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ABSTRACT 
 
Intense climate-related disasters—floods, storms, droughts, and heat waves—have been on the rise 
worldwide. At the same time and coupled with an increasing concentration of greenhouse gases in the 
atmosphere, temperatures, on average, have been rising, and are becoming more variable and more 
extreme. Rainfall has also been more variable and more extreme.   
 
Is there an ominous link between the global increase of these hydrometeorological and climatological 
events on the one side and anthropogenic climate change on the other? This paper considers three 
main disaster risk factors—rising population exposure, greater population vulnerability, and increasing 
climate-related hazards—behind the increased frequency of intense climate-related natural disasters. 
 
In a regression analysis within a model of disaster risk determination for 1971–2013, population 
exposure measured by population density and people’s vulnerability measured by socioeconomic 
variables are positively linked to the frequency of these intense disasters.  Importantly, the results show 
that precipitation deviations are positively related to hydrometeorological events, while temperature 
and precipitation deviations have a negative association with climatological events.  Moreover, global 
climate change indicators show positive and highly significant effects.   
 
Along with the scientific association between greenhouse gases and the changes in the climate, the 
findings in this paper suggest a connection between the increasing number of natural disasters and 
man-made emissions of greenhouse gases in the atmosphere. The implication is that climate 
mitigation and climate adaptation should form part of actions for disaster risk reduction.  
 
 
 
 
Keywords: climate, climate hazards, government policy, natural disasters, sustainable development 
 
JEL classification: C22, Q54, Q56, Q58 
 



 

I. INTRODUCTION 
 
The first half of this decade will be ostensibly remembered for deadly climate-related disasters; among 
them, the great floods in Thailand in 2011, Hurricane Sandy in the United States (US) in 2012, and 
Typhoon Haiyan in the Philippines in 2013.  The year 2014 was the Earth’s warmest in 134 years of 
recorded history (NASA, GISS 2015). It is hydrometeorological (floods, storms, heat waves) and 
climatological disasters (droughts, wildfires) rather than geophysical ones (earthquakes, volcanic 
eruptions) that are on the rise.  
 
 The global increase in intense floods, storms, droughts, and heat waves has a likely and 
ominous link to climate change. There is a growing literature on the evidence linking anthropogenic 
climate change with natural disasters.1 Drawing attention to these climate-related disasters, arguably 
the most tangible manifestation of global warming, could help mobilize broader climate action. And it 
could influence the directions taken for economic growth worldwide and pave the way to a much-
needed switch to a path of low-carbon, green growth.   
 
 In the last 4 decades, the frequency of natural disasters recorded in the Emergency Events 
Database (EM-DAT) has increased almost three-fold, from over 1,300 events in 1975–1984 to over 
3,900 in 2005–2014 (Figure 1). The number of hydrological and meteorological events increased 
sharply during this period, with the annual number of Category 5 storms tripling between 1980 and 
2008 (ADB, IED 2013).2  Although the causal relationship between climate change and natural 
disasters is not fully understood, we are still faced with the fact that the frequency of climate-related 
natural disasters is rising.  
 

Figure 1: Global Frequency of Natural Disasters by Type 
(1970–2014) 

 

 
Source: Authors’ estimates based on data from the Emergency Events Database (EM-DAT) of the 
Centre for Research on the Epidemiology of Disasters. http://www.emdat.be (accessed 5 March 2015). 

                                                            
1  See Thomas, Albert, and Perez (2013) for a more detailed discussion of the related literature.  
2  Category 5 storms are the most severe and refer to hurricanes with maximum sustained wind speeds exceeding 249 

kilometers per hour (kms/h). 
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 Since 2000, over 1 million people worldwide have died from natural disasters, with the cost of 
damage estimated at over $1.7 trillion (Guha-Sapir, Below, and Hoyois 2015). However, clear trends 
should not be expected in natural disaster impacts. One extreme weather event like Category 5 
Hurricane Sandy will muddle trends and break existing records for damages. 
  
 From 1970 to 2008, over 95% of deaths from natural disasters occurred in developing 
countries (IPCC 2012). In the decade 2000–2009, a third of global natural disasters and almost 80% 
of deaths occurred in the 40 countries that received the most humanitarian aid (Kellet and Sparks 
2012).   
 
 The number of people affected by natural disasters has also been increasing. This is 
particularly true for hydrological disasters. Before the 1990s, 5-year averages did not reach 50 million 
people. This figure doubled after the 1990s, and was mostly over 100 million until 2014 (Figure 2).   
 

Figure 2:  People Affected by Natural Disasters: Global Trends  
(1970–2014) 

 

 
Note: The number of people affected is based on a 5-year moving average. 
Source: Centre for Research on the Epidemiology of Disasters. Emergency Events Database (EM-DAT). 
http://www.emdat.be (accessed 5 March 2015). 

 
 Global damage from natural disasters has been steadily increasing, reaching about $142 billion 
annually in the last 10-year period (2005–2014), a steep increase from $36 billion a year two decades 
ago (1985–1994) (Guha-Sapir, Below, and Hoyois 2015).  
 
 Without adaptive measures, disaster damages are expected to rise to $185 billion a year from 
economic and population growth alone (World Bank and United Nations 2010). Probabilistic risk 
models estimate that the global average annual loss from earthquakes, tsunamis, cyclones, and 
flooding are now $314 billion (UNISDR 2015). These estimates would be even higher if climate change 
and urbanization were incorporated.  
 

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

M
illi

on
s

Hydrological Meteorological Climatological Geophysical



Global Increase in Climate-Related Disasters   |   3 

 This study explores whether there is a significant relationship between climate change and the 
global increase in the frequency of intense natural disasters. As in Thomas, Albert, and Perez (2013), 
this paper considers the three main disaster risk factors—rising population exposure, greater 
population vulnerability, and increasing climate-related hazards—behind the global increase in 
frequency of intense natural hazards.  
 
 One important difference from previous work is that our empirical analysis is done in a global 
context covering 157 countries. Our empirical estimation also controls for two-way fixed effects which 
allows estimation of common-to-all global effects (over time) in addition to effects that are particular 
to a country.  Controlling for global time effects is very important as climate phenomena in a country 
may be a response to global and regional climate changes on top of local temperature and precipitation 
changes. In addition, our analysis is extended to determine whether a relationship exists between 
global climate change indicators—accumulated  stocks of atmospheric carbon dioxide (CO2) and 
average sea temperature—and the number of global natural disasters.  
 
 Section II presents the trends and characteristics of natural disaster risk factors and is based on 
the Intergovernmental Panel on Climate Change (IPCC) disaster risk framework. It also establishes the 
analytic framework, which is built on the idea that natural disaster risk is influenced by hazards, 
people’s exposure to those hazards, and people’s vulnerability to their effects. Section III discusses the 
empirical framework and examines how the risk of intense climate-related disasters may be related to 
demographic and socioeconomic factors, climate anomalies, and global climate change indicators. It 
notes the significance of global effects over and above local country effects and finds that these effects 
have become worse throughout the time period considered. The final section presents conclusions. 
 
 

II. RISING TRENDS AND THEIR CHARACTERISTICS 
 
The IPCC (2014a) disaster risk framework sets out three linkages involving climate-related disasters. 
First, greenhouse gas (GHG) emissions alter atmospheric GHG concentrations and thus affect climate 
variables, specifically temperature and precipitation (IPCC 2007). Second, changes in the climate 
variables affect the frequency of climate-related hazards (IPCC 2012). Third, the frequency of climate-
related hazards affects the risk of natural disasters (IPCC 2012, Stott et al. 2012).  
 

Climate-related disaster risk is defined as the expected value of losses, often represented as 
the likelihood of occurrence of hazardous events multiplied by the impacts (effects on lives, 
livelihoods, health, ecosystems, economies, societies, cultures, services, and infrastructure), if these 
events occur.  Disaster risks result from the interaction of three elements: (i) the hazard itself, (ii) the 
population exposed to the hazard (exposure), and (iii) the community’s ability to withstand its impact 
(vulnerability) (Peduzzi et al. 2009; Thomas, Albert, and Perez 2013). 

 
The anatomy of risks reveals the natural variability of hazards and also the various entry points, 

approaches, and considerations in managing climate-related disaster risks. Collective decisions and 
actions to reduce GHG emissions can slow anthropogenic climate change and its impacts.  Individual 
and collective decisions and actions of people and societies also influence vulnerability and exposure. 

 
A. Anthropogenic Link to Climate-Related Hazards 
 
Since Fourier in 1824 and Tyndall in 1864, scientists have been studying the extent to which human-
induced GHG emissions cause changes in the climate. While some argue that the effects of the 
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dynamic interplay of all the underlying climate change variables are difficult to model and predict, the 
evidence is that the rise in global average surface temperature from 1951 to 2010 was caused by the 
anthropogenic increase in GHG concentrations (IPCC 2013).  

 
The IPCC (2014b) confirms the Earth’s warming atmosphere and oceans, diminishing snow 

and ice, and rising sea levels, among other changes. The 3 decades starting from 1983 were likely the 
warmest period in the last 1,400 years in the northern hemisphere. Greenland and the Antarctic ice 
sheets have been losing mass and, worldwide, glaciers are shrinking (IPCC 2013).  

 
There is also a consensus in the published research. Of the more than 10,000 published 

research studies on climate from 1991 to 2011, 97% of the studies that express a position on 
anthropogenic global warming endorse it (Cook et al. 2013). In another study of 928 abstracts in 
refereed journals from 1993 to 2003, none of the evaluated papers disagreed that human-induced 
climate change had taken place (Oreskes 2004).     

 
1. Greenhouse Gas Concentrations and Global Warming 

 
Warming of the atmosphere and the ocean, changes in the global water cycle, reductions in snow and 
ice, the rising global mean sea level, and changes in some climate extremes are already being observed 
as GHG concentrations in the atmosphere continue to rise.  

 
Humans are emitting GHGs into the Earth’s atmosphere at a substantial and increasing rate—

currently over 30 billion tons of CO2 a year, along with a range of other GHGs such as methane (CH4) 
and nitrous oxide (NO2) (US EPA 2014). As a result of these emissions, GHG concentrations in the 
atmosphere have also been rising consistently, as have global surface temperatures (Figure 3).  

