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Abstract

To improve the detection of the economic ”danger zones” from which severe banking crises emanate,

this paper introduces classification tree ensembles to the banking crisis forecasting literature. I show

that their out-of-sample performance in forecasting binary banking crisis indicators surpasses current

best-practice early warning systems based on logit models by a substantial margin. I obtain this result on

the basis of one long-run- (1870-2011), as well as two broad post-1970 macroeconomic panel datasets. I

particularly show that two marked improvements in forecasting performance result from the combination

of many classification trees into an ensemble, and the use of many predictors.

1 Introduction

In his 1878 publication on Commercial Crises and Sun-Spots William Stanley Jevons (Jevons,

1878) reached out to redraw the boundary between economic order and chaos: He

doubted that economic crises are unpredictable anomalies. Instead, he proposed, they

occur rather reliably about every 11 years, caused by a cycle in solar activity impacting

agricultural production. Mr Jevons was careful to back up his hypothesis with quantita-

tive evidence on solar and economic activity. Based on this evidence he was confident
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enough to forecast a crisis for the year 1879. The crisis did not occur and his monocausal

account was soon “made the subject of inconsiderate ridicule” (Jevons, 1879). Crisis

forecasting clearly is a challenging task.

In this paper I will introduce classification tree ensembles and analyze their out-of-sample

performance in forecasting the binary banking crisis indicators defined by Schularick and

Taylor (2012) and Laeven and Valencia (2013) on the basis of three datasets: One long

run annual dataset (1870-2011), which covers 17 developed countries, and two post-1970

datasets – one annual, one quarterly – covering 162 countries. The results suggest that

the out-of-sample forecasting performance of classification tree ensembles substantially

surpasses current best-practice logit specifications. To give a concrete example of the

trade-offs involved, the favorite classification tree ensemble allows policy makers to

correctly forecast about 50% of banking crises, at the cost of a 5% chance of wrongly

forecasting a crisis when none is actually occuring. The best-practice logit specification

can achieve the same 50% rate of correct crisis forecasts only at the substantially higher

cost of a 25% chance of making a wrong crisis call. If policy makers should have a higher

preference for making correct crisis forecasts, different bargains can be struck on the basis

of the same two models: The classification tree ensemble can correctly forecast about 90%

of banking crises, at the cost of making wrong crisis calls with a 25% probability. The

best-practice logit specification can achieve the same 90% rate of correct crisis forecasts

only at the far higher cost of an 80% chance of making a wrong crisis call. In both cases

the classification tree ensemble offers the better trade-off.

My work relates to the existent literature in the following ways: First, this article adds to
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the modern literature on early warning systems for banking crises, which was pioneered

by Kaminsky (1998) and Kaminsky and Reinhart (1999) in the wake of the 1997 Southeast

Asian crises.1 More recent contributions analyzing the predictability of banking crises in

developed economies in the long-run since 1870 are due to Schularick and Taylor (2012)

and Jordà (2013), while others rely on post-1970 samples covering many countries (see

Drehmann and Juselius (2012) and Drehmann (2013)). This literature has shown that

already relatively simple model structures based on few predictors - most notably credit

aggregates - can convey valuable information on the imminence of a banking crisis. The

main contribution of this paper will consist in the exploration of whether somewhat

more complex model structures based on many predictors can improve financial crisis

forecasts.

This article is thus also related to the literature on economic forecasts based on many

predictors (see Stock and Watson, 2002, 2006). This literature has stressed the possibility of

improving economic forecasts by basing them on a larger set of economic indicators. Here

I apply this logic to the banking crisis forecasting task. In particular, I show that increasing

the number of predictors from the 7-10, typically applied in current best-practice early

warning systems, to about 70-80, markedly improves banking crisis forecasts. Whereas

the literature on economic forecasting based on many predictors has focused largely

on factor modelling and prestep-dimensionality reduction techniques, such approaches

do not easily lend themselves to banking crisis forecasting. For once, most banking

1Kaminsky (1998) and Kaminsky and Reinhart (1999) also analyze the predictability of currency crises. Here, I will focus exclusively

on severe, systemic banking crises.
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crisis indicators are binary 0-1 dummies which require discrete classification techniques.2

Furthermore, widely held beliefs on the genesis of banking crises, namely that they are

characterized by discontinuous threshold effects and nonlinear interaction effects between

several risk factors (see Duttagupta and Cashin, 2011), are more naturally accommodated

by methods which dispense with linearity assumptions from the outset. I therefore turn

to classification tree structures which naturally accommodate discontinuous threshold

effects as well as nonlinear interactions between several predictors. Their ability to thus

precisely delineate several ”danger zones”, and their ability to harness many predictors in

doing so, has already made them a mainstay in other research areas, such as genetics,

where often thousands of genetic markers are analyzed with respect to their contributions

to particular diseases (e.g. Díaz-Uriarte and De Andres, 2006).

Methodologically this article draws from a genre of statistical techniques, which runs

under the various headings of ”machine learning”, ”artificial intelligence” or ”nonpara-

metric statistics”, reflecting their diverse origins. While diverse in origin, these approaches

share certain generic similarities. They tend to sacrifice ease of model interpretability

for predictive accuracy. This is achieved through rather flexible model structures, which

put increased demands on computation power and data amounts. Given the former is

getting ever cheaper, and the latter ever more abundant, these approaches have become

increasingly applicable – from internet search engines and trading algorithms to bioin-

formatics and astrophysics (e.g. Albert et al., 2008). Beyond their generic similarities

however, methodologies in this field differ. This renders careful model selection necessary

2Exceptions are continuous crisis indices such as the exchange market pressure index pioneered by Eichengreen, Rose, and Wyplosz

(1994). Such indices are available for fewer countries and cover shorter time-spans than their binary counterparts.
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– particularly so since severe banking crises are rare events: The datasets I use contain

almost all known systemic banking crises of the last 150 years – their absolute number

however still lies only somewhat above 200. Simply comparing various forecasting meth-

ods according to out-of-sample forecasting performance would thus quickly run into the

multiple testing problem. I thus restrict my analysis to classification trees (Breiman et al.,

1984) and their ensembles (Breiman, 1996, 2001), which ex ante appear to be a particularly

promising candidate for banking crisis forecasting for several reasons:

First, classification tree ensembles are able to combine the information from many predic-

tors into an overall crisis risk assessment, while circumvening the curse of dimensionality.

This nicely conforms to the multicausality of banking crises, which may announce them-

selves by developments on the real- or nominal side of the economy – they may originate

from within the domestic financial system or spill over from abroad. Furthermore, critical

information may be contained in different frequency bands of the same predictor. For

example, credit levels, their growth rates, as well as their deviations from trend may

indicate an increase in banking crisis risk. Thus, the number of predictors which cannot

be excluded from analysis on convincing a priori grounds is quite large. This renders

an classification tree ensemble’s ability to accommodate many predictors valuable for

banking crisis forecasting.

Second, classification tree structures are built to capture nonlinear interaction effects

between several predictors. Whether a string of unexpected inflation events announces

a banking crisis or not for example, may depend on the level of nominally fixed debt

contracts on the banks’ balance sheets.
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Third, classification tree structures are also built to accommodate discontinuous threshold

effects between any single predictor and crisis risk, while maintaining a sufficient degree

of flexibility to also approximate continuous nonlinear- as well as linear relationships.

Nonlinear effects have often been associated with the onset of banking crises. In this way,

many accounts of severe banking crises don’t begin with the description of an equally

severe shock – often they begin with an economically comparatively minor incidence,

such as an increase in the default rate on US subprime mortages in 2006 and 2007.

Finally, despite their structural suitability, and their ability to accommodate many predic-

tors, the forecasting performance of single classification trees is held back by their high

variability. This high variability however can be countered by combining many trees into

an ensemble – a technique which will be described in more detail in section 3.

This article is structured as follows: Section 2 will point out the main constraints which

hold back current early warning systems (EWS), including the signals approach, logit

models and single classification trees. Section 3 provides a description of how classi-

fication tree (CT )-ensembles work around these constraints. Section 4 introduces the

datasets. These datasets form the basis for the out-of-sample forecasting contest between

CT -ensembles and representative logit specifications in section 5. Section 6 concludes by

showing how a particular CT -ensemble, random forest, would have fared in forecasting

the 2007/2008 financial crisis.
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2 Constraints of Current EWS

The EWS literature is dominated by two methodologies: the signals approach and pro-

bit/logit models. Both have been shown to offer valuable information on the imminence

of banking crises. More recently, Davis and Karim (2008a) and Duttagupta and Cashin

(2011) have begun to explore the potential of a third method – classification trees. The

forecasting performance of these methods is held back by several constraints, which I will

discuss in this section. In the next section I will then show how CT -ensembles improve

upon this. In general, current EWS face at least one of the following four constraints:

(i) First, the amount of predictors they can handle.

(ii) Second, the ease with which they accommodate nonlinear interaction effects.

(iii) Third, the ease with which they accommodate nonlinear effects between any single

predictor and crisis risk.

(iv) Fourth, the degree of estimator variability.

It will be helpful to shortly discuss how currently applied EWS are held back by these.

2.1 The Signals Approach

Signals models were first introduced by Kaminsky and Reinhart (1999). These models

issue a warning signal whenever a predictor passes a certain threshold. Signals models

can be expressed as

yi = I(xi > t) + ǫi, (1)

7



where for forecasting purposes yi is a horizon dummy, which takes the value 1 in the two

year horizon preceding a crisis (from now on also referred to ’crisis observations’ for ease

of exposition), and 0 otherwise (from now on also referred to as ’no crisis observations’).

I(·) denotes an indicator function, xi is a predictor, t a threshold and ǫi an error term

ǫi =





0, for correct signals: I(xi > t) = yi

1, otherwise,

for observations i = 1, ..., N. A threshold t̂, also called split point, is estimated via min-

imization of a loss function – most commonly the adjusted noise to signal ratio (aNtS):

t̂ = arg mint{aNtS(t)}, where aNtS = FPR(t)
TPR(t)

, and FPR(t) and TPR(t) denote the false-

and true positive rate, depending on threshold t. Based on t̂ it is possible to make crisis

predictions ŷi = I(xi > t̂).

While contributions based on the signals approach have made clear that even single pre-

dictors contain valuable information on the imminence of a banking crisis, the simplicity

of the approach constrains forecasting accuracy in several ways:

First, the indicator function in (1) rules out potential non-discontinuities in the build-up

of banking crisis risk. Davis and Karim (2008a) for example have shown that continous

(though also nonlinear) logit specifications do a better job in forecasting crises.

Second, in terms of variable selection, the approach focuses on only one predictor at

a time. To the extent that models of the form (1) are estimated and evaluated for sev-

eral predictors the multiple testing problem kicks in. Later contributions have aimed at

combining two to three predictors in a slightly adjusted model of the form

yi = min{I(xi > tx), I(yi > ty)}+ ǫi, (2)
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with predictor specific thresholds tx and ty (e.g. Borio and Lowe (2002)). However, the

inclusion of two to three predictors still falls short of reflecting the multicausal nature of

crises.

Third, in equation (2) a warning signal is only issued when both predictors xi and yi

exceed their thresholds. This allows for the analysis of only one first-order interaction

effect, which has to be selectively specified by the researcher through the selection of

predictors x and y.

2.2 Probit and Logit Specifications

Probit and logit specifications constitute the main workhorses when it comes to binary

classification or probability modelling across many disciplines. This certainly holds true

for banking crisis forecasting, where logit specifications dominate. The first contribution

in this vein is usually attributed to Demirgüç-Kunt and Detragiache (1998). More recent

contributions relying on logit specifications come from Frankel and Saravelos (2012) and

Schularick and Taylor (2012). The logit model’s structure can be given as

ln

(
P(yi = 1)

1 − P(yi = 1)

)
= βXi, (3)

where yi is a horizon dummy, for observations i = 1, ..., N. β is a 1× J vector of coefficients

and Xi is a J × 1 vector of predictors. Once β has been estimated by numerical maximum

likelihood (ML) procedures, the probability of being in the pre-crisis horizon can be

prediced as P̂(yi = 1) = Λ(β̂Xi), where Λ(·) denotes the logistic cumulative distribution

function.

