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Heterogeneity in the Rebound Effect: Further Evidence for Germany

Manuel Frondel, Ruhr University Bochum, Ruhr Graduate School in Economics, and

RWI, Nolan Ritter, RWI, and Colin Vance, Jacobs University Bremen and RWI

Abstract. Rebound effects measure the behaviorally induced offset in the reduction of

energy consumption following efficiency improvements. Using both panel estimation

and quantile regression methods on household travel diary data collected in Germa-

ny between 1997 and 2009, this study investigates the heterogeneity of the rebound

effect in private transport. With the average rebound effect being in the range of 57%

to 62%, our results are in line with a recent German study by FRONDEL, PETERS, and

VANCE (2008), but are substantially larger than those obtained from other studies. Fur-

thermore, our quantile regression results indicate that the magnitude of estimated fuel

price elasticities – from which rebound effects can be derived – depends inversely on

the household’s driving intensity: Households with low vehicle mileage exhibit fuel

price elasticities, and hence rebound effects, that are significantly larger than those for

households with high vehicle mileage.
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1 Introduction

To maintain climate protection policy on track, the European Commission enacted new

legislation in 2009 under the auspices of Regulation No. 443/2009, which sets limits

on the allowable per-kilometer CO2 emissions of newly registered automobiles. This

regulation includes legally codified targets for the maximum CO2 discharges per kilo-

meter that increase with the mass of vehicles. As non-compliance with the allowable

emissions will result in heavy fines starting in 2012, the Commission expects that this

measure will induce considerable incentives for the development of fuel-saving tech-

nologies (FRONDEL, SCHMIDT, and VANCE, 2011).

Irrespective of the directive’s effectiveness in increasing the fuel efficiency of au-

tomobiles, a critical issue in gauging its merits concerns how consumers adjust to al-

tered unit costs of car travel. While higher fuel prices, as implied by soaring oil prices

or increased taxes, raise these costs, improved efficiency effectively reduces them, the-

reby stimulating the demand for car travel. Such demand increases are referred to as

the rebound effect, as it offsets the reduction in energy demand that results from an

increase in efficiency.

Though the basic mechanism underlying the rebound effect is widely accepted,

its magnitude remains a contentious question (e. g. BROOKES 2000, BINSWANGER 2001,

GREENING, GREENE, and DIFIGLIO, 2000, SORRELL and DIMITROUPOULOS, 2008). A

survey by GRAHAM and GLAISTER (2004), for example, cites mean fuel demand ela-

sticities – from which rebound effects can be derived – varying between -0.25 in the

short-run and -0.77 in the long-run. More recent work by WEST (2004) and FRONDEL,

PETERS, and VANCE (2008), who use household-level pooled and panel data from the

U.S. and Germany, puts the estimated rebound effect at the high end of this range,

averaging between 87% and 57%, respectively. In a subsequent article, FRONDEL and

VANCE (2010a) employ person-, rather than household-level data to investigate indi-

vidual mobility behavior, finding fuel price elasticity estimates ranging between -0.45

and -0.50.
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Aside from differences in the level of data aggregation, with the vast majority of

gasoline demand studies being based on aggregate level data at the country or sub-

national level (GRAHAM, GLAISTER, 2002:10), and in the estimation methods employ-

ed, one major reason for the diverging results of the empirical studies is that there is no

unanimous definition of the direct rebound effect. Instead, several definitions have be-

en employed in the economic literature as determined by the availability of price and

efficiency data (SORRELL and DIMITROUPOULOS, 2008). For this reason, FRONDEL, PE-

TERS, and VANCE (2008) estimate the rebound effect using three common definitions,

and find robust results across both definitions and panel estimation methods.

The major contribution of the present study is to advance this line of inquiry

by drawing on travel-diary data collected in Germany between 1997 and 2009 and

investigate the heterogeneity of the rebound effect. Inspired by WADUD, GRAHAM,

and NOLAND, 2010), who use interaction terms to examine heterogeneity in the fuel

price elasticity of gasoline consumption with respect to (1) household income, (2) the

existence of both multiple vehicles, and (3) multiple earners within a household, we

employ both panel estimation and quantile regression methods to capture the hetero-

geneity in the rebound effect, depending on the households’ traveling intensity.

This research is in line with recent studies suggesting significant heterogenei-

ty in the fuel price sensitivity of different socioeconomic groups or geographic areas

(e. g. KAYSER, 2000; WEST, 2004; FRONDEL and VANCE, 2010a). It seems plausible, for

instance, that low-income households that are located in urban areas may be more sen-

sitive to fuel price changes, since they can more easily switch to other transport modes

than households living rural areas. On the other hand, due to income constraints low-

income households may already be driving as little as possible, so that they are unable

to further reduce their driving level, resulting in a low fuel price elasticity (KAYSER,

2000).

