, refinement, market transac-
tion cost, etc. In short, the cost reflects the technology that is available at
the time of B’s market entry decision. We argue that this technology is dif-
ficult for A to assess. The typical consumer and user of online media may
vastly underestimate the ease with which her data are captured, screened and
evaluated. Even institutional users like firms or other (non-IT) professionals
may have little information about the exact routing of their emails and the
security of their data.3 A further reason for such biases is that the market
entry decision may lie in the future, potentially years after the information
revelation. Over time, advances in information technology drive down the
cost of information processing and some of these advances are hidden from
the affected users (and with few incentives for the informed parties to reveal
them).

We capture these misperceptions by assuming that there are two cognitive
types of player A: sophisticated types who know the true cost and naive types
of player A who over-estimate the cost of selling information. In all other
respects, our model assumes agents to be fully rational. In order to allow
for such partial naivete, we formulate a game with non-common priors where
both types of A agents are aware that there is another type with different
beliefs about the cost of information provision. In an extension, we also study
a different type of naivete, where some agents do not fully understand the
market allocation.

Our main analysis considers the case of a monopolistic market structure
(Section 3.2) where player A reveals her information only to one player B who
offers to sell it on to C at a monopolistic price. If C obtains the information,
he reacts with an action that suits himself and harms A. C’s reaction depends
on what he learns about A, and on his own type. Different types of C are
more or less aggressive, but all types of C need to obtain information about

the information for generating joint surplus with A and selling it off—B’s utility will be
separable in these two actions and can, thus, also capture the behavior of two different
agents.

3Prominent recent cases of commercial data security breaches include Sony’s hack in
2014 and Ashley Madison’s hack in 2015.
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A in order to identify their optimal reaction. C’s value of obtaining the
information is unknown to A and B, with a distribution that generates a
standard market demand curve.

Our first result bears bad news for A: the monopolist sells the information
to those types of C who harm A the most. This result follows from the
assumption on opposite preference alignment of A and C. C’s willingness
to pay for the information increases monotonically with the harm that he
inflicts on A. The result is, of course, a rather generic property of markets:
they allocate goods to those buyers with the highest willingness to pay—
here, the most aggressive C-types. But the harmful effect on A comes with a
self-moderating equilibrium effect. Player A reacts to the danger of leakage
by withholding information. The market traders B and C, in turn, are aware
of A’s reluctance and react to it by exercising caution themselves: market
activity will never be so intense as to completely shut player A up.

The market’s reaction to A’s withholding of information also highlights
how differently the market traders benefit from trading information that
originates from naive versus from sophisticated As. Sophisticated A cor-
rectly anticipates the market activity and withholds information whenever
the equilibrium predicts the possibility of information leakage. The market
traders therefore cannot earn much profit from her. Naive A, in contrast, is
an easy victim and generates larger profits. For many parameter constella-
tions, she provides strictly more information than sophisticated A, and the
parameter constellation where B’s profit from trading information is maxi-
mal is one where naive A feels uninhibited in her information provision while
sophisticated A withholds information maximally.

We also find an unambiguous effect of A’s possible naivete on her own
payoff. Unsurprisingly, naive A receives smaller payoffs than sophisticated
A. But naive A also exerts a negative externality on sophisticated A. This
externality arises because the prevalence of naivete increases the value of
information, hence increases demand, and hence increases trading activity.
Sophisticated A therefore needs to reduce information provision further, in
response to naive A’s presence. Ironically, a larger proportion of naive players
may benefit a given naive player. As she realizes that players C can expect
more information transmission with more players A who are like herself, she
might become more cautious.

One possible consumer protection intervention is to educate consumers
about the cost of obtaining and selling information. If such measures reduce
the share of naive types, sophisticated As will benefit from them, while naive
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types who remain obstinate may be worse off. Other possible regulatory
interventions affect B’s cost of supplying information, e.g. through data se-
curity requirements or through bans of certain technologies. Our analysis
shows how in equilibrium, such interventions may help A to provide infor-
mation to B. We identify sufficient conditions under which all types of player
A are better off if the cost of selling the information increases: if data pro-
tection is initially weak then a strong enough intervention helps player A for
sure. However, we also show that weak or ill-designed interventions—even
if they do increase B’s costs—can cause harm without creating any benefit:
they may encourage carelessness of naive types of A, without benefitting any
of the sophisticated types.

Section 4 contains a number of extensions and robustness checks. Among
them is the case of Bertrand oligopoly, where we allow for multiple entrants in
the market instead of a single player B. For player A, a competitive pressure
in the market for information holds the promise that the information may
not be traded at all because the equilibrium profits are small in expectation
for any individual potential entrant. But a competitive market structure also
implies the danger that more than one supplier of information operates in the
market, which drives prices down and thus increases the frequency with which
information is sold. We show that A’s incentives to provide information are
decisive for welfare: in equilibrium of the oligopoly market, the quality of
the traded information must be higher than in the corresponding monopoly
market (with identical entry cost per firm). Therefore, the oligopoly market
structure must induce A to provide more precise information than monopoly,
which, in turn, implies that sophisticated A prefers oligopoly over monopoly.4

In other words, the competitive pressure forces the oligopolists to treat A well
and grant her more data security.

In Section 2 we discuss possible applications of our model in more detail
and relate them to existing strands of the literature. Sections 3 and 4 contain
the formal analysis and Section 5 concludes.

2 Applications and literature

Business-to-business interaction. Player A is a manufacturer who requires
some specific inputs such as software or machinery for which she has to share
technological information with supplier B. This information is valuable to

4In one parameter region, it may be that naive A prefers monopoly.

5



A’s competitors who might use it for their strategic advantage or to copy A’s
technology. Similar problems arise with outsourcing such that, as Arrunada
and Vazquez (2006) discuss in contexts of electronics and car manufacturing,
A’s contract manufacturer can become her competitor. Ho (2009) has a
related theoretical discussion on outsourcing showing that the presence of
multiple upstream trading partners can alleviate the contracting problems
that arise from the threat of information leakage.

Social media and the work place. Player A is an employee who uses online
social media (OSM) services with a friend or colleague, player B. In their
conversations, A directly benefits from sharing details about her workplace
situation with B. But her communication is recorded and may be offered
on a market by a data aggregator who sieves A’s OSM usage data. The
potential buyer, player C, is player A’s current or future employer who cares
about A’s focus on her job or her views about the firm’s management. If A’s
communication reveals some deviations from the employer’s expectations he
can as the current employer redesign A’s job, redeploy or sack her. Future
potential employers may think carefully about what type of job to offer to
her (if any). Related evidence is in Acquisti and Fong’s (2014) large-scale
field experiment showing some US employers indeed rely on OSM usage and
that job market prospects are significantly affected through online revelation
of personal traits.

Personalized advertising and pricing. Player A is a consumer whose activ-
ities are recorded through store cards, cookies, or other software that tracks
her activities. Player B is a seller who caters to A’s demands (generating
surplus for both of them) but also collects the information about A’s type
which he can sell to other companies. There are fast-growing theoretical and
empirical literatures that investigate personalized advertisement and person-
alized pricing. For the theoretical literature see e.g. Taylor (2004), Jentzsch
(2014), Armstrong and Zhou (2015), Bergemann and Bonatti (2015) and the
survey on personalized pricing by the UK’s Office of Fair Trading (2013). For
empirical evidence on firm behavior see e.g. the field experiment by Vissers
et al (2014). In these literatures, it is a widespread view that consumers may
not be aware of the possibility of subsequent data use and the allocation of
information happens via market mechanisms. Evidence on consumer behav-
ior that is (differentially) consistent with several kinds of consumer naivete is
discussed in the experiments and surveys in Acquisti and Grossklags (2004),
Norberg et al, (2007), Tsai et al (2011), Beresford et al (2012) and Schudy
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and Utikal (2014). A recent example of an ill-understood market mechanism
is consumer data provision by mobile phone applications to data aggrega-
tors. Very few telephone users ask themselves why free-of-charge software is
provided in their Appstore. The answer they would get (if they cared to ask)
is that these apps routinely transfer personalized data from the telephone to
data aggregators, usually for advertisement purposes, and usually in return
for money.

We point out to the reader that the cited theoretical papers do not de-
scribe special cases of our model. Our assumptions differ from those made in
the theoretical literature on consumer privacy in at least two basic features.
First, we focus on agents who only provide information and hence have no
bargaining power and cannot achieve good deals in return for their infor-
mation provision. Their only weapon is to withhold information—with the
drawback of reducing the benefit from interacting with player B. Second, we
focus on the case where the buyer of the information, player C, has incentives
that are known to be oppositely aligned to those of player A. That is, his
reaction can only harm A and the uncertainty about C pertains merely to
the strength of his preference or ability to harm A.