Multivariate logit models have been shown to slightly outperform signals models in
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banking crisis forecasting (Davis and Karim, 2008a). Nevertheless their performance is

constrained by several factors:

First, ML-estimation of the coefficient vector β runs into the curse of dimensionality as the

number of predictors increases. Thus restricted variable selection and/or dimensionality

reduction is a necessary prestep for logit models.

Second, though equation (3) captures a particular kind of nonlinearity its structure is

rigid. More flexible functional forms and variable interactions have to be explicitly added

by the researcher through, for example, higher order- and interaction terms, which again

runs into the curse of dimensionality.

2.3 Classification Tree Analysis

More recent contributions which explore the potential of classification trees for the analysis

of banking crises are due to Davis and Karim (2008a) and Duttagupta and Cashin (2011).3

Formally, a classification tree predicts the probability of being within the pre-crisis horizon

as

T̂ (Xi) =
M

∑
m=1

p̂m I(Xi ∈ R̂m), (4)

where T̂ (Xi) is the probability estimate of being in the pre-crisis horizon (subsequently

also termed ’crisis probability’), depending on a J × 1 vector of predictor values Xi,

for observations i = 1, ..., N. I(·) is an indicator function and {R̂m}M
m=1 is a set of M

region estimates in J-dimensional predictor space, to each of which a crisis probability

3See Kaminsky (2006) for an application of classification tree analysis to currency crisis classification. Also see Marais, Patell, and

Wolfson (1984) and Frydman, Altman, and Kao (1985) for early applications of classification tree techniques to financial distress

detection on a micro-level.
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estimate p̂m is attached. Given the region estimates {R̂m}M
m=1, probabilities p̂m are simply

estimated as the proportion of crisis observations in region R̂m, for m = 1, ..., M:

p̂m =
∑i∈R̂m

yi

∑i∈R̂m
1

(5)

The difficulty however lies in obtaining region estimates {R̂m}M
m=1. Globally optimal

estimation of all parameters Θ = {Rm, pm}M
m=1 constitutes a NP-complete problem (Hyafil

and Rivest, 1976). Thus classification trees are typically estimated through recursive

partitioning – a greedy search algorithm which engages in step-wise, locally optimal

estimation.

Figure 1 illustrates how recursive partitioning works. To simplify matters a four step –

two predictor example is illustrated. The two-dimensional predictor space spanned by

x1 and x2 is populated by observations. The filled circles stand for crisis observations,

the empty circles stand for no crisis observations. In several steps the predictor space is

partitioned into five terminal regions R1,2,3,4,5, separated by the four splits t1,2,3,4
j (dashed

lines), where j ∈ {1, 2} indicates the split predictor. The exact rule according to which

these splits are conducted will be introduced in the next paragraph. In the first step,

illustrated in the upper left panel, the split point t1
1 partitions the sample along the range

of the splitting predictor x1. In the second step (upper right panel) t2
1 partitions the

sample once more along the range of the splitting predictor x1. In a third and fourth

step, illustrated in the lower left panel, the same procedure is repeated for two of the

subsamples obtained from the first two steps. In this vein at each recursive partitioning

step a ’parent’-region is divided into two ’child’-regions. The splitting stops in one of

two ways: Either the terminal regions contain only crisis or no crisis observations, as is
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Figure 1: Recursive Partitioning: An Illustration

Notes: Upper left panel shows the first recursive partitioning step. Upper right panel shows the second recursive partitioning step.
Lower left panel shows a third and fourth partitioning step. Lower right panel shows the tree corresponding to the partition in the
lower left panel. Filled circles – yi = 1 (Crisis); empty circles – yi = 0 (No crisis). xj – predictors. ts

j – splits. Rm – terminal regions.

the case in regions R1,2,4, or an ad hoc stopping rule bites, such as a given maximum

number of splits. In this vein the lower left panel in figure 1 could be the result of a

partitioning where the maximum number of splits is set to four. The final partition can

also be represented as a tree structure (lower right panel).

To determine a splitting predictor and a split point at each recursive partitioning step

a splitting rule has to be applied. The gini impurity criterion is such a splitting rule. The

gini impurity of region Ra is defined as

GI(pa) = −2p2
a + 2pa,
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where pa denotes the proportion of crisis observations in region Ra. GI(Ra) reaches

minima of 0 when pa equals 1 or 0, and a maximum of 0.5 when pa equals 0.5. The

gini impurity criterion thus takes high values for regions where crisis and no crisis

observations mix, and low values in ’pure’ regions. In the end this property allows for a

separation of crisis and no crisis observations. Based on gini impurity and given a certain

split, which determines the child regions, the information gain IG can be calculated as

the difference between the parent region-gini impurity and the average child region-gini

impurity:

IG(Ra, Rb) = GI(Ra ∪ Rb)− 0.5
[
GI(Ra) + GI(Rb)

]
,

where GI(Ra ∪ Rb) stands for the gini impurity of the parent region. GI(Ra) and GI(Rb)

denote the gini impurities of the child regions.

At each recursive partitioning step s = 2, ..., S a splitting predictor j and a split point t

along the range of this splitting predictor are selected such as to maximize the resulting

information gain:

t̂s
j = arg max

j,t
IG

(
Rs

a(tj|t̂1
j , ..., t̂s−1

j ), Rs
b(tj|t̂1

j , ..., t̂s−1
j )

)
(6)

Only the first split s = 1 is an unconditional one; all others depend on all previously

estimated splits t̂1
j , ..., t̂s−1

j . The idea behind (6) is to partition a parent region into two

child regions in such a way that crisis and no crisis observations get separated into

different regions. Note that recursive partitioning is robust to outliers as extreme values

do not influence the internally optimal split point. This property is especially convenient

given the occasional extreme-value observations in samples covering many countries and

long time-spans. Recursive partitioning can end in two ways: It can either run its course
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until the classification tree has been ”fully grown” and only ’pure’ regions of exclusively

crisis or no crisis observations are left. Alternatively, recursive partitioning can be ended

through an ad hoc stopping rule, such as a minimum number of observations per region.

Usually the application of such an ad hoc stopping rule is necessary to avoid severe

overfitting. In the following I constrain the terminal region size of single classification

trees to 10 observations. The single tree results are not unduely affected by this decision

and hold up under different stopping rules.

In any case, the final partitioning constitutes an estimate of the M terminal regions

{R̂m}M
m=1, on the basis of which the classification tree (4) can be completed by estimating

crisis probabilities according to (5).

In many respects classification trees appear to be suitable candidates for banking crisis

forecasting: Firstly, they can be estimated on the basis of many predictors without running

into the curse of dimensionality – a positive side-effect of the step-wise estimation through

recursive partitioning. Secondly, they naturally accommodate nonlinear interaction effects.

Thirdly, beyond discontinuous threshold effects, classification trees can accommodate

more and more functional forms as they grow larger. Despite all these favourable charac-

teristics classification trees have been associated with poor out-of-sample forecasts for

banking crises (see Davis and Karim, 2008a). What is the reason for this?

The overriding constraint which holds back the forecasting performance of single classifi-

cation trees is their high variability – an unwelcome side-effect of recursive partitioning:

Small changes in the sample under analysis can easily change splitting predictors and split

points in the early partitions. This change then reverberates throughout all subsequent
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steps, as each further partition is conditional on all previous ones. In this way only small

sample changes can have profound effects on the final model. As section 5 will show, this

instability deals a severe blow to the forecasting performance of single classification trees.

Fortunately, as will be explained in the next section, combining many classification trees

into a CT -ensemble constitutes a solution to the problem of high variability.

In sum, current signals- and logit EWS are held back by their inability to accommodate

(i) many predictors and (ii) nonlinear predictor interactions, as well as (iii) an overly

rigid functional forms. While classification trees seem to be suitable candidates for

banking crisis forecasting with respect to (i) - (iii) they are plagued by (iv) high estimator

variability. The next section will introduce CT -ensembles and explain how they constitute

an improvement over single classification trees in terms of (iv) estimator variability, but

also (iii) the degree of functional flexibiliy.

3 Why Classification Tree-Ensembles?

As the name suggests a forest F consists of many classification trees Tb, b = 1, ..., B.

Each individual tree ’grows’ on a bootstrap-sample Xb from the original data X. Such

bootstrapping with subsequent aggregation is referred to as bagging (Breiman, 1996). If

each tree is given the same weight a forest predicts the probability of being in a pre-crisis

horizon as

F̂ (Xi) =
1

B

B

∑
b=1

T̂b(Xi), (7)

where Xi is the J × 1 vector of predictor values for observations i = 1, ..., N. Thus the

forest prediction is simply the average prediction of the B single trees.
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The linear combination of B trees into a forest preserves the beneficial properties of an

individual tree: (i) A forest can be estimated on the basis of many predictors, as the same

step-wise local estimation procedure is applied. (ii) Like any single tree, a forest can also

accommodate nonlinear interaction effects. In terms of (iii) functional flexibility and (iv)

estimator variability however a forest is more than the sum of its parts:

As regards functional flexibility an average of several models has a representational advan-

tage over any single model (Dietterich, 2000). A forest for example can better approximate

continuous relationships between crisis risk and its predictors as the averaging over

many trees smoothes the jump discontinuities of any single tree. Thus to the extent that

classification tree structures are in principle fit for banking crisis forecasting, forests are

even more so.

Next, how does bagging address estimator variability? The intuition is conveyed by the

wisdom of crowds-mechanism: While most people are probably rather ignorant on the

number of beans contained in one can, some individuals happen to be more knowledge-

able – be it because of a special talent in spatial visualization, or because they work at the

factory filling the cans. As long as the guesses of the ignorant individuals are randomly

distributed around the true value, the more knowledgable individuals’ guesses determine

the mean of the overall guess-distribution. Under such circumstances averaging is a

simple aggregation-mechanism, which provides a good estimate of the true number of

beans in a can.4 The guess of any randomly drawn individual however ranges from ’very

close’ to ’far off’ the true value, i.e. has high variability. In a similar vein each tree in a

4Note that the wisdom of crowds is no unconditional law. It can easily give way to what might be termed the madness of crowds, where

individual guesses are not independent of each other and may veer further and further away from the true value.
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forest grows on a different bootstrap-sample and thus emboddies a different experience.

Through aggregating these experiences a forest is stripped of the high variability of its

constituent trees.

A stylized formal argument is helpful in further clarifying the variability-reducing effect

of bagging. Under certain assumptions it can be shown that individual estimators T̂b(x)

have higher mean squared error (MSE) than bagged ones F (x) due to their variability (see

Hastie, Tibshirani, and Friedman, 2013, p. 285):

E(y − T̂b(x))2 =E(y −F (x))2 + E(T̂b(x)−F (x))2

≥E(y −F (x))2,

(8)

where y is an output variable and x a fixed input. T̂b(x) is estimated on the basis of a

bootstrap dataset Xb, which is sampled from the actual population. Though stylized,

this formulation clarifies how for an ideal bagging estimator F (x) = E(T̂b(x)) bagging

reduces the MSE simply by eliminating the variance of T̂b(x) around its expected value

F (x).5

Note how the inequality in (8) turns into an equality if all trees in an ensemble are

identical, i.e. T̂b(x) = F (x), for b = 1, ..., B. Thus, to reap the benefits of bagging

the individual trees have to differ from each other. This is usually ensured through

the random generation of the B bootstrap samples. Above and beyond that however,

weakening the similarities between individual classification trees further, can enhance

the variability-reducing effect of bagging. This is the idea behind a particular variant of

5In positing that F (x) = E(T̂b(x)) the argument abstracts from the unresolved problem of bootstrap consistency in bagging

classification trees (see Bühlmann and Yu (2002) and Bühlmann (2012)). Although a formal proof does not yet exist, evidence from

simulation analyses as well as practical applications suggest the argument is broadly applicable.
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CT -ensemble, random forest (Breiman, 2001).