Using data from the German Mobility Panel, this study builds on this empirical

literature and the recent analysis of direct rebound effects by FRONDEL, PETERS, and

VANCE (2008) in several respects. First, the robustness and sensitivity of the results
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of the former study is checked by employing four additional waves of data for the

years 2006 to 2009. Second, expanding on the single-car focus of FRONDEL, PETERS,

and VANCE (2008), the data set analyzed here includes multiple-vehicle households,

thereby allowing us to explore the sensitivity of the estimates to their inclusion. Third,

we add a fourth definition of the rebound effect relying on the fuel price elasticity of

travel demand and argue that for empirical reasons, the rebound should be preferably

estimated on this basis. Finally, in addition to providing for average effects across all

types of households, which serve as a reference point, the estimates using quantile re-

gression indicate that the magnitude of the estimated rebound effect depends inversely

on the household’s driving intensity: Households with low vehicle mileage exhibit re-

bound effects that are significantly larger than those for households with high vehicle

mileage.

The following section provides for a discussion on the choice of either of the com-

mon definitions of the direct rebound effect for estimation purposes. Section 3 presents

a concise description of quantile regression approaches, building the basis for the em-

pirical estimation. Section 4 describes the panel data base used in the estimation, fol-

lowed by the presentation and interpretation of the results in Section 5. The last section

summarizes and concludes.

2 A Variety of Rebound Definitions

Along the lines of SORRELL and DIMITROUPOULOS (2008), we now catalogue three wi-

dely known definitions of the direct rebound effect that are based on elasticities with

respect to changes of either efficiencies, service-, or fuel prices. First, the most natu-

ral definition of the direct rebound effect is based on the elasticity of the demand for a

particular energy service, such as conveyance, with respect to efficiency (see e. g. BERK-

HOUT et al., 2000). This definition reflects the relative change in service demand s due
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to a percentage increase in efficiency µ:1

Definition 1: ηµ(s) :=
∂ ln s
∂ ln µ

, (1)

Second, instead of ηµ(s), empirical estimates of the rebound effect are frequently

based on the negative of the price elasticity of service demand, ηps(s) (e.g. BINSWAN-

GER, 2001). As is shown, e. g. , by FRONDEL, PETERS, and VANCE (2008:161), both

rebound definitions are equivalent if, first, fuel prices pe are exogenous and, second,

service demand s solely depends on the service price ps := pe/µ, which is proportio-

nal to the fuel price pe for given efficiency µ:

Definition 2: ηµ(s) = −ηps(s) . (2)

That the rebound may be captured by −ηps(s) reflects the fact that the direct rebound

effect is, in essence, a price effect, which works through shrinking service prices ps.

Third, empirical estimates of the rebound effect are sometimes necessarily ba-

sed on the negative own-price elasticity of fuel consumption, −ηpe(e), rather than on

−ηps(s), because data on fuel consumption and fuel prices is more commonly available

than on service demand and service prices.

Definition 3: ηµ(s) = −ηpe(e) . (3)

Definitions 2 and 3, however, are only equivalent if the energy efficiency µ is constant

(FRONDEL, PETERS, and VANCE, 2008:161). That is, the rebound definition given by

1In line with the economic literature (e. g. BINSWANGER, 2001:121), energy efficiency is defined here

by

µ =
s
e

> 0.

where the efficiency parameter µ characterizes the technology with which a service demand s is satis-

fied and e denotes the energy input employed for a service such as mobility. For the specific example

of individual conveyance, parameter µ designates fuel efficiency, which can be measured in terms of

vehicle kilometers per liter of fuel input. The efficiency definition reflects the fact that the higher the

efficiency µ of a given technology, the less energy e = s/µ is required for the provision of a service. The

above efficiency definition assumes proportionality between service level and energy input regardless

of the level – a simplifying assumption that may not be true in general, but provides for a convenient

first-order approximation of the relationship of s with respect to e.
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−ηpe(e) is equivalent to that given by ηµ(s) only if three preconditions hold true: (1)

fuel prices pe are exogenous, (2) service demand s solely depends on the service price

ps, and (3) efficiency µ is constant.

To analyze the heterogeneity of the rebound effect across households exhibiting

a variety of socioeconomic characteristics, we focus here on a fourth definition that

is given by the negative of the fuel price elasticity ηpe(s) of the demand for transport

services s. This focus is warranted for several reasons. First, while the most natural

definition of the direct rebound effect is based on the elasticity of transport demand to

efficiency µ (see 1), this definition is frequently not applicable, because in many empi-

rical studies efficiency data is not available or the data provides only limited variation

in efficiencies (SORRELL, DIMITROUPOULOS, SOMMERVILLE, 2009:1359).