 

Figure 3: CO2 Atmospheric Concentrations at Mauna Loa  
and Global Annual Temperature Anomaly (1959–2014) 

 

 

°C = degrees Celsius, CO2 = carbon dioxide, ppm = parts per million. 
Notes: The carbon dioxide data measured in ppm on Mauna Loa, a volcano in Hawaii, constitute the 
longest record of direct measurements of carbon dioxide in the atmosphere. Global annual mean surface 
air temperature change, in degrees Celsius, base period 1951–1980. 
Sources: NASA, GISS 2015; Tans, NOAA/ESRL 2015; Keeling 2015. 
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Scientists consider 450 parts per million (ppm) to be the threshold above which it will be 
difficult, if not impossible, to limit a temperature increase to 2°C relative to 1850–1900 levels. 
However, atmospheric CO2 concentrations have already surpassed 400 ppm for 3 successive months 
in 2014. The first 5 months of 2015 averaged 401 ppm CO2. If CO2 concentrations continue to increase 
at a little over 2 ppm annually, as they did during 2005–2014 (Tans, NOAA/ESRL 2015; Keeling 2015), 
the planet will exceed the 450 ppm mark in a quarter of a century. Moreover, temperature increases of 
2°C above 1850–1900 levels could lead to dangerous feedback effects, such as the collapse of the 
Amazon ecology or thawing of permafrost (Stern 2013). A large fraction of the anthropogenic climate 
change resulting from CO2 emissions and ice sheet mass loss is irreversible on a multicentury to 
millennial time scale (IPCC 2013).  

 
Increased concentrations of GHGs in the atmosphere are expected to trap more heat on Earth 

and to lead to a gradual increase in global average temperatures. Land and ocean temperature data 
show a 0.85 °C increase over 1880–2012—a warming that is extremely likely due to human influence, 
particularly anthropogenic GHG emissions. The 10 hottest years on record since 1880 all occurred 
after 1997, topped by 2014 (NOAA, National Climatic Data Center 2015). For the 38th consecutive 
year, average annual temperatures are above the long-term average.   

 
Detection and attribution analysis suggests that increases in global mean surface temperature 

were extremely likely to have been caused by anthropogenic GHG emissions. Several studies have 
identified and have sought to separate the different sources of global mean surface temperature 
variability (Figure 4) (IPCC 2013).  

 

Figure 4: Contributions to Global Mean Temperature Change (1890–2010) 
 

 

°C = degrees Celsius, AMO = Atlantic Multi-decadal Oscillation, ENSO = El Niño-Southern Oscillation.  
Source: IPCC 2013. 
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Internal variability brought about by the Atlantic Multi-decadal Oscillation and the El Niño-
Southern Oscillation have been found to be too small to have contributed to the relatively large 
observed warming since 1950. Similarly, the contribution of solar variability has been minimal and 
cannot have caused the rising temperatures. While several factors have contributed to the yearly and 
decadal variability of global mean surface temperatures, studies have consistently attributed most of 
the warming over the past 50 years to anthropogenic influence. 
 

2. Global Warming and Climatic Events 
 
Detailed studies of the 2003 European heat wave and the wintertime droughts in the Mediterranean 
region (1902–2010) confirm that human-induced climate change played a role in magnifying the 
likelihood of these hazards occurring (Stott, Stone, and Allen 2004; Hoerling et al. 2012). The global 
record high temperature of 2014, driven by human activities, exacerbated the California 2012–2014 
drought by 36%, making it the worst recorded drought in the past 1,200 years (Nuccitelli 2014).3 

 
Human-induced climate change has also been linked to the increase in heat waves (Coumou 

and Rahmstorf 2012). There is evidence to conclude with 80% probability that the 2010 Moscow heat 
waves that killed 11,000 people would not have occurred without human-induced climate warming 
(Rahmstorf and Coumou 2011).   

 
Evidence of anthropogenic GHG emissions contributing to the observed intensification of 

precipitation events was found in two-thirds of the northern hemisphere regions (Min et al. 2011). 
Atmospheric thermodynamics explain that the moisture-holding capacity of the atmosphere is largely 
influenced by temperature and pressure, and that warmer atmospheres have larger saturation vapor 
content. The median intensity of extreme precipitation increases with near-surface temperature at a 
rate of 5.9%–7.7% per degree (Westra, Alexander, and Zwiers 2013). This could reach as high as 14% 
per degree when daily mean temperatures exceed 12°C. Even precipitation extremes that last for a 
short time can cause local flooding, erosion, and water damage (Lenderink and van Meijgaard 2008).  

 
Climate change models indicate that the risk of floods occurring in England and Wales in 

autumn 2000 was higher by at least 20% due to 20-century anthropogenic GHG emissions (Pall et al. 
2011). Case studies on three catchment regions in southeastern Australia show that a doubling of CO2 
levels would increase the frequency and magnitude of flood events with significant building damage 
(Schreider, Smith, and Jakeman 2000). Records from Japan’s automated meteorological stations 
situated all over the country show that the number of precipitation events exceeding 50 millimeters 
per hour and 80 millimeters per hour increased from the 1970s to 2013 (Japan Meteorological Agency 
2014). 

 
Dry areas are generally becoming drier and wet areas becoming wetter. With warming, more 

precipitation falls as rain instead of snow and snow melts earlier, further increasing the risk of runoff 
and flooding (Trenberth 2011).  

 
Studies predict that a doubling of atmospheric CO2 concentrations will triple the number of 

Category 5 storms (Anderson and Bausch 2006); and that for every 1°C rise in global temperature, the 
frequency of events of the magnitude of Hurricane Katrina will increase by at least two times, and 

                                                            
3  Reconstructing drought conditions, the study finds that the 2014 California drought was the most severe drought in the 

past 1,200 years based on the Palmer Drought Severity Index, which estimates soil moisture.  



Global Increase in Climate-Related Disasters   |   7 

possibly by as much as seven times (Grinsted, Moore, and Jevrejeva 2013). Climate models project a 
3% to 5% increase in wind speed per degree Celsius increase in tropical sea surface temperatures 
(WMO 2006), while some projections indicate that the intensity of tropical cyclones will increase by 
2%–11% by 2100 (Knutson et al. 2010).4 With climate change, global losses from hurricanes may 
double (Hallegatte 2012). 

 
Since the 1970s, the potential destructiveness of hurricanes has increased considerably and 

this has been shown to be highly correlated with tropical sea surface temperature. With storm lifetimes 
and intensities increasing by at least 50%, hurricane power dissipation has more than doubled in the 
Atlantic and increased by 75% in the Pacific (Emanuel 2005). 

 
The rise in sea surface temperatures is the "main determinant of the strength of storms, the 

total column water vapor and the convective available potential energy” (Trenberth 2005). Hurricane 
Sandy—the deadliest and most destructive hurricane of the 2012 Atlantic hurricane season—was 
fueled by unusually warm ocean waters. Sandy produced storm surges almost 6 meters high, resulting 
in massive flooding that shut down the Port of New York and New Jersey for 5 days (Sturgis, Smythe, 
and Tucci 2014).  

 
Typhoon Haiyan which hit the Philippines in November 2013 formed when the sea surface 

temperature of the Pacific Warm Pool Region was at its highest (based on records since 1981). The sea 
surface temperature of the West Pacific Region was also elevated. The main trepidation, however, 
concerns the significant and positive increasing trend of 0.2°C per decade of the sea surface 
temperatures of both regions, given the correlation between sea surface temperatures and maximum 
winds of typhoons (Comiso, Perez, and Stock 2015).  

 
From 1975 to 2004, global hurricane data reveal that Category 4 and 5 hurricanes have almost 

doubled in number, from 50 every 5 years in the 1970s, to almost 90 every 5 years in the 2000s 
(Webster et al. 2005). The number of the weakest storms (Category 1) decreased over this period.  

 
Global warming is also projected to increase sea levels (NOAA, AOML 2015). As the sea level 

rises, the potential for storm surges to move further inland increases. A coastal storm surge drives large 
volumes of water ashore at high speed and with immense force.  

 
The El Niño-Southern Oscillation will remain the dominant mode of yearly variability in the 

tropical Pacific, with global effects (IPCC 2013). But a consensus is emerging that the overall frequency 
of various extreme events will continue to rise due to anthropogenic global warming. The convergence 
of anthropogenic factors and natural variability in extreme events could be catastrophic. For instance, 
the increase in moisture availability is likely to intensify El Niño-related regional precipitation 
variability.    

 
 
 

                                                            
4  Tropical cyclones are areas of low atmospheric pressure over tropical and subtropical waters with a huge, circulating mass 

of wind with speeds of at least 119 kms/h, and thunderstorms with spans of hundreds of kilometers. Aside from destructive 
winds, tropical cyclones can bring torrential rain, storm surges, and tornadoes that can ruin population centers, agricultural 
land, and metropolises. About 80 tropical cyclones form every year from seven tropical cyclone basins: Atlantic, 
Northeast Pacific, Northwest Pacific, North Indian, Southwest Indian, Southeast Indian, and Southwest Pacific (NOAA 
AOML 2015). 
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B. Population Exposure and Vulnerability 
 

Exposure is the presence of people, livelihoods, ecosystems, environmental services, resources, 
infrastructure, and economic, social, and cultural assets in places and settings that could be adversely 
affected by natural hazards.    

 
People living along cyclone tracks and near the coasts of cyclone basins expect these yearly 

events. Similarly, people living in low-lying coastal areas and floodplains susceptible to monsoon 
flooding are used to heavy seasonal rains. But more people and industries are now settling in these 
hazard-prone areas, putting themselves in harm’s way.  

 
Clearly, a climate-related hazard is unlikely to create a disaster if it strikes where there are no 

communities or economic activity. So an intense storm in a sparsely populated area will pose less risk 
than a moderate storm in a densely populated city.   

 
While there is no homogenized dataset of global tropical cyclone landfalls, there is evidence 

that the increasing economic damage from tropical cyclones in recent years may be explained by the 
increasing wealth in locations prone to these cyclones, rather than by the increasing frequency or 
intensity of cyclones (Weinkle, Maue, and Pielke 2012). Some suggest that, even without human-
induced climate change, tropical cyclone losses and damage may double just because of increasing 
incomes (Mendelsohn et al. 2012).  