Finally, the literature on contracting with differentially naive consumers
(e.g. Gabaix and Laibson, 2006, Eliaz and Spiegler, 2006, Koszegi, 2014)
has related assumptions on consumer naivete, and show a large number of
other incentive effects that the presence of naive consumers entails and that
we ignore in our analysis. For example, Heidhues and Koszegi (2014) point
out the dynamic effects that arise if a seller can screen the naives from the
sophisticates. Armstrong (2015) gives a comprehensive overview of search
in markets with naive agents. Differently to parts of this literature, we find
that sophisticated agents do not benefit from others being naive but instead
they unambiguously suffer from having naive counterparts.

3 The model

3.1 Main elements

We start the exposition with a summary of the model’s main architecture,
leaving the details to the subsequent subsections.

Player A has private information θA ∈ R that she wants to reveal to player
B but not to player C. A sends a message mA to B, which is constructed
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such that when B reads it, he either learns the true θA or receives an empty
message. Player A’s only choice variable in our model is the precision of her
message to B: she picks the probability xA with which B learns θA from her
message. Increasing the probability xA is costly and we assume that the cost
cA(xA) ∈ R is increasing and convex.5

Player B makes two decisions. First, he picks an action dB ∈ R for his
joint project with player A. The action aims to match his beliefs about θA
and the more precisely it is matched to θA, the more surplus it generates.
Second, B can offer to player C to sell him the message mA. This offer causes
cost cB to player B.

If B decides to offer the information he sets a price p. Player C observes
p, decides whether to buy or not, and if he buys the message he takes a
corrective action dC ∈ R against agent A. For tractability and realism, our
model is constructed so that receiving an empty message, or not purchasing
it in the first place, is uninformative. This is detailed below.

3.1.1 Players’ payoffs as functions of B’s and C’s actions

Here we consider the payoff consequences arising from the two economic deci-
sions by players B and C, dB and dC , respectively. We write all three players’
payoffs as depending on some bliss points, which are implicitly defined by
squared payoff reductions. (The parameters κ, cA and cB are discussed below
the formulae.)

πA = −(1− κ)(dB − θA)2 − κd2
C − cA(xA) (1)

πB = −(dB − θA)2 + p− cB (2)

πC = −(dC − θCθA)2 − p (3)

Player A has different bliss points for B’s and C’ actions. She wants B’s
action dB to match her private information θA and ideally has C choosing
dC = 0. This discrepancy generates her main tradeoff and the parameter
κ ∈ [0, 1] governs the weights of her two objectives.Players B and C do not

5The cost reflects the effort that A exerts when describing her information or when
attempting to receive B’s attention. One might think of A’s choice simply as how often A
repeats her message (or how fast she sends it), where sending more (faster) messages to B
will increase the likelihood that he will register them (on time to react). This interpretation
relates naturally to the convexity of cost.
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care about each other’s actions but each have a bliss point only for their
own action. B’s bliss point for his decision is the same as A’s bliss point,
θA. It is A’s private information and we refer to it as A’s “preference type”.
We assume that θA’s distribution is strictly increasing, differentiable, and

symmetric around zero: θA ∼ FθA with existing fθA(θA) ≡ dFθA
dθA

(θA) and with
FθA(θA) = 1− FθA(−θA) for all θA in the supportwhich is assumed to be an
interval [−θA, θA].

Player C’s bliss point for his own action is unknown to both players A
and B. It is a linear function of A’s preference type, θCθA, where θC is C’s
private information. That is, C knows how much he cares about θA but he
needs knowledge of θA in order to know how to set dC optimally. We assume
that θC ’s distribution FθC is strictly increasing and differentiable everywhere
on its support, which is an interval [0, θC ]. We leave FθC unrestricted except
that we impose regularity on the square of θC , θ2

C , by assuming that its
hazard rate is strictly increasing.6

Notice that due to the symmetry of FθA , the ex-ante optimal action of C
is zero—in the absence of obtaining information C takes no punitive action.
Finally, notice that, as already discussed above, the model is restricted to
situations where it is common knowledge that C is not on A’s side. While
this is restrictive, it is often the relevant case for issues of privacy: θA is A’s
secret vis-a-vis C.7

3.1.2 Information transmission

Both A and B choose whether or not to convey information about θA. A
chooses whether or not to send B a stochastic message mA ∈ {θA, ∅} that is
equal to θA with probability xA and is empty with probability 1 − xA. A’s
only choice is the precision xA of her message. She incurs a cost cA(xA) that
is increasing, twice continuously differentiable, strictly convex and satisfies
cA(0) = 0 and c′A(0) > 0. To make the analysis interesting we assume that θA
is large enough such that at least some types would provide strictly positive

amounts of information in the absence of leaks: θ
2

A(1− κ) > c′A(0).

6The assumption is used as a sufficient condition for uniqueness of the monopoly price.
We argue that it is equally natural to make regularity assumptions on θ2C or on θC . For a
direct interpretation of θ2C , note that is the factor by which θ2A needs to be multiplied to
arrive at the utility difference that C imposes on A by choosing his optimal dC .

7This assumption can also be generated by a more general model where C may be
either on A’s side or not, but has a verifiable technology to prove to A if he is on her side.
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Player B observes the message mA and, apart from making his choice of
dB, he is also a potential information trader: B decides to offer relaying mA

to C or not, at cost cB > 0. We denote this binary decision by sB ∈ {0, 1}.
If he offers mA, i.e. sB = 1, he incurs cost cB and commits to providing mA

in return for price p. cB is irreversible, such that B incurs the cost even if C
rejects the offer. We also assume that p and cB enter the payoffs additively,
as described in (2) and (3).

3.1.3 Naivete

As the last ingredient for our model we introduce two different cognitive
types of player A, denoted by τA, with possible values n (“naive”) and s
(“sophisticated”). The naive type occurs with probability α and believes
that the cost cB is higher than it actually is, ĉB,n > cB. As described in
the introduction, information flows from B to C may thus appear to stem
from a leak. For example, a relevant extreme case is ĉB,n = ∞, equivalent
to assuming that cognitive type n of Player A ignores the possibility that
a market for information exists at all. But overestimation of cost may also
appear to a milder extent.

We model this dichotomy of belief types in a game with non-common
priors. Although only one cost level is true (and known by players B and C),
both cost levels of player B are relevant for all players because each cognitive
type of player A believes in one of them. We therefore define two possible
cost types of player B, τB ∈ {n, s} with cost levels cB,τB ∈ {ĉB,n, ĉB,s}, and
introduce simple (degenerate) non-common prior beliefs where both the so-
phisticated type of player A as well as players B and C expect ĉB,s = cB with
probability 1 while the naive type of player A expects ĉB,n with probability
1. These beliefs are common knowledge, that is, all higher-order beliefs are
correct: the different player types agree to disagree in that cognitive type
τA = n thinks of τA = s as being paranoid, whereas cognitive type τA = s
and players B and C regard type τA = n as being careless.8 Our welfare
analysis is based on the true cost, ĉB,s = cB.

Player A’s full type profile is (θA, τA) and we assume that A’s preference
type θA is independent of A’s cognitive type τA. We also assume that there
exist no other stochastic dependence of types between the three players.

8A different modelling approach would have the naive types of player A not understand
that other players have different beliefs, like the “unaware” like the naive types in the
literature on shrouded attributes (Gabaix and Laibson, 2006, Heidhues et al., 2012).
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3.2 Monopoly

In this subsection, we solve the model under the assumption that there is only
one player B who has access to A’s message and can sell it on the market.
Subsection 4.3 discusses the case of oligopoly. The sequence of moves is as
follows.

t = 0: All players learn their types.

t = 1: A of type (θA, τA) chooses xA,τA(θA) ∈ [0, 1].

t = 2: Nature chooses the content of mA, with probabilities xA,τA(θA)
and 1 − xA,τA(θA), and B observes it. B (of type τB) chooses dB,τB and
qB,τB ∈ [0, 1], the probability of offering message mA for sale. If B offers mA,
he quotes price p and incurs cost ĉB,τB .9

t = 3: If p was quoted by B in t = 2, C observes it and chooses buyC(θC) ∈
{0, 1}, indicating whether or not to buy mA. If he buys mA, he observes it
and then chooses dC(θC). All payoffs are realized.

We restrict attention to the game’s symmetric Perfect Bayesian Nash
equilibria, where “symmetric” refers to the preference type θA: we consider
equilibria with xA,τA(θA) = xA,τA(−θA) for all (θA, τA). This restriction to
symmetric equilibria implies that neither B nor C adjust dB and dC upon
observing m = ∅. (Hereafter, we simply refer to equilibria, dropping “sym-
metric Perfect Bayesian Nash”.)

