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1 Abstract

Everyone remembers a plot where a disadvantaged individual facing the prospect of
failure, spends more effort, turns around the game and wins unexpectedly. Most tour-
nament theories, however, predict the opposite pattern and see the disadvantaged agent
investing less effort. We show that ’turn arounds’, i.e. situations where the trailing
player spends more effort and becomes the likely winner of the tournament, can be the
outcome of a Nash equilibrium when the initial unevenness is known and players have
reference-dependent preferences. Under certain conditions, they are the only pure strat-
egy equilibrium. If the initial unevenness is large enough the advantaged player will
always invest the most effort. We also show that equilibria in which the player behind
catches up without becoming the likely winner do not exist.
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2 Introduction

Rank order tournaments are a common mechanism for providing social and economic
order. They are somewhat special, because they tie the privilege of receiving a certain
good or benefit to the effort of performing best at some productive task. Politicians need
to convince their constituents to be elected and business men need to create value for
their company to be considered for promotion. Especially when high stakes are involved
any indication of the likely outcome of a tournament is an asset. Consider for example
the large betting industry that offers bets at dynamic quotes during the progress of many
publicly fought contests.

Many times tournaments are not entirely fair with one player, for example, having
more information or better relations with the tournament decider. However, even more
often such unevenness occurs in dynamic contests. Most real world tournaments are
dynamic in the sense that they require repeated decisions by the competitors between
which contestants can process new information and recalibrate their tactics and effort
investment. The most general piece of new information is the intermediate score which
exists in most tournament settings. Politicians obtain interims feedback through opinion
polls and direct contact, students write mid-term or mock exams and sports men can
usually collect a time or score signalling their relative position in the tournament. That
such feedback is entirely even seems to be the exception rather than the rule.1

Previous research like the work on dynamic tournaments by Chan et al. (2009) or
Aoyagi (2010) found that equilibria are “effort-symmetric” with respect to feedback.
This means that independent of the interims feedback, both competitors invest the
same level of effort and only the sum of efforts decreases the more uneven the feedback
is. Without any difference in effort provisions and the corresponding changes in the
relative winning probabilities these tournaments are essentially decided by the initial
unevenness and chance. Providing information about the intermediate state of the game
does not matter for the tournament outcome. The implicit assumption here is that the
interims feedback does not affect the agent’s utility directly. In such a world, a victory
against all odds that follows a drastic comeback after having been far behind initially is
the same as any other victory in terms of utility.

Gill and Stone (2010) were the first to account for the direct effect of feedback on
utility by introducing “fairness and desert” concerns in the form of reference-dependent
preferences. They investigate the influence of experiencing something as deserved on
equilibrium formation. Focussing on effort-symmetric equilibria they could show that
for uneven games, symmetric effort equilibria, in which the interims score is immaterial

1How humans react to feedback is not yet fully understood. One potentially related idea is the concept
of cognitive dissonance (Festinger, 1962), which proposes that anyone who holds contradictory beliefs
will try to actively reduce this dissonance. Adjusting one’s reference categories could be seen as one
way to overcome the dissonance between the desire for a certain prize and the naturally limited
resources to obtain it.
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to the outcome of the tournament, do not exist. However, currently it is not clear
whether asymmetric equilibria exist and if so whether they favour the victory of the
player ahead or behind.2

Gill and Stone (2010) derive predictions for asymmetric equilibria, but only for the
case where chance in the game is uniformly distributed. Uniformly distributed errors are
commonly used in economic models and laboratory experiments. Indeed, without further
knowledge of the situation at hand it may be as well-suited as any other distribution.
However, when thinking about many examples of rank order tournaments the assumption
that all random events, no matter how extreme, are equally likely and that at the same
time more extreme events carry probability of zero appears odd. In many tournament
applications like job or sport contests the notion that extreme events can happen, but
do so with a low probability, has an intuitive appeal.3

With uniformly distributed errors Gill and Stone (2010) find that just one class of
equilibria exists, in which the player ahead always spends more effort than the trailing
player. Our paper makes new and very different predictions for the same setting when
uncertainty is normally distributed. We find that, depending on the strength of the
reference dependence, the tournament prize and the initial unevenness three different
classes of equilibria exist. Remarkably, in two of these classes the player being behind
overtakes the opponent and ends up with a higher probability of winning the tournament.
In tournaments where the initial unevenness is strongly favourable for one party we find a
unique equilibrium, in which the leading player extends the lead by investing more effort
than the player behind. However, when the game is tight and the tournament prize
is large enough to motivate the trailing player to overcome the initial disadvantage,
equilibria where the player behind spends much more effort than the player ahead and
obtains a higher probability of winning the tournament, always exist.

In the first class of what we call Turn Around Equilibria (TAE) the agent behind turns
a marginal disadvantage ex ante, a 48 percent probability of winning, into a marginal
advantage with slightly more than a 53 percent chance of winning. In the second class,
the turn around can be much more pronounced. Here a trailing player starting with a
winning probability of say around 30 percent may turn the game into one which yields
almost certain victory with the winning probability exceeding 90 percent. We show
that whenever the player behind catches up on the opponent the extra effort will be
sufficient to overcome, and even exceed the entire initial disadvantage. Situations where
the trailing player makes up some of the disadvantage without becoming the favourite
winner do not exist in equilibrium. We show that depending on parameter values, the
only possible pure strategy equilibrium is one in which the disadvantaged player turns
the game. Lastly, we predict that equilibria where one agent catches up without taking

2In a new article Dato et al. (2015) further explore the circumstances under which symmetric equilibria
arise.

3Stern (1991) investigates score differences in football and cannot reject that they are normally dis-
tributed.
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the lead do not exist.

The model is set up as a version of the tournament formulated by Lazear and Rosen
(1981) with the defining characteristic that the element of chance enters additively into
the contest success function. Since we introduce reference-dependent preferences we use
the notion of choice acclimating personal equilibrium, that was introduced by Kőszegi
and Rabin (2007), in which the reference point is endogenous to maximisation process
as a solution concept. This means that agents take into account that their effort choice
affects their reference utility, i.e. that a high effort level makes winning more likely and,
hence, increases the reference point.

We contribute to a growing literature taking an interest in dynamic and uneven tour-
naments. Contributions like Gill and Stone (2010) discuss that in a dynamic setting
agents have time to emotionally react to events and deviate from standard rationality.
How emotions within a sports game can impact the motivation and ability of players
psychologically is described by Lazarus (2000). Klaassen and Magnus (2001) support
this notion empirically by showing, with a large data set of tennis matches, that points
in tennis are not individually and identically distributed. Gill and Prowse (2012) con-
firm experimentally the key economic concept of strategy functions where the effort of
one agent crowds out the effort of the competitor. They introduce a dynamic frame by
letting subjects choose their effort sequentially providing complete information about
the choice of the first subject. Ederer (2010) studies asymmetric equilibria as a result
of asymmetrically distributed ability between two agents. In his model interim feedback
gives competitors the chance to update their beliefs about their opponent’s ability. This
leaves the agent who is ahead in the game more confident of the value of his own effort
investment and results in relatively greater effort provision from the leading player.

Our model provides a theoretical explanation for the existence of turn arounds. Our
results can explain the puzzling empirical evidence presented by Berger and Pope (2011),
who investigate data from 18, 060 American basketball games and find that teams which
are slightly behind at half time have a significantly higher probability to win the game.
As basketball is a complex sport it could be argued, for example, that their results
are not directly linked to effort investment. However, they consolidate their finding by
running an experiment in a controlled laboratory environment where participants had
to compete in a real effort task that involved fast clicking and were told an intermediate
score at half time. Those who were slightly behind at half time showed a marked increase
in clicks in the second half compared to those who were ahead or to the no feedback
control group. Previous literature was not able to explain this pattern.4

4In Ederer (2010) and Gill and Stone (2010), for example, the only type of asymmetric equilibrium is
one, where the leading player exerts more effort than the disadvantaged opponent.
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3 The Model

The model studies a contest with two players j ∈ {A,B} who exert effort ej . The initial
unevenness is given by δ1 which represents an advantage for Player A when positive and
vice versa. The parameter δ1 is exogenous and observable. The unobservable random
noise parameter ǫ is not affected by effort and follows a normal distribution with mean 0
and variance σ2.5 The initial unevenness δ1, the shock term ǫ and the two choice variables
eA and eB constitute the final outcome which is determined by δ2 = δ1 + eA − eB + ǫ.

The prize received by Player j is given by zj . If the player wins the tournament the
player receives the winner prize w, while the loser prize is normalised to zero. Therefore:
Player A wins if δ2 > 0 and receives zA = w, while Player B obtains zB = 0 and vice
versa. In this setting, the probability that Player A wins the contest equals Prob(δ2 > 0)
which implies Prob(ǫ > −δ1 + eB − eA). Using the fact that ǫ is normally distributed
we can rewrite this as 1 − F (−δ1 + eB − eA) where F (·) is the cumulative distribution
function of the normal distribution. From the symmetry of the normal distribution it
follows that:

Prob{A wins} = Prob(δ2 > 0) = 1−F (−δ1+ eB − eA) = F (δ1+∆e) where ∆e = eA− eB

3.1 Utility with reference-dependent preferences

In the first part of our analysis we make no assumptions about how the reference points
{rA, rB} are formed. Instead, we study the additional incentives reference dependence
imposes on the players. Afterwards, we investigate how a reference point contributes to
determine the tournament winner assuming that it is formed endogenously as described
by Köszegi and Rabin (2006).