Even more disconcerting is that observed efficiency increases may be endoge-

nous, rather than reflecting autonomous efficiency improvements. This is the case, for

instance, if a more efficient car is purchased in response to a job change that results in a

longer commute. Hence, due to the likely endogeneity of fuel efficiency (see e. g. SOR-

RELL, DIMITROUPOULOS, SOMMERVILLE, 2009:1361), it would be wise to refrain from

including this variable in any model specification aiming at estimating the response

to fuel price effects, as fuel efficiency may be a bad control (ANGRIST and PISCHKE,

2009:63).2

Rather than excluding µ from the analysis, alternative approaches are instrument

variable (IV) estimations or simultaneous equations systems that explain vehicle miles

traveled, fuel efficiency, and vehicle numbers at once. As we have no instrument at

hand, we are unable to employ IV methods to cope with the endogeneity of µ, nor

are we able to estimate simultaneous equations systems due to data unavailability. In

2Equally important with respect to fuel price responses is to note that if technical fuel efficiency were

to be included in the estimation specification, the analysis is conditional on being locked to the same

vehicle, thereby holding technical efficiency constant. This implies that only one scenario of responses

to fuel prices is all that is allowed, that of driving the same car, whereas driving behavior will change for

numerous reasons in case of fuel price increases, most importantly due to the purchase of a new, more

efficient car.
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effect, we instead pursue the reduced form of such a simultaneous equations system.

Another problem emerging from the likely endogeneity of the efficiency µ is that

it contaminates the rebound definition based on the negative of the service demand

elasticity ηps(s) with respect to service price ps, which is given by ps = pe/µ. This

highlights a handicap of Definition 2, namely that service prices represent a conglome-

rate of efficiency and fuel prices, while more meaningful estimates of the rebound are

based on estimations in which fuel-price and efficiency effects are strictly separated.

The rebound definition that is based on the own-price elasticity of fuel consump-

tion, ηpe(e), is the most restrictive of these three definitions, as it requires the validity

of three preconditions, rather than merely two of them, as is the case with rebound

definition −ηps(s). Furthermore, in contrast to transport service demand s, the depen-

dent variable e underlying definition −ηpe(e) explicitly depends on efficiency µ. For

example, fuel consumption e would ceteris paribus reduce to half if efficiency µ were to

be doubled. This example illustrates that the likely endogenous variable µ needs to be

included in any model specification for estimating ηpe(e), thereby potentially biasing

the empirical results.

For these reasons, we focus here on a fourth rebound definition that is based on

the negative of the fuel price elasticity of transport demand, ηpe(s):

Definition 4: ηµ(s) = −ηpe(s) . (4)

It is shown in the appendix that−ηpe(s) is equivalent to ηµ(s) under the same assump-

tions as the rebound definition given by −ηpe(e).

In sum, although theory would favor estimating the efficiency elasticity ηµ(s)

to capture the rebound, the most promising empirical, but indirect way to elicit the

rebound effect is based on the estimation of fuel price elasticities, as fuel prices typi-

cally exhibit sufficient variation and, in contrast to fuel efficiency, can be regarded as

parameters that are largely exogenous to individual households. Among these fuel pri-

ce elasticities, the discussion provided in this section suggests selecting the fuel price

elasticity of transport demand, ηpe(s), that is, Definition 4 for estimating the rebound
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effect. In contrast to the other definitions, Definition 4 is not based on fuel efficiency µ

and, hence, cannot be undermined by µ’s likely endogeneity.

3 Methodology

In line with our focus, we estimate the following model specification, where the logged

monthly vehicle-kilometers traveled, ln(s), is regressed on logged fuel prices, ln(pe),

and a vector of control variables x described in detail in the subsequent section:

ln(sit) = α0 + αpe · ln(peit) + αT
x · xit + ξi + νit . (5)

Subscripts i and t are used to denote the observation and time period, respectively.

ξi denotes an unknown individual-specific term, and νit is a random component that

varies over individuals and time. On the basis of this specification, Definition 4 tells

us that the rebound effect is obtained by the negative estimate of the coefficient αpe on

the logged fuel price. For the sake of comparison, Section 5 also presents the results of

those specifications that pertain to the Definitions 1-3, differing from (5) in either the

dependent variable (Definition 3) or the inclusion of efficiency µ (Definition 1), or the

inclusion of service price ps (Definition 2), rather than the fuel price pe.

To provide a reference point for the results obtained from the quantile regression

approach, we estimate specification (5) using panel estimation methods (see e. g. FRON-

DEL and VANCE, 2010b, for a discussion). While the fixed-effects estimator may be a

potential alternative, we choose to employ random-effects methods, as the fixed-effects

estimator fails to efficiently estimate the coefficients of time-persistent variables, i. e. ,

variables that do not vary much within a household over time (WADUD, GRAHAM,

and NOLAND, 2010:55). Not least, random-effects methods also allow for the estima-

tion of coefficients of time-invariant variables, which is precluded by the fixed-effects

estimator.