As the name suggests Random Forest (RF ) introduces some extra randomness into the

tree growth process such as to increase the diversity of the forest. In particular, RF aims

at increasing tree diversity through the following randomization mechanism: At each

recursive partitioning step s in (6) only a random subset trys ⊂ {1, ..., J} containing Jtry of

the total of J predictors in Xb is drawn (without replacement) and checked for their split

potential:

t̃s
j = arg max

j∈trys,t
IG

(
Rs

a(tj|t̃1
j , ..., t̃s−1

j ), Rs
b(tj|t̃1

j , ..., t̃s−1
j )

)
(9)

The size of the random subset Jtry will be set to the recommended default of ⌊√J⌋

(Breiman, 2002) throughout the following analysis. Consequently the similarity between

the individual trees constituting a random forest, {T̂ RF
b (Xi)}B

b=1, is lower than the similar-

ity between the previously discussed non-randomized trees, {T̂b(Xi)}B
b=1. This increases

the effectiveness of the bagging mechanism, which has been termed the decorrelation effect

(Hastie, Tibshirani, and Friedman, 2013, p. 597).

A short formal argument helps to further clarify the decorrelation effect: The variance

of an average of B identically, but not independently distributed trees (trees are not

independent of each other due to overlapping bootstrap samples) with variability σ2 is

σ2
bag = ρσ2 +

1 − ρ

B
σ2,

where ρ is the pairwise correlation between two trees. While the second term is brought to

zero through bagging as the number of trees B increases RF aims at directly decreasing

ρ through adding some randomness to the tree growth process. Randomization thus

reduces the lower bound in variability, ρσ2, which is obtainable through bagging.
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Except for the additional randomization, the random forest estimator equals the

previously discussed forest in (7). By analogy the random forest estimator can be written

as

R̂F (Xi) =
1

B

B

∑
b=1

T̂ RF
b (Xi). (10)

A concise overview of all the steps involved in generating the F - and RF -estimators (7)

and (10) can be found in algorithm A1 shown in the appendix.

With respect to the stopping rules for recursive partitioning, there exists a notable

difference between single classification trees and CT -ensembles: Fully growing a single

classification tree usually results in severe overfitting, making ad hoc stopping rules

preferable. This is not the case for an ensemble of trees, for which stopping rules appear

to be rather uninfluential with respect to overfitting (see Segal, 2004; Hastie, Tibshirani,

and Friedman, 2013, p. 596). Fully growing each tree in an ensemble thus has established

itsself as a standard. In the following analysis I will adhere to this standard for another

reason. Given the rarity of severe banking crises and the fact that a dummy variable is a

rather noisy indicator of them, I deem setting aside part of the data for the estimation of

an optimal stopping rule to be an excessive strain on the samples.

To sum up, how do CT -ensembles constitute an improvement over single classification

trees? First, the averaging over many classification trees allows CT -ensembles to better

approximate smooth relationships. Second, CT -ensembles are more stable than single

classification trees, as bagging and randomization counter estimator variability.

19



4 Data

In this section I introduce three datasets on the basis of which I will evaluate the

forecasting performance of logit models, single classification trees and CT -ensembles.

Systemic banking crises are rare. Their statistical analysis thus necessitates datasets,

which cover large time spans or many countries – one usually comes at the cost of the

other. I therefore make use of one long-run sample spanning from 1870 to 2011, as well

as two post-1970 samples with broader country coverage.

4.1 The Long-Run Sample, 1870-2011

As regards the long-run sample I use the dataset introduced by Schularick and Taylor

(2012). After further extensions this dataset now ranges from 1870 to 2011 and covers 17

countries (Jordà, Schularick, and Taylor, 2013). Most of the time from 1870 to 2011 these

17 countries together make up more than half of world GDP (according to Maddison

GDP estimates).

The dataset features macroeconomic indicators (GDP, consumption, investment, consumer

prices, the current account and exchange rates) as well as financial indicators (bank loans,

total bank assets, stock prices, interest rates, public debt and monetary aggregates). These

are the base indicators from which I then derive 77 predictors. Schularick and Taylor

(2012) also provide a binary banking crisis indicator, the definition of which follows

Laeven and Valencia (2008): The indicator takes a value of 1 for years characterized

by bank runs, a jump in default rates and large capital losses associated with public

interventions as well as bankruptcies or forced mergers of major financial institutions –
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Figure 2: Crisis Map: Long-Run Sample, 1870-2011

Notes: Systemic banking crises (black). Vertical bars separate the pre-WW1 period, WW1, interwar period, WW2, the Bretton Woods
period and the post-Bretton Woods period. Source: Systemic banking crisis dummies from Schularick and Taylor (2012) and Jordà,
Schularick, and Taylor (2013) (extended dataset).

otherwise the indicator takes a value of 0. Figure 2 gives an overview of the 93 systemic

banking crises contained in the dataset.

4.2 The Broad Post-1970 Samples

As regards the post-1970 period I make use of the binary banking crisis indicator provided

by Laeven and Valencia (2013). This indicator covers 162 countries and spans the years

1970 to 2011. Its definition equals the one by Schularick and Taylor (2012). Figure 3 gives

an overview of the 147 systemic banking crises contained in this dataset.

Next, I obtain annual and quarterly base indicators from the IMF IFS-database and match

them to the banking crisis indicator. In my selection of base indicators the availabiltiy of
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a series across many countries is paramount, as many missing values would endanger

the already small number of financial crises even further. The annual indicators cover

consumer prices, net exports, exchange rates, bank loans, stock prices, interest rates

and public debt (provided by Abbas et al., 2013). The quarterly indicators cover GDP,

consumer prices, exchange rates, bank loans, stock prices, house prices, interest rates,

foreign liabilities and reserves. Furthermore, for the annual post-1970 sample I make use

of the GDP, consumption and investment estimates from the Penn World Tables (Feenstra,

Inklaar, and Timmer, 2013).

Together, the long-run and the post-1970s sample account for almost the entire population

of systemic banking crises in modern history.

4.3 The Predictors

For each sample I derive about 70 predictors from the base indicators (see tables A1, A2

and A3 in the appendix). I make use of the bare nominal series (n) where they are of

interest (e.g. nominal interest rates), but also obtain CPI-deflated quantities, growth rates

(gr), trend deviations (gap), ”to GDP” ratios (/GDP), global (GDP-weighted) averages

(glo), real exchange rates and interest rate differentials (see Alessi and Detken, 2011, for a

similar approach). Furthermore, I combine several of these transformations where deemed

appropriate – for example, to obtain the gap of the loans to GDP ratio (”Loans/GDP

(gap)”). In this way I obtain a detailled snapshot of economic conditions.

I now give a more precise account of the transformations I conduct: First, as regards

the gap measure I use deviations from a slowly adjusting HP-trend (λ = 1600), which
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Figure 3: Crisis Map: Post-1970 Samples

Notes: Systemic banking crises (black). Source: Systemic banking crisis dummies from Laeven and Valencia (2013).
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captures the slow build-up of financial imbalances (see Borio and Drehmann, 2009). As

the following is an excercise in forecasting I use an one-sided HP-filter (Mehra, 2004).

Second, I standardize the "to GDP" ratios when there exists a lack of cross-country

comparability between series (e.g. the loan aggregates (see Schularick and Taylor, 2012)).

Therefore these predictors contain only information on the relative predictor-level within

each country.

Third, I calculate the global averages at time t as the GDP-weighted average of all

countries with nonmissing values at time t. For the quarterly post-1970 sample I calculate

the non-weighted global average, due to the limited availability of quarterly PPP GDP

data.

Fourth, I calculate the real exchange rate as: RERi,t = NERi,t · Pi,t · P∗−1
t , where NERi,t

denotes the nominal USD-exchange rate in price notation of country i at time t, Pi,t is the

domestic CPI and P∗
t is the GDP-weighted average CPI of all countries with nonmissing

values at time t.

Fifth, I obtain the interest rate differential-predictors through subtracting global average

interest rates from country interest rates.

Sixth, specifically for the logit analysis I generate six interaction terms. I don’t use

these interaction terms in the classification tree-based analysis, as classification trees

automatically identify important predictor interactions. I proxy private debt servicing

costs by the interaction of the Loans/GDP (gap) with long-term interest rates. In the same

way I obtain public debt servicing costs as the interaction of the Public Debt/GDP (gap)

with long-term interest rates (see Drehmann and Juselius, 2012; Jordà, 2013). I define
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Table 1: Datasets

Dataset Long-run 1870-2011 sample Broad post-1970 sample I Broad post-1970 sample II

Source Schularick and Taylor (2012) IMF IFS, PWT, Abbas et al. (2013) IMF IFS

Crisis dummy Schularick and Taylor (2012) Laeven and Valencia (2013) Laeven and Valencia (2013)

Frequency annual annual quarterly

Time Span 1870 - 2011 1970 - 2011 1970 - 2011

# of countries 17 162 162

# of predictors 77 (Table A1) 70 (Table A2) 73 (Table A3)

# of crises 93 147 147

N 2414 7081 30967

Notes: N number observations. IFS International Financial Statistics. PWT Penn World Tables. The Schularick and Taylor (2012)
dataset has subsequently been extended and updated (see Jordà, Schularick, and Taylor, 2013). All three datasets are unbalanced.
Thus the number of observations and crises will vary across applications.

the joint debt burden as the interaction of long-term rates with the Loans/GDP (gap)

and the Public Debt/GDP (gap). The remaining three interaction terms are: Loans/GDP

x GDP (gr) and Public Debt/GDP x GDP (gr), aimed at capturing debt sustainability

consideration in the face of low GDP realizations, and Loans/GDP (gap) x Exchange Rate

(gap), aimed at capturing effects from exchange rate devaluations on the banking system.

Furthermore, I only make use of predictors which are broadly available across countries

and time, because the limited number of crisis observations does not allow for large data

losses due to missing values. For each of the three samples I eventually opt for an eclectic,

though to some extent ad hoc, selection of somewhat more than 70 predictors with an eye

on erring on the side of inclusion. Readers with a background in nonparametric statistics

may wonder why I don’t tune the precise number of predictors according to optimal
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out-of-sample performance. I don’t endogenize the number of predictors in such a way

for the same reason I don’t tune the stopping rule: Given the rarity of severe banking

crises I deem setting aside part of the data for tuning considerations to be an excessive

strain on the samples.

An exhaustive list of all predictors can be found in tables A1, A2 and A3 in the

appendix. These can be compared to table A4, which provides a summary of variable

selections in empirical publications on banking crises.

An overview of the characteristics of the three datasets is given in table 1.

5 Performance Comparison

I now stage the competition between logit models, single classification trees and CT -

ensembles. The rules of the competition are simple: The method whose crisis-probability

predictions achieve the highest out-of-sample area under the receiver operating characteristic

curve (AUC) wins. The AUC ranges from 0.5 to 1. An AUC of 1 indicates the perfect

EWS, which correctly forecasts all crises as crises and all non-crises as non-crises. An

AUC of 0.5 indicates an entirely uninformative EWS (For a comprehensive introduction

to the AUC measure see Jordà, 2013).