A player’s utility under a reference point rj is given by:

U j = v(zj) +m(zj |rj)− c(ej) where m(zj |rj) =
{

η(w − rj) if Player j wins

η(1 + θ)(0− rj) if Player j loses

and v(zj) = zj , c(ej) =
1

2
(ej)2 , η ≥ 0 , θ ≥ 0

We assume rj ∈ [0, w] as the reference point for the tournament prize should give us
a value between the lowest possible outcome and the highest possible outcome of the
tournament. The utility is composed of a convenient consumption part v, for which a
linear specification is used, the cost of effort provision c(ej) and a reference dependent
term. The weight of the reference utility is calibrated by η, such that setting η =

5To ensure pure-strategy equilibria the variance has to be sufficiently large as described in Lazear and
Rosen (1981).
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0 returns the model without reference dependence. The parameter θ introduces loss
aversion. It represents the difference between the disutility of falling short of the reference
point and the utility of exceeding it by one unit. We assume that losses loom larger
than gains and consequently take θ to be positive. We use quadratic costs of effort for
simplicity.

Both players choose an effort level to maximise their expected utility given the un-
evenness δ1. Player A maximises expected utility with respect to eA. Consequently, the
optimisation problem for Player A can be written as:

max
eA

F (δ1 +∆e)(w + η(w − rA)) + (1− F (δ1 +∆e))(−η(1 + θ)rA)− c(eA).

The first term F (δ1+∆e)(w+ η(w− rA)) represents the utility in case the agent wins
the tournament. It is added to the utility of losing (1− F (δ1 +∆e))(−η(1 + θ)rA) and
the costs of effort which have to be paid independent of the outcome. We define P j as
winning-probability of player j, i.e. PA = F (δ1 + ∆e) and PB = 1 − F (δ1 + ∆e). The
contribution of reference dependent utility lies in adding the term below to the standard
objective function wF (δ1 +∆e)− c(eA):

Rj := η
(

P jw − rj
[

1 + θ
(

1− P j
)]

)

Except for the potentially different reference points and the individual winning prob-
ability the term Rj is the same for both players. While the sign of Rj depends on the
actual parameter values, it becomes apparent that a greater reference point reduces the
agents’ utility. This is intuitive as a higher reference point renders a victory less sweat,
but a defeat all the more bitter. Moreover, reference dependence contributes an incentive
effect which is given by

∂RA

∂eA
= η

(

f(δ1 +∆e)(w + rAθ)− ∂rA

∂eA

[

1 + θ(1− PA)
]

)

.

The expression reveals the delicate nature of the effect which may take different sizes
locally over the decision space. The first term ηf(δ1 + ∆e)(w + rAθ) adds a positive
incentive, that is caused by an increase of the effective prize spread. Since Lazear and
Rosen (1981) it has been known that when there are no participation constraints an
agent’s effort decision is not affected by the absolute level of prizes, but by the spread
between the winner and loser prize. Reference dependence increases the effective prize
spread, making the valuation of both tournament outcomes more extreme. The strength
of its impact, however, depends on the reference point rA which may take different values
for different {eA, eB, δ1}. The second term reduces to 0 in case of an exogenous reference

point as the derivative ∂rA

∂eA
remains 0.
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3.2 Endogenous Reference Points

In the following we endogenise the reference points and employ the choice-acclimating
personal equilibrium concept of Köszegi and Rabin (2006) to derive the player’s first
and second order conditions. After establishing a necessary and sufficient condition for
the interiority of all solutions in Lemma 1, we show in Lemma 2 and Lemma 3 that
both first and second order conditions can be reduced to one equivalent expression. We
proceed to define the three classes of equilibria and derive conditions for their existence
in Proposition 1 to Proposition 3. In Proposition 4 we give conditions for the uniqueness
of a Turn Around Equilibrium. Finally, in Proposition 5 we discuss a fourth class of
equilibria and interpret our results.

Modelling the reference point formation explicitly makes the precise effect of refer-
ence dependence tractable. We assume expectation based reference points, but remain
agnostic about whether expectations are formed as in the reference dependence theory
of Köszegi and Rabin (2006) or as in disappointment aversion theory developed by Bell
(1985) and Loomes and Sugden (1986). Additionally, we will allow the reference point to
adjust in the process. As solution concept we use choice-acclimating personal equilibria
(CPE) that are defined ”as a decision that maximises expected utility given that it de-
termines both the reference lottery and the outcome lottery” (Kőszegi and Rabin, 2007).
In consequence, the reference points are taken to be the endogenous winning probability
of each player multiplied by the winner prize, which constitutes the expected gain of each
player. Explicitly, the reference points are modelled as rA = F (∆e+ δ1)w for Player A
and rB = (1 − F (∆e + δ1))w for Player B.6 The explicit reference point enables us to
rewrite the contribution term RA for both players to −wηθF (∆e+ δ1)(1−F (∆e+ δ1)).
The negative sign shows that each player has an incentive to minimise this term. For
player A this results in the following incentive effect7:

∂RA

∂eA
= wηθf(δ1 +∆e)(2F (δ1 +∆e)− 1)

The derivative above is positive if δ1+∆e > 0 and negative if δ1+∆e < 0. The absolute
value of RA is highest for close games when δ1 +∆e is zero and falls steadily when the
game gets less tight. In other words, players have an incentive to flee the middle and
avoid the uncertainty associated with close games, which has also been described by Gill
and Stone (2010). Note that the incentive does not point the player into a particular
direction. Whether the player “gets ahead” or “falls behind” is not important. Evenness
at the end of the period is unattractive for agents with reference points since it jointly
maximises the size of the disutility from falling short of the reference point weighted by

6Like Gill and Stone (2010) we do not model a reference point in the effort domain. We believe that
further conceptual work on what a reference point in the effort domain could be is interesting and
could yield a valuable addition to this and other models. Yet with all its psychological and technical
implications it exceeds the scope of this paper.

7The corresponding term for Player B is ∂R

∂eB
= wηθf(δ1 +∆e)(1− 2F (δ1 +∆e)).
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the probability of its occurrence. With normally distributed chance in the game, this
opens up the possibility for multiple equilibria.

To understand this last point better consider Figure 1 which sketches both player’s
marginal costs and benefits.8 In the upper graph, which depicts the standard Lazear and
Rosen (1981) tournament without reference dependence, both player’s marginal benefit
curves coincide with the equilibrium being reached at their peak. The effect of reference
dependence in the lower graph of Figure 1 is to steepen and drive apart both player’s
marginal benefits. The peak of the marginal benefits of both players is now located in the
area where they themselves are more likely to win. Intuitively, both players benefit most
from their effort when they can use it not only to increase their own winning probability,
but also to decrease the uncertainty of the game. Here, without further asymmetries
(i.e. δ1 6= 0) the same symmetric equilibrium continues to exist.

This can also be seen in two top panels of Figure 2 which plots both players’ best
response functions along with a 45 degree line for the given parameter values η = 1, θ =
1, δ1 = 0.2, σ = 2 and w = 3π. Moving from the top panel to the middle one with
reference dependence the symmetric equilibrium is preserved. However, we can now see
that also two other potential asymmetric equilibria on either side do exist. Again both
players peak best response effort lies on the side of the 45 degree line where they are
more likely to win. When we introduce asymmetry in favour of Player A (i.e. δ1 > 0) we
can see that A’s peak best response effort moves towards the 45 degree line while Player
B’s moves away from it. From the intersections of the two functions we can thus identify
three potential equilibrium candidates, two of whom lie above the 45 degree line which
implies that the disadvantaged player behind spends more effort than the advantaged
player.The best response functions have the simple structure:

eA = wf(δ1 +∆e)
[

1 + ηθ
(

2F (δ1 +∆e)− 1
]

= wf(x)
[

1 + γG(x)
]

eB = wf(δ1 +∆e)
[

1− ηθ
(

2F (δ1 +∆e)− 1)
]

= wf(x)
[

1− γG(x)
]

We define x = δ1 +∆e, γ = ηθ and G(x) = 2F (x)− 1. The variable x, thus, represents
the state of the game just before the random shock ǫ is realised. Since the two conditions
for eA and eB must be fulfilled in equilibrium they provide information about when equi-
libria are interior, i.e. when both agents provide strictly positive effort. From wf(x) > 0
we know that there is an interior solution whenever (1 + γG(x)) and (1 − γG(x)) are
both strictly greater than zero. Small rearrangement implies that both conditions are
fulfilled whenever γ < | 1

G(x) |. Since the set of possible values of |G(x)| which is bounded

above by one,9 a simple corollary is that for γ ≤ 1 the condition is fulfilled and the

8The marginal benefits are given by MBA = MBB = w ∗ f(δ1 +∆e)
9|G(x)| = |2F (x)−1| converges to 1, since the cdf of the normal distribution converges to 0 for x → −∞
and to 1 for x → ∞.
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corresponding equilibrium must be interior. This leads to the first lemma.

1 2 3 4
8eA, 4- eB<0.0

0.5

1.0

1.5

2.0

2.5

3.0

8MB, MC<

Marginal Cost BMarginal Cost A

Marginal Benefit B Marginal Benefit A

Σ=1.5, Γ=0, w=7.5
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Marginal Benefit B Marginal Benefit A

Σ=1.5, Γ=0.5, w=7.5

Figure 1: The Figure shows the Marginal Costs and Benefits of both players. Player
B’s effort increases from left to right. In the top panel without reference
dependence (γ = 0) marginal benefits of both players are identical. Introducing
reference dependence changes that. The Marginal Benefit curves are now only
equal at the equilibrium effort levels, which without initial asymmetry are still
symmetic (they are equal to two in this case).