One potentially restrictive feature of both OLS and panel estimation methods is
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that they focus on the conditional expectation function (CEF),

E(ln(sit|pe, xit)) = α0 + αpe · ln(peit) + αT
x · xit , (6)

thereby yielding a uniform rebound effect given by the negative of the coefficient αpe .

Quantile-regression approaches, by contrast, aim at providing a more complete pic-

ture of the relationship between the dependent variable and the regressors at different

points in the conditional distribution of the dependent variable, which allows for more

flexibility in the estimation of rebound effects:

Qτ(ln(sit|pe, xit)) = α(τ) + αpe(τ) · ln(peit) + αT
x (τ) · xit + F−1

εit
(τ) , (7)

where τ may take on values between zero and unity and specifies the percentile in

the distribution of distance traveled, Qτ(.|.) denotes the conditional quantile functi-

on (CQF), F−1
εit

(.) is the inverse of the distribution function of εit, and αpe(τ) indicates

the variability in the households’ responses to fuel price changes, depending upon the

level of distance traveled. In short, the most attractive feature of quantile regression

methods is that they generally provide for a richer characterization of the data, as the-

se methods allow us to study the impact of a regressor such as fuel prices on the full

distribution of the dependent variable or any particular percentile, not just the condi-

tional mean.

For τ = 0.5, for instance, Q0.5(ln(s|pe, x) designates the median of the logged di-

stance traveled conditional on fuel prices pe and covariates x. In this special case of

a median regression, estimates of the parameters of quantile regression model (7) re-

sult from the minimization of the sum of the absolute deviations, |Q0.5 − Q̂0.5|. This

is perfectly in line with the well-known statistical result that it is the median that mi-

nimizes the sum of the absolute deviations of a variable, whereas it is the mean that

minimizes the sum of squared residuals, being a special case of OLS estimation. It is

also well-known that the median is more robust to outliers than the mean. This pro-

perty translates to both median and quantile regressions in general, which have the

advantage that they are more robust to outliers than mean (OLS) regression methods.

In fact, OLS regressions can be inefficient when the dependent variable has a highly
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non-normal distribution.3

More generally, for arbitrary τ ∈ (0, 1), the parameter estimates are obtained by

solving the following weighted minimization problem:

min
α(τ), αpe (τ), αT

x (τ)
∑

ri>0
τ · ri + ∑

ri<0
(1− τ) · ri, (8)

where underpredictions ri := Qτ(yi|xi)− Q̂τ(yi|xi) > 0 are penalized by τ and over-

predictions ri < 0 by 1− τ. This is reasonable, as for large τ one would not expect low

estimates Q̂τ and vice versa, so that these incidences have to be penalized accordingly.

Just as OLS fits a linear function to the dependent variable by minimizing the expected

squared error, quantile regression fits a linear model using the generally asymmetric

loss function ρτ(r) := 1(r > 0) · τ · |r|+ 1(r ≤ 0) · (1− τ) · |r|), where r := Qτ − Q̂τ

and the indicator function 1(r > 0) indicates positive residuals r and 1(r ≤ 0) non-

positive residuals, respectively. Loss function ρτ(r) is also called a “check function”,

as its graph looks like a check-mark. Minimization problem (8) is set up as a line-

ar programming problem and can thus be solved by linear programming techniques

(KOENKER 2005). Variances can be estimated using a method suggested by KOENKER

and BASSETT (1982), but bootstrap methods are often preferred.

Conditional on pe and x, the CQFs given by (7) depend on the distribution of εit

via F−1
εit

(τ). In the special case that errors are independent and identically distributed,

that is, if F−1
εit

(τ) = F−1
ε (τ) and, hence, the inverse distribution function does not vary

across observations, the CQFs exhibit common slopes, αpe(τ) = αpe and αx(τ) = αx,

differing only in the intercepts: α(τ) + F−1
ε (τ). In this case, there is no need for quantile

regression methods if the focus is on marginal effects, as these are given by the invari-

ant slope parameters. In general, however, the CQFs Qτ will differ at different values

τ in more than just the intercept and may well be even non-linear in x. This may be the

3Further, rather theoretical advantages of quantile regression methods are, first, that, unlike OLS,

quantile-regression estimators do not require the existence of the conditional expected value for con-

sistency. Second, quantile regression is equivariant to monotone transformations. That is, the quantiles

of any monotone transformation h(y) of y equal the transformed quantiles of y: Qτ(h(y)) = h(Qτ(y)).