First, I report baseline results based on the long-run sample for logit EWS (see subsections

5.1) and classification tree-based EWS (see subsection 5.2). In subsection 5.3 I go into

more detail in directly comparing the best logit and CT -ensemble EWS on the basis of

their receiver operating characteristic (ROC) curves. I then make use of the two post-1970

samples to test the robustness of my results in subsection 5.4. In subsection 5.5 I check
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whether the forecasting performance of CT -ensembles holds up for 1- and 3-year crisis

horizons. Finally, in subsection 5.6 I shortly investigate the performance of tree boosting

algorithms, which share much of their properties with CT -ensembles and thus also

suggest themselves for crisis forecasting. Nevertheless I will recommend against their use

in crisis forecasting.

5.1 Logit EWS

To obtain a yardstick against which to measure the performance of CT -ensembles I first

carry out a logistic regression-based analysis. I estimate bi- and multivariate logit models

based on a selection of predictors which is comparable to those found in the literature.

Among the single predictors the usual suspects make their appearance. The largest AUCs

come from the private burden (AUC=0.64) and the loans/GDP gap (AUC=0.63). They

are statistically significantly different from 0.5 at the 99% level. The public debt/GDP gap

(AUC=0.59) and the public burden (AUC=0.58) achieve significance at lower levels. Most

of the other AUC estimates hover closely above 0.5; a rather poor result. Also, notice the

multiple testing problem involved. All ten single predictors loose their significance level

when I conduct the appropriate Bonferroni adjustment ( α
10). Generally, these results are

similar to the ones obtained by Jordà (2013) who, based on comparable specifications,

reports AUCs ranging from 0.52 to 0.67.6

6Drehmann and Juselius (2013) report mean AUC estimates between 0.8 and 0.9 for their loans/GDP gap and their debt servicing ratio.

These estimates are substantially higher than the ones obtained here and come close to the soon to be introduced CT -ensembles. The

most important factor behind this discrepancy is their rather homogenous post-1980 sample. Their sample contains only 19 systemic

crises, 11 of which are associated with the most recent global financial crisis. This compares to the more than 70 systemic crises

under analysis here.
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Next are mulitvariate specifications. The variable selections are displayed on the right

half of table 2. They are inspired by similar specifications in Schularick and Taylor (2012)

and Jordà, Schularick, and Taylor (2011). AUCs of all three multivariate models are

significantly different from 0.5 at the 99% level. They range from 0.62 to 0.65. Compared

to the ”baseline” specification the ”IA” specification with interaction terms is successful in

conveying extra information on the imminence of a banking crisis (AUC=0.65). The AUC

remains the same after the additional inclusion of country-fixed effects. These results are

similar to the out-of-sample results reported by Schularick and Taylor (2012) (AUC=0.646).

Note however, that even 0.65 does not lie outside of the 95% confidence interval of the

best single predictors.

28



Table 2: Logit-EWS

Results

AUC 95%-CI N

Bivariate

Loans/GDP (gap) 0.63 * * [0.55,0.71] 1295

Public Debt/GDP (gap) 0.59 * [0.51,0.66] 1348

Narrow Money/GDP (gap) 0.55 [0.47,0.63] 1310

LT Interest Rate 0.52 [0.44,0.59] 1437

GDP (gr) 0.52 [0.44,0.6] 1414

Inflation 0.54 [0.46,0.61] 1503

Exchange Rate (gap) 0.51 [0.44,0.59] 1503

Public Burden 0.58 † [0.5,0.65] 1322

Private Burden 0.64 * * [0.56,0.72] 1237

Joint Burden 0.53 [0.44,0.61] 1182

Multivariate

Baseline 0.62 * * [0.55,0.7] 1146

IA 0.65 * * [0.57,0.73] 1146

FE & IA 0.65 * * [0.57,0.73] 1146

Specification

Baseline IA FE & IA

Variables
Loans/GDP (gap) X X X

Public Debt/GDP (gap) X X X

Narrow Money/GDP (gap) X X X

LT Interest Rate X X X

GDP (gr) X X X

Inflation X X X

Exchange Rate (gap) X X X

Interaction Terms
Public Burden X X

Private Burden X X

Joint Burden X X

Loans/GDP x GDP (gr) X X

Public Debt/GDP x GDP (gr) X X

Loans/GDP (gap) x Exchange Rate

(gap)

X X

Fixed Effects
Country-FE X

Notes: Dependent variable: two-year horizon before crisis. Out-of-sample mean AUC- and confidence band estimates are based on Monte Carlo Cross-Validation (see Picard and
Cook, 1984; Arlot, Celisse et al., 2010): 5000 MC-draws of training (63,2%) - test (36,8%) data partitions. IA - interaction terms; FE - country fixed effects; N - number of training
observations (= 0.632×total number of observations). † p < 0.10, * p < 0.05, ** p < 0.01
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5.2 Classification Tree-based EWS

CT -ensembles are not just an ensemble of trees but also an ensemble of techniques. To

obtain an impression of the relative efficacy of bagging, randomization and the inclusion

of many predictors the following analysis will build up to the final RF model one step

at a time. First a single classification tree based on the same restricted selection of ten

predictors as the IA logit model will take the stage, before bagging and randomization

will be added to the recipe. After that, the same three steps, single tree - bagging -

randomization, will be followed through on the basis of all 76 predictors.

5.2.1 Single Tree

The left hand side of table 3 displays results for the restricted predictor selection. A

single tree performs badly (AUC = 0.55). A similar finding has led Jagtiani et al. (2003) to

suggest, prematurely, that ”simple is beautiful” when it comes to EWS. They find that a

logit EWS performs better than a more complex nonparametric approach: trait recognition

analysis (TRA). Compared to a logit model TRA buys an increase in functional flexibility

at the cost of higher model variability - similar to a classification tree. In both cases the

net effect on predictive performance is unfavourable. Concluding from this however

that the increase in functional flexibility is not worth having is premature. In general

I argue that ”simple” is not adequate for forecasting banking crises. To accommodate

complex predictor interactions and various nonlinearities, functional flexibility is well

worth having, while the associated problem of model instability can be resolved through
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bagging.7

5.2.2 Bagging

The second row in the upper left quadrant of table 3 displays the effect of bagging in

the ten-variable setting. The AUC leaps by more than 0.2 to a value of 0.77. This AUC

is significantly higher than that displayed by any of the logit models. Bagging thus

constitutes a large step forward towards a good forecasting performance. Furthermore,

the confidence interval indicates that the AUC estimate is rather precise, especially if

compared to the multivariate logit specifications.

5.2.3 Random Forest

The third model in the upper left quadrant of table 3 is the RF -estimator. The additional

randomization in form of randomly analyzing only three out of the ten predictors at each

recursive partitioning step, leads to a slightly higher mean AUC estimate of 0.79.

CT -ensembles have thus already left behind their logistic competitors without yet having

capitalized on their second fundamental advantage – their ability to make forecasts on

the basis of many predictors.

5.2.4 Many Predictors

I now turn to the more predictor-intensive contenders. The results are displayed in the

upper right quadrant of table 3. The extension of the list of predictors to a total of 76 results

7Liu, Bowyer, and Hall (2004) present a set of conditions which the crisis forecasting task fulfills, and under which Artificial Neural

Networks are outperformed by classification trees, although the structure of the latter is arguably less flexible. The right sort and

degree of functional flexibility of course depends on the nature of the problem. Also see Peltonen (2006) for evidence that Neural

Networks perform unfavourably in out-of-sample forecasts of emerging market currency crises.
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Table 3: CT -EWS: Long-run 1870-2012 Sample

Results

Restricted Selection Many Predictors

Model AUC 95%-CI N AUC 95%-CI N

Single Tree 0.55 [0.5,0.6] 1816 0.63 * * [0.57,0.7] 1742
Bagging 0.77 * * [0.73,0.81] 1816 0.87 * * [0.84,0.9] 1742
Random Forest 0.79 * * [0.75,0.83] 1816 0.88 * * [0.85,0.91] 1742

Specification

Restricted Selection Many Predictors

Parameter Single Bagging RF Single Bagging RF

B 1 5000 5000 1 5000 5000
Jtry 10 10 3 76 76 9
J 10 76
# of crises 72 70

Notes: Dependent variable: two-year horizon before crisis. Restricted Selection: Loans/GDP (gap), Public Debt/GDP (gap), Narrow
Money/GDP (gap), LT Interest Rate, GDP (gr), Inflation, Exchange Rate (gap), Loans/GDP, Public Debt/GDP, LT Interest Rate (n).
Many Predictors: see table A1. Out-of-sample AUC-estimates (and confidence intervals) based on out-of-bag (OOB)-data. N number
observations. J number of predictors under analysis. Jtry number of predictors randomly selected and considered as a splitting
variable at each recursive partitioning step. B number of trees. Specification table: If only the bagging column has an entry this means
all models share the same specification. † p < 0.10, * p < 0.05, ** p < 0.01

in a second leap in forecasting performance, by about 0.1 for the F - (AUC=0.87) and

RF (AUC=0.88) estimators. Even the single classification tree (AUC=0.63) now performs

similarly to the multivariate logit EWS. Overall a kitchen sink approach significantly beats

one based on gnostic variable selection. This is not to say that any amount of predictors

should be considered, regardless of any theoretical plausibility as at some point increases

in model variability will doubtlessly outweight any benefits coming from further bias
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reduction. But given the rather broad bounds set by theory, large datasets and a method

capable of dealing with sparce predictor spaces, these results suggest that extending the

number of predictors is a worthwhile excercise.

To sum up, bagged and randomized classification trees win the banking crisis EWS

contest for the restricted as well as unrestricted set of predictors. Substantial increases in

forecasting performance result from bagging and the inclusion of many predictors.

5.3 ROC-Comparison of Logit- and RF EWS

I will now directly compare the IA logit- and the RF EWS in some more detail. The AUC

is an aggregate measure of predictive performance derived from the more informative

receiver operating characteristic (ROC) curve. The ROC curve is a graphical representation

of all true positive rate - false positive rate (TPR-FPR) combinations a model is capable of

(see Schularick and Taylor (2012) and Jordà (2013) for introductions to the ROC curve for

evaluating banking crisis EWS). Thus despite the significantly higher AUC of the RF

EWS compared to the IA logit EWS it might be the case that the logit EWS still has some

TPR-FPR trade-off on offer which cannot be replicated by the RF EWS. Thus, depending

on how much weight the policy maker’s preferences put on making correct crisis calls

as opposed to correct no crisis calls, the logit EWS might be preferable after all. To see

whether this is the case figure 4 displays the ROC curves of both EWS. As can be seen,

the RF ROC-curve lies north-west of the logit ROC-curve throughout. Thus, regardless

of policy-makers’ preferences, the RF EWS has the better TPR-FPR trade-off on offer.

To get a better intuition for the performance of the RF EWS let’s look at some
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Figure 4: ROC-Comparison

Notes: Receiver Operating Characteristic curves of the IA logit (grey) and RF model (black). P-value for test of equality of AUCs
according to (DeLong, DeLong, and Clarke-Pearson, 1988). TPR true positive rate. FPR false positive rate.

exemplary TPR-FPR combinations. The RF EWS offers a balanced TPR-FPR trade-off at

about TPR = FPR = 0.75, i.e. it enables policy makers to correctly forecast 75% of crises

and 75% of no crises. If a 25% probability of mistakenly forecasting a crisis is deemed too

high by policy makers the RF EWS allows for a reduction of the probabilty of mistakenly

forecasting a crisis to 5%, while still correctly forecasting about 50% of banking crises. At

the other extreme, policy makers eager not to miss any crisis could use the RF estimator

to correctly forecast 95% of crises, while still getting about 50% of the no crisis forecasts
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right. Any of these trade-offs leaves policy makers substantially better off than the logit

EWS would.