9



Figure 2: Effort combinations which fulfil each players First Order Condition. All in-
tersections are potential equilibrium candidates. Below the 45 line Player A
exerts greater effort, above it Player B exerts more. The top panel assumes
w = 3π and σ = 2. In the middle panel the reference dependence parame-
ter γ = 1. In the lower panel Player A is additionally given an advantage of
δ1 = 0.2.

10



Lemma 1. An equilibrium is interior if γ < | 1
G(x) |. Therefore all equilibria are interior

whenever γ ≤ 1.

All lemmas and propositions are proven formally in Appendix 1. The term 1
G(x) is

always defined as G(x) 6= 0 for all x that describe equilibria. To ensure that all equilibria
are interior, we will assume γ < | 1

G(x) |. This is not a restrictive assumption as for any

x, |G(x)| is always between zero at the origin and one as x becomes arbitrarily small
or large. Hence, all moderate forms of loss aversion where γ ≤ 1 are covered as well as
many stronger versions depending on the degree of the state of the game x.

For simplification we proceed by combining both first order conditions as well as both
second order conditions to obtain two new functions we term candidate and maximum
condition function.

Lemma 2. The system of first order conditions can be expressed as the candidate func-
tion δ1 = x − 2wγf(x)G(x). All combinations of {eA, eB, δ1} which fulfil this equation
are referred to as candidate points.

Lemma 3. If x fulfils the maximum condition 0 < 1
wf(x) − γ(2f(x)− x

σ2G(x))− |x|
σ2 then

at the corresponding vector {eA, eB, δ1} both second order conditions are fulfilled.

We call the function that describes the border of the inequality given in Lemma 3,
|x|
σ2 = 1

wf(x) − γ(2f(x) − x
σ2G(x)), the maximum condition function. We can plot the

candidate function and the maximum condition functions into one system as illustrated
in Figure 3. Both graphs depend on x which is given on the horizontal axis. The
candidate function is depicted by the blue curve and every point on it represents an
equilibrium in case the second order conditions are fulfilled for the same x-value. The
second order conditions are jointly represented by the maximum condition function in
red. In case this function has a positive value for a certain x both second order conditions
are fulfilled. Remember that x was initially defined as eA − eB + δ1. For this reason
we know that Player A has a higher winning probability for positive and Player B for
negative x, but we also know that Player B must have chosen a significantly higher
effort than A in case of a negative x-value and δ1 > 0. We can now read Figure 3 in a
convenient way. The vertical axis is also a scale for δ1; hence we can choose a particular
initial unevenness δ1, take the corresponding x-value from the candidate function and
evaluate it using the maximum condition function. When it is positive at that point,
the combination of x, δ1 must be an equilibrium. Lemma 2 shows that with the help of
the first order conditions the unique pair of {eA, eB} can be retrieved.
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Figure 3: maximum condition and candidate function with positive intersections

4 Multiple Equilibria

In the following, we leave most technical details to the appendix but provide some
intuition verbally and graphically for why asymmetric equilibria exist. We will assume
throughout that δ1 > 0, i.e. Player A is ahead and benefits from the initial unevenness.10

4.1 Confirming Asymmetric Equilibria

As explained earlier, introducing reference dependence renders the middle ground, i.e.
when δ1+∆e is close to zero, unattractive to both players. Without reference dependence
Player B and Player A would always choose the same level of effort since both players
have the same marginal costs and benefits. and are also the same due to the symme-
try of the normal distribution’s density. Therefore, the player ahead always maintains
the same advantage in the relative winning probability. An extra incentive rewarding
more unequal winning probabilities like reference-dependent preferences, in this setting,
would just widen the already existing probability spread. To achieve this the player
ahead needs to put in relatively more effort than the player behind. Thus, when refer-
ence dependence increases the effective prize spread, both players will invest more effort,

10Due to the symmetry of the problem all results also apply in case Player B is ahead.
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but the player ahead claims a larger share of the extra contribution. In the following
this is referred to as Confirming Asymmetric Equilibrium.

Definition 1. Confirming Asymmetric Equilibrium (CAE)
A Confirming Asymmetric Equilibrium is an equilibrium where the advantaged player
spends more effort than the other player.

Figure 4 shows CAEs explicitly when Player A being initially advantaged. When
δ1 is positive, Player A ends up with a higher winning probability and the CAEs are
located in the upper right quadrant of the coordinate system. We see that each {x, δ1}
combination, for which the candidate function lies in this quadrant, is a CAE in case
the maximum condition function is positive for this x-value as well. In the depicted case
there exists a CAE for all values of δ1. However, this does not need to be the case.11

While there will always be candidate CAEs for all values of δ1, the maximum condition
is not necessarily fulfilled. We prove the following proposition:

Proposition 1. For δ1 large enough there always exists one Confirming Asymmetric
Equilibrium (CAE) that is a unique equilibrium.

For tournaments without reference dependence, Lazear and Rosen (1981) show that
symmetric equilibria do not necessarily exist and depend on the wage-schedule as well
as the degree of uncertainty inherent to the tournament.12 Proposition 1 shows that
strong unevenness at the start of the tournament curbs the first point. For sufficient
uncertainty, it eventually guarantees the existence of a pure strategy equilibrium. While
equilibria in which a leading player extends the lead are not uncommon in the literature,
we now introduce two further types of equilibria.

4.2 Type One Turn Around Equilibria

Reference dependence as described above introduces an incentive to “flee the middle”,
but this can be done in yet another way. As an alternative to the CAE the player behind
may decide to outspend the leading player. Such an equilibrium is called Turn Around
Equilibrium.

Definition 2. Turn Around Equilibrium (TAE)
A Turn Around Equilibrium is an equilibrium where the initially disadvantaged player

11It can happen, that the candidate function produces combinations of x and δ1 at which the maximum
condition function is still negative. In consequence CAEs are guaranteed for great x and δ1, but
given parameter values they may not exist for the whole range of δ1.

12Imagine there was no uncertainty in the tournament. Then, each player would try to marginally
overbid the opponent and no equilibrium in pure strategies would exist. Besides there would of
course exist a symmetric mixed strategy equilibrium.
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spends so much more effort that this player has higher probability to win the game than
the opposing player.

Definition 3. Type one Turn Around Equilibria (TAE1)
Type one Turn Around Equilibria (TAE1) are TAEs that exist over an interval for {eA−
eB + δ1} that is open and bounded above by 0.

Suppose that Player B is initially disadvantaged and considers investing more effort
than Player A. For Player A this could be an equilibrium since the player is willing
to settle at a point where the marginal benefits together with the marginal reduction
of the reference dependence cost meets the marginal costs. The key to understanding
this intuition is to see that the incentive effect of reference dependence changes sign at
x = δ1+∆e = 0. When Player A backs off, the incentive effect ∂RA

∂x
= wγf(x)(2F (x)−1)

flips and the player will accept an equilibrium where the lower marginal benefit minus
the reference cost of increasing effort equals the marginal cost. This intuition is intact
as long as the unevenness is rather small and the wage level is high enough to motivate
Player B to overcome the initial disadvantage, but not so high as to make it intolerable
for Player A to back off.

This leads to the following proposition:

Proposition 2.

i) If w > 1
4γf(0)2

and w < 1
2γf(0)2

, a type one Turn Around Equilibrium (TAE1)

always exists.

ii) TAE1s are always interior.

The condition provided formulates a parameter range for the exogenous tournament
prize w and the reference dependence variables γ = ηθ. Under the conditions of Propo-
sition 2 no symmetric equilibria exist.13

In case of an initial disadvantage for Player B, TAEs are defined as equilibrium points
where Player B spends sufficiently more effort than Player A to become the favourite
for winning the tournament. In consequence, TAEs for positive δ1 can be found in the
upper left quadrant of Figure 4. When δ1 > 0, as we assume throughout without loss
of generality, TAE1s are equilibria located in the negative x-domain bordering zero.
Depending on the parameter values of w and γ these equilibria exist since the curvature
of the candidate function is strong enough to reach into the positive range of δ1 while the
maximum condition function is still fulfilled for those x-values as can be seen in Figure
4.14

13This is also shown in Gill and Stone (2010).
14To verify that TAE1s are not only pathological cases, but appear over a range of x, we estimate an

interval of x values over wich TAE1s exist. For this we use a linear approximation of the maximum
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The TAE1s that follow from Proposition 2 occur only for tight games and the magni-
tude of the turn around is generally small. For illustration consider the example where
the tournament prize w = 5.5, chance has standard deviation of σ = 1.5, the experience
of losses is twice as strong as that of gains (θ = 1), and reference utility is weighted
equally strongly as consumption utility η = 1 such that γ = 1. Then, in a game where
Player A is ahead by 0.033 standard deviations initially, Player B can overtake in equi-
librium turning around a disadvantage of 0.06 standard deviations into a lead of roughly
0.06 standard deviations. In terms of winning probabilities Player B starts the tour-
nament with a chance of winning of about 48.6 percent and ends it with about 52.4
percent. So the leading player has a 3.8 percentage points lower probability to win the
game in the end. This is similar to the empirical evidence of Berger and Pope (2011)
who conduct an experiment where participants compete against each other over two
periods in a real effort task. They find that their subjects inserted most effort in the
second period when being told that they were slightly behind their opponent and were
more likely to win as a result. Berger and Pope (2011) also find a significant increase
of winning probability for basketball teams that are slightly behind before the break
compared to the leading team. Instead of having a lower probability to win, the team
being behind by one point is more likely to win the game. In case of the NBA data
the trailing team has 1.1 percentage points higher probability to win the game than the
leading team. For the NCAA the result is even stronger: 5.6 percentage points. The
difference in winning probability at the breakpoint is significant. Naturally, this field
data result can have various explanations, one of which would be to describe it as a
TAE1 under the premises of this model.