An important property of the equilibrium set is that there are no equi-
libria in which B’s profit from selling to C depends on the value of mA. This
is because C cannot verify B’s information before making his purchasing de-
cision about mA: if there were equilibria where B’s profit was different for
different values of mA then B could always pretend vis-a-vis C to have the
information that induces the highest equilibrium payoff. This property im-
plies that in equilibrium C does not adjust his beliefs upon observing p. He
therefore chooses dC = 0 in case he does not buy the message or when it
turns out to be empty.

With these observations on the equilibrium set, we can state our first
proposition, describing the behavior of C in a monopoly market. All proofs
are in the appendix.

9As preview that is relevant for notation, A’s and C’s equilibrium strategy will not
involve randomization for almost all types. We therefore introduce mixed-strategy notation
only for player B.
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Proposition 1 (Equilibrium behavior of player C): There exists a
unique θ∗C > 0 such that if mA is offered in symmetric equilibrium then
player C buys it if and only if θC ∈ [θ∗C , θC ].

The proposition is important for two reasons, one substantive, one techni-
cal. On a substantive level, it shows that A has to brace herself for the worst.
The market allocates the information to those types of C whose decision value
of the information is highest, i.e. those with the largest equilibrium payoff
difference between buying and not buying the information. As the incentives
of A and C are opposite, the information will be purchased by those types
of C who feel most antagonistic towards A.

The technical relevance lies in the fact that the critical θ∗C is independent
of other aspects of the equilibrium that is played, i.e. θ∗C is constant even
across candidate equilibria of different natures. The property is useful for
our further analysis because it fixes the expected volume of trade (and the
punishment that A will receive from C) conditional on trade occurring. It
will translate into the property that the game’s equilibrium is unique.

The proof of Proposition 1 relies on the observation, described in the
appendix, that C’s willingness to pay is

WTPC(θC ,ΓA) = θ2
CΓA, (4)

where the factor ΓA describes the equilibrium value of information and de-
pends only on the collection {xA,τA(θA)}θA,τA :

ΓA ≡ α

∫
θA

xA,n(θA)θ2
AdFθA + (1− α)

∫
θA

xA,s(θA)θ2
AdFθA (5)

The proof shows that with this form of WTPC , different candidate equilib-
rium collections {xA,τA(θA)}θA,τA merely scale the demand for information
that B faces, leaving the critical buyer type unaffected.

Describing the remainder of C’s equilibrium behavior is straightforward:
his acquisition induces the choice of his corrective action, dC , which equals
θCθA if and only if C has acquired mA and it is non-empty, and equals zero
otherwise. For simplicity, we later notate C’s equilibrium behavior by the
phrase “C follows Proposition 1” but mean to imply that his choice dC is
also optimal in the described way.

Having solved the last part of the game we consider the truncated game
played by A and B. This truncated game has the flavor of a simple inspection
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game. One the one hand, if A expects that B is likely to sell her message, she
exerts caution: she withholds information and thereby reduces the market
value of information ΓA to the point where B’s costs are no longer covered
such that the market for information may break down. On the other hand,
if A expects that there is no market for her information, she is careless
and sends her information with maximum precision, raising ΓA and creating
an incentive for C to purchase at prices that make provision worthwhile
for B. The equilibrium balances these incentives and, for some parameter
constellations, involves mixed strategies. More precisely, the equilibrium may
predict the use of mixed strategies for B and a collection of (pure strategies)
{xA,τA(θA)}θA,τA that make B indifferent between selling and not selling.

Technically, we proceed as follows. As θ∗C is constant, each type of player
A only requires a belief about the probability with which B sells her mes-
sage, in order to determine her optimal precision. Knowing that B optimally
chooses dB,τB = θA whenever he observes a nonempty message, and dB,τB = 0
otherwise, A’ problem is to maximize

E[πA,τA(θA)] = −θ2
A(1−κ)(1−xA,τA)−θ2

Aκq̂B,τAxA,τA

∫ θC

θ∗C

θ2
CdFC(θC)−cA(xA,τA)

(6)
with respect to xA,τA , where q̂B,τA is type τA’s belief about qB,τA . Fixing a
pair (q̂B,n, q̂B,s) thus induces the collection {xA,τA(θA)}θA,τA of best replies to
the pair. Conversely, any such collection pins down what the two B types can
earn if they sell the information at their given cost and, hence, it pins down
their optimal decisions (qB,n, qB,s). An equilibrium solves this fixed-point
problem from (q̂B,n, q̂B,s) to (qB,n, qB,s). To find it, we consider B’s equilibrium
revenue conditional on selling to C : we denote by H(qB,n, qB,s) the expected
monopolistic revenue that B would receive from selling mA to C, given that
simultaneously (i) A believes, and C knows that A believes, that the two
types of B offer mA for sale with probabilities (q̂B,n, q̂B,s) = (qB,n, qB,s), (ii)
C’s behavior follows Proposition 1, and (iii) A maximizes (6). It is given by

H(qB,n, qB,s) = WTPC(θ∗C ,ΓA(qB,n, qB,s))(1− FC(θ∗C)),

where the notation ΓA(qB,n, qB,s) indicates that the market value of informa-
tion depends on (qB,n, qB,s).

Notice that H(qB,n, qB,s) is identical for both types of B as their costs do
not affect their price setting. Notice also that H(qB,n, qB,s) does not depend
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on whether or not B actually offers mA for sale. In other words, it is well-
defined only from A’s and C’s behavior. A simple but important implication
of (6) is that all types of A send (weakly) less information as (qB,n, qB,s)
increases, which allows establishing that H is decreasing in its arguments.
The appendix proves this property and shows how it results in Proposition
2.

Proposition 2 (Equilibrium behavior of players A and B): There
exists a unique symmetric equilibrium. For no constellation of parameters
does the market for information shut player A up: A sends nonempty mA

with strictly positive probability. A maximizes (6) with an equilibrium belief
about B’s strategy, (q̂B,n, q̂B,s) = (qB,n, qB,s) that is characterized by the
following, where 0 ≤ H(1, 1) < H(0, 1) < H(0, 0):

I If ĉB,n 6 H(1, 1), then qB,n = qB,s = 1.

II If H(1, 1) < ĉB,n < H(0, 1), then qB,n ∈ (0, 1) and qB,s = 1.

III If ĉB,s 6 H(0, 1) 6 ĉB,n, then qB,n = 0 and qB,s = 1.

IV If H(0, 1) < ĉB,s < H(0, 0), then qB,n = 0 and qB,s ∈ (0, 1).

V If H(0, 0) 6 ĉB,s, then qB,n = qB,s = 0.

Figure 1 illustrates the five regions of cost parameters that induce the dif-
ferent equilibrium behaviors of B. Notice that differently from Figure 1’s
illustration, it may be that H(1, 1) = 0, in which case region I fails to exist.
This possibility is further discussed below.

We now describe the five regions, one by one. The description also uses
some auxiliary results from the appendix: Proposition A.1 shows that a naive
A provides more information than a sophisticated A, i.e. xA,n(θA) ≥ xA,s(θA)
for all θA, and that more “interesting” types of A—those with θA further away
from zero—provide more information, i.e. xA,τA(θA) weakly increases in |θA|
for all τA. Proposition A.2 describes how the players’ equilibrium payoffs vary
with the cost parameters. For the equilibrium description it is also useful to
denote by xA,τA(θA) and xA,τA(θA), respectively, the minimal and maximal
information provision that player A of type (θA, τA) chooses in response to
the most pessimistic and optimistic expectations about B’s probability of
selling to C, q̂B,τA = 1 and q̂B,τA = 0. The value of xA,τA(θA) may or may not
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Figure 1: Equilibrium behavior of player B
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be zero, just as xA,τA(θA) may or may not be equal to one, depending on the
model’s parameters.

I (if it exists): For cost parameters in this region, both types of A antici-
pate that B sells mA for sure. All types of A therefore provide the minimal
precision xA,τA(θA). The proof of Proposition 2 shows that region I exists iff
there exist some types of A whose minimal information provision xA,τA(θA)
is strictly positive, and that this happens iff it is true for the most extreme
preference type, θA. More precisely, the region exists if

1− κ(1 +

∫ θC

θ∗C

θ2
CdFC(θC)) ≥ c′(0)

θ
2

A

(7)

and otherwise only regions II to V exist.
II: In this parameter region, the sophisticated A continues to correctly

anticipate that B sells for sure and she hence chooses xA,s(θA). But the naive
A is more optimistic (and less careful) about the behavior of his imaginary
opponent, high-cost B. The condition H(1, 1) < ĉB,n implies that q̂B,n < 1
and every θA-type of naive A plays her (pure-strategy) best response to q̂B,n,
which lies strictly above xA,n(θA) for some θA.10 High-cost B’s cost, ĉB,n,
is larger than in region I and he therefore has an incentive to reduce qB,n
as long as H(qB,n, 1) < ĉB,n. In equilibrium, he makes himself indifferent
by setting qB,n such that H(qB,n, 1) = ĉB,n. B’s true (low-cost) profits in
region II exceed those of region I as the additional information that naive A
provides creates additional demand by C.