 
Data from the reinsurance industry suggest that societal change—population and wealth—is 

sufficient to explain increasing disaster losses (Mohleji and Pielke 2014). An analysis of 22 disaster-loss 
studies suggests that if increases in population and capital were included in the disaster-loss equations, 
no loss trends can be attributed to human-induced climate change (Bouwer 2011). Some argue this 
may be especially true for rising urban centers with their increasing populations and the infrastructure 
buildup (The Economist 2012). Others suggest there are no significant trends in disaster loss and 
damage (Okuyama and Sahin 2009, Neumayer and Barthel 2010), as shown in hurricane losses and 
damages in the US from 1900 to 2005 (Pielke et al. 2008).  

 
Clearly, exposure is a big factor in disasters. Strong economic considerations drive that 

exposure. Communities and industries are built in flood-prone coastal areas because of the economic 
opportunities and services these areas provide, such as harbors and ports, livelihoods, and 
transportation. The infrastructure and market access of these areas offer comparative advantages 
which become more persuasive as economies become more global. An example of this is the number 
of megacities in regions at risk of flooding—particularly Dhaka, Kolkata, Manila, Mumbai, and 
Shanghai—suggesting people are making an economic judgment to establish lives and businesses in 
these areas despite the inherent risks.  

 
With these megacities becoming national and regional growth centers, agglomeration 

economies set in, further increasing investments, in-migration, and population density. A continuing 
rise in human and economic exposure in high-risk megacities cannot be discounted. By 2030, 
Shanghai’s current 23 million population is expected to rise to 31 million, and it is estimated that Dhaka 
will add another 10 million to its present 17 million population (UN DESA 2014). Understanding the 
economic decisions that have led to this situation—of more people living in harm’s way—is necessary 
if the exposure dimensions of risks are to be managed.  
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Not all people and assets will be affected by hazards such as flooding and cyclones in the same 
way. Differences in physical, behavioral, and economic characteristics influence the propensity of 
people and assets to be harmed, and the lack of capacity to cope and adapt. A multidimensional 
concept, vulnerability to climate change, is a function of nonclimatic determinants such as wealth and 
other demographic and socioeconomic factors (Füssel and Klein 2006).  

 
There are opposing forces affecting people’s vulnerability. On the one hand, environmental 

degradation has rendered many locations increasingly vulnerable to floods and storms. On the other, 
there has been progress in disaster risk management. With more accurate forecasting, improved early 
warning systems, and better evacuation procedures in place, fatalities from such events have fallen, 
despite their rising occurrence and damages.  

 
The success of Bangladesh’s cyclone warning system is a good example. After Cyclone Bhola, 

with wind speeds of 200 kilometers per hour (kms/h), killed over 500,000 people in 1970, Bangladesh 
invested $10 billion on cyclone readiness. With the country equipped with early warning systems, 
disaster-resilient shelters, and embankment protection, Cyclone Sidr in 2007, with wind speeds of 250 
kms/h, led to a much lower death toll of 10,000 (Thorlund and Potutan 2015). 

 
Vulnerability, like exposure, is also influenced by socioeconomic factors. The exposure–

vulnerability links are quite strong, and both can either act independently or simultaneously, often 
creating synergies or even creating a cycle of increasing or decreasing risk.  

 
Natural hazards are income-blind, affecting both developed and developing countries. But 

poorer economies are hit harder. Studies have shown how fatality rates and economic impact, and 
losses as a proportion of gross domestic product (GDP), are higher in developing countries (IPCC 
2012) because of the higher share of impoverished populations in vulnerable urban zones, weak 
infrastructure, lack of basic facilities, and limited government capacity.  

 
Poorer economies are more vulnerable because a higher share of their populations lives in 

marginalized urban areas with poor infrastructure. Weak government capacity and lack of basic 
facilities also increase susceptibility to disasters. Flash floods commonly cause more fatalities in poorer 
communities than in more affluent areas. Poorer segments of the population with scant resources 
often end up in the higher risk peripheral areas, and have less well-built homes. When disaster strikes, 
the poor are often left with even less resources. And when livelihoods are affected, losses are further 
amplified, leaving people even more vulnerable.  

 
This was vividly demonstrated in 2013 by Typhoon Haiyan, which struck the eastern Visayas, 

one of the poorest regions of the Philippines. Here, four out of every 10 families are poor (PSA 2013). 
While damage from natural disasters in that year cost the country roughly 0.9% of its national product, 
Haiyan-related losses amounted to 17.4% of regional product in the eastern Visayas (NEDA 2013). 
With very little coping capacity, many Haiyan victims are still living in tents some 18 months after the 
disaster. 

 
Evidence also shows that higher educational attainment and literacy are associated with better 

disaster management and adaptive capacity (Brooks, Adger and Kelly 2005, Toya and Skidmore 
2007). 
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Gender is also relevant. In the case of the 2004 Asian tsunami, there were more female deaths 
than males. Across age groups, children below 10 years and adults above 40 years are found to be most 
vulnerable (Birkmann, Fernando and Hettige 2007). 

 
Adaptive capacity is associated with levels of governance and civil and political rights (Brooks, 

Adger, and Kelly 2005). Countries with strong institutions (such as a strong finance sector), openness 
to trade, and higher levels of government spending were found to be able to better withstand initial 
disaster shocks (Kahn 2005, Noy 2008, Toya and Skidmore 2007).  

 
It is vital that institutional and adaptive capacity is strengthened in cities where these are weak, 

but that are highly susceptible to flooding, storm surges, and tropical cyclones. Dhaka, a city regarded 
as being at extreme risk from climate change, is a case in point.  

 
C. The Climate–Disaster Link 
 
Climate change is not a necessary or a sufficient condition for disasters to occur. Mechanisms that link 
climate change and natural hazards cannot be held solely responsible for long-term trends in disaster 
losses adjusted for increases in wealth and population (Watson 2010). The association between 
climate change and the loss of lives and damages due to natural disasters is another point of scientific 
controversy. The debates linger even in cases where the climate–disaster link seems to be clearly 
evident. Some have argued that with data heterogeneity, trends, and attribution to anthropogenic 
climate forcing are extremely difficult to ascertain (Kunkel et al. 2013).  

 
Several studies have found that income, education, and institutions shape vulnerabilities and, 

subsequently, natural disaster impacts (Brooks, Adger, and Kelly 2005; Kahn 2005; Noy 2008; 
Rentschler 2013; Kellenberg and Mobarak 2008). Thomas, Albert, and Hepburn (2014) examined the 
importance of climate hazards (measured by climate anomalies) as a determinant of disaster risk in 
Asia and the Pacific, along with population exposure and vulnerability. Unlike previous econometric 
analyses, the authors examined the frequency of intense natural disasters as the dependent variable 
because it is less likely to have a reporting bias than the alternatives. Their results suggest that rising 
population exposure and greater climate variability play significant roles in explaining the frequency of 
climate disasters in the region.  

 
Hydrometeorological disasters are strongly and positively associated with rising population 

exposure as well as precipitation anomalies, while climatological disasters are strongly associated with 
changing temperatures. Even after controlling for the effect of population exposure and vulnerability, 
climate factors have been a significant factor in the rise in frequency of intense hydrometeorological 
disasters in Asia and the Pacific in the past 4 decades, clearly linking climate change to disaster risks.   
 

The evidence that it is very likely that the rising incidence of GHG emissions in the atmosphere 
is altering the climate system, the findings suggest a connection between the frequency of intense 
natural disasters observed in the region and human-induced climate change. Cyclone Nargis in 
Myanmar and Hurricane Sandy in the US are clear indications that both developing and developed 
countries face climate-related disaster risks.  
 

Deaths, injuries, displacements, damage, and overall disaster impact are affected by hazard 
intensity, exposure, and vulnerability. Awareness, preparedness, technological progress, and disaster 
risk reduction have clearly reduced deaths from comparable hazards. But damage from comparable 
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events is greater in developed countries, indicating their higher-valued assets and structures, and the 
higher cost of rebuilding.  

 
Climate change has already damaged the poorest and most vulnerable countries. Scientific 

evidence confirms the Earth’s warming atmosphere and loss of glacier mass and ice sheets. Evidence 
has also shown that it is extremely likely that both are caused by anthropogenic GHG emissions.  

 
 

III. ECONOMETRIC ANALYSIS 
 
In this section, we examine statistically the role played by the three principal elements of natural 
disaster risk. The variable sought to be explained is the incidence of disasters, which is represented 
here by the number of disasters causing a minimum number of deaths or people affected (that is, 
requiring immediate assistance with basic survival needs such as food, water, shelter, sanitation, or 
medical assistance) in a given period. There are other measures too, for example, the level of damages 
in US dollars. However, measuring the impact of natural disaster in monetary terms involves a number 
of data issues, chiefly regarding accuracy, because of the lack of standards for comparable estimation 
across economies or across disasters within an economy.  
 
A. Data and Method  
 

1. Determinants of Climate-Related Disasters: Zero-Inflated Count Models 
 
We develop econometric estimations using annual data on disasters for a sample covering most 
countries in the world. The model considers count data of disasters by country ݅	and year ݐ for 1970–
2013.5  The dependent variables are the annual frequency of intense hydrometeorological disasters 
 that cause at least 100 deaths (௧ܥ) and the annual frequency of intense climatological disasters (௧ܪ)
or directly affect at least 1,000 people. Intense hydrometeorological disasters relate to floods and 
storms, while climatological disasters relate to droughts and wild fires.  
 

The explanatory variables include	 ܹ௧: average precipitation deviation in the country6 
(measured as departures from the average for its 30-year base climatology period 1961–1990), 	ܼ௧: 
average surface temperature deviation in the country7 (measured as departures from the average for 
its 30-year base climatology period 1961–1990), and ࡳ௧:	global climatic change indicators including 
carbon dioxide accumulation in the atmosphere and sea temperature deviations from trend.8 

                                                            
5  Data for the disaster variables are from EM-DAT (Guha-Sapir, Below, and Hoyois 2015). EM-DAT reports events causing 

at least 10 deaths, affecting at least 100 people, or prompting a declaration of a state of emergency or a call for 
international assistance.  As in Thomas, Albert, and Perez (2013) and Thomas, Albert, and Hepburn (2014), we 
considered disasters that cause at least 100 deaths or directly affect at least 1,000 people because this approach is less 
likely to have a reporting bias. 