4.3 Type Two Turn Around Equilibria

While the TAE1s described above are tight in the sense that the initially disadvantaged
player increases his winning probability only marginally above fifty percent, there can
also be TAEs where the lagging player outspends the opponent sufficiently to increase
the winning probability to much more than fifty percent.

Definition 4. Type two Turn Around Equilibria (TAE2)
Type two Turn Around Equilibria (TAE2) are TAEs that exist over intervals for {eA −
eB + δ1} that are bounded above by some xδ ≤ 0.

In this second class of TAEs the leading player backs off much to benefit from the fol-
lowing reference point reduction. This equilibrium may also exist for greater values of w,

condition function. Because of the convexity of the maximum condition function we can evaluate

a conservative estimation guarantees us TAE1 for x ∈
[

(wσγ−2σ3π)√
2πw

, 0
)

. The maximum condition

function is convex for the whole range of w used in this proposition. The proof is given in Lemma 5.
The boundaries for the set are derived in the proof of Proposition 2.
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which becomes apparent once we remember that the weight of the reference dependence
effect, ∂RA

∂eA
= ηf(δ1+∆e)w(θ(2F (δ1+∆e)− 1)), increases in w. The stronger impact of

reference dependence makes it more important in the turn around case for the leading
player to reduce the effort and flee the middle. As a result, even for high w, TAE2s exist.

To construct the formal criterion we will use the point where the candidate func-
tion and the maximum condition function intersect. This point is given by xs =
(2f(xs)2wγ−1−2f(xs)2G(xs)w2γ)σ2

f(xs)w(1+G(xs)γ−σ2)
. As xs is exogenously determined by the parameters of

the model the conditions for w and γ provided in the proposition are exogenous as well.

Proposition 3.

i) When w ∈
(

1
4γf(0)2

, 1
2γf(xs)2−B

)

where γ ∈
[

0.54,− 1
G(xs)

)

, σ sufficiently large

and B =
√

γf(xs)2 2G(xs)(1+γG(xs))
σ2 ≤ 0 , a type two Turn Around Equilibrium

(TAE2) in which the agent behind spends much more effort than the agent ahead
exists. The parameter xs determines the intersection between candidate function
and maximum condition function exogenously.

ii) If there exist TAE2s there also exist Confirming Asymmetric Equilibria (CAEs)
for small δ1.

iii) If the maximum condition function and the candidate function intersect but there
are no TAE2s also CAEs for small δ1 do not exist.

The conditions in Proposition 3 appear more complex than they are. Unlike Propo-
sition 2, Proposition 3 requires a minimum strength of reference dependence γ. If this
condition is not met, it is never optimal for the leading player to back off as much as
required in the TAE2. To illustrate this consider the following example: Suppose the
tournament prize is w = 10, chance again enters with a standard deviation of σ = 1.5,
experience of losses is twice as strong as that of gains (θ = 1) and reference utility enters
fully with η = 1 such that γ = 1. Then, TAE2 exist for any unevenness that is smaller
or equal to 0.07 standard deviations. From an initial probability of winning of around
47.3 percent the lagging player in this equilibrium improves his chances to 87.8 percent.
This will only be optimal for the player ahead if it is possible to benefit sufficiently from
lowering the reference point and hence γ must exceed a certain value. The new condition
for w has a similar spirit. While the lower bound coincides with the one in Proposition
2, the upper bound is tightened by B ≥ 0 which added to the denominator. Again, the
reason is that for large tournament prizes it is never optimal for the leading player to
allow the other player to overtake. Imagine for example a student who is competing with
a class mate over relative grades in a course that is not too important to both. After
beating his mate in the midterms that student could still decide not to prepare much for
the final exam. He knows that he will probably not come in first. Yet, that would not
be too bad, because he also knows that it happened because he was not really trying
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and could not expect to do any better given his effort.

The definition of TAE2s includes all TAE1s, but TAE2s are potentially located further
away from zero than TAE1s as illustrated in Figure 4. Due to the symmetry properties of
the candidate and maximum condition function they can be seen as mirror images of cer-
tain CAEs. The maximum condition function is axis-symmetric whereas the candidate
function is point-symmetric. Consequently, any intersection of the candidate function
with the x-axes on the negative domain also exists in the positive domain and vice versa.
For x-values larger than the positive root of the candidate function there are CAEs while
for x-values above the negative root there exist TAE2s given that the maximum condi-
tion function to be positive. Due to axis-symmetry of the maximum condition function
it returns the same value at both outer roots of the candidate function. Therefore, if
the one equilibrium exist for small δ1 the other does as well.15

4.4 Unique Turn Around Equilibria

The equilibria described spark questions about why the leading player may allow the
other player to overtake. One conceivable explanation would be that Turn Arounds are
somewhat “lazy equilibria” where the agent ahead has discovered that he greatly benefits
from lowering its reference point. However, such an intuition does not truly capture the
dynamics of the model. When there are three equilibria, TAE1s are the equilibria with
the highest total effort investment. Only for the CAE and TAE2s large asymmetries
are possible because one player benefits from lowering his reference point. Moreover,
we show that for certain parameter values where the CAEs do not exist a TAE1 is the
unique equilibrium.

Proposition 4. When 1
4f(0)2γ

< w < 1
2f(0)2γ

and γ ≤ − f(xs)2G(xs)π2

2
σ2+f(xs)2π(−2+G(xs)2π)

then for

small unevenness the unique equilibrium in pure strategies is a type one Turn Around
Equilibrium (TAE1), where xs exogenously determines the intersection between candidate
function and maximum condition function.

The condition for w ensures that TAE1s exist, while the condition for γ rules out
the existence of TAE2s and even of CAEs for the particular interval of unevenness over
which TAE1s exist. This surprising result is made possible by the missing guarantee for
the existence of equilibria in Lazear and Rosen (1981) type tournaments. In a region
where the second order conditions do not allow CAEs to exist, the TAE1 candidate point
close to, but smaller than zero, satisfies them as illustrated in Figure 5.

Proposition 4 demonstrates that a TAE1 can be the only equilibrium in pure strategies.
While we do not engage in equilibrium selection, this shows that at least among pure

15Because of continuity this is at least the case for an ǫ-ball around the root of the candidate function.
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Figure 4: maximum condition and candidate function with all equilibria

strategies there are situations where TAE1s must be played, as no other equilibria exist.
Thus, we show that it does not need differences in ability or imperfect information to
obtain the unambiguous prediction that a trailing player wins a tournament. Having
expectation based reference-dependent preferences can be sufficient for given parameter
constellations.

4.5 Catching Up Equilibria

At first glance the notion of Turn Around Equilibria maybe appears (too) strict. It
would have been possible to define TAEs as all asymmetric equilibria in which the ini-
tially disadvantaged player spends more effort than the advantaged player irrespective
of whether the difference is significant enough to turn the game. We call this broader
class of equilibria Catching Up Equilibria (CUE).

Definition 5. Catching Up Equilibrium (CUE)
A Catching Up Equilibrium is an equilibrium where the initially disadvantaged player
spends more effort than the opposing player.

From the definition it is apparent that every TAE must also be a CUE. However, we
show that the converse holds as well. Every equilibrium in which the player being behind
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invests more effort than the opponent is also a TAE. In other words, situations where
trailing player catches up a little without turning the game do not exist.

Proposition 5. Every Catching Up Equilibrium is also a Turn Around Equilibrium.

For an intuition consider again the equilibrium in the model without reference depen-
dence. Although one player is advantaged at the start of the tournament both players
pick the same effort. Compared to the trailing player in this set-up, a player who tries
to catch up, but not overtake, in the model with reference-dependent preferences faces
greater marginal effort costs, larger marginal benefits16 and a more negative marginal
utility from reference comparison as the game becomes more even. If the agent had
favoured the greater marginal benefits over the marginal effort cost, it would have cho-
sen to insert more effort ex ante. Introducing an additional marginal cost in the form of
reference dependence cannot motivate the agent to try catching up. Only when the sign
of the marginal effect of reference dependence changes, as it is the case once one agent
overtakes the other, this can be an equilibrium.

16Since the probability density function of the normal distribution is single peaked at x = 0.
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5 Conclusion

Which factors motivate players to invest in contest success is still a vibrant topic of
debate. While classical tournament theory as introduced by Lazear and Rosen (1981)
focuses on the higher probability of winning as benefit and the unpleasantness of effort as
a cost, a large recent literature indicates that players evaluate outcomes also along certain
reference points. Such reference-dependent preferences are an economically powerful
concept, as they can imply that an otherwise positive event causes negative utility if
the reference category was even more positive and vice versa. As a result, theoretical
predictions can change drastically once a model is augmented by reference dependence.
In the context of tournaments, predicting a different winner could be considered such a
change.