III: In this region the naive type of player A is even more optimistic
about the cost of information transmission. She feels uninhibited in providing
information, xA,n(θA) = xA,n(θA). The sophisticated A anticipates that B
sells the information for sure and chooses the minimal information provision
xA,s(θA). Player B sells the minimal information provided by sophisticated
As, plus the maximal information provided by the naive As. This is B’s most
profitable parameter region.

IV: While naive A still chooses maximal xA,n(θA) (as she assumes that
B does not sell mA), here sophisticated A plays a game of cat and mouse
with low-cost B. The logic for the interaction between sophisticated A and
(real) low-cost B is analogous to the mixed-equilibrium logic of region II:

10(6) implies that only a zero-measure set of naive A types are indifferent between
different precision levels.
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sophisticated A provides just enough information to make B indifferent be-
tween selling and not, and B sells with low enough probability keep A willing
to provide enough information to cover B’s cost. But there is an impor-
tant difference regarding the actual profits of (low-cost) B. In the game of
cat and mouse in region IV, sophisticated A correctly considers the revenue
that B generates from selling information sent by naive A. Consequently, in
expectation, low-cost B makes zero profits in this equilibrium.

V: While desirable from the perspective of As, this is the least interesting
equilibrium region. B’s true costs are prohibitive and so are the even higher
costs imagined by the naive A player. There is no market for information.
All types of A choose maximal information precision xA,n(θA) and achieve
their highest possible payoff.

We now consider a selection of comparative statics results. As indicated
above, the appendix contains a comprehensive result on comparative stat-
ics, Proposition A.2, regarding the players’ payoffs when moving within and
between the different regions. In reality, such moves may be generated by
regulatory intervention that affect the actual cost of B entering the market
for information, ĉB,s = cB, and/or the perceived cost ĉB,n. The following
corollary considers the consequences of increasing both ĉB,s and ĉB,n by con-
stant proportions, that is, along some ray ĉB,n = λĉB,s with λ > 1. In Figure
1, this corresponds to moving northeast on a straight line that starts at the
origin and lies above the 45-degree line.11

Corollary 1 For sufficiently low (ĉB,n, ĉB,s),

(i) a modest proportional increase in (ĉB,n, ĉB,s) weakly reduces naive A’s
payoff, for all θA, without increasing sophisticated A’s payoff;

(ii) a sufficiently large proportional increase in (ĉB,n, ĉB,s) weakly increases
the payoffs of all types of player A.

Clause (i) demonstrates that a half-baked regulatory invention would only
harm the naive player A, as she would feel safe too soon. The result derives
from the observation that a modest proportional increase in (ĉB,n, ĉB,s) cor-
responds to a northeast move within region II or a move from region I to
region II. The cost rise weakly increases the potential equilibrium revenue H

11The result is presented as a corollary as it is derived from Proposition 2 and Proposition
A.2 in the appendix.
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because high-cost B has to be indifferent in region II. By weak monotonicity
of H, this means that qB,n is reduced, inducing a weakly higher xA,n. Since
the true probability of selling is qB,s = 1, this leads to a payoff reduction
for naive A (otherwise, sophisticated A would increase xA,s, too). Clause (ii)
refers to a strong measure of privacy protection, moving from region I or II
to region V, where all types of A have maximal payoffs.

Somewhat counter-intuitively, it may not be possible to induce Pareto
improvement through an increase in (ĉB,n, ĉB,s), relative to a situation where
A’s personal data is relatively unprotected. One may have thought that
stronger data protection enables the players to move from a completely silent
equilibrium to one where an intermediate level of information is shared and
traded, to everyone’s benefit. But as Proposition 2 shows, the equilibrium
never allows for complete silence: in equilibrium regions I and II, players B
and C benefit from naive players who chatter away. Moving towards regions
IV and V would therefore not necessarily improve B’s and C’ payoffs.12

Our next corollary concerns variations in the share of naive players, which
might be affected by policy interventions such as educational campaigns
about the actual costs of data provision.

Corollary 2 A reduction in α

(i) increases information provision by any given type of player A:

dxA,n(θA)

dα
≤ 0 and

dxA,s(θA)

dα
≤ 0,∀θA

(ii) benefits the sophisticated A:
dπA,s(θA)

dα
≤ 0, ∀θA

(iii) can harm the naive A: ∃α′, α such that α′ > α and πA,n(θA) is strictly
larger at α′ than at α, for all θA.

The corollary illustrates how all types of A compensate for the prevalence
of naivete. A larger share of naive players wets the appetite of C to buy
the available information, and hence the likelihood that B is willing to sell.
As a result, both naive and sophisticated A reduce their information provi-
sion (clause (i)). The overall value of the available information ΓA, however,

12This does not mean that no Pareto improvement is possible through manipulations of
(ĉB,n, ĉB,s), but one would need stronger assumptions for it.
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increases in response to a larger α because naive agents provide more infor-
mation in the aggregate. (Otherwise, if ΓA was reduced, then all types of A
would increase their xA. Since naive A provides more information than so-
phisticated A, and naive A’s share increases, the resulting aggregate level of
ΓA would have to increase, a contradiction.) For sophisticated A, this effect
translates into a reduction of the equilibrium payoff, in response to larger α.
In contrast, the increase in α may help the naive players. This is possible
because an increase in α affects the boundaries of the equilibrium regions
and the increase in α may thus corresponds to a change from the equilibrium
prediction in region I to the equilibrium prediction in region II: such an in-
crease in α makes naive player A behave more cautiously and reduce their
loss.

Our final, and brief, comparative statics exercise examines a variation in the
degree to which player C cares about A’s information. What if C becomes
more or less aggressive towards A? That is, we consider the consequences of
scaling the distribution of θC . Let θ̃C = µθC and F̃ (θ̃C) = F (θC). Player C’s

willingness to pay for the information now becomes WTP (θ̃C) = µ2θ2
CΓA.

Scaling the distribution of C types is therefore equivalent to shifting ΓA and
leaves the selection of buyers in B’s monopoly untouched: for the distribu-
tion F̃ the marginal type to which B sells is simply given by θ̃∗C = µθ∗C . The
consequences for A’s choice of information precision are, hence, straightfor-
ward. For µ > 1 (µ < 1) her information becomes more (less) valuable in
the market and the potential punishment more (less) severe. Thus, she will
weakly reduce (increase) her precision and will be weakly worse (better) off.

4 Extensions and robustness

4.1 Naivete about the market

An alternative and perhaps equally plausible form of naivete by player A con-
cerns the misappreciation of the market mechanism that allocates the infor-
mation to player C. Naive As may not grasp that, conditional on information
being passed on, it will reach the most aggressive C types (those above θ∗C)
and not just a random selection of C types. Modeling this alternative is rela-
tively straightforward, applying the common logic of Jehiel’s (2005) analogy-
based expectations equilibrium and Eyster and Rabin’s (2005) cursed equi-
librium. Differing from Section 3, we here assume that naive A has a correct
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perception of B’s cost cB (just as sophisticated A) and attaches the correct
belief R to the event that their message is bought by player C. That is, we
impose the equilibrium condition

R = qB

∫ θC

θ∗C

dFC .

(Notice that in this variation all B types know the true costs such that we
do not require an additional index for qB.) However, when naive A thinks
about the precision with which to send her information she now maximizes

−θ2
A(1− κ)(1− xA,n)− θ2

AκxA,nR

∫ θC

0

θ2
CdFC − cA(xA,n).

While her beliefs about the likelihood of being punished by C are correct, she
systematically underestimates the size of the expected punishment because
she does not understand that the market allocates the information system-
atically to high types. Hence, as in the main model, naive A will send more
information than sophisticated A.

The analysis of this variation proceeds in a similar way as the analysis
of Section 3. Crucially, Proposition 1 still holds for any possible belief R.
That is, independent of the nature of the equilibrium and independent of R,
there is a critical θ∗C defining a lower bound for which C types acquire the
information. (Only the value of ΓA differs from that in Section 3, and depends
on R, as naive A solves a different optimization problem.) Consequently, in
equilibrium R depends linearly on qB and we denote this equilibrium mapping
as R(qB).

The remaining analysis is even simpler than in Section 3, as we now have
only one cognitive type of A and one type of B to consider (the true, low-cost
B). For given qB, each θA-type of the sophisticated player A maximizes (6).
The probability qB thus determines the equilibrium revenue from selling mA

to C. We denote it as H(qB) and point out that H depends on qB through
two channels, as a direct effect on the equilibrium choice of the sophisticated
A and through the equilibrium effect on the choice of the naive A. Simi-
lar to Section 3, one can now show that H decreases in qB, which ensures
uniqueness. The equilibrium strategies again depend on the relative size of
revenue H versus cost cB, with three regions similar to regions I, IV and V
of Proposition 2. For cB > H(0), the equilibrium region applies that player
A likes best where qB = 0 and all As choose maximal information precision
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(analogous to region V). Similarly, a region analogous to region I may or
may not exist for cB < H(1), where B’s strategy prescribes qB = 1 and A
chooses minimal information precision.13 Finally, for intermediate levels of
B’s costs, H(1) ≤ cB ≤ H(0), we obtain a mixed-strategy equilibrium where
the sophisticated types of player A make player B indifferent between selling
and not.