5.4 Post-1970 Samples

I now turn to the two post-1970 samples. Up to now, all results were based on only one

dataset. Replicability on others would be reassuring. I thus repeat the analysis on the

basis of the annual and quarterly post-1970 samples. Except for a slightly different set

of predictors the analysis is identical to the one I conducted for the long-run sample.

The results I obtain take the same line as before: Bagging and the inclusion of many

predictors substantially improve forecasting performance. I now discuss the results for

the annual and quarterly post-1970 samples in turn.

The results for the annual post-1970 sample are reported in table 4. As was the

case for the long-run sample, a single classification tree estimated on the basis of the

restricted set of seven predictors performs poorly (AUC = 0.52). This poor performance

is again remedied through bagging: Compared to the single classification tree the mean

AUC estimate for the F estimator jumps by more than 0.25 to 0.79. The additional

randomization in the RF estimator (AUC=0.81) is again associated with a 0.02 increase

in the mean AUC estimate.

Estimation on the basis of 70 predictors results in a second jump in forecasting

performance for the two CT -ensembles. For both I obtain a mean AUC estimate of 0.85.

The single classification tree also benefits from the inclusion of many predictors; its mean

AUC estimate increases from an insignificant 0.52 to a significant 0.56.

Overall, the results for the annual long-run- and annual post-1970 sample are thus
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Table 4: CT -EWS: Annual Post-1970 Sample

Results

Restricted Selection Many Predictors

Model AUC 95%-CI N AUC 95%-CI N

Single Tree 0.52 [0.49,0.55] 4274 0.56 * * [0.52,0.6] 4189
Bagging 0.79 * * [0.76,0.82] 4274 0.85 * * [0.83,0.87] 4189
Random Forest 0.81 * * [0.78,0.84] 4274 0.85 * * [0.83,0.88] 4189

Specification

Restricted Selection Many Predictors

Parameter Single Bagging RF Single Bagging RF

B 1 5000 5000 1 5000 5000
Jtry 7 7 3 70 70 8
J 7 70
# of crises 100 100

Notes: Dependent variable: two-year horizon before crisis. Restricted Selection: Loans/GDP (gap), Public Debt/GDP (gap), Inflation,
Real Exchange Rate (gap), Loans/GDP, Public Debt/GDP, Net Exports/GDP (gap). Many Predictors: see table A2. Out-of-sample
AUC-estimates (and confidence intervals) based on out-of-bag (OOB)-data. N number observations. J number of predictors under
analysis. Jtry number of predictors randomly selected and considered as a splitting variable at each recursive partitioning step. B

number of trees. Specification table: If only the bagging column has an entry this means all models share the same specification. †

p < 0.10, * p < 0.05, ** p < 0.01

very similar. The mean AUC estimates on one sample are usually contained within the

95% confidence band estimates on the other sample. Such a degree of replicability is

reassuring.

I now turn to the quarterly post-1970 sample. The results are reported in table 5. The

mean AUC estimates are generally higher regardless of specification. However, the mean

AUC estimate for the single classification tree based on the restricted set of predictors
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Table 5: CT -EWS: Quarterly Post-1970 Sample

Results

Restricted Selection Many Predictors

Model AUC 95%-CI N AUC 95%-CI N

Single Tree 0.58 * * [0.55,0.6] 19126 0.7 * * [0.67,0.73] 19061
Bagging 0.85 * * [0.83,0.86] 19126 0.97 * * [0.97,0.98] 19061
Random Forest 0.85 * * [0.84,0.86] 19126 0.95 * * [0.95,0.96] 19061

Specification

Restricted Selection Many Predictors

Parameter Single Bagging RF Single Bagging RF

B 1 5000 5000 1 5000 5000
Jtry 9 9 3 73 73 9
J 9 73
# of crises 102 102

Notes: Dependent variable: two-year horizon before crisis. Restricted Selection: Loans (gap), Loans (gr), Foreign Liabilities (gap)(glo),
LT Interest Rate (gap)(glo), GDP (gap)(glo), Inflation, Exchange Rate (gap), Reserves (gap), GDP (gr)(glo). Many Predictors: see table
A3. Out-of-sample AUC-estimates (and confidence intervals) based on out-of-bag (OOB)-data. N number observations. J number
of predictors under analysis. Jtry number of predictors randomly selected and considered as a splitting variable at each recursive
partitioning step. B number of trees. Specification table: If only the bagging column has an entry this means all models share the
same specification. † p < 0.10, * p < 0.05, ** p < 0.01

(AUC=0.58) still is rather close to the uninformative 0.5. Once again it is their aggregation

into an ensemble which renders classification trees fit for forecasting; the mean AUC

estimate for the two CT -ensembles based on the restricted set of predictors is 0.83. As

opposed to the other two samples the RF estimator does not improve upon the F

estimator.

Estimation on the basis of the eclectic set of 73 predictors again improves forecasts.
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Even the single classification tree now achieves an AUC of 0.7. For the two CT − ensembles

I obtain high AUC estimates of 0.97 and 0.95. This time the additional randomization

puts the RF estimator at a small disadvantage against the plain F estimator.

These results suggest that EWS based on quarterly data will do a better job than

comparable EWS based on annual data. More generally the strong performance of CT -

ensembles now extends to at least three datasets. Thus, their success appears to be solidly

grounded in their suitability for banking crisis forecasting.

5.5 Different Crisis Horizons

Up to now I have trained all models in correctly identifying the 2-year horizon before

a banking crisis event. If however particularly next year’s crisis risk is of concern, then

a 1-year crisis horizon better serves the purpose. In other cases a 3-year crisis horizon

might be preferred. I thus obtain estimates of the RF EWS for the 1- and 3-year crisis

horizons.

Table 6 shows the results. The 1- and 3-year horizon AUC estimates for the long-run

sample are displayed in the first two columns. For the 2-year horizon case the mean

AUC estimate was 0.88 (see table 3). The mean AUC estimate for the 1-year horizon

(AUC=0.78) is substantially lower than that. The 3-year horizon mean AUC estimate

(AUC=0.88) on the other hand is identical to the 2-year horizon one. Thus it is harder to

assess whether there will be a crisis next year, than to assess whether there will be a crisis

within the next two or three years.

The results for the post-1970 sample suggest the same conclusion. As regards the

annual post-1970 sample the 1-year horizon AUC estimate (AUC=0.75) again falls by 0.06
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compared to the 2-year horizon estimate (AUC=0.81)(see table 4). The 3-year horizon AUC

estimate of 0.88 on the other hand exceeds the corresponding 2-year horizon estimate by

0.07.

Finally, for the quarterly post-1970 sample the 1-year horizon AUC estimate (AUC=0.93)

is somewhat lower than the 2-year one (AUC=0.95)(see table 5). The 3-year horizon AUC

estimate is 0.96 – close to the 2-year horizon one.

To sum up, while the AUC estimates for the 3-year horizon generally are very close to

those for the 2-year horizon, the AUC estimates for the 1-year horizon are substantially

lower. In general it is thus harder to assess whether there will be a crisis next year, than

to assess whether there will be a crisis within the next few years. On a more general note,

the fact that the data allow the RF algorithm to better discern the 3-year crisis horizon

from all other observations than the 1-year horizon conforms to accounts which picture

banking crisis risks as building up slowly over time, while the actual crisis realization is

less determinate – triggered by a shock which may or may not occur in any particular

year.
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Table 6: Different Crisis Horizons

1-year horizon
Long-run sample
yearly

3-year horizon
Long-run sample
yearly

1-year horizon
Post-1970 sample
yearly

3-year horizon
Post-1970 sample
yearly

1-year horizon
Post-1970 sample
quarterly

3-year horizon
Post-1970 sample
quarterly

AUC 0.78 * * 0.88 * * 0.75 * * 0.88 * * 0.93 * * 0.96 * *
95%-CI [0.72,0.84] [0.86,0.91] [0.7,0.79] [0.86,0.9] [0.92,0.94] [0.95,0.96]
N 1742 1742 4189 4189 19061 19061

B 5000 5000 5000 5000 5000 5000
Jtry 9 9 8 8 9 9
J 76 76 70 70 73 73
# of crises 70 70 100 100 102 102

Notes: Estimator: Random forest. Predictors: see tables A1, A2 and A3. Out-of-sample AUC-estimates (and confidence intervals) based on out-of-bag (OOB)-data. N number
observations. J number of predictors under analysis. Jtry number of predictors randomly selected and considered as a splitting variable at each recursive partitioning step. B

number of trees. Specification table: If only the bagging column has an entry this means all models share the same specification. † p < 0.10, * p < 0.05, ** p < 0.01
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5.6 Boosting

Before turning to the 2007/2008 case study I take another look at a loose relative of the

CT -ensemble family: Boosting. Boosted classification trees can be described as a forest

with directed tree growth: In the estimation of each new tree particular weight is put

on the correct classification of those observations which have been misclassified by the

aggregate of all previously estimated trees (for a comprehensive introduction to boosting

see Hastie, Tibshirani, and Friedman, 2013, chapter 10). In principle boosting features

many of the properties which make CT -ensembles fit for banking crisis forecasting.

This, and their exceptional track record is reason enough to check up on their crisis

forecasting performance here. In particular I make use of a stochastic gradient boosting

machine based on many predictors. As regards the parameter specification I follow

standard recommendations from the literature (see Friedman, 2002; Buehlmann, 2006).

Columns one to three in table 7 display the results for the three samples. The AUC

estimates range from 0.75 to 0.84. This places boosting somewhere between a single

classification tree and bagging. Why does boosting stay behind the F - and RF EWS?

A likely explanation is the vulnerability of boosting algorithms to noisy data (Long and

Servedio, 2010). In putting extra weight on the correct classification of those observations

which are hard to classify boosting often ends up giving undue weight to datapoints

which are merely noisy. To the extent that macroeconomic data, and in particular the

crisis dummies are noisy this should be expected to constrain the performance of boosting

algorithms. When it comes to forecasting banking crises the F - and F EWS are preferable.
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Table 7: Tree Boosting

Long-run sample

yearly

Post-1970 sample

yearly

Post-1970 sample

quarterly

AUC 0.78 * * 0.75 * * 0.84 * *

95%-CI [0.71,0.85] [0.7,0.8] [0.82,0.86]

N 1724 4189 19061

B 5000 5000 5000

J 77 70 73

η 0.5 0.5 0.5

ν 0.1 0.1 0.1

# of crises 70 100 102

Notes: Dependent variable: two-year horizon before crisis. Predictors: see tables A1, A2 and A3. Out-of-sample AUC-estimates (and
confidence intervals) based on Monte Carlo Cross-Validation (see Picard and Cook, 1984; Arlot, Celisse et al., 2010) for Boosting: 5000
MC-draws of training (63,2%) - test (36,8%) data partitions. N number observations. J number of predictors under analysis. B number
of trees. η random fraction of observations in training data I use to estimate each tree. ν shrinkage parameter indicating the weight
given to each new tree. † p < 0.10, * p < 0.05, ** p < 0.01

6 Case Study: 2007/2008

To conclude the preceeding analysis I contrast the performance of the RF EWS based on

many predictors and the IA-logit EWS in forecasting the the 2007/2008 global financial

crisis. I estimate both EWS on the basis of the long-run sample. I use data up to 1997 for

estimation and put aside the rest as test data. The resulting crisis probability estimates

for the test data (1998 to 2011) are reported in figure 5.8

8By selecting a probability threshold the reported crisis probability estimates can be translated into correct and false warning signals

and thus different TPR-FPR combinations. For example for a threshold of 0.4 the RF EWS would have correctly forecasted a banking

crisis for Spain within the next two years in 2006 and 2007. Policy makers less sensitive to making wrong crisis calls could chose a

lower threshold, while those more sensitive could chose a higher one. For expository reasons however the discussion of the results

will develop along less formal lines – comparing trends and levels in probability estimates of the two EWS.
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On first sight it is clear that the RF crisis risk evaluation exhibits considerably more

variation than the logit model: For most countries it would have signalled a build-up

in crisis probability in the late 1990s, and again in the mid-2000s. Thus the RF model

would have signalled rather clearly that the developed world as a whole was embarking

upon a path which historically has often ended in crisis. The evidence for the logit model

is less flattering: while for some countries it signals (slightly) higher crisis risk, for others

it signals no big changes, or even increasing resilience over the 2000s. Thus, prior to the

global financial crisis policy makers would have been better served by the RF -EWS.