We add to the work of Gill and Stone (2010), who focus on symmetric equilibria when
the half time score is even. For the large class of non even scores Gill and Stone (2010)
show that symmetric equilibria do not exist. We find that depending on the strength of
the reference dependence, the tournament prize and the initial unevenness three different
classes of equilibria exist. In games where the initial unevenness is strongly favourable
for one party we find a unique equilibrium, in which the leading player invests more effort
than the player behind. However, when the game is tight and the tournament prize is
large enough to motivate the lagging player to overcome the initial disadvantage, Turn
Around Equilibria, where the player initially behind spends much more effort than the
player ahead and has a higher probability of winning the tournament, always exist.

Our results can help to explain tournament outcomes that so far have been econom-
ically puzzling as presented by Berger and Pope (2011). Our results generate further
testable predictions. We find that for all equilibria where the player behind spends more
effort than the opponent, this player also has a greater chance of winning the tourna-
ment. Thus, we show that equilibria, in which the player behind merely catches up with
the leading player do not exist. Furthermore, we can show that under certain conditions
the TAE is the unique pure strategy equilibrium. While dynamic implications of this
framework were only touched upon, future research adding a further optimisation pe-
riod may provide interesting insights into how the anticipation of possible TAEs affects
agents’ incentives in an initial period.
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Appendix 1

In this appendix we prove all propositions and the lemmas stated in the main section.
The proofs will make use of additional lemmas which are proven within the proposition
where they are used first. Throughout we will assume without loss of generality that
δ1 > 0, which implies that Player A is at an advantage. However, due to the symmetry
of both players all results are also valid when δ1 < 0. All equilibria described assume
that a solution to the tournament exists. As described by Lazear and Rosen (1981) this
is always the case when precision of the random term given by 1

σ
is sufficiently small.17

The following proofs hold for σ2 ≥ 1.

Lemma 1. An equilibrium is interior if γ < | 1
G(x) |. Therefore all equilibria are interior

whenever γ ≤ 1.

Proof. This follows directly from the first order conditions. Using x = ∆e+δ and γ = ηθ

the first order conditions yield:

eA = wf(x)(1 + γG(x))

eB = wf(x)(1− γG(x))

Since wf(x) must be positive we will obtain interior solutions whenever (1 + γG(x))
and (1−γG(x)) are also greater than zero. This implies that both conditions are fulfilled
whenever γ < | 1

G(x) |.

The term G(x) will never be 0 for any equilibrium with δ1 > 0:
Suppose: G(x) = 0 ⇒ 2F (x) − 1 = 0 ⇔ F (x) = 1

2 ⇔ 0 = x = δ1 + ∆e. From the first
order conditions we know that in case of x = 0 eA = eB = wf(0) ⇒ ∆e = 0. This leads
to a contradiction with δ1 > 0. 18

Since the function |G(x)| is bounded above by one and open there, a simple corollary
is that for γ ≤ 1 the condition is fulfilled and the corresponding equilibrium must be
interior.

Lemma 2. The system of first order conditions can be expressed as the candidate func-
tion δ1 = x − 2wγf(x)G(x). All combinations of {eA, eB, δ1} which fulfil this equation
are referred to as candidate points.

Proof. Using x = ∆e+ δ and γ = ηθ the first order conditions yield:

eA = wf(x)(1 + γ(2F (x)− 1))

17See Lazear and Rosen (1981) p.845 for more information.
18This also reveals that there cannot exist symmetric equilibria with initial unevenness.
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eB = wf(x)(1− γ(2F (x)− 1))

Subtracting both equations and substituting G(x) = 2F (x)− 1 leads to:

eA − eB = 2wf(x)γG(x) (1)

Since x− δ1 = eA − eB we can reformulate the above expression as:

δ1 = x− 2wf(x)γG(x)

The variable x describes an equilibrium uniquely whereas the exact corresponding effort
combination can be revealed by inserting x back into the first order conditions.

Lemma 3. If x fulfils the maximum condition 0 < 1
wf(x) − γ(2f(x)− x

σ2G(x))− |x|
σ2 then

at the corresponding vector {eA, eB, δ1} both second order conditions are fulfilled.

Proof. The second order conditions for a local maximum are given by:

wf ′(x)− wf ′(x)γ + 2γw
[

f ′(x)F (x) + f(x)2
]

− 1 < 0 (2)

wf ′(x)(−1)− wf ′(x)γ + 2γw
[

f ′(x)F (x) + f(x)2
]

− 1 < 0 (3)

We use the following property of the normal distribution:

f ′(x) =
−x

σ2
f(x) (4)

By substituting (4) into (2) and (3) we can derive new inequalities which include only
the density and the distribution function of the normal distribution. Using that G(x) =
2F (x)− 1 we can solve for:

wf(x)
{

2γf(x)− x

σ2
[1 + γG(x)]

}

− 1 < 0

wf(x)
{

2γf(x) +
x

σ2
[1− γG(x)]

}

− 1 < 0

We will use the symmetry of the above two statements to condense their informational
content into a single condition. Using a = 2γwf(x)2, b = w x

σ2 f(x) and c = γG(x) we
can reformulate the statements to:

a− b(1 + c)− 1 < 0

a+ b(1− c)− 1 < 0
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which can be rewritten as:

−b < 1− a+ bc

b < 1− a+ bc

It is now clear that both conditions must be fulfilled whenever |b| < 1− a+ bc holds.

Substituting back we obtain 0 < 1
wf(x) − γ(2f(x)− x

σ2G(x))− |x|
σ2 .

5.1 Proof of Proposition 1:

Proposition 1.

For δ1 large enough there always exists one Confirming Asymmetric Equilibrium
(CAE) that is a unique equilibrium.

Proof. We first showed in Lemma 2 that we can rewrite the system of first order con-
ditions to a simpler, but equivalent representation. Afterwards, using symmetry we
derived a single bound from the second order conditions which will be necessary and
sufficient to identify equilibria in Lemma 3.
We make use of the candidate function from Lemma 2 and the maximum condition
derived in Lemma 3.

0 <
1

wf(x)
− γ(2f(x)− x

σ2
G(x))− |x|

σ2

δ1 = x− 2wγf(x)G(x)

We know that f(x)G(x) → 0 for x → ∞ since f(x) → 0 and G(x) → 1. For this
reason letting δ1 go towards ∞ implies that x → ∞.

As x > 0 we can simplify the maximum condition to:

1 <
σ2

f(x)wx
−

σ2γ(2f(x)− x
σ2G(x))

x

The second term on the RHS will converge to the constant γ as x → ∞. The first term
can be reformulated as

σ2

f(x)wx
=

σ3
√
2πe

x2

2σ2

wx
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Following L’Hôpital’s rule

σ
√
2πxe

x2

2σ2

w ∗ 1 → ∞ ⇒ σ2

f(x)wx
→ ∞

So the maximum condition will be fulfilled for sufficiently large δ1. It is not only unique
in the class of asymmetric equilibria but for all equilibria as symmetric equilibria cannot
exist for δ1 6= 0 (see Proposition 4 in Gill and Stone (2010)).

5.2 Proof of Proposition 2:

To prove Proposition 2 we first show that under certain conditions candidate points in
the sense of Lemma 2 exist that are potentially type one Turn Around Equilibria. We
proceed by showing that the maximum condition function introduced in Lemma 3 is
strictly convex over some interval.

Lemma 4. For w > 1
4f(0)2γ

, there always exist a positive δ1 such that its corresponding

extreme points include candidate Turn Around Equilibria (i.e. x < 0).

Proof. We show that under the condition TAE candidates (i.e. points where both
player’s First Order Conditions are fulfilled s.t. x < 0) exist for small positive val-
ues of δ1. The inverse of the candidate function Lemma 2 would yield the equilibrium
candidates for each value of δ1. Since it is not possible to express the inverse explicitly
we show that the function produces a small positive δ1(x) when given a small negative
value for x as an argument. Note that for x < 0 the function G(x) < 0 as well.

δ1(x) = x− 2wγf(x)G(x) (5)

The derivative of this function with respect to x yields:

∂δ1(x)

∂x
= 1− 4wγf(x)2 +

x

σ2
2wγf(x)G(x)

When x = 0 and w = 1
4f(0)2γ

the above expression equals zero and is negative for any w

larger than 1
4f(0)2γ

. Given this negative slope at x = 0 the function must be positive for

some small negative x.

Lemma 5. The maximum condition function 1
wf(x) − γ(2f(x)− xG(x))− |x|

σ2 is strictly

convex for all w ∈
[

1
4f(0)2γ

, 1
f(0)2γ

]

.
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Proof. The maximum condition 0 < 1
wf(x) − γ(2f(x)− x

σ2G(x)) + x
σ2 for x < 0 is convex

if the second derivative is positive:

σ2 + x2

2f(x)2wσ2
+

(

3− 2x2

σ2

)

γ > 0 (6)

To find the prize w for which this condition is always fulfilled we substitute w = 1
f(0)2γ∗a

and obtain af(0)2

2f(x)2σ2 (σ
2 + x2) + (3− 2x2

σ2 ) > 0. Solving as an equality for a yields

a =
4x2 − 6σ2

f(0)2

f(x)2
(σ2 + x2)

(7)

We then find the maximum value for 7 using the following first order condition,

8σ2 + x2 − 2
x4

σ2
= 0

which is fulfilled whenever xmax = −1
2σ
√

1 +
√
65.19 Then, at the maximum σ drops

out and we obtain a(xmax) = (9 −
√
65)e−0.25(1+

√
65) ≈ 0.97. Consequently the second

order condition must be fulfilled when w < 1
f(0)2γ

.