This property generally does not hold for the mean: E(h(y)) 6= h(E(y)).
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case if, for example, errors are heteroscedastic, which will be tested for our empirical

example presented in Section 5.

4 Data

The data used in this research is drawn from the German Mobility Panel (MOP 2010),

an ongoing travel survey that was initiated in 1994. The panel is organized in over-

lapping waves, each comprising a group of households surveyed for a period of six

weeks in the spring for three consecutive years. All households that participate in the

survey are requested to fill out a questionnaire eliciting general household informati-

on, person-related characteristics, and relevant aspects of everyday travel behavior. In

addition, respondents record the price paid for fuel, the liters of fuel consumed, and

the kilometers driven with each visit to a gas station and for every car in the household.

The data used in this paper cover thirteen years, spanning 1997 through 2009, a

period during which real fuel prices rose 1.97% per annum on average. The resulting

sample includes 2,165 households, 962 of which appear one year in the data, 474 of

which appear two years and 729 of which appear three consecutive years. Altogether,

we are faced with 4,097 observations. We use the travel survey information, which

is recorded at the level of the automobile, to derive the dependent and explanatory

variables required for estimating each of the four variants of the rebound effect. The

two dependent variables, which are converted into monthly figures to adjust for minor

variations in the survey duration, are the total monthly distance driven in kilometers

(Definitions 1, 2 and 4) and the total monthly liters of fuel consumed (Definition 3).

The three explanatory variables for identifying the direct rebound effect are the kilo-

meters traveled per liter (Definition 1), the price paid for fuel per kilometer traveled

(Definition 2), and the price paid for fuel per liter (Definitions 3 and 4).4

The suite of control variables selected for inclusion in the model measure the
4The price series was deflated using a consumer price index for Germany obtained from DESTATIS

(2010).
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socio-economic attributes that are hypothesized to influence the extent of motorized

travel. These capture the demographic composition of the household, its income, the

surrounding population density, and dummies indicating the availability of multiple

cars, whether the household undertook a vacation with the car during the survey pe-

riod, and whether any employed member of the household changed jobs in the prece-

ding year. Table 1 contains the definitions and descriptive statistics of all the variables

used in the modeling.

Table 1: Variable Definitions and Descriptive Statistics

Variable Name Variable Definition Mean Std. Dev.

s Monthly kilometers driven 1,546 1,146

e Monthly fuel consumption in liters 94.01 62.86

µ Kilometers driven per liter 12.97 2.99

ps Real fuel price in e per kilometer 0.08 0.02

pe Real fuel price in e per liter 1.01 0.15

# driving licences Number of driving licences in a household 1.76 0.75

# employed Number of employed household members 1.03 0.86

vacation with car Dummy: 1 if household undertook 0.20 0.40
vacation with car during the survey period

children Dummy: 1 if children younger 0.33 0.47
than 19 live in household

job change Dummy: 1 if an employed household member
changed jobs within the preceding year 0.13 0.33

income Real Household income in 1,000 e 2,500 803

multi-car households Dummy: 1 if an household has more than one car 0.35 0.48

population density People in 1,000 per square km in the county 0.834 1.004
in which the household is situated

11



5 Empirical Results

To provide for a reference point for the results obtained from a quantile-regression,

we first report in Table 2 the random-effects estimates of the model specifications cor-

responding to the four rebound definitions presented in Section 2. In line with our

reasoning in Section 3, we refrain from reporting the fixed-effects estimates, which are

largely similar to the estimated random effects for the fuel prices, but are statistically

insignificant for almost all other variables included; this is clearly the result of very low

variability of time-persistent variables, such as the presence of children or the number

of licensed drivers. Not surprisingly, a Hausman test rejects the equality of the random-

and fixed-effects coefficients.5

Moreover, we perform the classical BREUSCH-PAGAN (1979) test to examine the

superiority of the random-effects model over an OLS estimation using pooled data.

The test statistic χ2(1) = 45.1 of this Lagrange multiplier test clearly rejects the null

hypothesis of no heterogeneity among households, H0 : Var(ξi) = 0, which is also

confirmed by the test statistics that result if the normality assumption underlying the

BREUSCH-PAGAN test is dropped. According to the discussion of Section 3, these test

results of heterogeneity also indicate that quantile regression methods may provide

for insights that go beyond those given by both the OLS and random-effects estimates

(KOENKER, HALLOCK, 2001:152).