With respect to the country-specific incidence of the crisis, the record of the RF model

is more mixed. Let’s take a closer look: For some countries crisis risk went up and

a crisis did indeed occur: Belgium, Switzerland, Denmark, Spain, France, UK, Italy,

Netherlands, Portugal, Sweden and the USA. Though for all of these countries RF crisis

risk is upward trending, its level is relatively low for some. Switzerland and the USA

belong into this category. Germany, for which crisis risk does not even trend upwards,

also exhibits a very low risk level. How can these cases be explained? What brought

down German and Swiss banks was their exposure to foreign assets. As regards the USA,

nonbank intermediation was at the heart of its banking crisis. Neither exposure to foreign

assets, nor nonbank intermediation are well reflected by any of the base indicators in the

long-run sample. Extending the list of base indicators may thus help to improve forecasts.

Unfortunately detailed data on international financial linkages for example simply have

not been collected for that many years yet. This is one reason why current formal EWS

should only be considered part of a more comprehensive risk assessment.
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Figure 5: The 2007/2008 Global Financial Crisis

Notes: 1998-2011 out-of-sample probability estimates of being in the two year horizon before a banking crisis for 17 countries. 10
country-year observations exhibit missing values, which were replaced by the respective variable’s mean to obtain a probability
estimate. Vertical gray bars indicate year of systemic banking crisis.

Several countries show clear signs of being in a danger zone prior to 2007/2008, but

did not experience a systemic banking crisis according to the binary indicator: Australia,
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Canada, Finland, Norway. There is a notable concentration of Scandinavian countries

and primary good exporters in this group. Hardy and Pazarbasioglu (1998) show that

primary-product exporting countries possess a dinstinct set of early warning indicators,

which might explain the bad performance of the RF -EWS in this case. What is also

interesting is that, except for Canada, all of these countries had experienced a banking

crisis in the late 1980s or early 1990s. The ensuing institutional changes might have

rendered their banking systems more resilient 20 years later. Giannone, Lenza, and

Reichlin (2010) present related evidence for the importance of regulatory quality in credit

markets in explaining cross-country differences in weathering the global recession. Also

note, that in Australia and Norway banking systems did in fact come under considerable

stress during the relevant period – they are knife-edge cases with respect to the dummy

categorization applied.

The last group consists of countries which did not see their risk profiles rise and indeed

did not experience a systemic event: Japan is the only country in this category.

In sum, the record of the RF model on the most recent crisis is mixed. While the model

would not have performed as convincingly with respect to the country-specific incidence

of the crisis, it would have clearly signalled that the developed world as a whole was

on a dangerous path from the early 2000s on. The first part of this conclusion rings

nicely with results reported by Claessens et al. (2010), Rose and Spiegel (2010a), Rose and

Spiegel (2010b) and Rose and Spiegel (2012) who find that prior to the global financial

crisis hardly any predictor conveyed reliable information about the crisis’ subsequent

cross-country severity. While Rose and Spiegel (2012) go on arguing that their results
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warrant skepticism towards the potential of EWS to do a good job my analysis suggests

a different conclusion. Given the historical track record, the proposed CT -ensemble

EWS are very promising. Also note that the evaluation of the RF EWS’s performance

in 2007/2008 depends on the categorization of two knife-edge cases. Given a more

lenient evaluation of these cases (Australia and Norway) figure 5 shows that even in

terms of cross-country incidence for 2007/2008 the RF predictor did not perform too

badly. Especially if combined with country-specific knowledge, as exemplified above, the

proposed RF -EWS would have supplied policy makers with a valuable heads-up on the

vulnerability of the world financial system prior to the event.

7 Conclusion

This article has explored the potential of classification tree ensembles for forecasting

narrative banking crisis indicators. Their out-of-sample performance surpasses current

best-practice early warning systems based on logit models by a substantial margin. I

obtain this result on the basis of one long-run- (1870-2011), as well as two broad post-1970

macroeconomic panel datasets.

The good forecasting performance of classification tree ensembles contrasts with the

poor performance of single classification trees. Single classification trees are held back

by their high variability. Bagging many classification trees into an ensemble counters

this variability. This article has shown that such bagging is associated with a substantial

improvement in out-of-sample forecasts for banking crises.

Another driver behind the good forecasting performance of classification tree ensem-
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bles is their ability to make forecasts on the basis of many predictors; classification tree

ensembles are typically estimated through recursive partitioning, which circumvenes

the curse of dimensionality. This article has shown that an increase in the number of

predictors from around ten to several dozens is associated with another substantial

improvement in out-of-sample forecasts of banking crises. Together, bagging and the

use of many predictors allow classification tree ensembles to substantially surpass the

forecasting performance of current alternatives.

Several further results have been obtained: As regards forecasting horizons, it is in

general harder to assess whether there will be a crisis next year, than to assess whether

there will be a crisis within the next few years. This result is indicative of banking crisis

risk building up slowly over time, while the actual crisis realization is less determinate –

triggered by a shock which may or may not occur in any particular year.

This article furthermore suggests that plain classification tree ensembles are the prefer-

able choice over classification tree boosting. To the extent that macroeconomic data, and

in particular binary banking crisis indicators are noisy measures, boosting is not suited to

banking crisis forecasting, as it ends up attributing too much weight to noisy observations

(Long and Servedio, 2010).

Finally, the 2007/2008 case study shows that by the mid-2000s a classification tree en-

semble would have clearly signalled that the developed world as a whole was embarking

upon a path which historically has often ended in crisis. However, with respect to the

country-specific incidence of banking crises in 2007 and 2008, the performance of the

classification tree ensemble is more ambiguous. This acts as a reminder that for most
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practical purposes, formal early warning systems are best thought of as part of a more

comprehensive risk assessment, which can take additional country- and time specific

knowledge into account.
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Appendix

Algorithm A1 Random Forest Pseudocode

for b = 1 to B do ⊲ Estimate B Classification Trees

1. Draw bootstrap sample Xb of size N (with replacement).

2. Estimate regions {Rb
m}M

m=1 through recursive partitioning:

repeat ⊲ Recursive Partitioning

a) Draw (without replacement) Jtry predictors from Xb.

b) Select splitting predictor and split point according to (9).

until Stopping rule applies

⇒ Region estimates {R̂b
m}M

m=1:

3. Estimate crisis probabilities {pb
m}M

m=1 according to (5).

⇒ Classification Tree T̂ RF
b (Xi) = ∑

M
m=1 p̂b

m I(Xi ∈ R̂b
m)

end for

⇒ B Classification Trees {T̂ RF
b (Xi)}B

b=1

⇒ Random Forest R̂F (Xi) =
1
B

B

∑
b=1

T̂ RF
b (Xi) ⊲ Generate Ensemble

Notes: The pseudocode shows the steps involved in generating of the RF -estimator (10). This pseudocode also covers the generation
of the F -estimator (7) if the number of randomly drawn predictors Jtry in step 2. a) is set equal to the total number of predictors J – in
this case the expressions for the F - and the RF -estimator become equivalent.
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Table A1: Indicators

Indicator Obs. Mean S.D. Min Max

Bank Assets (gap)(glo) 2380 2.77 4.58 -14.78 17.29
Bank Assets (gr)(glo) 2397 0.05 0.04 -0.06 0.15
Bank Assets/GDP (gap)(glo) 2380 -0.02 1.02 -3.64 3.27
Bank Assets/GDP (glo) 2414 9.03 2.25 2.56 15.52
Bank Assets/GDP (gr)(glo) 2397 0.00 0.01 -0.02 0.03
Broad Money (gap)(glo) 2380 3.06 5.42 -8.25 33.44
Broad Money (gr)(glo) 2397 0.04 0.03 -0.07 0.16
Broad Money/GDP (gap)(glo) 2380 0.11 2.35 -9.80 13.76
Broad Money/GDP (glo) 2414 10.46 1.68 8.70 21.53
Broad Money/GDP (gr)(glo) 2397 0.00 0.02 -0.05 0.12
C (gap) 2261 1.28 7.53 -45.41 45.42
C (gap)(glo) 2380 1.19 4.17 -7.88 11.32
C (gr) 2278 0.02 0.06 -0.43 0.56
C (gr)(glo) 2397 0.02 0.02 -0.07 0.14
C/GDP 2140 8.64 19.78 0.00 137.95
C/GDP (gap) 2079 0.96 6.40 -27.68 76.03
C/GDP (gap)(glo) 2380 0.65 5.31 -26.15 20.54
C/GDP (glo) 2414 10.04 4.93 4.99 19.92
C/GDP (gr) 2109 -0.01 0.06 -0.40 1.26
C/GDP (gr)(glo) 2397 -0.01 0.04 -0.17 0.22
Exchange Rate (gap) 2380 3.21 25.98 -55.63 398.60
Exchange Rate (gr) 2397 249,929.16 12236321.00 -0.70 599080064.00
Exchange Rate (n) 2414 45.79 196.22 0.00 2,172.90
GDP (gap) 2192 1.22 7.17 -62.04 52.57
GDP (gap)(glo) 2380 1.49 4.97 -8.65 26.28
GDP (gr) 2223 0.02 0.06 -0.58 0.89
GDP (gr)(glo) 2397 0.02 0.03 -0.06 0.15
I (gap)(glo) 2380 4.56 23.95 -66.79 176.65
I (gr)(glo) 2397 0.08 0.34 -0.57 3.71
I/GDP (gap)(glo) 2380 1.67 17.70 -46.66 109.89
I/GDP (glo) 2414 0.18 0.04 0.10 0.25
I/GDP (gr)(glo) 2397 0.03 0.23 -0.36 2.36
Inflation 2363 0.04 0.15 -0.39 3.44
Inflation (glo) 2397 0.04 0.07 -0.08 0.37
LT Interest Rate 2259 0.02 0.12 -3.41 0.47
LT Interest Rate (gap) 2197 -0.00 0.09 -2.58 0.72
LT Interest Rate (gap)(glo) 2363 -0.00 0.04 -0.18 0.19
LT Interest Rate (glo) 2397 0.02 0.06 -0.34 0.14
LT Interest Rate (n) 2300 0.06 0.03 0.01 0.24
LT Interest Rate (n)(gap) 2242 -0.00 0.01 -0.13 0.07
LT Interest Rate (n)(gap)(glo) 2380 -0.00 0.01 -0.03 0.02
LT Interest Rate (n)(glo) 2414 0.05 0.02 0.02 0.13
LT Interest Rate Diff. 2259 -0.00 0.10 -3.14 0.41
LT Interest Rate Diff. (n) 2300 0.00 0.02 -0.09 0.18
Loans (gap) 2151 4.50 15.41 -82.26 95.43
Loans (gap)(glo) 2380 3.34 9.29 -22.86 24.00
Loans (gr) 2177 0.05 0.12 -0.76 2.49
Loans (gr)(glo) 2397 0.05 0.06 -0.11 0.24
Loans/GDP 2101 10.00 1.00 7.42 13.56
Loans/GDP (gap) 2035 0.05 2.63 -13.02 11.20

Continued on next page
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Table A1: Indicators (continued)