Proposition 2.

i) If w > 1
4γf(0)2

and w < 1
2γf(0)2

, a type one Turn Around Equilibrium (TAE1)

always exists.

ii) TAE1s are always interior.

Proof. We showed in Lemma 4 that for certain values of w extreme point couples (for
values of {eA, eB, δ1}) exist that could be type one Turn Around Equilibria (TAE1).
Lemma 5 gives us the convexity of the maximum condition for certain values of w.

We will execute the proof of part i) by using Lemma 4 and by showing that given
w < 1

2γf(0)2
the maximum condition derived in Lemma 3 is fulfilled. From Lemma 3 we

know that both second order conditions will be fulfilled whenever

0 <
1

wf(x)
− γ(2f(x)− x

σ2
G(x))− |x|

σ2
(8)

19The Second Order Condition at xmax is negative and yields (7
√
65−65)8e−0.25(1+

√

65)

5σ2 ≈ −1.42
σ2 .
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Since w < 1
2γf(0)2

we know that

2γf(0)2

f(x)
− γ(2f(x)− x

σ2
G(x))− |x|

σ2
<

1

wf(x)
− γ(2f(x)− x

σ2
G(x))− |x|

σ2

Now suppose x = 0. We obtain:

2γf(0)− 2γf(0) + 0− 0 = 0 <
1

wf(0)
− 2γf(0)

Therefore we know that for all w < 1
2γf(0)2

the maximum condition function 1
wf(x) −

γ(2f(x) − x
σ2G(x)) − |x|

σ2 will take up a value greater than zero when x = 0. Then, it
follows by the continuity of the maximum condition function that for any such w there
exist some ǫ close to zero such that 0 < 1

wf(ǫ) − γ(2f(ǫ)− ǫ
σ2G(ǫ))− |ǫ|

σ2 .

To obtain a conservative estimate of an interval in which the TAE1s lie, we use the
strict convexity of the maximum condition function shown in Lemma 5. Now we can
derive the first order Taylor approximation around x = 0 for x ≤ 0 which yields:

T1(0) =

(

σ
√
2π

w
− 1

σ
√
2π

γ

)

+
x

σ2

Given the positive slope and the convexity of the maximum condition function we know,
that the intersection of the approximation with the abscissa will provide a conservative
lower bound for the interval. The resulting interval of x-values in which TAE1s exist
can be expressed as:

[

(wσγ − 2σ3π)√
2πw

, 0

)

As G(x) → 0 for x → 0 all TAE1s close to zero are interior as stated in part ii).

5.3 Proof of Proposition 3:

To prove Proposition 3 we first show in Lemma 6 that there is only one convex interval
for x over which candidate TAEs exist. We continue by showing in Lemma 7 that
the candidate function and the maximum condition function have an intersection where
δ1 > 0 or the maximum condition is always fulfilled. Then, we show in Lemma 8 that
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the maximum condition function cannot intersect the horizontal axis more than twice.
Lastly, we establish in Lemma 9 that the maximum condition function may not have
these two roots over an interval over which it is strictly greater than the candidate
function.

Definition 6. Intersection in positive/negative range
We say that two function intersect in positive/negative range, when they return a posi-
tive/negative value at that intersection.

Lemma 6. For w > 1
4f(0)2γ

, the candidate function δ1(x) = x−2wγf(x)G(x) has exactly

one maximum on the domain x ∈ (−∞, 0). At this maximum the candidate function is
positive. There exists some x∗ < 0 such that δ1(x

∗) = 0.

Proof. We know from Lemma 4 that when w > 1
4f(0)2γ

Turn Around candidates with

x < 0 and δ1(x) > 0 exist for some x close to zero. Moreover, it is easy to see that
δ1(x) → −∞ when x → −∞ and that δ1(0) = 0. Since the candidate function is
continuous there must be at least one maximum point for negative x. In the following
we will show that there is only one. Consider the first and second derivative of the
candidate function:

∂δ1(x)

∂x
= 1 +

2wγxf(x)G(x)

σ2
− 4wγf(x)2 (9)

∂δ1(x)
2

∂2x
=

8xγwf(x)2

σ2
+

2wγf(x)

σ2
(G(x) + x(2f(x)− xG(x)

σ2
)) (10)

Note that |G(x)| < 0 for x < 0 so that (10) is strictly negative and hence the first

derivative is monotonously decreasing as long as G(x)x
σ2 ≤ 2f(x). This is fulfilled as long

as 2f(x)σ2

G(x) ≤ x and x < 0. Inserting the boundary case x = 2f(x)σ2

G(x) in (9) simplifies it to:

1− 2wγ(−2f(x)2 + 2f(x)2) = 1 > 0

However when x = 0 equation (9) is smaller than zero if w > 1
4f(0)2γ

. Thus the first

derivative of the candidate function is below zero for x = 0 and greater than zero when

x = 2f(x)σ2

G(x) and it is monotonously decreasing over the interval [2f(x)σ
2

G(x) , 0). Thus, the
first derivative intersects the abscissa exactly once over that interval. Furthermore, when

x <
2f(x)σ2

G(x) condition (9) is always positive and therefore does not have another root for
negative x.

Lemma 7. When w ∈
(

1
4γf(0)2

, σ

γf(xs)2+
√

γf(xs)2(γf(xs)2− 2G(xs)(1+γG(xs))

σ2 )

)

,

γ ∈
[

0.54,− 1
G(xs)

)

and σ large enough
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• either the maximum condition function and the candidate function intersect and
do so for x < 0 when δ1 > 0 only

• or in case of no intersection the maximum condition is fulfilled for all x where the
candidate function has positive values.

Proof. To derive the conditions for when the intersection is within positive range (as illus-
trated in Figure 3) we begin by setting both functions equal. The intersection point is en-

dogenously described by xs = (2f(xs)2wγ−1−2f(xs)2G(xs)w2γ)σ2

f(xs)w(1+G(xs)γ−σ2)
and is used as an argument

for the maximum condition which, then, yields 0 < −2f(xs)2wγ(G(xs)w+G(xs)2wγ−σ2)+σ2

f(xs)w(1+G(xs)γ−σ2)
.

Using σ2 ≥ 1 we can derive the following condition. The latter expression is larger than
zero whenever either of the following hold:

w <
1

γf(xs)2 −
√

γf(xs)2(γf(xs)2 − 2G(xs)(1+γG(xs))
σ2 )

(11)

w <
1

γf(xs)2 +
√

γf(xs)2(γf(xs)2 − 2G(xs)(1+γG(xs))
σ2 )

(12)

To ensure that the equilibrium is interior we assume γ < − 1
G(x) . When γ < − 1

G(x) ,

(11) is always negative and is therefore neglected. Instead we employ (12) as an upper
bound. To ensure that the lower bound w > 1

4γf(0)2
is below (12) another restriction for

γ is required which is obtained by solving the following for γ:

1

4γf(0)2
<

1

γf(xs)2 +
√

γf(xs)2(γf(xs)2 − 2G(xs)(1+γG(xs))
σ2

This can be rearranged as condition for γ:

γ > − f(xs)2G(xs)π2

2
σ2 + f(xs)2π(−2 +G(xs)2π)

(13)

This expression appears to be complicated and restrictive. However, it can be sim-
plified at little cost in terms of accuracy. Using that G(x) < 0 for negative x and that
f(x)2 < 1

2πσ2 , one can quickly see that the denominator will always be larger than one.

The numerator contains G(x) which equals 2F (x) − 1 = Erf( x√
2σ
) = 2√

π

∫

x√
2σ

0 e−t2dt.

It must hold that the actual area underneath the integrated function is smaller than
the area of the rectangle formed by the global maximum of the function over the x-
interval. The largest value e−t2 may assume is one. Thus, it holds for negative x

that −G(x) = −Erf( x√
2σ
) ≤ − 2√

2πσ
x ∗ 1. For the entire numerator this implies that
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Figure 6: maximum condition and candidate function having no intersection points in
the negative domain

−f(x)2G(x)π2 ≤ −
√
π√
2σ
xe

− x2

σ2 , the maximum of which is at x = − σ√
2
. Hence, the nu-

merator will not exceed
√
π√
4
e−

1
2 ≈ 0.53 and whenever γ ≥ 0.54, condition (13) will also

be satisfied. When both conditions are fulfilled any intersection between the maximum
condition and the candidate function occurs in positive range.

Suppose no intersection between the candidate function and the maximum condition
function and hence no xs exists (as illustrated in Figure 6). For sufficiently small x
we know that the maximum condition function is always positive while the candidate
function is strictly negative. Without an intersection the continuity of both functions
implies that the maximum condition function lies above the candidate function for all
x < 0. However, when w > 1

4f(0)2γ
it is known from Lemma 4 that there are always

values for x < 0 where the candidate function is positive. Since the maximum condition
function must return greater values than the candidate function it also must be positive.

Lemma 8. The maximum condition function has no more than two roots when x < 0
and w < 1

2f(x)2γ
.