Several features of the results in Table 2 bear highlighting. First, while we prefer

the model specification related to Definition 4 for reasons presented in Section 2, its

estimated rebound effect of 57% is similar to that of Definitions 1 and 2, suggesting

that some 57% of the potential energy savings due to an efficiency improvement is lost

to increased driving. Particularly small is the difference in the estimated coefficient of

ln(pe) for the model specifications pertaining to Definition 1 and 4, which solely differ

5Following the method presented in Frondel and Vance (2010b), we also implemented a modified

Hausman test that allows comparison of individual coefficients between the fixed- and random effects

estimators. Using this test, we failed to reject the equality of the coefficients on the variables ln(pe),

ln(ps), and ln(µ).
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in the inclusion of the likely endogenous variable efficiency.

Table 2: Random-Effects Estimates for the Rebound based on Definitions 1 to 4.6

Definition 1 Definition 2 Definition 3 Definition 4

Dependent variable ln(s) ln(s) ln(e) ln(s)

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗-0.555 (0.062) – – ∗∗-0.903 (0.067) ∗∗-0.574 (0.063)

ln(ps) – – ∗∗-0.459 (0.040) – – – –

ln(µ) ∗∗0.418 (0.051) – – ∗∗-0.529 (0.057) – –

children ∗∗0.077 (0.027) ∗∗ 0.080 (0.027) ∗∗ 0.084 (0.028) ∗0.065 (0.027)

logged income ∗∗0.094 (0.032) ∗∗ 0.101 (0.032) ∗0.082 (0.034) ∗0.077 (0.032)

# driving licenses ∗∗0.084 (0.019) ∗∗ 0.085 (0.019) ∗0.035 (0.017) ∗∗ 0.079 (0.019)

# employed ∗∗0.125 (0.016) ∗∗ 0.125 (0.016) ∗∗ 0.108 (0.016) ∗∗ 0.128 (0.016)

job change 0.044 (0.028) 0.044 (0.028) 0.050 (0.030) 0.051 (0.029)

vacation with car ∗∗0.248 (0.020) ∗∗ 0.249 (0.020) ∗∗ 0.340 (0.021) ∗∗0.252 (0.020)

population density ∗∗-0.068 (0.013) ∗∗-0.068 (0.013) ∗∗-0.055 (0.013) ∗∗-0.073 (0.013)

multi-car households ∗∗0.444 (0.028) ∗∗ 0.444 (0.028) ∗∗-0.091 (0.028) ∗∗ 0.456 (0.028)

constants ∗∗6.782 (0.246) ∗∗ 6.819 (0.245) ∗∗ 2.423 (0.259) ∗∗ 6.059 (0.235)

Observations used 4,097 4,098 4,097 4,097

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

Second, also of note is that the estimates fit to the range of 58% to 59 % estimated

by FRONDEL, PETERS, and VANCE (2008) for the sub-sample of single-vehicle German

households observed between 1997 and 2005. Not least, it bears noting that the esti-

mated rebound effects and fuel price elasticities are considerably higher than many

estimates reported elsewhere in the literature. A key reason for this outcome is that the

elasticities from household-level data are generally larger than those from aggregate

6To correct for the non-independence of repeated observations from the same households over the

years of the survey, observations are clustered at the household level and the presented standard errors

reflect this survey design feature.
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time-series data (WADUD, GRAHAM, and NOLAND, 2010:65). In fact, the fuel price ela-

sticity of travel demand of -0.57 fits well to the results of numerous household-level

studies reported by (WADUD, GRAHAM, and NOLAND, 2010:69).

Third, with a magnitude of about -0.9, the elasticity estimate of fuel consumption

with respect to fuel price changes, and hence rebound Definition 3, is much larger than

the respective elasticity estimates of kilometers traveled. This estimate replicates a re-

sult commonly found in the literature: that the fuel price has a much stronger influence

on fuel consumption than on the number of kilometers driven (GRAHAM, GLAISTER,

2004:272).

Fourth, from estimating the specification associated with Definition 1, it follows

that the impact of efficiency improvements on traveled distance is of the same order as

the effect of lowered fuel prices. In fact, with a test statistic of χ2(1) = 2.77, we cannot

reject the null hypothesis H0 : αµ = −αpe for a significance level of 5%. The assumption

underlying H0 is intuitive and frequently invoked in the literature, but rarely tested

(SORRELL, DIMITROUPOULOS, SOMMERVILLE, 2009:1360): for constant fuel prices pe,

raising efficiency µ should have the same effect on the service price ps, and hence on

the distance traveled, as falling fuel prices pe given a constant efficiency µ. Hence, there

is no reason, neither on a theoretical nor an empirical basis, to assume that Definitions

1 and 2 yield divergent results for the rebound effect.

Ultimately, while Definition 1 would suggest a rebound effect of 42%, from a stati-

stical point of view provided by testing H0, it is equally warranted to take the negative

of the fuel price elasticity estimate, i. e. 0.56, as an estimate of the rebound effect, in-

dicating that the rebound estimates are of a similar magnitude across all definitions

except for Definition 3. As the comparison of the estimates from Definitions 1 and 4

reveals, omitting the likely endogenous variable µ has hardly any effect on the estima-

tion results, particularly on the fuel price coefficient estimates. The empirical reason for

this outcome is that efficiency µ and contemporaneous real fuel prices pe are virtually

uncorrelated, with an empirical correlation coefficient of -0.015.