In terms of welfare, the picture is also similar to the model of Section 3.
The welfare of sophisticated A types moves hand in hand with their equi-
librium information precision and is, hence, increasing in cB. As before, the
sophisticated A’s welfare is decreasing in the number of their naive counter-
parts. As the latter send more information, the former have to reduce their
own information precision to keep the Bs indifferent for intermediate cB.

For naive A the story is, however, slightly more complicated. As long as
qB > 0 she provides too much information. As cB increases (in the interior
region), qB decreases and this has two effects on naive As’ welfare. On the
one hand, she benefits from the fact that the net marginal value of send-
ing information increases. On the other hand, she incurs an additional loss
through providing an even higher uncalled for information precision. Either
of these two effects can dominate depending on the curvature of cA(xA).

4.2 Commitment from B

In the main model we assume that B, in his role as seller, can as easily adapt
as all other players. However, in many situations B, as the interceptor and
seller of information, may be forced to invest in a technology for dealing
with data which would be tantamount to assuming that B has to move first
committing to some qB. The consequences of such commitment are that
B is more cautious in his dealings with A, being careful not to reduce A’s
willingness to provide information. A credible commitment to protect data
security may thus be is an improvement for both A and B. (And C, too, may
benefit from more information being sent.) Moreover, B, as interceptor and

13The region exists if

1− κ(1 +

∫ θC

0

θ2CdFC(θC)) ≥ c′(0)

θ
2

A

i.e., if the naive A provides strictly positive information precision for her most pessimistic
belief, R = 1.
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trader of information, has an incentive to make his doing public.
However, it may also not be in B’s interest to address data security issues

too much, in order not to alert naive A about his own incentives to leak
information. We do not address the latter question in any formal way but
here only briefly consider the equilibrium effect of commitment.

The simplest way of illustrating the effects of such commitment is by
focussing on a setup where there are no naive types of player A. The sequence
of events with commitment is as follows. First, B chooses qB , then A chooses
xA and, finally, A’s message is traded. Nothing fundamental changes for the
last stage, relative to section 3, and a variant of Proposition 1 still holds.
However, now player B maximizes

qB[H(qb)− cB]

where H(qB) is again the expected revenue can reap by selling mA. The
first-order condition is

H(qB)− cB +H ′(qB)qB = 0

with H ′(qB) < 0. B therefore chooses qB in a way that ensures positive
profits, that is, H(qB) > cB. For intermediate values of cB (that is, for the
most interesting case), this is beneficial for B compared to the model without
commitment. It is also beneficial for A because H ′ < 0 ensures that B’s qB
with commitment is strictly smaller than without. Consequently, A sends
more information in a model with commitment than without and is strictly
better off, for intermediate levels of cB.

4.3 Competition

What happens when there are multiple interceptors/sellers of information?
We model seller competition by assuming that simultaneous to player A’s
choice of precision xA, N identical firms B1, ..., BN make entry decisions. If
firm i enters the market, she pays cB as irreversible entry cost and observes
mA. Then all firms observe each others’ entry decisions and subsequently
the entering firms simultaneously choose a price at which C can buy mA. We
assume that C buys from at most one firm Bi, inducing Bertrand competition
among the entering firms. Otherwise, the model is identical to that of Section
3.
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In case of multiple entries, Bertrand competition induces a market price
of zero. If exactly one firm enters, it can set a monopoly price, analogous to
Section 3. The resulting entry game will have multiple asymmetric equilibria
but we focus on the unique symmetric mixed-strategy equilibrium where each
firm enters with some non-zero probability. Anticipating the mixed-strategy
equilibrium, player A simply has to consider the likelihood of two possible
cases when determining her precision xA—the likelihood of a single entry
occurring, in which case her information is sold to players C with θC > θ∗C ,
and the likelihood of multiple entry, in which case her information is sold
to all types of player C. Analogous to Section 3, naive and sophisticated A
can differ in their beliefs about the likelihood of these events. Let A’s beliefs
about the probability for a single entry be denoted by s1

τA
and her belief

about multiple entries by s2
τA

. Player A then maximizes

−θ2
A(1−κ)(1−xA,τA)−θ2

AκxA,τA

(
s1
τA

∫ θC

θ∗C

θ2
CdFC + s2

τA

∫ θC

0

θ2
CdFC

)
−cA(xA,n)

where in equilibrium player A’s beliefs, s1 and s2, are determined by

s1
τA

= NqB,τA(1− qB,τA)N−1 (8)

and
s2
τA

= 1− s1
τA
− (1− qB,τA)N . (9)

For N = 1 this contains the earlier monopoly case where s1
τA

= qB,τA and
s2
τA

= 0. However, now a seller B’s probability for selling is determined by
the mixed equilibrium of the entry (sub)game. In order to be indifferent
between entering and not entering, we need that

ĉB,τB = (1− qB,τB)N−1H(qB,n, qB,s) (10)

holds, where H(qB,n, qB,s) denotes the monopoly revenue a seller achieves in
equilibrium when he is the only entrant.14

Similar to Section 3’s arguments about monotonicity of H, it is now use-

ful to show that total expected punishment s1
τA

∫ θC
θ∗C
θ2
CdFC +s2

τA

∫ θC
0
θ2
CdFC is

14Notice that we use calligraphic H instead of the earlier H to signify that the revenue
that arises in such an endogenous monopoly is different from the revenue achieved in
monopoly.
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monotone in qB,τA .15 Hence, information provision decreases monotonically
in qB,τA and so do the value of information, ΓA, and revenue H. Conse-
quently, the right-hand side of equation (10) also decreases in qB,τA ensuring
uniqueness of the symmetric equilibrium in the entry (sub)game, for each of
the two possible types of firms.

The resulting equilibrium configuration for oligopoly is similar to the
monopoly case depicted in Figure 1. However, the analogue to old equilib-
rium region I (with ĉB,s, ĉB,n < H(1, 1)) no longer exists because the right
hand-side of (10) can be made arbitrarily small through its first term. That
is, an equilibrium with certain entry by all firms does not exist (it would gen-
erate negative profits for all firms). For ĉB,s, ĉB,n < H(0, 1) we now obtain
a region where both the (real) low-cost sellers and the (imagined) high-cost
sellers mix. For ĉB,n ≥ H(0, 1) and ĉB,s < H(0, 0) we obtain the analogue to
the old region IV where low-cost sellers mix and the imagined high-cost sell-
ers abstain from entry. Finally, for ĉB,s, ĉB,n ≥ H(0, 0) costs are prohibitive
and no entry occurs (the equivalent to the old region V).

Given the similar construction of equilibria it is not surprising that com-
parative statics with respect to the sellers’ costs and the share of naive agents
A still hold within equilibrium regions. In particular, higher real costs, ĉB,s,
benefit all players A while higher imagined costs, ĉB,n , can harm naive types
of A (because they underestimate the probability with which their informa-
tion will be sold). However, regarding our earlier exercise that examined the
welfare of A players moving along a ray, ĉB,n = λĉB,s (with some λ > 1) dif-
ferences emerge. The adverse effect of (misguided regulation) moving from
the old equilibrium region I to II and III where naive players A get too care-
less no longer exists. However, within the new region, ĉB,s, ĉB,n < H(0, 1),
adverse effects of regulation are still possible depending on the shape of cA.16

While these comparative statics bring nothing much new, we can now
examine a new type of comparative statics by varying N , i.e. investigate
the effect of more or less competition. Here we find a surprisingly general
result: for all parameter constellations, sophisticated A is better off if N > 1
(oligopoly) than if N = 1 (monopoly). To see this, consider the cost regions
in Figure 1, and compare sophisticated A’s welfare between monopoly versus

15Simply use the fact that the punishment is more severe if Bertrand competition ensues.
16While increases in costs cB will reduce the objective probability of information being

sold, the wedge between rational information transmission and overprovision of informa-
tion grows which, if c′A is flat, can imply that, on balance, naive players A will be worse
off.
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oligopoly. In regions I, II and III, monopoly gives sophisticated A the lowest
possible payoff, hence oligopoly must be weakly better. In region IV, it must
be that in equilibrium H(qB,n, qB,s) exceeds H(qB,n, qB,s) (the revenue in the
equilibrium of the monopoly game) because otherwise there is no incentive for
firms to enter in oligopoly: in the monopoly game, B is indifferent between
entering and not, i.e. H(qB,n, qB,s) = ĉB,s, but to induce entry under the
uncertainty of other firms’ entry, the possible revenue must be strictly higher
than ĉB,s. This requires that C’s willingness to pay must be strictly higher
in the oligopoly game, and thus information provision by A must also be
strictly higher. Now observe that naive A provides maximal information
in the monopoly game in region IV. Therefore, sophisticated A must be
willing to provide more information in the oligopoly game which goes hand
in hand with higher payoffs. Finally, in region V, observe that sophisticated
A provides maximal information in the monopoly game, and equally so in the
oligopoly game: H(0, 0) and H(0, 0) coincide, and so does A’s maximization
problem if the information is never sold in either of the two market structures.