Proof. Setting the maximum condition function equal to zero and solving for x yields
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xR = σ2(2wγf(x)2−1)
wf(x)(1+γG(x)) = xR(x). This equation must be fullfilled for every root of the

maximum condition function. We show that the maximum condition function has at
most two roots by showing that this equation has at most two solutions for x < 0. For this

we demonstrate in the remainder of the proof that the function xR(x) = σ2(2wγf(x)2−1)
wf(x)(1+γG(x))

is strictly concave and can, thus, have at most one maximum. To understand why this
implies the statement in the lemma, consider the following: We want to know for how
many x the equation xR = xR(x) can be fulfilled. We also know that xR (the left-hand-
side of the equation) is a straight line with slope one. If we now knew that xR(x) was
strictly concave, we would know that it cannot intersect the straight line xR more than
twice (and hence that the maximum condition function may not have more than two
roots). Thus, in the remainder of the proof we show that the second derivative of xR(x)
ist strictly smaller than zero for x < 0. The second derivative of xR(x) is given by:20

∂xR(x)2

∂2x
=
8γ2σ2f(x)(2wγf(x)2 − 1) + 2xγ(1 + γG(x))(6wγf(x)2 + 1)

w(1 + γG(x))3

−
( 1
f(x)(1 + 2wγf(x)2) + x2

σ2f(x)
(1− 2wγf(x)2))

w(1 + γG(x))
< 0

We now show that the term above is strictly negative. For this it suffices to look
at the numerator of both fractions as the denominators are strictly positive under the
assumption of Lemma 1 that γ < | 1

G(x) |. The numerator of the first fraction is a sum

of two elements. The first element must be negative, since (2wγf(x)2 − 1) < 0 when
w < 1

2f(x)2γ
. The second element is all positive except for the x which is taken to be

smaller than zero. Thus, we know that the first fraction is negative. The second fraction,
which gets substracted, is positive. It is also composed of two elements, the first of
which is unambiguously positive while the second is positive as long as w < 1

2f(x)2γ
. In

consequence, the second derivative of xR(x) is strictly smaller than zero.

Therefore, the equation xR(x) = σ2(2wγf(xR)2−1)
wf(xR)(1+γG(xR))

has at most two solutions and the

maximum condition function has at most two roots.

Lemma 9. The maximum condition function cannot have two roots within an interval
over which it is strictly larger than the candidate function for w < 1

2f(x)2γ
.

Proof. Consider again the root of the maximum condition function as given by xR(x) =
σ2(2wγf(xR)2−1)
wf(xR)(1+γG(xR))

. We will show that its first derivative is strictly positive if the maximum

condition function lies above the candidate function. The latter is true whenever:

20The first derivative is given by ∂xR(x)
∂x

=
−x(1+γG(x))(2wf(x)γ+ 1

f(x)
)−4wσ2γ2f(x)2+2γσ2

w(1+γG(x))2
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1

wf(x)
− γ

(

2f(x)− x

σ2
G(x)

)

+
x

σ2
> x− 2wγf(x)G(x)

which can be rewritten as an upper bound for w:

w <
σ2

f(x)2γσ2 − f(x)x((1+G(x)γ)−σ2)
2 +

√
f(x)2(−8G(x)γσ4+(x+G(x)xγ−(x+2f(x)γ)σ2)2)

2

= w̃

(14)

Now consider the first derivative of the root function xR(x):

∂xR(x)

∂x
=

−x(1 + γG(x))(2wf(x)γ + 1
f(x))− 4wσ2γ2f(x)2 + 2γσ2

w(1 + γG(x))2
(15)

As the denominator is positive it remains to show that the numerator is strictly
positive. We start by rewriting the term to the following inequality:

σ2(1− 2wγf(x)2)− x

2f(x)γ
(1 + γG(x))− wxf(x)(1 + γG(x)) > 0 (16)

The last two subtrahends of the numerator are negative for all x < 0 whereas the first
summand is positive in case w < 1

2γf(x)2
. Thus, if condition (14) implies w < 1

2γf(x)2
,

the lemma must be true. Consequently, we verify in the following that w < 1
2γf(x)2

holds

if the maximum condition function is bigger than the candidate function.

We begin by considering the large term under the root in the denominator of w̃ in
condition (14):

√

f(x)2(−8G(x)γσ4 + (x+G(x)xγ − (x+ 2f(x)γ)σ2)2) =
√

f(x)2(4f(x)2γ2σ4 + x2((1 + γG(x))− σ2)2 + C)

Firstly, we show that the term C = −8G(x)γσ4 − 4f(x)γσ2x((1 + G(x)γ) − σ2) is
positive.

0 < −4(2G(x)γσ4 + f(x)γσ2x((1 +G(x)γ)− σ2))

⇔ 0 < −4γσ2(σ2(2G(x)− f(x)x) + f(x)x(1 + γG(x)))

⇔ 0 > σ2(2G(x)− f(x)x) + f(x)x(1 + γG(x))

It is easy to verify that (2G(x) − f(x)x) is strictly negative21 for all x < 0. Since the
term (1+γG(x)) is positive by the assumptions on γ, the statement above must be true

21Its derivative f(x)(3 + x2

σ2 ) is strictly positive. Moreover it is zero when x = 0 and approaches −2
when x → −∞.
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and C is indeed positive. Having established that C is positive we can now overestimate
w̃ by dropping C. Thus,

w̃ <
1

f(x)2γσ2 − f(x)x((1+G(x)γ)−σ2)
2 +

√
f(x)2[x((1+G(x)γ)−σ2)+2f(x)γσ2]2

2

which can be simplified to:

w̃ <
1

f(x)2γσ2 − f(x)x((1+G(x)γ)−σ2)
2 + 2f(x)2γσ2+f(x)x((1+G(x)γ)−σ2)

2

=
1

2f(x)2γσ2

Hence, w̃ < 1
2γf(x)2

is true as well. Consequently, (16) holds for all x < 0 where the

maximum condition function lies above the candidate function.

Proposition 3.

i) When w ∈
(

1
4γf(0)2

, 1
2γf(xs)2−B

)

where γ ∈
[

0.54,− 1
G(xs)

)

, σ sufficiently large

and B =
√

γf(xs)2 2G(xs)(1+γG(xs))
σ2 ≤ 0 , a type two Turn Around Equilibrium

(TAE2) in which the agent behind spends much more effort than the agent ahead
exists. The parameter xs determines the intersection between candidate function
and maximum condition function exogenously.

ii) If there exist TAE2s there also exist Confirming Asymmetric Equilibria (CAEs)
for small δ1.

iii) If the maximum condition function and the candidate function intersect, but there
are no TAE2s, also no CAEs for small δ1 exist.

Proof. i) To establish the existence of TAE2s, i.e. TAEs over an x-interval which is
not necessarily adjacent to zero, one needs to show that over such an interval and
under some conditions both the candidate function and maximum condition function
return positive values. In Lemma 6 it was established that the candidate function has
exactly one maximum and no other extreme points over the domain of strictly negative
x. We also know from Lemma 4 that when w > 1

4γf(0)2
the candidate function always

returns positive values over the interval given by the roots of candidate function (x∗, 0)
where x∗ = 2wγf(x∗)G(x∗). Lemma 7 implies that when candidate and maximum
condition function do not intersect for x < 0 the maximum condition derived in Lemma
3 is fulfilled for all x where the candidate function is positive. Especially at the left
root of the candidate function this leads to TAE2s that are rather ’far away’ from
x = 0. Additionally, given its conditions Lemma 7 implies that if intersections between
the candidate and the maximum condition function exist for some x < 0, then both
the maximum condition and the candidate function are positive at the intersection as
illustrated in figure 4. It follows that around this intersection TAE2s exist.
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Before we continue with part ii) we show that Lemma 8 and Lemma 9 also hold for the
upper bound of w given in Proposition 3. We will proceed the proof for the general case
using x so it will also hold for a specific xs. We want to show that 1

2f(x)2γ
> 1

2f(x)2γ−B

which holds if B is strictly negative. If this holds the lower bound used in Proposition 3
is always smaller than the one used in the two lemmas meaning they also hold for this
proposition. The denominator of the upper bound for w can be reformulated as follows:

γf(x)2 +

√

γf(x)2(γf(x)2 − 2G(x)(1 + γG(x))

σ2
)

= γf(x)2 +

√

γ2f(x)4 − 2γf(x)2G(x)(1 +G(x)γ)

σ2
= γf(x)2 +

√

γ2f(x)4 −A)

≥ γf(x)2 −
√
A) = 2γf(x)2 −B

The last step establishes by using Jensen’s inequality. Solving for B leads to:

B ≤ γf(x)2 −
√

γ2f(x)4 −A =
√

γ2f(x)4 +A−
√

γ2f(x)4 < 0

This holds as A is negative for γ ≤ | 1
G(x) |.

Since B < 0 it must be that 1
2f(x)2γ

> 1
2f(x)2γ−B

. This also holds for the case that
x = xs so:

1

2f(x)2γ
>

1

γf(xs)2 +
√

γf(xs)2(γf(xs)2 − 2G(xs)(1+γG(xs))
σ2 )

ii) To study the relationship between strong TAEs and CAEs for small δ1 we make
use of the symmetry property of the candidate function δ1(x) as well as the maximum
condition function maxcond(x):

δ1(x) = −δ1(−x)

maxcond(x) = maxcond(−x)

Having CAEs means that δ1(x) > 0 for x > 0 and the maxcond(x) > 0. Using the
symmetry this is equivalent to δ1(−x) < 0 while maxcond(−x) < 0.

From Lemma 6 we know that the candidate function has only one maximum on the
negative domain and in Proposition 1 we derived that the candidate function approaches
infinity if x → ∞. By symmetry this implies that the candidate function goes towards
minus infinity if x → −∞. Since δ1(0) = 0 it follows from continuity that candidate
CAEs (not necessarily CAEs) exist for all values of δ1.