To further analyze the robustness of our results and accommodate potential sources
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of heterogeneity in the estimated fuel price elasticities and rebound effects, several ad-

ditional models were explored. We began by estimating the same specifications, but

limiting the sample to single-car households. The estimation results reported in Table

3 in the Appendix indicate that the travel demand responsiveness of single-car house-

holds to fuel prices is somewhat more pronounced than that of multi-car households.

This may be explained by the fact that in multi-car households household members are

able to choose among the most efficient cars for their traveling purposes. This expla-

nation is consistent with our finding that the fuel consumption responsiveness to fuel

prices is somewhat reduced, from -0.9 to -0.8, when the sample is limited to single-car

households.

Table 3: Random-Effects Estimates for Single-Car Households.

Definition 1 Definition 2 Definition 3 Definition 4

dependent variable ln(s) ln(s) ln(e) ln(s)

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗-0.676 (0.079) – – ∗∗-0.810 (0.078) ∗∗-0.711 (0.082)

ln(ps) – – ∗∗-0.620 (0.050) – – – –

ln(µ) ∗∗0.594 (0.067) – – ∗∗-0.467 (0.072) – –

children 0.061 (0.037) 0.062 (0.037) 0.068 (0.036) 0.054 (0.038)

logged income 0.015 (0.035) 0.018 (0.034) 0.007 (0.034) -0.005 (0.035)

# driving licenses ∗∗0.073 (0.022) ∗∗ 0.074 (0.022) ∗∗ 0.060 (0.023) ∗∗ 0.062 (0.023)

# employed ∗∗0.142 (0.021) ∗∗ 0.142 (0.021) ∗∗ 0.137 (0.020) ∗∗ 0.143 (0.021)

job change ∗0.097 (0.040) ∗ 0.097 (0.040) ∗∗ 0.112 (0.039) ∗0.107 (0.042)

vacation with car ∗∗0.312 (0.024) ∗∗ 0.311 (0.024) ∗∗ 0.321 (0.025) ∗∗0.326 (0.026)

population density ∗∗-0.058 (0.015) ∗∗-0.057 (0.015) ∗∗-0.059 (0.015) ∗∗-0.063 (0.015)

constants ∗∗7.711 (0.265) ∗∗ 7.737 (0.262) ∗∗ 3.064 (0.271) ∗∗ 6.645 (0.258)

Observations used 2,660 2,661 2,660 2,660

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively.

There are additional discrepancies emerging from the single-car sample: Whi-

le the presence of children, for example, positively affects both travel demand and
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fuel consumption for the whole sample, this variable does not play a significant role

in determining the travel behavior of single-car households. This may be due to the

fact that single-car households prioritize car use for commuting, requiring children to

use public transport systems more frequently. Conversely, the dummy variable indica-

ting a job change in the previous year has a statistically significant effect only for the

single-car households, which substantiates the logic that such households use the car

primarily for commuting purposes.

Aside from exploring differences across single- and multi-car households, we fol-

lowed the lead of WADUD, GRAHAM, and NOLAND (2010) in investigating heteroge-

neity of fuel price elasticities and, hence, the rebound effect with respect to income, the

existence of multiple cars within a household, and residence in rural or urban areas.

To this end, each of these variables was interacted with fuel prices to allow for diffe-

rential elasticities. After exploring several specifications that included the interactions

individually and jointly, we found no evidence for statistically significant effects on the

interaction terms.

This contrasts with the findings of studies that allow for heterogeneous responses

using US data, which have generally uncovered statistically significant – if not quali-

tatively similar – differential effects. KAYSER (2000), for example, finds that the price

elasticity is greater at higher income levels, while WEST (2004) and WADUD, GRAHAM,

and NOLAND (2010) find greater price responsiveness among low-income households.

The absence of heterogeneity found here suggests that poorer households bear a rela-

tively higher burden from fuel price increases than wealthy households.

Yet another source of heterogeneity may relate to driving-intensity itself: To the

extent that those who drive more are more dependent on car travel, we would expect

them to exhibit less responsiveness to changes in the cost of driving than those who

drive less. Drawing on Definition 4, this hypothesis can be tested by referencing the

results of a quantile regression, reported in Table 4. In fact, as Table 4 illustrates, there

is some substanial heterogeneity in the rebound depending on the households’ travel

intensity. The fuel price elasticity of about -0.90 in the lowest decile is 61% smaller than
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the estimate of -0.56 in the most upper decile, confirming that the magnitude of the

rebound is substantially larger for households that drive less. In this example, an F-

test statistic of F(1; 4, 087) = 6.51 confirms significantly different coefficients at the 5%

level.