6  We use the centennial Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis (Version 7.0) of monthly 
global land-surface precipitation based on the 75,000 stations worldwide that feature record durations of 10 years or 
longer. The monthly totals used in this study are on a regular grid with a spatial resolution of 1.0°x1.0° latitude by longitude 
(Schneider et al. 2015). 

7  Based on HadCRUT3v (variance adjusted version), a gridded dataset of global historical surface temperature anomalies 
which is a collaborative dataset product of the Met Office Hadley Centre and the Climatic Research Unit at the University 
of East Anglia (Brohan et al. 2005). 

8  Annual atmospheric CO2 stock level (parts per million) is derived from in situ air measurements at the Mauna Loa 
Observatory, Hawaii (Latitude 19.5A°N Longitude 155.6A°W and at elevation of 3397m) (Tans, NOAA/ESRL n.d.). Link 
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The study uses several proxies for vulnerability and exposure including real GDP per capita and its 
square as a measure of vulnerability (ࢂ௧) and population per country as a proxy measure for exposure 
 .(௧ࢁ)
 

We use a two-way fixed effects method to allow the estimation of common-to-all-countries or 
global time effect in addition to country and time-specific climatic and nonclimatic effects. Global 
climate, for example, affects sea levels and their temperatures as consequences of the reduction of 
polar ice caps and other phenomena. As world sea levels and their temperatures increase, the effects 
of local temperatures and local precipitation on the magnitude and frequency of disasters in a 
particular country may worsen. An increase in precipitation, for example, may have a much greater 
effect on the magnitude and scope of flooding if the sea level is already high. 
  

The coefficients of the common-to-all-countries time dummy variables are likely to capture 
the varying impact of global phenomena associated with a great number of global climatic variables. 
But they may not necessarily be related only to climatic variables. For example, technological and 
communication improvements may allow countries to improve the way they confront negative climate 
factors and therefore could help mitigate their impact on the size of disasters. Also, the common-to-
all-countries time dummies may capture a worsening disaster effect due to increasing concentrations 
of population in exposed areas—a variable for which we do not have adequate data—which could be a 
common trend across all or most countries.  
 

So in addition to the local climate conditions in each country we also explore the use of 
alternative global climate change indicators (ࡳ௧): the annual atmospheric CO2 level and the annual 
average sea temperature deviation, as explanatory variables. Thus, we use two approaches. 
 

Approach 1. We use global climate indicators as a separate variable directly in the regression 
analysis, controlling for country-specific effects only (one-way fixed effect). These global 
indicators are annual atmospheric CO2 level and annual average sea temperature deviation. 
We estimate these models using country fixed effects. A hypothesis is that global climate 
change variables exert an independent effect on disasters over and above local climatic 
conditions. 
 
Approach 2. We estimate the model using a two-way fixed effects method that includes 
controlling for both country-specific effects and common-to-all-country effects represented 
by a time dummy variable.9 This allows detection of global effects over and above local country 
effects.  

 
As both dependent variables are nonnegative count values, count regression models such as 

the Poisson and negative binomial (NB) regression models are initially considered. The Poisson 
regression model (equation 1) is estimated for climatological disasters ሺܥ௧ሻ because preliminary 
analyses show that this variable satisfies the necessary equally dispersed assumption. The NB 
regression model (equation 2), however, is a generalization of the Poisson regression model that allows 
                                                                                                                                                                                                

ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_gl.txt. Average annual sea temperature deviation in Celsius is 
from NOAA database version 3.5.1 (00 northern –30 northern) where anomalies are based on the climatology from 1971 
to 2000. Link ftp://ftp.ncdc.noaa.gov/pub/data/mlost/archive/v3.5.1/products/aravg.ann.ocean.00N.30N.asc 

9  The two-way fixed effect method controls for both fixed effect by country (which are added by the command fe in Stata) 
and by time dummies (which are added by hand as i.year, fe). This approach can be used with negative binomial, Poisson 
and zero-inflated models (see Stata User’s Guide). 
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for overdispersion by introducing an unobserved heterogeneity term for observation ݅ for a particular 
period. Hence it is used in estimating for hydrometeorological disasters ሺܪ௧ሻ as likelihood ratio tests 
indicated the existence of overdispersion.10 We estimate the following equations using a large country 
sample of 157 countries. 11 

 
௧ݕሾܧ ൌ ௧ሿࢄ	|௧ܥ ൌ ࢄ݁

ᇲ  ࢼ
                                                	ൌ ͨߚሺݔ݁	  ௧ࢁͩߚ  ௧ࢂͪߚ 	ͫߚ ܹ௧  ௧ܼͬߚ   ௧ሻ  (1)ࡳͭߚ
 
௧ݕሾܧ ൌ ,௧ࢄ	|௧ܪ ௧ሿߝ ൌ ࢄ݁

ᇲ  ௧ߝࢼ
                                                ൌ	 ሼ݁ݔሺͨߚ  ௧ࢁͩߚ  ௧ࢂͪߚ 	ͫߚ ܹ௧      (2)	௧ߝ௧ሻሽࡳͬߚ

 
 The explanatory variables ሺࢁ௧, ,௧ࢂ ܹ௧, ܼ௧,  :௧ሻ areࡳ
 

(i) population exposure	ሺࢁ௧) or the degree to which people are in harm’s way; 
(ii) vulnerability ሺࢂ௧) or the population’s capability to address the problem;  
(iii) the climate-related hazard, average precipitation deviation ሺ ܹ௧) and average 

temperature deviation ሺܼ௧) in a given year; and  
(iv) global climate change indicators (ࡳ௧): atmospheric CO2 level and average sea 

temperature deviation. 
 

In addition, the regression also includes total population per country in the relevant year as a 
control variable. Even though population density is already included as an independent variable, this 
may not pick up the possibility that frequency of natural disasters surpassing the “intense” reporting 
threshold (that is, at least 100 deaths or at least 1,000 people affected due to a natural disaster) would 
be higher when the overall population increases.  
 

As with most cases in count data, the count (occurrence) of intense disasters—the dependent 
variable—is characterized by excess zeros and overdispersion. In particular, 67% of observations for 
hydrometeorological disasters and 83% for climatological disasters have zero counts. Failing to 
account for the prevalence of zeros in the dependent variable would be likely to result in inconsistent 
estimators.  
 

There are count models that seem quite useful for dealing with the problem implied by the 
existence of zeros in the dependent variable (in addition to overdispersion) in the context of both the 
Poisson and NB regression models. The zero-inflated count model (introduced by Lambert, 1992 and 
refined by Johnson, Kotz, and Kemp 1992) allows for modeling assuming it is possible that the zero-
observed dependent variable may either correspond to countries which in a particular year had a zero 
probability of having a disaster as measured by the count variable and countries that had a positive 
probability of a disaster but that, due to random conditions in that year, experienced no disaster and 
consequently also had a zero dependent variable.  

 
In particular, for each country	݅ in year ݐ, there are two possible data generation processes—

the selection of which is a result of a Bernoulli trial. The first process, which generates only zero counts, 

                                                            
10  In our dataset, the likelihood ratio tests reject the hypothesis that coefficient of dispersion (ߙ) is equal to zero (Ho: 0 = ߙ) 

at 1% level of significance in all specifications involving intense hydrometeorological disasters, but not in those that involve 
climatological disasters. 

11  A summary of descriptive statistics for the variables used in the regressions is provided in Appendix 1. 
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is chosen with probability ߩ . The second process,	݃ሺݕ௧|ࢄ௧ሻ, with probability 	ͩ െ ߩ  generates positive 
counts from either a Poisson or an NB distribution. In general, we have: 
 

~௧ݕ ൜
	ߩ										ݕݐ݈ܾܾ݅݅ܽݎ	݄ݐ݅ݓ																														ͨ
	݃ሺݕ௧|ࢄ௧ሻ															݄ݐ݅ݓ	ݕݐ݈ܾܾ݅݅ܽݎ					ͩ െ 	ߩ

                                            (3) 

 
 

Then the probability of ሼ ܻ௧ ൌ  :௧ሽ can be expressed asࢄ|௧ݕ
 

ܲሺ ܻ௧ ൌ ,௧ࢄ|௧ݕ ௧ሻࡵ ൌ ൜
௧ሻࡵᇱߛሺߩ 					 	 ሼͩ െ ௧ݕ	݂݅								௧ሻሽࢄ|݃ሺͨ	௧ሻࡵᇱߛሺߩ ൌ ͨ
																											ሼͩ െ ௧ݕ	݂݅						௧ሻሽࢄ|௧ݕ݃ሺ	௧ሻࡵᇱߛሺߩ  ͨ

     (4) 

 
In the empirical estimation, the probability ߩ  depends on the characteristics (a subset of the 

explanatory variables) of country ݅, hence,  ߩ  is written as a function of ࡵ௧ᇱ ௧ᇱࡵ where ߛ  is the vector of 
zero-inflated covariates and ߛ is the vector of zero-inflated coefficients to be estimated. A probit 
function is specified as the zero-inflated link function—relating the product  ࡵ௧ᇱ  to (which is scalar) ߛ
the probability ߩ .  
 

We thus estimate hydrometeorological disasters using a negative binomial zero-inflated 
regression model and climatological disasters with Poisson zero-inflated regression model.12 The use of 
the zero inflated models reduces the likelihood of obtaining inconsistent estimators as a consequence 
of ignoring the existence of zeroes in the left-hand-side variable which can have heterogeneous 
origins.  
 

2. Role of Global Climate Change Indicators: A Cointegration Analysis Approach 
 
The estimated time dummy coefficients from the two-way fixed effects model (Approach 2) are 
subjected to a cointegration analysis with annual data on atmospheric CO2 deviation (with year 1970 
as base level) and on average sea temperature deviation to elucidate whether time dummy coefficients 
and each of these global climate variables are positively correlated in a meaningful way (that is, 
whether they cointegrate).13  
 

First we regress ݕ௧  (the coefficients of the time dummies) on ݔ௧	(series of atmospheric CO2 
deviation and of average sea temperature deviation). This can be generally expressed as:  
 

௧ݕ ൌ ߤ  ௧ݔߚ  ௧ߤ  (5) 
 
where  ߚመ  is the predicted value of the cointegrating coefficient obtained from the ordinary least 
squares (OLS) estimation and ߤ௧  is the predicted error series. The OLS estimation of equation (5) 
gives us an unbiased estimation about ߚመ . However, its standard errors are inconsistent and are not 
normally distributed. Hence, in this case, the usual inferential procedures do not apply. 
 