To find CAEs we have to insure that the maximum condition is fulfilled. We use
the previously derived lemmas to make a statement about the maximum condition for
all x < xδ, where xδ is the negative root of the candidate function, and, then, use the
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symmetry properties from above to apply it to the candidate CAEs. We know that the
maximum condition as derived in Lemma 3 goes to infinity when x → −∞ and since
we have shown the existence of TAE2s in part i) there also exist some x < 0 where
maximum condition and candidate function are both positive.

In consequence for the maximum condition to become negative over x < 0 it has to
have at least two roots on the same domain. Moreover, we know from Lemma 8 that
the maximum condition function cannot not have more than 2 roots for x < 0.

One possibility would be that the maximum condition function could have one root
below xδ and one above. In this case there would be a negative intersection of the
maximum condition function with the candidate function as the candidate function must
be negative for x < 2wγf(x)G(x) by Lemma 4. Since our conditions for TAE2s ensure
that all intersection points are positive for x < 0 this case can be excluded. Secondly,
the roots of the maximum condition function could both be below xδ. This, however,
directly contradicts Lemma 9 as the maximum condition has to be bigger than the
candidate function at xδ. Otherwise this would be equivalent to the previous example.
Using symmetry this implies the existence of CAEs for small δ1.

Lastly we address part iii). Following the same argument we know that in cases where
no TAE2s exist, but the candidate and maximum condition functions still intersect, the
intersection point must lie in negative range. Since the candidate function is negative for
sufficiently small x, we know from Lemma 6 that the candidate function will not have
an intersection with the abscissa for x < 0. This implies, that, because of the symmetry
property of the candidate function, CAEs for small δ1 do also not exist.

5.4 Proof of Proposition 4:

Proposition 4. When 1
4f(0)2γ

< w < 1
2f(0)2γ

and γ ≤ − f(xs)2G(xs)π2

2
σ2+f(xs)2π(−2+G(xs)2π)

then for

small unevenness the unique equilibrium in pure strategies is a type one Turn Around
Equilibrium (TAE1), where xs exogenously determines the intersection between candidate
function and maximum condition function.

Proof. We know from Proposition 3 and Lemma 7 that TAE2s only exist when:

γ > − f(xs)2G(xs)π2

2
σ2 + f(xs)2π(−2 +G(xs)2π)

(17)

Moreover, we know from Proposition 3 that for δ1 small enough CAEs only exist if
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TAE2s exist as well. TAE1s as described in Proposition 2 on the other hand, always
exist when

1

4f(0)2γ
< w <

1

2f(0)2γ

Since the lower bound for γ (17) is strictly positive and lower and upper bound for w
cannot intersect, we know that when the condition for γ is not satisfied there is yet a
prize level w for which a TAE1 exists and is the only equilibrium for small enough δ1.

5.5 Proof of Proposition 5:

Proposition 5. Every Catching Up Equilibrium (CUE) is also a Turn Around Equilib-
rium (TAE).

Proof. Remember that x was defined as x = ∆e + δ1. Suppose again without loss of
generality that player 1 is initially ahead, i.e. δ1 > 0, and that at the CUE player 2
spends more effort than player 1 with ∆e < 0, but not enough to turn the game, i.e.
∆e+ δ1 > 0. From Lemma 2 we know that the candidate function provides all possible
equilibrium candidate points:

δ1(x) = x− 2f(x)wγG(x)

To find a CUE that is no TAE we need to show that there exist candidate points
where for x > 0 and ∆e = x− δ1 < 0. We show that this can never be the case:

x− δ1 = 2f(x)wγG(x)

For x > 0 the RHS cannot be negative since G(x) is positive for all x > 0 and the
other terms are always positive. So x− δ1 will be positive for all x > 0.
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Appendix 2

6 Additional Pages for the Referee

We provide these pages as an additional aid for the verification of some expressions.

6.1 Derivation of (11) and (12) in Lemma 7

We want to find a condition for w that ensures that the intesection between the candidate
and the maximum condition function occurs in positive range. We show in Lemma 7
that this must be the case when:

0 <
−2f(xs)2wγ(G(xs)w +G(xs)2wγw − σ2) + σ2

f(xs)w(1 +G(xs)γ − σ2)

Note that as G(xs)γ < 0 and σ2 ≥ 1 the denominator is smaller zero. Collecting the
w terms and multiplying with the negative denominator yields:

0 > w2(−2f(xs)2γG(xs)(1 +G(xs)γ)) + 2f(xs)2wγσ2 − σ2

Next, we solve the above inequality as a quadratic equation for w. This gives:

w =
σ2(2γf(xs)2 ±

√

f(xs)2γ(f(xs)2γ − 2G(xs)(1+γG(xs))
σ2 )

2f(xs)2γG(xs)(1 + γG(xs))
=

σ2(A±
√
B)

C

We now get to (11) and (12) by recognising that C = σ2(A+
√
B)(A−

√
B). Thus

w =
σ2(A±

√
B)

σ2(A+
√
B)(A−

√
B)

=
1

(A−
√
B)

or
1

(A+
√
B)

The first possible solution is equivalent to (11), the second to (12) in Lemma 7.
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6.2 Derivation of (13) in Lemma 7

We want to derive the lower bound for γ given in (13). Starting with the inequality

1

4γf(0)2
=

πσ2

2γ
<

1

γf(xs)2 +
√

γf(xs)2(γf(xs)2 − 2G(xs)(1+γG(xs))
σ2 )

first rearranging leads to

γf(xs)2 +

√

γf(xs)2(γf(xs)2 − 2G(xs)(1 + γG(xs))

σ2
) <

2γ

πσ2

Suqaring the next rearrangement
√

γf(xs)2(γf(xs)2 − 2G(xs)(1 + γG(xs))

σ2
) <

2γ

πσ2
− γf(xs)2

gives us

γf(xs)2(γf(xs)2 − 2G(xs)(1 + γG(xs))

σ2
) < γ2(

2

πσ2
− f(xs)2)2

⇔ f(xs)4 − 2G(xs)f(xs)2

σ2γ
− 2f(xs)2G(xs)2

σ2
< (

2

πσ2
− f(xs)2)2

⇔ −2G(xs)f(xs)2

σ2γ
< (

2

πσ2
− f(xs)2)2 − f(xs)4 +

2G(xs)f(xs)2

σ2γ

In the next step, we need to solve for γ.

2G(xs)f(xs)2

σ2(( 2
πσ2 − f(xs)2)2 − f(xs)4 + 2f(xs)2G(xs)2

σ2 )
< γ

Simplifying the the LHS reveals (13).

− 2G(xs)f(xs)2

σ2( 4
π2σ4 − 4f(xs)4

πσ2 + f(xs)4 − f(xs)4 + 2f(xs)2G(xs)2

σ2 )
= − f(xs)2G(xs)π2

2
σ2 + f(xs)2π(−2 +G(xs)2π)

< γ

6.3 Derivation of (14) in Lemma 9

1

wf(x)
− γ

(

2f(x)− x

σ2
G(x)

)

+
x

σ2
> x− 2wγf(x)G(x)

can be rewritten as:

w <
σ2

f(x)2γσ2 − f(x)x((1+G(x)γ)−σ2)
2 +

√
f(x)2(−8G(x)γσ4+(x+G(x)xγ−(x+2f(x)γ)σ2)2)

2

= w̃.
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We begin by bringing all terms to the left side and multiplying by wf(x):

w22γf(x)2G(x) + wf(x)(x(
1

σ2
− 1)− γ(2f(x)− x

σ2
G(x))) + 1 > 0

Collecting all x together and multiplying by σ2 we obtain:

w22γf(x)2G(x)σ2 + wf(x)(x((1 + γG(x))− σ2)− 2γf(x)σ2) + σ2 > 0

To solve for w we now use the quadratic formula for the equality w = −b±
√
b2−4ac
2a where

a = 2γf(x)2G(x)σ2, b = f(x)(x((1+ γG(x))− σ2)− 2γf(x)σ2) and c = σ2. Plugging in
a, b and c yields:

w =
f(x)(x(σ2 − (1 + γG(x))) + 2γf(x)σ2)

4γσ2f(x)2G(x)

±
√

(f(x)(x((1 + γG(x))− σ2)− 2γf(x)σ2))2 − 8γσ4f(x)2G(x)

4γσ2f(x)2G(x)

To deal with this big term we now temporarily express it as s−
√
t

4γσ2f(x)2G(x)
. We neglect

the postive root, as we are looking for a conservative upper bound. The crucial step to
obain (14) is to realise that the denominator 4γσ2f(x)2G(x) can be rewritten as s2−t

2σ2 ,
which we now show:

s2 − t =(f(x)(x((1 + γG(x))− σ2)− 2γf(x)σ2))2

− (f(x)(x((1 + γG(x))− σ2)− 2γf(x)σ2))2 + 8γσ4f(x)2G(x)

=8γσ4f(x)2G(x)

Thus s2−t
2σ2 = 4γσ2f(x)2G(x). We can now say 2σ2(s−

√
t)

s2−t
= 2σ2(s−

√
t)

(s−
√
t)(s+

√
t)
= 2σ2

s+
√
t
which

is equal to:

σ2

f(x)2γσ2 − f(x)x((1+G(x)γ)−σ2)
2 +

√
f(x)2(−8G(x)γσ4+(x+G(x)xγ−(x+2f(x)γ)σ2)2)

2

39