Naive A, in contrast, may be better off under monopoly if ĉB,n < H(0, 1),
i.e. if regions I or II apply in the monopoly game. This can happen if the
mixed-strategy entry game in oligopoly induces naive A to enter with very
high probability, relative to the monopoly game. But the opposite can also
be true, because under competition naive types may have beliefs that are
much better adjusted. To see this point, consider naive As who overestimate
costs just a little, cB,n = cB,s + δ. For levels of cB,s that lie slightly below
H(0, 1), we can have that cB,s < H(0, 1) < cB,n, in which case the naive A’s
small aberration has stark consequences: she expects that messages are 100%
safe, whereas they are in reality sold with probability 1. In contrast, under
Bertrand competition with N → ∞, one can show that the probability of a
single entry s1

τA
, vanishes and the (perceived) probability of multiple entry,

s2
τA

, approaches17 1 − cB,τB
H(qB,n,qB,s)

. Therefore, the naive A’s belief is much

better adjusted under competition with N → ∞: the difference between
the information sale’s true probability and probability perceived by a naive
player is for that case only δ

H(qB,n,qB,s)
.

17Simply solve (10) for qB.τB and insert, along with (8) into (9) and take the limit.
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5 Conclusion

Our study highlights the dangers of information leakage through markets.
But the analysis also shows that markets for leaks will not necessarily reduce
information flows to zero. We illustrate this by returning to the example of
mobile phone applications: B may be an app provider, bringing a service to
the telephone user but selling his information on to C. The example illus-
trates that app providers need to offer the users a benefit, like a (seemingly)
useful software, and that this necessity to engage the customer disciplines the
industry. Without receiving a benefit, few rational customers would provide
the data.

But how realistic is full rationality in these environments where few peo-
ple know the intricacies of tracking and where technical change is rapid?
Presumably, not too many; naive app users might not even notice that they
constantly provide information to a hidden data aggregator. As our analysis
indicates, it is natural to expect that the industry’s larger profits lie in dealing
with naive customers who do not withhold information. The data trading
industry has strong incentives to create markets where selling information
is still unanticipated by originators of information. In markets for new IT
products, this is typically the case. But even sophisticated customers suffer
because of the externality discussed above: the demand for data interception
services increases with the degree of naivete in the population.

In the main analysis, we model the bias in a particular misperception,
the over-estimation of cost. But naivete about markets is multi-faceted phe-
nomenon, and one can think of many different models to capture it. One such
alternative, where naive consumers do not understand the allocation mech-
anism that a market provides, is explored in our extensions section. Other
equilibrium effects may be equally hard to understand. Take, for example,
our finding that player A can be better off if multiple agents eavesdrop on
her communication. This result strikes us as rather counterintuitive: if given
a choice between having one and multiple agents spying on them, most peo-
ple might prefer to have just one. This could also make for an interesting
experiment. People might underestimate how competition can destroy rents
and, thus, renders their communication more safe.

We also examine the scope for regulation to improve outcomes, through
measures that affects B’s cost of selling A’s information. Unsurprisingly,
both sophisticated and naive A’s welfare can be improved through extreme
regulatory measures which render the cost for selling information prohibitive.
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Less extreme (and, hence, perhaps more relevant) regulatory measures can,
however, backfire: they may reduce naive A’s welfare without improving the
welfare of sophisticated A.

Other regulatory measures might impose constraints on the punishment
that C can inflict on A. In many applications, there are legal limits to what
C can do to A. This may be an interesting avenue for further research.

Finally, a word of caution. We wrote this paper in a way that suggests
that the exchange of information between A and B, their joint project, is so-
cially desirable. However, there are, of course, applications that have exactly
the same game structure but where society has a collective interest in shut-
ting down the collaboration between A and B because it is, in a wide sense,
of a criminal nature. For these applications, all our results are still relevant
only that the desirability of outcomes has the opposite sign. A comprehensive
regulation of data security on the Internet is unlikely to have unambiguous
positive effects. But this renders further research into the economics of in-
formation leaks all the more important.
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A Appendix A: Proofs

Proof of Proposition 1
Consider C’s choice of dC . The uncertainty that he faces stems from the

multidimensional randomness in xA, θA and τA. For a notation that avoids
multiple integrals, we denote by ξ a random variable that governs all of this
randomness and we let Bξ be its support and Fξ its distribution function.

C’s optimal strategy d∗C is a function of (ξ, θC). As indicated in the main
text, p does not carry any relevant information and the symmetry of xA,τA(θA)
around θA = 0 implies that C’s optimal action is d∗C = 0 whenever he does
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not buy mA or if it is empty. Let B0
ξ be the subset of Bξ where d∗C = 0 if

C buys mA. The “other” values of ξ, ξ /∈ B0
ξ , are those where C, if he buys

mA, observes a nonempty and nonzero value mA = θA 6= 0, and optimally
sets d∗C(θC) = θCθA. We can then write C’s expected payoff from buying mA

and responding to it with his optimal strategy d∗C as

E[πC(buyC = 1, d∗C , θC)] =

∫
ξ∈Bξ
−(d∗C − θCθA)2dFξ − p

=

∫
ξ∈B0

ξ

−(0− θCθA)2dFξ +

∫
ξ /∈B0

ξ

−(θCθA − θCθA)2dFξ − p

=

∫
ξ∈B0

ξ

−(θCθA)2dFξ − p

C’s payoff from not buying mA is

E[πC(buyC = 0, d∗C , θC) =

∫
ξ∈Bξ
−(θCθA)2dFξ

and his willingness to pay for mA is therefore:

WTPC(θC) = E[πC(buyC = 1, d∗C , θC)] + p− E[πC(buyC = 0, d∗C , θC)]

=

∫
ξ∈B0

ξ

−(θCθA)2dFξ − p+ p−
∫
ξ∈Bξ
−(θCθA)2dFξ

= θ2
C

∫
ξ /∈B0

ξ

θ2
AdFξ

Now we give up the ξ-Notation and ask about the random outcomes that
correspond to ξ /∈ B0

ξ . When is mA nonempty? All of the randomness in xA,
θA and τA is independent by assumption. Aggregating across τA yields the
θA-specific precision of mA. Aggregating further across θA gives mA’s overall
average probability of being nonempty as∫

ξ /∈B0
ξ

dFξ = α

∫
θA

xA,n(θA)dFθA + (1− α)

∫
θA

xA,s(θA)dFθA

C’s willingness to pay is analogous to this expression but weights each
ξ /∈ B0

ξ by θ2
A, and weights the resulting integral by θ2

C . That is, we can
rewrite
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WTPC(θC ,ΓA) = θ2
CΓA

where

ΓA ≡ α

∫
θA

xA,n(θA)θ2
AdFθA + (1− α)

∫
θA

xA,s(θA)θ2
AdFθA

(which is (5)).The function WTPC(θC ,ΓA) is strictly increasing in θC , in
any equilibrium with ΓA > 0. Therefore, if ΓA > 0, there exists a unique
threshold

θ∗C(ΓA, p) ≡
√

p

ΓA
> 0

such that C buys mA if and only if θC ≥ θ∗C(ΓA, p). If ΓA = 0, C’s willingness
to pay is zero and B would therefore not offer mA.

We now show that θ∗C(ΓA, p) is independent of ΓA whenever ΓA > 0 and p
is the monopoly price. This will complete the proof because in equilibrium,
p is the monopoly price and ΓA > 0 must hold if B is willing to offer mA

(and incur cost cB,τB).
For given ΓA, consider WTPC(θC ,ΓA) as a random variable (driven by

randomness in θC). Observe that WTPC has a strictly increasing hazard rate
because the hazard rate of θ2

C is strictly increasing by assumption.
We now show that θ∗C is identical for different values of ΓA that may

arise in equilibrium. Towards a contradiction, suppose that there exist two
equilibria of the game (equil. (1)) and (equil. (2)) that result in values

(Γ
(1)
A ,Γ

(2)
A ) with corresponding optimal monopoly prices (p(1), p(2)) and with

marginal buyers (θ
∗(1)
C = θ∗C(Γ

∗(1)
A , p(1)), θ

∗(2)
C = θ∗C(Γ

(2)
A , p(2))) such that θ

∗(1)
C >

θ
∗(2)
C . That is, we have the following indifference conditions:

p(1) = (θ
∗(1)
C )2Γ

(1)
A (11)

p(2) = (θ
∗(2)
C )2Γ

(2)
A (12)

Since WTPC has a strictly increasing hazard rate, we have that p(2) is
uniquely optimal for Γ

(2)
A (see e.g. Börgers, 2015). Thus, in equil. (2) it is

strictly better for B to make θ
∗(2)
C indifferent than to make θ

∗(1)
C indifferent.