                                                            
12  Vuong tests revealed significant positive test statistics which favor the zero-inflated models over the standard Poisson and 

NB count regression models. This means that the zero-inflated method is necessary given the preponderance of zeroes of 
the dependent variable (Vuong 1989).  

13  See Appendix 2 for a full description of the cointegration analysis. 
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In order to analyze the significance of ߚመ—the cointegrating coefficient—Engle and Granger 
(1991) showed that both the dependent and independent variables cointegrate if and only if there is an 
error correction model (ECM) for either ݕ௧  and ݔ௧	or both. To illustrate the link, let equation (5) be an 
equilibrium relation between two I(1) series. Since ߤ௧  is a stationary mean zero variable, there exist a 
stationary autoregressive moving average model for ߤ௧ . Assume for simplicity that it is an 
autoregressive model AR(2): 
 

௧ߤ ൌ ௧ିଵߤଵߠ  ௧ିଶߤଶߠ   ௧       (6)ߝ
 

In particular, we can estimate equation (7) using OLS, the unrestricted autoregressive distributed 
lag (ADL) model, where the lag lengths are set to eliminate residual autocorrelation, an ADL(2,2) model: 
 

௧ݕ ൌ ߜ  ௧ିଵݕଵߠ  ௧ିଶݕଶߠ  ߮ݔ௧  ߮ଵݔ௧ିଵ  ߮ଶݔ௧ିଶ  ௧ߝ                      (7) 
 

To obtain the ECM form:  
 

௧ݕ∆ ൌ ߜ  ௧ିଵݕ∆ଵߣ  ݇∆ݔ௧  ݇ଵ∆ݔ௧ିଵ  ௧ିଵݕଵߛ  ௧ିଶݔଶߛ   ௧                 (8)ߝ
 
where ߣଵ ൌ 	െߠଶ, ݇ ൌ ߮, ݇ଵ ൌ െ߮ଶ	, ଵߛ ൌ ଵߠ	  ଶߠ െ 1 and ߛଶ ൌ ሺ߮  ߮ଵ  ߮ଶሻ.	 
 

Empirically, we estimate equation (8) using the OLS method. In our case, ݕ௧ is the time dummy 
coefficient which represents the global impact of disasters. Hence, ∆ݕ௧ ൌ ௧ݕ െ ௧ݔ ,௧ିଵ. Besidesݕ  represents 
global climate variables (atmospheric CO2 deviation and average sea temperature deviation). The rest of 
the variables in equation (8) are elaborated using lags or differentials of both  ݕ௧ and ݔ௧ .  
 

From (7) and (8), the estimator of the cointegrated coefficient is given by the long-run solution 
expressed in equation (9):  
 

መߚ ൌ
ఝబାఝభାఝమ
ଵିఏభିఏమ

ൌ െ
ఊෝమ
ఊෝభ
					  

 
Then, with both parameters we obtain ߚመ  and its right standard error to analyze its significance. 

 
B. Regression Results on Disaster Risk Factors 
 
Table 1 shows estimates explaining the occurrence of intense hydrometeorological disasters over 1971–2013. 
The first and second columns show the estimates using one-way fixed effects (country effects only), 
including in turn as explanatory variable the annual level of atmospheric CO2 and the annual average sea 
temperature deviation as an indicator of global climate effect. The third column reports the estimates of the 
two-way fixed effects using time dummies in addition to country fixed effects. All regressions use a negative 
binomial method of estimation. 
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Table 1: Determinants of the Frequency of Intense Hydrometeorological Disasters  
(Dependent variable: frequency of intense hydrometeorological disasters, 1971–2013) 

 

Explanatory Variables  One-Way Fixed Effect 
 Two-Way 

Fixed Effect  

(1) (2)  (3) 
Exposure    
Ln (population density) 0.196*** 0.196***  0.199***

[0.0207] [0.0232]  [0.0175]
Vulnerability  
Ln GDP per capita (constant 2005 $) 0.219 0.257  0.241

[0.175] [0.207]  [0.171]
  
Square of Ln (GDP per capita) –0.0169 –0.0194  –0.0184*

[0.0119] [0.0144]  [0.0111]
Climate hazard  
Average precipitation deviation 0.0155*** 0.0178***  0.0158***

[0.00256] [0.00165]  [0.00117]
Global climatic indicators  
Atmospheric CO2 level 0.0177***  

[0.00139]  
  
Average sea temperature deviation 1.719***  
 [0.180]  
  
Population (million) 0.00221*** 0.00219***  0.00219***

[0.000919] [0.000127]  [0.000119]
  
Observations 5,830 5,830  5,830
Akaike Information Criterion  11,187.04 11,250.81  11,076.87
Bayesian Information Criterion  11,247.08 11,310.85  11,136.90
Likelihood Ratio Test 462.16*** 471.90***  308.74***
Vuong Test 11.49*** 11.47***  11.53***

CO2 = carbon dioxide, GDP = gross domestic product. 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
Source: Authors’ calculations.  

 
The estimates are remarkably consistent. All local climate variables exhibit highly significant 

effects in the expected direction. Precipitation deviations exert a positive impact on the number of 
intense local hydrometeorological disasters. In this discussion of hydrometeorological events, 
temperature deviations are not included in addition to the precipitation deviations (if they were, the 
results would show a negative relationship with the dependent variable). 

 
Moreover, both global climate change variables, according to one-way fixed effects, show 

positive and highly significant effects. However, it is possible that the global climate variables are 
correlated with other global variables over time which could also exert a positive impact on disasters. 
This would then imply that the coefficients of the global climate variables are inconsistent. This is why 
the second approach is important.  
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In the two-way fixed effects model, the time dummy variables capture any global effects 
whether climate-related or otherwise. The time dummy coefficients are highly significant and tend to 
become larger over the time period.14 The approach is further complemented by the cointegration 
analysis where we elucidate whether or not there exists a meaningful relationship between the time 
dummy coefficients and global climate variables. 

 
Table 2 shows the estimates on similar regressions for intense climatological disasters. The 

results on the effects of the local climate variables are not as strong or consistent as those for 
hydrometeorological disasters. In the case of climatological events, we also include temperature 
deviations as an explanatory variable. Surprisingly, the temperature deviations do not show statistical 
significance in any of the three regressions.  
 

Table 2: Determinants of the Frequency of Intense Climatological Disasters 
(Dependent variable: frequency of intense climatological disasters, 1971–2013) 

 

Explanatory Variables One-Way Fixed Effect 
 Two-Way  

Fixed Effect 
(1) (2)  (3) 

Exposure    
Ln (population density) –0.105*** –0.0869**  –0.111***

[0.0355] [0.0422]  [0.0304]
Vulnerability  
Ln GDP per capita (constant 2005 $) –1.464*** –1.343***  –1.525***

[0.371] [0.201]  [0.356]
  
Square of Ln (GDP per capita) 0.0964*** 0.0895***  0.0994***

[0.0240] [0.0134]  [0.0241]
Climate hazard  
Average precipitation deviation –0.00663* –0.00622***  –0.00619**

[0.00352] [0.00198]  [0.00291]
  
Average temperature deviation 0.0670 0.0727  –0.0915

[0.134] [0.0747]  [0.114]
Global climatic indicators  
Atmospheric CO2 level 0.0146***  

[0.00218]  
Average sea temperature deviation 1.521***  
 [0.239]  
  
Population (million) 0.00147*** 0.00147***  0.00153***

[0.000106] [0.000125]  [0.000107]
Observations 4,499 4,499  4,499
Akaike Information Criterion 4,150.778 4,155.279  4,017.679
Bayesian Information Criterion 4,208.482 4,212.983  4,075.384
Vuong Test 4.090482*** 4.161369***  3.960258***

CO2 = carbon dioxide, GDP = gross domestic product. 
Notes: * = significant at 10%,** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
Source: Authors’ calculations.  

 

                                                            
14  Available from the authors upon request. 
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However, the coefficients of both global climate variables are highly significant and with the 
expected signs. Also, the results of the two-way fixed effects show that most of the coefficients of the 
time dummy variables are significant and show increasing values over time. This permits us to use the 
second stage time series analysis as involved in the second approach. 
 
 These results suggest that all three factors—rising population exposure, population 
vulnerability, and changing climate—may play a role in explaining the global increase in the frequency 
of intense climate-related disasters. While climatological disasters are clearly associated with changing 
temperature, hydrometeorological disasters are most clearly associated with rising exposure and 
changing precipitation. 
 
 Since the 1980s, a similar analysis has been carried out using EM-DAT disaster data (Jennings 
2011). However, this is for all types of natural disasters with factors identified, including population 
exposure, vulnerability, as well as other factors that affect their reporting (such as press freedom in a 
country). Similarly, this study points to the significance of exposure and vulnerability indicators in the 
disaster data, in addition acknowledges the likely effects of weather or climate change shocks, which is 
indicative of the changing climate as the IPCC (2012) suggests. 
 
Local versus Global Climate Effects 
 
The estimates of the coefficients of the common-to-all-countries time dummies are jointly significant 
and most are individually significant as well. We interpret this significance as an indication that, in 
addition to local country factors, there are global factors affecting the frequency of climate-related 
natural disasters that may be related to the accumulation of carbon emissions in the atmosphere or 
global temperature changes. In the next section we use time series analysis to probe whether or not 
the values of the global effects cointegrate with the stocks of CO2 in the atmosphere and the average 
sea temperature. 
 
C. Role of Atmospheric Carbon Dioxide Accumulation on Natural Disasters  

 
An important finding of the analysis in the previous section is that the global effects represented by the 
common-to-all-countries time effects were significant and explain a significant part of the frequency 
of both hydrometeorological and climatological disasters. That is, the global effect appears to play an 
important role even after accounting for local or country-specific climate conditions. More 
importantly, the global effect on natural disasters appears to worsen over the period of analysis. The 
coefficients of the time dummy variable are generally increasing over time in a statistically significant 
manner.  
 