Indicator Obs. Mean S.D. Min Max

Loans/GDP (gap)(glo) 2380 -0.07 2.83 -9.85 8.54
Loans/GDP (glo) 2414 9.68 2.14 2.81 15.04
Loans/GDP (gr) 2068 0.00 0.02 -0.09 0.11
Loans/GDP (gr)(glo) 2397 0.00 0.01 -0.05 0.05
Narrow Money (gap) 2150 3.59 11.86 -42.11 86.63
Narrow Money (gap)(glo) 2380 3.56 7.71 -17.73 30.03
Narrow Money (gr) 2183 0.04 0.10 -0.39 1.08
Narrow Money (gr)(glo) 2397 0.04 0.05 -0.13 0.32
Narrow Money/GDP (gap) 2075 0.68 3.08 -15.16 22.85
Public Debt (gap) 2135 5.75 22.14 -84.51 200.59
Public Debt (gap)(glo) 2380 8.97 16.09 -14.96 93.85
Public Debt (gr) 2169 0.04 0.17 -0.74 3.71
Public Debt (gr)(glo) 2397 0.05 0.12 -0.16 0.88
Public Debt/GDP 2207 0.54 0.39 0.02 2.70
Public Debt/GDP (gap) 2135 13.98 109.21 -86.34 2,136.51
Public Debt/GDP (gap)(glo) 2380 8.97 16.09 -14.96 93.85
Public Debt/GDP (glo) 2414 0.66 0.29 0.30 2.23
Real Exchange Rate 2384 10.00 1.00 7.96 16.54
Real Exchange Rate (gap) 2342 -0.04 3.10 -22.52 30.93
Real Exchange Rate (gr) 2363 0.00 0.02 -0.28 0.25
ST Interest Rate (gap)(glo) 2363 -0.00 0.04 -0.17 0.23
ST Interest Rate (glo) 2397 0.01 0.07 -0.54 0.17
ST Interest Rate (n)(gap)(glo) 2380 0.00 0.01 -0.03 0.03
ST Interest Rate (n)(glo) 2414 0.05 0.02 0.01 0.14
Stock Prices (gap)(glo) 2380 22.10 62.05 -44.65 391.73
Stock Prices (gr)(glo) 2397 0.03 0.15 -0.44 0.65

Notes: (n) nominal; (gr) growth; (glo) global GDP-weighted average; (gap) percentage deviation from (one-sided) HP-trend ( λ =
1600).
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Table A2: Indicators, annual post-1970 sample

Indicator Obs. Mean S.D. Min Max

C (gap) 5821 3.15 10.69 -68.27 107.37
C (gap)(glo) 6440 3.50 2.95 -3.57 9.71
C (gr) 5979 0.04 0.10 -0.63 2.23
C (gr)(glo) 6601 0.05 0.03 -0.03 0.14
C/GDP 6157 0.66 0.17 0.04 1.76
C/GDP (gap) 5841 2.87 205.36 -55.09 15656.46
C/GDP (gap)(glo) 6440 2.08 3.57 -3.17 9.43
C/GDP (glo) 6762 0.58 0.03 0.51 0.64
C/GDP (gr) 5999 0.00 0.09 -0.64 2.20
C/GDP (gr)(glo) 6601 -0.00 0.04 -0.08 0.09
Exchange Rate (n) 6197 301.52 1341.10 0.00 20509.75
Exchange Rate (n)(gap) 5881 14.69 42.79 -94.35 389.33
Exchange Rate (n)(gr) 6039 3.6e+05 2.8e+07 -0.96 2.2e+09
GDP (gap) 5821 3.35 12.31 -58.18 165.64
GDP (gap)(glo) 6440 2.18 4.31 -6.64 8.99
GDP (gr) 5979 0.02 0.06 -0.62 0.93
GDP (gr)(glo) 6601 0.03 0.03 -0.05 0.08
I (gap) 5821 12.62 278.75 -87.11 20011.98
I (gap)(glo) 6440 4.93 9.61 -24.69 21.98
I (gr) 5979 0.06 0.44 -25.24 12.63
I (gr)(glo) 6601 0.08 0.13 -0.24 0.61
I/GDP 6157 0.23 0.09 -0.01 1.13
I/GDP (gap) 5841 1.99 21.27 -85.42 383.85
I/GDP (gap)(glo) 6440 0.56 7.31 -27.57 10.69
I/GDP (glo) 6762 0.27 0.03 0.21 0.33
I/GDP (gr) 5999 0.02 0.51 -32.52 14.21
I/GDP (gr)(glo) 6601 0.02 0.11 -0.22 0.53
Inflation 5979 3.7e+05 2.9e+07 -0.45 2.2e+09
Inflation (glo) 6601 12671.34 80145.44 0.05 5.2e+05
LT Interest Rate (gap)(glo) 6440 -0.13 0.83 -2.13 1.75
LT Interest Rate (gap)(glo) 6279 -0.12 0.84 -2.10 1.80
LT Interest Rate (glo) 6601 5.85 3.04 1.54 12.73
LT Interest Rate (n)(glo) 6762 5.79 3.02 1.52 12.83
Loans (gap) 4936 14.44 149.33 -100.00 9615.57
Loans (gap)(glo) 6440 4.71 9.75 -20.19 29.17
Loans (gr) 5099 3.8e+06 2.7e+08 -1.00 2.0e+10
Loans (gr)(glo) 6601 326.77 2065.77 -0.17 13390.86
Loans/GDP 5294 10.00 0.99 7.43 15.29
Loans/GDP (gap) 4960 0.66 4.71 -23.28 40.09
Loans/GDP (gap) 6440 -0.36 2.46 -7.74 4.36
Loans/GDP (glo) 6762 10.21 2.06 3.25 13.78
Loans/GDP (gr) 5127 0.01 0.04 -0.31 0.58
Loans/GDP (gr)(glo) 6601 0.01 0.02 -0.07 0.05
Net Exports (gap) 5813 -4.94 1510.24 -5.0e+04 60853.19
Net Exports (gap)(glo) 6440 10.31 91.74 -254.37 260.84
Net Exports (gr) 5964 -0.33 17.49 -1002.06 321.87
Net Exports (gr)(glo) 6601 -0.55 3.63 -20.80 5.47
Net Exports/GDP 6157 -0.06 0.17 -2.34 0.82
Net Exports/GDP (gap) 5833 -7.08 3359.35 -1.6e+05 1.0e+05
Net Exports/GDP (gap)(glo) 6440 -98.12 941.21 -5760.65 1575.54

Continued on next page
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Table A2: Indicators, annual post-1970 sample (continued)

Indicator Obs. Mean S.D. Min Max

Net Exports/GDP (glo) 6762 -0.00 0.03 -0.05 0.06
Net Exports/GDP (gr) 5984 -0.34 16.79 -956.17 323.74
Net Exports/GDP (gr)(glo) 6601 -0.55 3.45 -19.72 5.38
Public Debt (gap) 4780 4.90 88.01 -100.00 4382.34
Public Debt (gr) 5009 0.07 0.27 -1.00 7.12
Public Debt (gr)(glo) 6601 0.08 0.22 -0.26 1.14
Public Debt/GDP 5388 62.18 65.19 0.00 2092.92
Public Debt/GDP (gap) 4913 7.20 158.25 -100.00 8135.19
Public Debt/GDP (gap)(glo) 6762 40.54 15.50 11.93 68.85
Public Debt/GDP (gap)(glo) 6440 3.00 16.65 -21.91 50.54
Public Debt/GDP (gap)(glo) 6440 3.00 16.65 -21.91 50.54
Real Exchange Rate 5883 130.80 604.90 0.00 14489.79
Real Exchange Rate (gap) 5581 16.66 41.07 -50.26 389.22
Real Exchange Rate (gr) 5732 3.9e+05 2.9e+07 -0.61 2.2e+09
ST Interest Rate (gap)(glo) 6279 -26.53 303.98 -696.23 1529.51
ST Interest Rate (glo) 6601 77.58 351.66 3.36 2278.75
ST Interest Rate (n)(gap)(glo) 6440 -25.78 300.19 -696.12 1529.66
ST Interest Rate (n)(glo) 6762 76.06 347.62 3.40 2278.90
Stock Prices (gap)(glo) 6440 61.01 71.81 -57.72 281.64
Stock Prices (gr)(glo) 6601 0.05 0.38 -1.08 1.01

Notes: (n) nominal; (gr) growth; (glo) global GDP-weighted average; (gap) percentage deviation from (one-sided) HP-trend ( λ =
1600).
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Table A3: Indicators, quarterly post-1970 sample

Indicator Obs. Mean S.D. Min Max

CPI 22279 65.27 59.65 0.00 2430.25
CPI (glo) 30960 58.60 41.91 9.88 171.58
Exchange Rate (n)(gap) 27866 4.16 51.78 -100.00 6907.62
Exchange Rate (n)(gr) 28051 14.76 2201.33 -1.00 3.7e+05
Foreign Liabilities (gap)(glo) 30600 23.76 43.45 -7.04 461.93
Foreign Liabilities (glo) 30960 215.68 159.83 16.88 807.14
Foreign Liabilities (gr)(glo) 30780 1.3e+06 1.7e+07 -0.07 2.2e+08
Foreign Liabilities (n)(gap)(glo) 30600 18.75 70.67 -5.16 918.87
Foreign Liabilities (n)(glo) 30960 6.6e+10 8.6e+11 61.98 1.1e+13
Foreign Liabilities (n)(gr)(glo) 30780 7.1e+06 7.8e+07 -0.04 1.0e+09
Foreign Liabilities/GDP (gap)(glo) 30600 0.15 1.92 -7.18 16.06
Foreign Liabilities/GDP (glo) 30960 10.00 0.32 9.23 13.09
Foreign Liabilities/GDP (gr)(glo) 30780 -0.06 0.72 -9.26 0.41
GDP (gap)(glo) 30600 114.90 497.82 -2079.58 4659.59
GDP (glo) 30960 7404.10 41252.75 -5.4e+04 2.8e+05
GDP (gr)(glo) 30780 0.26 6.27 -41.26 45.26
GDP (n)(gap)(glo) 30600 57.42 234.64 -603.37 1628.23
GDP (n)(glo) 30960 3.55 1.97 -3.68 11.47
GDP (n)(gr)(glo) 30780 0.33 6.18 -40.44 43.46
House Prices (gap)(glo) 30060 -0.00 2.88 -8.26 4.33
House Prices (glo) 30420 3.75 3.32 1.32 12.27
House Prices (gr)(glo) 30240 0.00 0.01 -0.04 0.05
House Prices (n)(gap)(glo) 30600 0.55 3.02 -6.65 10.21
House Prices (n)(glo) 30960 373.19 495.26 32.72 1603.55
House Prices (n)(gr)(glo) 30780 0.02 0.02 -0.03 0.13
Inflation 21866 0.04 0.35 -1.00 40.58
Inflation (glo) 30780 0.04 0.04 0.00 0.38
LT Interest Rate (glo) 30780 9.76 2.92 5.71 24.97
LT Interest Rate (n)(glo) 30960 10.69 3.38 5.84 32.91
LT Interest Rate Diff. (glo) 30780 -0.00 0.00 -0.00 0.00
LT Interest Rate Diff. (n)(glo) 30960 -0.00 0.00 -0.00 0.00
Loans 20266 1015.99 2947.06 0.00 61949.44
Loans (gap) 19775 20.82 1828.59 -88.54 2.6e+05
Loans (gap)(glo) 30600 16.96 136.05 -2.95 1779.97
Loans (glo) 30960 973.98 571.51 369.29 2594.73
Loans (gr) 19961 0.02 0.11 -1.00 3.74
Loans (gr)(glo) 30780 0.02 0.02 -0.01 0.07
Loans (n) 24234 2.0e+14 3.1e+16 0.00 4.8e+18
Loans (n)(gap) 23729 7.86 165.20 -100.00 24531.77
Loans (n)(gap)(glo) 30600 7.53 13.14 -0.86 167.15
Loans (n)(glo) 30960 1.7e+14 2.2e+15 539.40 2.9e+16
Loans (n)(gr) 23920 2.6e+07 4.1e+09 -1.00 6.3e+11
Loans (n)(gr)(glo) 30780 2.2e+07 2.9e+08 0.01 3.8e+09
Loans/GDP (gap)(glo) 30600 0.08 1.03 -4.61 4.84
Loans/GDP (glo) 30960 9.97 0.20 9.50 11.13
Loans/GDP (gr)(glo) 30780 0.00 0.25 -2.56 1.94
Real Exchange Rate (gap) 21563 0.08 2.25 -20.46 53.54
Real Exchange Rate (gr) 21760 0.00 0.02 -0.25 0.77
Reserves 20982 7.1e+11 2.1e+13 -1.07 9.8e+14
Reserves (gap) 20514 307.29 27492.34 -256.77 3.8e+06