To achieve the latter, B would have to set a price satisfying

p̃ = (θ
∗(1)
C )2Γ

(2)
A =

Γ
(2)
A

Γ
(1)
A

p(1)
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where the latter equality follows from plugging in (11). The assumption
that p(2) is strictly better than p̃ in equil. (2) applies therefore implies the
following revenue inequality:

p(2)(1− FθC (θ
∗(2)
C )) > p̃(1− FθC (θ

∗(1)
C ))(13)

Γ
(1)
A

Γ
(2)
A

p(2)(1− FθC (θ
∗(2)
C )) > p(1)(1− FθC (θ

∗(1)
C ))(14)

Γ
(1)
A

Γ
(2)
A

p(2)(1− F Γ
(1)
A

WTPC
(WTPC(θ

∗(2)
C ,Γ

(1)
A ))) > p(1)(1− F Γ

(1)
A

WTPC
(WTPC(θ

∗(1)
C ,Γ

(1)
A )))(15)

Now observe that that the LHS of (15) is a feasible revenue in B’s max-

imization problem in equil. (1): multiply both sides of (12) by
Γ
(1)
A

Γ
(2)
A

to see

that
Γ
(1)
A

Γ
(2)
A

p(2) is the price that makes θ
∗(2)
C indifferent in equil. (1):

Γ
(1)
A

Γ
(2)
A

p(2) = (θ
∗(2)
C )2Γ

(1)
A

All types higher than θ
∗(2)
C will therefore also buy and hence the LHS of (15)

is the revenue that B gets from setting price
Γ
(1)
A

Γ
(2)
A

p(2). This implies that the

RHS of (15) is not the optimal revenue for Γ
(1)
A , contradicting our initial

assumption of p(1) being the monopoly price. �

Proof of Proposition 2

Like in the main text, we focus on the truncated game played by A and B
after having described C’s behavior in Proposition 1. The justification for
this simplification is recaptured by the observations in this paragraph. In the
monopoly game between B and C, they both take A’s equilibrium behavior
as given, which results in a value of information ΓA, according to (5). Both
types of B optimally set the same price WTPC(θ∗,ΓA) if they decide to sell
the information and C follows Proposition 1. As is explained in the main
text, the price does not contain information about the message mA so C’s
beliefs, along the equilibrium path, will not be updated upon observing the
price. We also have to briefly consider off-equilibrium beliefs. They are
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unproblematic because the equilibrium must prescribe that if C observes a
price that should not arise in equilibrium, he sticks to the strategy to buy
if and only if θC ≥ θ∗C(ΓA, p). This is the uniquely sequentially rational
strategy, as otherwise, i.e. if he was willing to buy at higher prices, B would
trick him into buying packages that are too expensive for him.

Now fix beliefs of player A about the likelihood of B selling message mA to
C. In equilibrium, the two different cognitive types τA have different beliefs,
but different θA do not. Hence, denote beliefs of type τA by q̂B,τA and observe
that she maximizes (6),

E[πA,τA(θA)] = −θ2
A(1−κ)(1−xA,τA)−θ2

Aκq̂B,τAxA,τA

∫ θC

θ∗C

θ2
CdFC(θC)−cA(xA,τA),

with respect to xA,τA . The first two terms of this objective are linear in
xA,τA and the third term is twice continuously differentiable and strictly con-
cave in xA,τA . Hence, E[πA,τA(θA)] has a unique maximizer xA,τA(θA) that
weakly decreases in q̂B,τA . Moreover, at an interior solution the maximizer is
continuous and differentiable in q̂B,τA and strictly decreases in q̂B,τA .

Next consider B’s problem. The two types of B simply compare their
expected revenue from selling the message, H(qB,n, qB,s) to their cost. If

H(qB,n, qB,s) > ĉB,τB (16)

holds strictly he chooses qB,τB = 1; if it does not hold he chooses qB,τB = 0
and if it holds with equality he can mix. Notice that the latter cannot
simultaneously be the case for both levels of τB because τB = n has a strictly
higher cost than τB = s. If the low-cost type mixes, the high-cost type
does not sell the message. Conversely, if the high-cost type mixes, the low-
cost type sells it for sure. It follows that there exist only the five different
equilibrium configurations of (qB,n, qB,s) that the proposition lists. It remains
to show that the equilibrium is unique and that condition (7) determines
whether all five, or only four, equilibrium configurations can arise for possible
levels of ĉB,τA .

To establish uniqueness, we first notice that H(qB,n, qB,s) strictly de-
creases in both arguments if they lie in the open interval (q, q) where q is
the largest value of q̂B,τA that induces maximal information precision for all
types of A and q is the smallest value of q̂B,τA that induces minimal infor-
mation precision for all types of A. This strict monotonicity follows from the
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above observation that the optimal xA,τA(θA) weakly decreases in q̂B,τA and
strictly decreases at an interior solution, for all (θA, τA): an increase in q̂B,τA
induces all A types to be weakly more cautious and it induces all A types
who provide xA,τA ∈ (0, 1) to be strictly more cautious. Since the revenue
is H = WTPC(θ∗,ΓA)(1 − FθC (θ∗)), it follows from (4) and (5) that H de-
creases strictly in (qB,n, qB,s) if all elements of the collection {xA,τA(θA)}θA,τA
decrease weakly in (qB,n, qB,s) and some of them strictly.

We now show that q = 0. For any possible level of information provision
x̃A ≥ 0, and for a given belief q̂B,τA , the strict concavity of (6) implies that
xA,τA exceeds x̃A iff:

∂

∂xA
[−θ2

A(1− κ)(1− xA,τA)− θ2
Aκq̂B,τAxA,τA

∫ θC

θ∗C

θ2
CdFC(θC)] ≥ c′A(x̃A)

θ2
A(1− κ)− θ2

Aκq̂B,τA

∫ θC

θ∗C

θ2
CdFC(θC) ≥ c′A(x̃A)

But for θA close to zero, the LHS is close to zero independently of q̂B,τA and
of x̃A, which, together with c′(·) > 0 implies that the inequality cannot hold
for all θA. To induce the largest possible set of θA types to provide x̃A, we
need to reduce q̂B,τA and x̃A to their minimal levels, which are zero in both
cases. That is, q = 0 and the marginal type θA who provides strictly positive
information at q satisfies θ2

A(1− κ) = c′A(0). A type with a large enough θA
to satisfy this equality exists by assumption.

The upper limit of the named interval, q, may or may not lie strictly
below 1. The case q < 1 occurs if the most extreme preference type θA does
not provide any information at belief q̂B,τA = 1, i.e. iff

∂

∂xA
[−θ2

A(1− κ)(1− xA,τA)− θ2

AκxA,τA

∫ θC

θ∗C

θ2
CdFC(θC)] < c′(0)

θ
2

A(1− κ)− θ2

Aκ

∫ θC

θ∗C

θ2
CdFC(θC) < c′(0)

1− κ(1 +

∫ θC

θ∗C

θ2
CdFC(θC)) <

c′(0)

θ
2

A

,

which is the negation of condition (7). If q < 1, then by definition of q no
type of A reduces xA any further as q̂B,τA rises above q. This implies, using
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(6) and the fact that cA is twice continuously differentiable, that the optimal
xA,τA(θA) cannot be at an interior optimum if q̂B,τA ≥ q for any θA: otherwise,
xA,τA(θA) would fall at least a little bit. This implies that xA,τA(θA) = 0 holds
for all θA if 1 ≥ q̂B,τA > q. In this case, C’s (equilibrium) willingness to pay
for messages sent by A players of cognitive type τA is zero, too, and thus H
is constant in q̂B,τA at q̂B,τA > q. Moreover, if 1 ≥ q̂B,τA > q holds for both
cognitive types τA, then H(qB,n, qB,s) = 0.

Summing up the previous two paragraphs, we see thatH(qB,n, qB,s) strictly
decreases in both arguments if they lie in [0, q). q may lie strictly below 1,
which happens if (7) does not hold. In this case H(qB,n, qB,s) is constant in
any of it arguments if it lies above q, and H(qB,n, qB,s) = 0 if both arguments
lie above q.