It is now necessary to test whether or not the estimated global effects on disasters are due to 
global climatic factors. Specifically, we implement time series analysis to ascertain whether there is a 
meaningful relationship between the estimated increased global effect (represented by the increasing 
value over time of the coefficient of the common-to-all-countries dummy variable) and the 
accumulation of CO2 in the atmosphere and, alternatively, the higher sea temperatures. To put this in 
time series analysis jargon, do the series of CO2 and of time dummy coefficients cointegrate? 
 

1. Time Series Analysis 
 
The first panel of Figure 5(a) shows the evolution of the estimated coefficients of the time dummy 
variables for hydrometeorological disasters and the CO2 concentrations in the atmosphere during 
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1970–2013. As can be seen, both series exhibit upward trends over the period. The trends in the series 
of climatological disasters in the first panel of Figure 5(b) are similar to those in the series for 
hydrometeorological disasters. The series appear to be nonstationary, suggesting that any regression 
between the two series would yield spurious estimates of the goodness-of-fit of the regression, 
including the estimates of the standard errors of the estimated coefficients. In fact, formal tests 
suggest that the series are nonstationary. 
 

The second panel in Figures 5(a) and 5(b) shows the series expressed in first differences, 
respectively, which turned out to be stationary. In other words, each of the three series (time dummy 
coefficients for hydrometeorological disasters, for climatological disasters, and CO2 series) is 
integrated of order one. 

 

Figure 5: Trend Relationship between Hydrometeorological and Climatological Disaster Time 
Dummy Values and Atmospheric CO2 Stocks (1970–2013) 

 

 
CO2 = carbon dioxide. 
Source: Authors’ calculations. 

 
As can be seen in Figures 5 and 6, the series in levels are nonstationary as both variables move 

together, exhibiting an ever increasing trend. However, the figures also suggest that using first 
differences the series might be stationary. Below we statistically test whether that is in fact the case. 

 
In implementing the cointegration analysis, first we estimate OLS regressions in levels. Table 3 

provides these regression estimates. Since the estimated coefficients are not in general asymptotically 
normal, the usual inferential procedures do not apply; in particular, the estimates of the standard errors 
are inconsistent. However, we can use the estimated coefficients for further estimation to test for 
cointegration. The hypothesis to be tested is whether the predicted errors obtained from the 
regression estimations are stationary. Even if all individual series in levels are nonstationary, it is 
possible that the linear combination resulting from the estimates of each pair of series (time dummy 
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coefficients of hydrometeorological disasters-CO2 and of climatological disasters-CO2) may be 
stationary. If they are it means that the two pairs of series cointegrate. 

 

Figure 6: Trend Relationship between Hydrometeorological and Climatological Disaster Time 
Dummy Values and Sea Temperature Deviation (1970–2013) 

 

 

Source: Authors’ calculations. 

 
Table 3: OLS Regression Estimates of Time Dummy Coefficients of Intense  

Climate-Related Natural Disasters on Stock of Atmospheric CO2 
 

 Hydrometeorological Climatological 

Stock CO2 0.0258*** 0.0228*** 
[0.00263] [0.00481] 

Constant –8.646*** –6.374*** 
 [0.947] [1.780] 
Observations 43 43 
Akaike Information Criterion 15.87151 76.76739 
Bayesian Information Criterion 19.39391 80.28979 
Tests for Stationarity   
Dickey-Fuller –2.984*** –3.378*** 
Dickey-Fuller Generalized Least Squares –1.491 –2.749*** 
1% critical value –2.625 –2.625 
5% critical value –1.95 –1.95 

CO2 = carbon dioxide, OLS = ordinary least squares. 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
Source: Authors’ calculations based on NOAA data.  
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Table 3 also shows the results of tests for stationarity or cointegration using the series of 
predicted errors obtained from the regression estimation. Both Dickey-Fuller (DF) and Dickey-Fuller 
generalized least squares (DF-GLS) test whether a unit root is present in the series of the predicted 
errors. The DF-GLS is similar to the DF test but it also corrects for heteroscedasticity. Tabulated 
critical values at 1% and 5% are also shown in Table 3.15 In the case of hydrometeorological disasters, 
the DF statistic allows rejection of the null hypothesis that the series have a unit root. However, the 
DF-GLS test indicates a failure to reject the null hypothesis which implies that hydrometeorological 
disasters do not appear to cointegrate with the atmospheric CO2 stock levels. 

 
In the case of climatological disasters, the stationary tests are more definitive (Table 4). The test 

for cointegration of global effects on natural disasters with CO2 series suggests that cointegration exists.  
 

Table 4: OLS Regression Estimates of Time Dummy Coefficients of Intense  
Climate-Related Natural Disasters on Sea Temperature Deviation  

 
 Hydrometeorological Climatological 

Average sea temp dev 2.5041*** 2.6731*** 
[0.2424] [0.5149] 

Constant 0.3959*** 1.5529*** 
 [0.0541] [0.1166] 
Observations 43 43 
Akaike Information Criterion 32.08042 68.09936 
Bayesian Information Criterion 35.60282 71.62176 
Tests for Stationarity   
Dickey-Fuller –3.9809*** –3.9393*** 
Dickey-Fuller Generalized Least Squares –4.1444*** –3.7532*** 
1% critical value –2.625 –2.625 
5% critical value –1.95 –1.95 

OLS = ordinary least squares. 
Notes: * = significant at 10%,** = significant at 5%, *** = significant at 1%. Standard errors in brackets. 
Source: Authors’ calculations based on NOAA data.  

 
The tests presented in Tables 3 and 4 are not in general considered to have sufficient power. 

For this reason we need to corroborate the existence of stationarity and cointegration using an error 
correction model as developed below.  
 

In this study, we implemented a three-step error correction model with AR(2). 
 
Table 5 shows the estimates of the ECM for hydrometeorological and climatological disasters-

CO2 series, respectively. While the coefficients of CO2(t-1) (ͪߛ) are always positive but not significant, 
the error correction coefficient, disasters(t-1) (ͩߛ), is in all cases negative and significant, confirming a 
dynamic process that is consistent with the existence of cointegration between the series in question. 
Moreover, the adjustment process is stable in all cases due to the fact that |1.16> |ͩߛ 
                                                            
15  See MacKinnon (2010). 
16  We note that while ͪߛcoefficients are not significant they are always positive. Moreover, since these coefficients reflect 

short-run effects, their lack of significance may simply reflect the fact that the relationship between the series is mostly 
long-run in nature. 



22   |   ADB Economics Working Paper Series No. 466 

Table 5: Cointegration Analysis of Disasters-CO2 Series:  
Engle-Granger Three-Step Method Results  

 

 
Hydrometeorological 

Disasters  Climatological Disasters 
Level  First Diff. (D.1)   Level  First Diff. (D.1)  

Stock CO2 0.0258***   0.0228***  
[0.00263]   [0.00481]  

D.1 disasters (t-1)  0.203   0.0167 
 [0.180]   [0.163] 

D.1 CO2  0.0132   0.0621 
 [0.0305]   [0.0500] 

D.1 CO2 (t-1)  0.00106   –0.0242 
  [0.0302]   [0.0471] 
Disasters (t-1)  –0.541**   –0.473** 
  [0.239]   [0.226] 
CO2 (t-1)  0.0127   0.00917 
  [0.00766]   [0.00561] 
Constant –8.646*** –4.220  –6.374*** –2.479 
 [0.947] [2.643]  [1.780] [1.786] 
Observations 43 41  43 41 
Akaike Information Criterion  15.87151 10.05464  76.76739 69.25592 
Bayesian Information Criterion  19.39391 20.33607  80.28979 79.53735 

CO2 = carbon dioxide. 
Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets.     
Source: Authors’ calculations based on NOAA data.  

 
The satisfactory ECM estimates in conjunction with the rejection of the unit root tests and lack 

of rejection of the hypothesis—that the series resulting from the combination of the global effects on 
natural disasters and CO2 are stationary—provide convincing evidence that the series of global effects 
on natural disasters and the accumulated stocks of CO2 in the atmosphere do cointegrate. That is, a 
meaningful impact of CO2 accumulation on the number of natural disasters appears to exist. The 
cointegration analysis using average sea temperatures instead of CO2 gives similar results, showing that 
the coefficients of the dummy variables and sea temperatures do cointegrate. 

 
Table 6 shows the estimates of the ECM for hydrometeorological and climatological disasters-

sea temperature deviation series. While the coefficients of Sea Temp Dev(t-1) (ͪߛ) are always positive 
and significant in hydrometeorological and climatological disasters, the error correction coefficient, 
disasters(t-1) (ͩߛ), is in all cases negative and significant thus confirming a dynamic process among them.  
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Table 6: Cointegration Analysis of Disasters-Sea Temperature Deviation Series:  
Engle-Granger Three-Step Method Results 

 

 
Hydrometeorological 

Disasters  Climatological Disasters 
Level  First Diff. (D.1)   Level  First Diff. (D.1)  

Average sea temp dev 2.5041***  2.6731***  
[0.2424]  [0.5149]  

D.1 disasters (t-1)  0.184  0.0723

 [0.180]  [0.159]

D.1 sea temp dev   1.137**  1.856***

 [0.464]  [0.601]

D.1 sea temp dev (t-1) –0.138  –0.288

 [0.399]  [0.609]

Disasters (t-1)  –0.474***  –0.606***

  [0.161]  [0.195]

Sea temp dev (t-1)  1.360**  2.107***

  [0.634]  [0.733]

Constant 0.3959*** 0.186*** 1.5529*** 0.887***

 [0.0541] [0.0676] [0.1166] [0.319]
Observations 43 41 43 41
Akaike Information Criterion  32.08042 .2094889 68.09936 57.61119
Bayesian Information Criterion 35.60282 10.49092 71.62176 67.89262

Notes: * = significant at 10%, ** = significant at 5%, *** = significant at 1%. Standard errors in brackets.     
Source: Authors’ calculations based on NOAA data.  

 
The estimates of the ͩߛ and ͪߛ coefficients allow us to obtain a measure of the key coefficient ߚመ  

by using equation (9). Most importantly, the estimated standard error of ߚመ  is unbiased and distributes 
according to a normal distribution, what allows us to obtain consistent statistical inference.  
 