Continued on next page
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Table A2: Indicators, quarterly post-1970 sample (continued)

Indicator Obs. Mean S.D. Min Max

Reserves (gap)(glo) 30600 310.91 2723.12 -8.43 34990.50
Reserves (glo) 30960 1.0e+12 2.6e+12 21.55 1.2e+13
Reserves (gr) 20719 0.03 0.66 -41.28 39.68
Reserves (gr)(glo) 30780 0.03 0.08 -0.49 0.42
Reserves (n) 25411 14489.74 96910.52 -35.40 3.5e+06
Reserves (n)(gap) 24975 13.42 379.33 -787.19 53967.28
Reserves (n)(gap)(glo) 30600 13.03 28.28 -10.11 320.63
Reserves (n)(glo) 30960 12554.25 15958.76 760.46 64814.01
Reserves (n)(gr) 25178 0.07 0.86 -44.34 59.68
Reserves (n)(gr)(glo) 30780 0.07 0.09 -0.21 0.48
Reserves/GDP (gap)(glo) 30600 0.07 1.17 -3.99 4.47
Reserves/GDP (glo) 30960 9.96 0.18 9.52 10.81
Reserves/GDP (gr)(glo) 30780 0.00 0.10 -1.18 0.45
ST Interest Rate (glo) 30780 5011.86 57413.27 3.61 7.5e+05
ST Interest Rate (n)(glo) 30960 4330.27 49689.00 3.59 6.5e+05
ST Interest Rate Diff. (glo) 30780 0.00 0.00 -0.00 0.01
ST Interest Rate Diff. (n)(glo) 30960 -0.00 0.00 -0.01 0.00
Stock Prices (gap)(glo) 30600 7.48 14.26 -41.12 62.00
Stock Prices (glo) 30960 0.60 0.28 0.25 1.65
Stock Prices (gr)(glo) 30780 0.01 0.07 -0.30 0.16
Stock Prices (n)(gap)(glo) 30600 9.95 60.50 -39.78 785.33
Stock Prices (n)(glo) 30960 610.50 6942.76 5.97 91265.20
Stock Prices (n)(gr)(glo) 30780 0.04 0.07 -0.29 0.29

Notes: (n) nominal; (gr) growth; (glo) global GDP-weighted average; (gap) percentage deviation from (one-sided) HP-trend ( λ =
1600).
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Table A4: Banking Crises and Variable Selection

Publication Method Domestic External Financial Fiscal

GDP CPI CA ER Bank Assets Money Stock Prices Interest
Rates

Public Debt

Sachs, Tornell,
and A. (1996)

OLS (/GDP gap) - (/GDP) (rer gap) (/GDP gap) - - - -

Caprio and
Klingebiel
(1996)

Fre-
quency

(r gap) - - - (r gap) - - - -

Brenda
González-
Hermosillo et al.
(1997)

Logit - - - (n gr) (r)
(/GDP)

- - (r) -

Demirgüç-Kunt
and Detragiache
(1998)

Logit (r gr) (gr) - (n gr) (/GDP)
(r gr)

(r) - - -

Detragiache and
Demirgüc-Kunt
(1998)

Logit (r gr) (gr) - (n gr) (r)
(/GDP)
(r gr)

(r) - (r) -

Eichengreen
and Rose (1998)

Probit (gr)
(r gr glo)

- (/GDP) (rer) (gr) - - (glo) (gap)

Hardy and
Pazarbasioglu
(1998)

Logit (r gr) (gr) - (rer gr) (/GDP gr) (/GDP gr) - (r) -

(1998) Event
Analysis

(r gr) (gr) (/GDP) (n gr)
(rer)

(/GDP) (r) (gr) - (gap /GDP)

Kaminsky
(1998)

Signals (r) - - (rer gap) (/GDP) (r)
(r gap)

(n) (r)
(r glo)

-

Brüggemann
and Linne
(1999)

Signals (gr) - - (gr rer) (gr /GDP) (gr) - (r) (r gr)

Gourinchas,
Valdes, and
Landerretche
(1999)

Descript-

ives

(r)
(gap)

(gr) (/GDP) (rer gap) (/GDP gap) - - (n)
(r glo)

(/GDP gap)

Gonzalez-
Hermosillo
(1999)

Logit
FE

(r gr) (n) - (n gr) (r) (/GDP) - - (r)
(r diff)

-

Hutchison and
McDill (1999)

Signals (r gr) (gr) - (n gr) (r gr) (r) (gr) (n gr)
(r gr)

(gap)

Continued on next page
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Publication Method Domestic External Financial Fiscal

GDP CPI CA ER Bank Assets Money Stock Prices Interest
Rates

Public Debt

Kaminsky and
Reinhart (1999)

Signals (gr) - (r) (rer gap) (/GDP) (r)
(r gap)

(gr) (r)
(r diff)

-

Lindgren (1999) Frequency - (gr) (gap /GDP) - (/GDP)
(r gr)

- (/GDP) - (/GDP gap)
(/GDP)

Rossi (1999) Logit,
FE

(r)
(r gr)

(gr) - - (r gr)
(/GDP)

- - (r) -

Demirguc and
Detragiache
(2000)

Logit (r gr) (gr) - (gr) (r gr) (r) - - -

Glick and
Hutchison
(2000)

Signals
Probit

(r gr) (gr) - (gr) - - - - -

Hawkins and
Klau (2000)

Indices - - - - (/GDP gr) (/GDP gap) - (r) -

Honohan (2000) Mean
comp.

- - - - (r)
(gr)

- - - (gap)

Goldstein,
Kaminsky, and
Reinhart (2000)

Signals (r gr) - (gr) (rer gap) (/GDP gr) (r gap)
(r gr)
(gr)

(gr) (r)
(diff)

(/GDP)
(gr)
(gap /GDP)

Bordo et al.
(2001)

Logit (r)
(r gr)

(gr) - - - (r) - - (r gap)

Borio and Lowe
(2002)

Signals - - - (r gap) (/GDP gap) - (r gap) - -

Eichengreen
and Arteta
(2002)

Probit (gr)
(r gr glo)

- (/GDP) (rer gap) (gr) - - (glo) (gr /GDP)

Hutchison
(2002)

Probit (r) (gr) - (gr) - - - - -

Mendis (2002) Logit
FE
IA

(r gr) (gr) - (rer) (/GDP) (r gr) - (n) (/GDP gap)

Borio and Lowe
(2004)

Signals (r gap) - - - (/GDP gap) (/GDP gap) (r gap) - -

Demirguc-Kunt
and Detragiache
(2005)

Logit (r gr) (gr) - (n gr) (/GDP)
(r gr)

(r) - - -

Davis and
Karim (2008a)

Signals
Logit

(gr)
(r gr)

(gr) (r) (rer gap)
(n gr)

(/GDP)
(/GDP)
(r gr)

(r)
(r gap)

(gr) (r)
(r diff)

-

Davis and
Karim (2008b)

Logit,
CT

(r gr) (gr) - (n gr) (/GDP)
(r gr)

(r) - (r) -

Continued on next page
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Publication Method Domestic External Financial Fiscal

GDP CPI CA ER Bank Assets Money Stock Prices Interest
Rates

Public Debt

Borio and
Drehmann
(2009)

Signals - - - - (/GDP gap) - (r gap) - -

Schularick and
Taylor (2011)

OLS
Logit,
FE

- (gr) - - (r gr)
(r gap)
(/GDP)

(r gr) (r)
(r gr)

(r)
(n)

-

Jordà, Schular-
ick, and Taylor
(2011)

Logit (r) (gr) (/GDP)
(gr /GDP)

- (gr /GDP) - (r gr) (r)
(n)

-

Alessi and De-
tken (2011)

Signals (r gap)
(r gr)

(gr)
(gap)

- (rer gap)
(rer gr)

(r glo gap)
(/GDP gap)
(r gr)
(r gap)

(r gap)
(r gap glo)
(r gr)
(/GDP gap)

(r gap)
(/GDP gap)

(n gap)
(n)
(glo gap)
(r gap)
(r)
(r glo)

-

Casu, Clare,
and Saleh (2011)

Signals - - - - (gr gap)
(/GDP gap)
(n gap)

- (n gap) (n gap) -

Duttagupta and
Cashin (2011)

CT (r gr) (gr) (r) (n gr) (r gr) (r) - (r) -

Gourinchas and
Obstfeld (2011)

Logit (r gap) - (/GDP) (rer gap) (/GDP) - - - (/GDP)

Drehmann and
Juselius (2012)

Signals - - - - (/GDP gap) - - (/GDP) -

Frankel and Sar-
avelos (2012)

OLS
Probit

(r)
(r gr)
(r gr gap)

(gr gap) (r)
(/GDP)

(rer gap) (gr /GDP) (r gap) (r gap) (r) -

Eicher,
Christofides,
and Papageor-
giou (2012)

BMA (r)
(r gr)
(r gr gap)

(gr gap) (r)
(/GDP)

(rer gap) (gr /GDP) (r gap) (r gap) (r) -

Hahm, Shin,
and Shin (2012)

Probit
RE

(r gr glo) (gr) - - (/GDP gap) (r) - (glo) -

Drehmann
(2013)

Signals - - - - (/GDP gap) - - - -

Jordà (2013) Logit
IA, FE

- - (/GDP gap) - (/GDP gap) - - (n) (/GDP gap)

Drehmann and
Juselius (2013)

Signals (r gr) - - - (r gr)
(/GDP gap)

(r) (n gr)
(gap)

(r) -

Notes: (r) real; (n) nominal; (gr) growth; (glo) global GDP-weighted average; (gap) percentage deviation from (one-sided) HP-trend ( λ = 1600); CT Classification Tree; IA
Interaction Terms; FE Fixed Effects; RE Random Effects; BMA Bayesian Model Averaging; MIMIC Multiple Indicator Multiple Cause Model. There is an overlap between 3rd
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generation currency crises and banking crises, also termed twin crises. Publications on these 3rd generation currency crises have been included in the table if they exhibit a
focus on the banking crisis aspect. The table does not list all variables the authors use in each publication. Instead I mapped the variables into the variable systematization I
use throughout this article. The focus is on macroeconomic predictors (see Gavin and Hausmann, 1996) while microeconomic, (e.g. González-Hermosillo, 1996; Caprio and
Klingebiel, 1996; Gonzalez-Hermosillo, 1999), political or institutional (see Acemoglu et al., 2003) factors are not listed in the table. Also, interaction terms between any two
variables included in the table are not made explicit. In some cases the mapping is rather coarse. For example, non-core liabilities (Hahm, Shin, and Shin, 2012) are listed as a
real monetary variable in table A4.The main aim of the table is to give an impression of the variability and selectivity in - and not an exact overview of - variable selections in the
literature on banking crises.
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