The monotonicity of H implies that the equilibrium is unique. Intuitively,
if (16) has slack, then B of type τB increases qB,τB , and the monotonicity
of H(qB,n, qB,s) ensures that (16) holds with equality at no more than one
combination (qB,n, qB,s). Towards a contradiction, suppose that there exist

two equilibria (q
(1)
B,n, q

(1)
B,s), (q

(2)
B,n, q

(2)
B,s). Different probabilities of τB selling

can only occur if H(qB,n, qB,s) = ĉB,τB holds in both equilibria. Therefore,
both equilibria must yield the same revenue H. With the above monotonicity
properties ofH, this can arise under exactly two circumstances: either all four
probabilities (q

(1)
B,n, q

(1)
B,s, q

(2)
B,n, q

(2)
B,s) lie above q, or q

(i)
B,n < q

(j)
B,n and q

(i)
B,s > q

(j)
B,s

holds for i, j ∈ {1, 2} and j 6= i. In the former case, revenue H is zero and
hence all four probabilities must be zero and the two equilibria cannot differ.
The latter case implies that both types are indifferent in equilibrium, which
is impossible because ĉB,n > ĉB,s. This establishes uniqueness.

The borders of the equilibrium regions follow trivially from condition
(16). The critical value H(1, 1) is strictly positive iff at least some types
of A provide strictly positive information if mA is sold for sure, i.e. if (7)
holds. In this case, it can be that H(1, 1) ≥ ĉB,n and the equilibrium is of
type I. Regions II, III, IV and V exist for sure (because H(0, 0) and H(0, 1)
are strictly positive) and they, respectively, correspond to B’s behavior as
follows. II: H(0, 1) > ĉB,n > H(1, 1). III: ĉB,s ≤ H(0, 1) and ĉB,n ≥ H(0, 1).
IV: H(0, 0) > ĉB,s > H(0, 1). V: H(0, 0) ≤ ĉB,s. �

Proposition A.1 In any symmetric equilibrium:

(i) Naive A types provide more: xA,n(θA) ≥ xA,s(θA), ∀θA
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(ii) Interesting A types provide more: xA,τA(θA) increases weakly in |θA|,∀τA

Proof Both results are almost immediate from A’s objective function in (6).
Clause (i) uses the observation that q̂B,n ≤ q̂B,s (see Proof of Proposition 2),
which implies the result together with (6). Clause (ii) follows from (6) by
observing that A’s benefit from transmitting information is linear in xA and
quadratic in θA: the optimal information provision is 0 if

1− κ(1 + q̂B,τA

∫ θC

θ∗C

θ2
CdFC(θC)) <

c′(0)

θ2
A

,

and otherwise it increases strictly in θ2
A. �

We now add a proposition about the players’ (expected) equilibrium payoffs
as we vary (ĉB,n, ĉB,s). (We drop arguments and expectation operators for
brevity.) In order to accommodate the two interpretations for player B (see
the introduction), we split his payoff into two parts, πB1 resulting from the
direct interaction with player A and πB2 resulting from the sale of the message
to player C.

Proposition A.2

(i)
dπA,s
dĉB,s

> 0 and
dπA,s
dĉB,n

= 0

(ii)
dπA,n
dĉB,s

> 0 and
dπA,n
dĉB,n

6 0

(iii)
dπB1

dĉB,s
> 0 and

dπB1

dĉB,n
> 0

(iv)
dπB2

dĉB,s
6 0 and

dπB2

dĉB,n
> 0

(v) dπC
dĉB,s

= 0 for ĉB,s 6 H(0, 1); πC = 0 for ĉB,s > H(0, 0); dπC
dĉB,s

ambigu-

ous otherwise and dπC
dĉB,n

> 0

Proof For the proof of the proposition, we first introduce two Lemmas.

Lemma 1
dqB,τB
dĉB,τB

6 0 and
dqB,τB
dĉB,τ 6=τB

= 0, for all τB.

Proof of Lemma 1 Let us first examine the first part of the lemma. Take
τB = n. For ĉB,s > H(0, 1) the high-cost B never sells the message. For
ĉB,s < H(0, 1) we know that as we increase ĉB,n from zero upwards we are
first in equilibrium region I where the high-cost B always sells, then in region
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II where he mixes, and finally in region III where he never sells. Hence, the
proof will be complete if we can show that the claim holds within region II.
In this region, the high-cost B is indifferent, i.e. H(qB,n, qB,s) = ĉB,n. Recall
from the Proof of Proposition 2 that H is monotonically decreasing in both
arguments, which yields the result for τB = n. A similar logic applies to
τB = s: qB,s varies with ĉB,s only in region IV, where the monotonicity of
H and the low-cost B’s indifference yield the result. For the second part of
the lemma, notice that the cost of the other type matter only insofar as they
change the information provision by the type of player A who believes in the
other cost level. Let us examine τB = s. For ĉB,s < H(0, 1) the low-cost B
always sells the message: variations in information provision by the naive A
are irrelevant. For larger ĉB,s, notice that due to qB,n being constant there
is no change in information provision by the naive A who believes in high
costs. The same logic applies to τB = n. �

The next lemma shows that for an arbitrary change in parameters, the
payoff of sophisticated A and the profits that B obtains from his direct inter-
action with A move in parallel with (i.e. their difference has the same sign
as the difference in) sophisticated A’s information precision

Lemma 2 For all θA and for any parameter γ that is either in {κ, α, ĉB,n, ĉB,s}
or is a distribution parameter of FA or FC (but not a parameter of A’s cost
function): sign(dπA,s(θA)/dγ) = sign(dπB1/dγ) = sign(dxA,s(θA)/dγ).

Proof of Lemma 2 To see that sign(dπB1/dγ) = sign(dxA,s(θA)/dγ), ob-
serve from (6) that the information provision of sophisticated A moves in the
same direction for all θA, i.e. sign(dxA,s(θA)/dγ) = sign(dxA,s(θ

′
A)/dγ) for

all (θA, θ
′
A). Therefore, B benefits more from his interaction with sophisti-

cated A iff dxA,s(θA)/dγ ≥ 0. For the result to be wrong, we would need that
naive A strictly adjusts her information provision in the opposite direction.
But in equilibrium, the beliefs about B need to describe B’s selling behavior
as optimal according to (16). There cannot be a change in H or in one of the
cost parameters (ĉB,n, ĉB,s) that would strictly add slack to (16) for one type
of B and strictly reduce slack for the other type. Hence (using (6) again)
there cannot exist a change in γ that induces a strict increase in xA,s but a
strict reduction in xA,n, or vice versa.

To see that sign(dπA,s(θA)/dγ) = sign(dxA,s(θA)/dγ), consider sophisti-
cated A’s expected payoff in (6). Its first two parts are linear in xA,s and the
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convex cost of xA,s is subtracted. Hence, A’s payoff equals the area between
a constant line (reflecting the marginal benefits of transmitting information)
and some increasing function capturing A’s marginal costs. The latter re-
mains unaffected by γ. So any change in γ will only move the constant
marginal benefit. (6) implies that if γ moves that marginal benefit upward
(downward) both the optimal xA,s and A’s profits go up (down). �

We are still in the proof of Proposition A.2. Part (i) and part (iii) follow
immediately from combining the Lemma 1 and Lemma 2. For the first half
of part (ii) notice that whatever the naive A actually does, increases in the
actual costs make it according to Lemma 1 weakly less likely that his infor-
mation will actually be sold to C. For the second half part (ii) notice that for
ĉB,s 6 H(0, 1) the information is always sold and that according to Lemma
1 higher imagined costs make the naive A less cautious such that his true
profits fall. For ĉB,s > H(0, 1) naive A’s behavior is constant in ĉB,n and
changes in imagined costs have no further effect on his actual payoff. For the
first half of part (iv) notice first that B earns zero from the information sale
in equilibrium regions IV and V, that is, when ĉB,s > H(0, 1). For lower ĉB,s
notice that his actual costs do not affect the amount of information that is
provided. However, he obviously has to pay cB,s. For the second half of part
(iv) use Lemma 1 and (6) to see that A provides more information in response
to an increase in ĉB,n, and notice that B does not actually pay the imagined
cost ĉB,n, while his revenue increases. Finally, for part (v) observe that in
equilibrium regions I, II, and III changes in ĉB,s neither affect the amount
of information that players A will provide nor the probability that the true
(low-cost) B offers mA for sale. In region V, B never sells, hence πC = 0. In
region IV, increasing costs imply that B sells with a decreasing probability.
This increases the amount of information that the sophisticated A provides
and hence C’s expected surplus conditional on buying. However, at the same
time it becomes less likely that that surplus will materialize. Finally, for the
last statement, dπC

dĉB,n
> 0, observe that for ĉB,s < H(0, 1) higher imagined

costs provide C with more information from naive A while the information
provision from sophisticated A as well as B’s probability of selling remain
constant, and that if ĉB,s ≥ H(0, 1), both are constant in ĉB,n.�
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