2.  Significance of the Results  
 
Table 7 shows the estimated elasticities of time-dummy coefficients of hydrometeorological and 
climatological disasters with respect to the global climate variables. These are evaluated at the mean 
values (1970–2013) of the time dummy variables and global climate variables. Table 8, on the other 
hand, shows the simulated effects of global climate variables on disasters using mean values (1994–
2013). We provide the methodology used to measure these elasticities and the simulation variation in 
Appendix 3.  
 

The elasticities of time dummy coefficients for hydrometeorological disasters for both global 
climate variables are much higher than those for climatological disasters. In the case of 
hydrometeorological disasters, a 1% increase in the annual atmospheric CO2 level would likely increase 
the average size of time dummy coefficients of hydrometeorological disasters by approximately 
13.03%.  
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Table 7: Estimating the Elasticities of Time Dummy Coefficients of Natural Disasters  
with Respect to Global Climate Variables 

 

 
Hydrometeorological Climatological 

CO2   
Stock  

Sea 
Temp  

CO2    
Stock  

Sea 
Temp  

Marginal effect (ߚመ) 0.0235 2.8692 0.0194 3.4769 
    

Average sample value of CO2 level (ppm) 
and sea temp (°C)  (1970–2013) 359.55 14.098 359.55 14.098 

     
Average value of time dummy coefficients 
(1970–2013) 0.648 0.648 1.822 1.822 

    
Elasticity of time dummy coefficients with 
respect to the global climate variables 13.03 62.42 3.83 26.90 

°C = degrees Celsius, CO2 = carbon dioxide, ppm = parts per million.   
Source: Authors’ calculations. 

 
The elasticities reported in Table 7 indicate the effect of a 1% increase on the level of global climate 

variables on the average time dummy coefficients (obtained in the disaster regressions). The next step is to 
measure the effect of the changes in the time dummy coefficients on the level of disasters themselves using 
the estimates of the two-way fixed effect regressions. Thus the combination of these two effects yields the 
estimates of the net effect of global climate change on the number of disasters. This is the elasticity of 
disasters with respect to the global climate variables. Appendix 3 shows details of these calculations.  
 

The elasticity of disasters reported in Table 8 show the percentage change in the average number 
of disasters as a likely result of a 1% increase on the level of global climate variables.  
 

Using these elasticities of disasters we can simulate the effects of climate change factors on the 
number of disasters. The bottom-half of Table 8 shows what proportion of the variation of disasters in the 
decade 1994–2013 are explained by the change in global climate variables. We simulated variations on 
atmospheric CO2 level. Two scenarios were considered, one for a representative country (the average of all 
the countries in our data) and the other for three Southeast Asian countries (Indonesia, the Philippines, and 
Thailand).  
 

To illustrate, the average observed occurrence of hydrometeorological disasters in the sample for a 
representative country was 0.74 per year. On average, the annual increase of atmospheric CO2 level is 2 
ppm per year, equivalent to 0.5% of the current 400 ppm level. Using the elasticity of disasters to CO2 level 
that is equal to 11.94 (see Appendix 3 for derivation), we estimated a simulated variation on 
hydrometeorological disasters.  
 

As shown in the Appendix 3 and in Table 8, according to our estimates, the number of 
hydrometeorological disasters may increase by about 5.9% per year for the average country in the sample or 
0.046 more disasters per year. This implies that if the rate of increase of CO2 level continues its current 
trend, in about 17 years the number of hydrometerological disasters would double from the current average 
value of 0.775 to 1.55 disasters per year for the average country. 
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Table 8: Explained Variation on Hydrometeorological Disasters by the Atmospheric  
CO2 Concentration Level  

 

  Representative 
Country 

Indonesia, 
Philippines, and 

Thailand 
  (1970–2013) 
For Elasticity of Disasters:   
Average sample values   
    Atmospheric CO2 (ppm) 359.55 359.55 
    Average annual disaster occurrence 0.480 4.575 
    Average value of time dummy coefficients 0.648 0.648 
      
Elasticity of disasters with respect to atmospheric CO2 level
(evaluated at 2009–2013 values) 11.94 1.28 
 
For Simulation:   
Values (2009–2013 average)   
     Atmospheric CO2  (ppm) 394 394 
    Average annual disaster occurrence 0.775 7.2 
   
Current annual increase of  
    Atmospheric CO2 (ppm) 2 2 
    Absolute annual disaster increase 0.046 0.046 
    Proportional annual disaster increase 5.9% 0.64% 

CO2 = carbon dioxide, ppm = parts per million.   
Source: Authors’ calculations. 

 
For Indonesia, the Philippines, and Thailand the effect is similar in absolute terms, increasing 

by about 0.05 more disasters per annum, but percentage wise, this amounts to 0.64% per year. This 
implies that if the rate of increase of CO2 continues its current trend, the number of disasters in the 
three Asian countries would increase by one more annual disaster every 20 years. Thus, given the high 
current numbers of disasters which are almost ten times greater than for the average country in the 
sample, these three Asian countries would suffer much more.  
 

Overall, the likely impact of a continuing increase in atmospheric CO2 level is similar in 
absolute numbers in Indonesia, the Philippines, and Thailand with the rest of the countries. The 
percent increase, given the already large numbers of disasters, would be smaller, but its impact likely far 
more severe than for the average country. The empirical results also suggest that sea temperature has 
a much greater impact on hydrometeorological disasters. Studies have shown that the rise in sea 
surface temperature largely determines the strength of storms. Typhoon Haiyan in 2013, for example, 
was formed when the sea surface temperature of the Pacific Warm Pool Region was at its highest 
based on the records since 1981.  
 

Given the correlation between sea surface temperatures and maximum winds of typhoons, 
what really is alarming (as reported in Comiso, Perez, and Stock 2015) is the significant and positive 
increasing trend of 0.2°C per decade of the sea surface temperatures in both West and Pacific Pool 
Regions. 
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IV. CONCLUSIONS 
 

For 2015–2016, economists project growth rates of 3.5% for the global economy and 6% for Asia and 
the Pacific (IMF 2015, ADB 2015). These growth projections do not integrate climate actions nor the 
impacts of climate change. The crucial question is—can the world sustain this type of growth without 
climate action? Can the world address climate change and switch to a low-carbon economy in time?  
 

Domestic reforms are paramount to any country’s growth prospects, but in our highly 
globalized world economy cross-border factors also matter. Perhaps surprisingly for some, the danger 
of climate change presents a greater threat than the current global economic malaise. If sustained 
growth is to take place, the climate challenge must be met.  
 

Specifically, we need to strengthen disaster resilience, care more for the urban environment, 
and confront climate change as part of the growth paradigm. Even in the face of fluctuating oil prices, 
countries must commit to phasing out the use of fossil fuels and transitioning to a low-carbon 
economy.  
 

Climate-related disasters have been prominent in the headlines worldwide in recent years. East 
and Southeast Asia top the list of the regions affected. Floods and storms have cut significantly into 
annual growth rates in Australia, the People’s Republic of China, Indonesia, the Republic of Korea, 
Thailand, and Viet Nam—a trend that is set to worsen. The Philippines, often the first major landfall for 
typhoons arising in the western Pacific, is among the most vulnerable countries. 
 

Multiple factors explain the mounting number and impact of disasters: people’s exposure to 
hazards, particularly in low-lying and coastal cities; greater vulnerability from soil erosion, 
deforestation; and just plain overcrowding. In addition, climate hazards are becoming more menacing, 
which presents the most tangible reason to confront climate change as part of a development strategy. 
Nevertheless, scientists are cautious about linking any particular disaster to climate change, whether it 
is Typhoon Bopha in Mindanao, the Philippines, or Hurricane Sandy on the US East Coast. In the same 
way, economists are reluctant to pin higher inflation in any given month on rising money supply. But, as 
with inflation, the broader associations are unmistakable. 
 

For some, the front-and-center needs of the poor heighten the dilemma of balancing growth 
with the environment. But that dilemma presents a false choice. Relying on a longstanding growth 
pattern that fuels economic momentum with environmental destruction will only aggravate climate 
change and it is the poor who stand to lose the most from the ravages of global warming. 
 

The implication is that, while we must grow fast, we also need to grow differently. In essence, 
we need a new strategy that values all three forms of capital—physical, human, and natural. Sound 
growth policies have long been understood as those that expand investments in physical and human 
capital. But unless we also invest in natural capital, all bets are off. The 17 Sustainable Development 
Goals acknowledge this strong link between human well-being and environmental and ecosystem 
services. So what needs to be done?  

 
First, we need to build disaster resilience into national growth strategies. Japan invests some 

5% of its national budget in disaster risk reduction and has avoided much worse economic damage and 
deaths from disasters because of this (Government of Japan 2005).  
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High returns on such investments are evident even where the total spending is far less than in 
Japan. In the Philippines, the effects of flooding in Manila after heavy monsoon rains in August 2012 
contrasted strongly with the devastation in the city from Tropical Storm Ketsana in 2009. The country 
has achieved vast payoffs from measures such as social media alerts, preemptive evacuations, and 
early warning systems. The Philippine case also highlights the benefits of the hazard maps and 
upgraded rain and water-level monitoring systems promoted by Project NOAH (the Nationwide 
Operational Assessment of Hazards). 
 
 Yet, dealing with natural disasters is still largely considered a cost to be borne after calamity 
strikes, rather than an investment to confront a growing threat. Disaster risk reduction accounts for just 
$0.40 cents of every $100 in total international development aid. For governments, one recommended 
level of spending in this respect is 1% to 2% of national budgets. But more important than the exact 
percentages is promoting their effective use. 
 

Second, planners need to raise the priority of urban management as a strategic thrust. The five 
cities considered most vulnerable to natural hazards are all in Asia: Dhaka, Manila, Bangkok, Yangon, 
and Jakarta. All of them are overcrowded and in geographically fragile settings.  
 

Massive agglomeration notwithstanding, fewer than 50% of Asians live in cities, compared with 
80% in Latin America. Because further urbanization would seem inevitable, it is hard to overstate the 
high priority that needs to be assigned to careful physical planning, environmental care, and judicious 
urban management.  
 

Third, climate action needs to be a central component of national plans. Economic growth will 
not be automatic if climate change is not dealt with. Adapting to the changing climate through better 
management of the location decisions of people and businesses, and protecting the natural 
environment assumes greater urgency.  
 

The poor are hit hardest by the effects of climate change. Climate adaptation, including the 
building of resilient communities and peoples as well as climate mitigation, including a switch to a low-
carbon path, are essential parts of a poverty reduction strategy in the future. No single country can 
make a difference in this respect. However, Asia and the Pacific, which is the region most at risk, must 
be a powerful voice by switching to a low-carbon path and calling on others to do the same. 
 

We need to change our mindset on how growth is generated. Old-style growth at the expense 
of the environment will be self-defeating—a realization driven home by the stark reality of climate 
change. 
 

Decisive action worldwide to reduce emissions is needed, but international agreements have 
remained elusive. Yet unilateral action can still be undertaken, especially when local gains are clear. 
Cutting back on black carbon emissions, especially in polluted Beijing, New Delhi, and Manila, makes 
for cleaner air, boosting overall health. 
 

Disaster risk management needs to be understood as an investment, going beyond relief and 
reconstruction to a dual approach of prevention and recovery. Economists can facilitate this 
understanding by building into their calculus the role of natural hazards and climate impacts in shaping 
lives and livelihoods. Factoring this into the influential growth scenarios could make a big difference to 
policy making. Climate mitigation and adaptation need to be seen as a vital and high return part of this 
approach. 



 

APPENDIX 1: DESCRIPTIVE STATISTICS (1971–2013) 
 

Variables Obs. Mean Std. Dev. Min. Max. 

Dependent Variable: Frequency of intense 
hydrometeorological disasters 5,830 0.715 1.694 0 25 

  
Ln (population density) 5,830 3.807 1.478 0.103 9.980 
Ln GDP per capita (constant 2005 $) 5,830 7.728 1.490 3.913 11.124 
Square of Ln GDP per capita 5,830 61.950 23.753 15.311 123.752 
Average precipitation deviation 5,830 –1.305 13.452 –196.409 81.774 
Average temperature deviation 5,830 0.297 0.471 –1.548 2.413 
Population (million) 5,830 37.714 129.983 0.041 1,357.380 
  
Dependent Variable: Frequency of intense 
climatological disasters 4,499 0.188 0.456 0 5 

  
Ln (population density) 4,499 3.841 1.381 0.103 8.785 
Ln GDP per capita (constant 2005 $) 4,499 7.569 1.519 3.913 11.364 
Square of Ln GDP per capita 4,499 59.596 24.158 15.311 129.131 
Average precipitation deviation 4,499 –1.236 12.434 –196.409 81.774 
Average temperature deviation 4,499 0.312 0.482 –1.548 2.413 
Population (million) 4,499 46.732 146.609 0.044 1,357.380 
      

Global Variables (1970–2013)      

CO2 level  44 359.55 20.606 324.933 398.123 
CO2 deviation from level in 1970 44 26.482 20.606 –8.135 65.055 
Sea temperature deviation 44 0.098 0.195 –0.374 0.378 

CO2 = carbon dioxide, GDP = gross domestic product.   
Source: Authors’ calculations. 
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APPENDIX 2: COINTEGRATION ANALYSIS 
 
In a bivariate model with ݕ௧  and ݔ௧variables, there exists a ߚ such that ݕ௧ െ ௧ݔߚ	  is I(0) even though ݔ௧  
and ݕ௧  are nonstationary processes. This means that the two variables are cointegrated or have a 
stationary long-run relationship even though individually they are stochastic. 
 

A vector autogression model with ߩ lags can be represented as shown in:  
 

௧ݕ ൌ ௧ିͩݕͩߩ  ௧ିͪݕͪߩ  ⋯ ௧ିݕఘߩ  ߮߬௧  ௧ߝ    (1) 
 
where ݕ௧  is an ݇ͩݔ vector of I(1) variables, ߬௧  is a vector of deterministic variable and ߝ௧  is an ݇ͩݔ vector 
of identically and normally distributed errors with median zero and nondiagonal covariance matrix ߑ. 
Given that the variables are cointegrated, equation (1) can be represented by an equilibrium correction 
model shown in (equation 2): 
 

௧ݕ∆ ൌ ௧ିݕߚߙ  ∑ ௧ିͩݕ∆ݎ
ିͩ
ୀͩ  ݐߜ  ݒ          (2)									௧ߝ

 
Economic importance is placed on ߙ and ߚ coefficients. ߚ is an ݇ݎݔ matrix of cointegrating 

vectors that explains the long-run relationship of the variables. ߙ is also a ݇ݎݔ matrix that explains 
long-run disequilibrium of the variables. It is important to note that for cointegration to exist, matrices 
ݎ where ,ݎ should have reduced rank ߚ and ߙ ൏ ݇. The identification of the cointegrating vector uses 
maximum likelihood method developed by Johansen (1988, 1995). The variables ݒ and ݐ are the 
deterministic trend component. 
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APPENDIX 3: ESTIMATING THE ELASTICITIES OF DISASTERS WITH RESPECT  
TO GLOBAL CLIMATE 

 
We estimate the elasticities of disasters evaluated at the average values of the variables for the period 
1970–2013.  The coefficient values of the time dummy variables are related to the global climate 
variables as follows: 
  

Cd୲ ൌ β ∙ ሺG୲ െ Gഥሻ									                                      (1a) 
 

where G୲ is atmospheric CO2 stock level (COͪ	୲ሻ or sea temperature (sea	temp୲), Gഥ is a fixed level of G 
prevailing in 1970 for CO2 and for sea temperature its average for 1981–2000. Cd୲ represent the 
coefficients of the time dummy variables. The elasticity of Cd୲ with respect to G୲ is: 

 
ப ୪୬ሺେୢ౪ሻ

ப ୪୬ሺୋ౪ሻ
ൌ

பେୢ౪
பୋ୲

∙
ୋ౪
େୢ౪

ൌ 	β ∙
ୋ౪
େୢ౪
					     (2b) 

 
For the case of COͪ	the estimated β  is 0.0235, the mean sample value of COͪ is 359.55. and the 

mean sample value of Cd୲ is 0.648. Hence, the elasticity of Cd୲	with respect to COͪ	୲when evaluated at 
the mean sample values is;  
 

ப୪୬	ሺେୢ౪ሻ

ப୪୬	ሺୋ୲ሻ
ൌ ͨ.ͨͪͫͭ ∙

ͫͭͱ.ͭͭ

ͨ.ͮͬͰ
ൌ ͩͫ.ͨͫ											     (3a) 

 
The effect of Cd୲ on the number of hydrometeorological disasters is  0.648. Besides, the 

number of hydrometeorological disasters for a representative country is 0.480. Hence, given that the 
dummy variables are all equal to one, the elasticity of the number of disasters with respect to Cd୲ for a 
representative country is, 
 

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ౪ሻ

ப୪୬	ሺେୢ౪ሻ
ൌ

େୢ౪
ୢ୧ୱୟୱ୲ୣ୰ୱ౪

ൌ ͩ.ͫͭ					    (4a) 
 
 
Hence, using chain rule we have that the elasticity of disasters with respect to COͪ	 for a representative 
country is, 
 

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ౪ሻ

ப୪୬	ሺେͪ	౪ሻ
ൌ

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ,౪ሻ

ப୪୬	ሺେୢ౪ሻ
∙
ப ୪୬ሺେୢ౪ሻ

ப ୪୬ሺେͪ	౪ሻ
ൌ ͩ.ͫͭ ∗ ͩͫ.ͨͫ ൌ ͩͯ.ͮͨ	   (5a) 

 
Using expressions (2a) and (4a) one can measure the elasticities evaluated at the 2009–2013 

average levels of the variables. In this case we have that G୲ = 394 Cd୲	= 1.86 and disasters	= 0.775. We 
obtain the elasticity of disasters with respect to CO2 evaluated at 2009–2013 values that is lower than 
that obtained using averages for the whole period, equal to 11.94.  
 

Conclusion. Since CO2 levels are currently increasing by about 0.5% per year (2 ppm over a 
current level of 400 ppm) using the above result, we have that the number of hydrometeorological 
disasters may increase by about 5.9% per year. This implies that if the rate of increase of CO2 continues 
its current trend, in about 17 years the number of hydrometeorological disasters would double from the 
current average value of 0.775 to 1.55 disasters per country. 
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For Indonesia, the Philippines, and Thailand in the same period, the elasticity of Cd୲	with 
respect to COͪ	୲	when evaluated at the mean sample values using equation (3a) is, 
 

ப୪୬	ሺେୢ౪ሻ

ப୪୬	ሺେͪ	౪ሻ
ൌ ͨ.ͨͪͫͭ ∙

ͫͭͱ.ͭͭ

ͨ.ͮͬͰ
ൌ ͩͫ.ͨͫ			   (6a) 

 
The effect of Cd୲ on the number of disasters (hydrometeorological) is 0.648. Hence, the 

elasticity of the number of disasters with respect to Cd୲ for a representative country is, 
 

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ౪ሻ

ப୪୬	ሺେୢ౪ሻ
ൌ

େୢ౪
ୢ୧ୱୟୱ୲ୣ୰ୱ౪

ൌ ͨ.ͩͬ				   (7a) 
 
Hence, using chain rule we have that the elasticity of disasters with respect to COͪ	 for a representative 
country is, 
 

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ౪ሻ

ப୪୬	ሺେͪ	౪ሻ
ൌ

ப୪୬	ሺୢ୧ୱୟୱ୲ୣ୰ୱ,౪ሻ

ப୪୬	ሺେୢ౪ሻ
∙
ப ୪୬ሺେୢ౪ሻ

ப ୪୬ሺେͪ	౪ሻ
ൌ ͨ.ͩͬ ∗ ͩͫ.ͨͫ ൌ ͩ.Ͱͭ				   (8a) 

 
Similarly, using expressions (6a) and (8a) one can measure the elasticities evaluated at the 

2009–2013 average levels of the variables. In this case we have that G୲	= 394, Cd୲ = 1.86, and 
disasters	= 7.2. We obtain an elasticity of disasters with respect to CO2 evaluated at 2009–2013 
values that is lower than that obtained using averages for the whole period, equal to 1.28.  
 

Conclusion. Since CO2 levels are currently increasing by about 0.5% per year (2 ppm over a 
current level of 400 ppm) using the above result, we have that the number of hydrometeorological 
disasters may increase by about 0.64% per year. This implies that if the rate of increase of CO2 
continues its current trend, the number of disasters in the three countries there would be one more 
annual disaster every 20 years. 
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