Table 4: Quantile-Regression Results for the Specification related to Definition 4.

Q10(ln(s)) Q30(ln(s)) Q70(ln(s)) Q90(ln(s))

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗-0.898 (0.116) ∗∗-0.714 (0.076) ∗∗-0.551 (0.080) ∗∗-0.561 (0.088)

children ∗∗ 0.129 (0.045) ∗ 0.060 (0.029) -0.015 (0.032) -0.048 (0.033)

logged income 0.050 (0.068) ∗∗ 0.183 (0.042) ∗∗ 0.170 (0.045) 0.071 (0.049)

# driving licenses ∗∗0.197 (0.035) ∗∗ 0.103 (0.018) 0.024 (0.019) 0.032 (0.021)

# employed ∗∗0.208 (0.031) ∗∗ 0.160 (0.016) ∗∗ 0.149 (0.018) ∗∗ 0.129 (0.021)

job change -0.053 (0.055) ∗∗ 0.079 (0.035) ∗∗ 0.107 (0.031) ∗∗ 0.099 (0.042)

vacation with car ∗∗0.380 (0.044) ∗∗ 0.332 (0.026) ∗∗ 0.249 (0.027) ∗∗ 0.152 (0.030)

inhabitant density ∗∗-0.081 (0.015) ∗∗-0.078 (0.011) ∗∗-0.060 (0.015) ∗∗-0.043 (0.013)

multi-car households ∗∗0.377 (0.046) ∗∗ 0.465 (0.029) ∗∗ 0.478 (0.032) ∗∗ 0.539 (0.038)

constants ∗∗5.203 (0.478) ∗∗ 4.902 (0.307) ∗∗ 5.746 (0.330) ∗∗ 6.880 (0.358)

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Standard errors are calculated using bootstrap

methods. The panel structure of the data is not exploited, as panel quantile methods are fairly new. Observations used: 4,097.

Moreover, as the F-Test results in Table 5 show, the estimated rebound at the 10%-

quantile is significantly different from the respective coefficient estimates of the deciles

onwards 40%. Further insight into this pattern can be gleaned from Figure 1, which

shows the quantile regression estimates along with the estimate obtained from a poo-

led OLS regression. While the lower responsiveness of more car-reliant households to

fuel prices changes is clearly evident from the plot of quantile estimates, in statistical

terms the degree of heterogeneity appears rather moderate: With some exceptions at

the upper and lower ends, most of the point estimates from the quantile regression fall

within the 95% confidence interval of the OLS estimate.
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Table 5: F-Tests for Identical Decile Coefficients for the Rebound Effect.

Quantiles 10% 20% 30% 40% 50% 60% 70% 80% 90%

10% – – – – – – – – –

20% 1.47 – – – – – – – –

30% 3.54 1.34 – – – – – – –

40% ∗ 4.01 1.78 0.37 – – – – – –

50% ∗∗ 6.66 ∗ 4.06 2.51 1.63 – – – – –

60% ∗∗ 8.58 ∗ 5.87 ∗ 4.22 3.21 1.22 – – – –

70% ∗∗ 8.18 ∗ 5.44 ∗ 4.03 3.04 1.12 0.13 – – –

80% ∗∗11.15 ∗∗ 8.00 ∗ 6.58 ∗ 5.12 3.26 1.60 1.26 – –

90% ∗ 6.51 3.73 2.27 1.42 0.42 0.01 0.02 0.93 –

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. The critical
values are F(1; 4, 097) = 3.84 and F(1; 4, 097) = 6.64, respectively.

Figure 1: Comparison of the OLS and Quantile Regression Results for the Rebound

Effect according to Definition 4.
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6 Summary and Conclusion

Because increases in fuel efficiency effectively decrease the unit costs of driving, their

effectiveness in reducing emissions may be offset by increased demand for car travel.

Although the existence of this so-called rebound effect has been recognized for some

time (CRANDALL, 1992), there still remains much debate as to its magnitude. With the

European Union increasingly relying of efficiency standards as a climate protection

tool in the transport sector, this debate has taken on increased relevancy.

Drawing on household level data from Germany, the present study employs OLS,

panel, and quantile regression techniques to estimate the magnitude of the rebound

effect as well as explore the degree of its heterogeneity across households. Contrasting

with WADUD, GRAHAM, and NOLAND’s (2010) analysis of US-based data, we find

no evidence for differential rebound effects by income level, geographical location, or

the number of cars owned. Results from the quantile regression, however, do suggest

some heterogeneity according to driving intensity, with the estimated rebound ranging

from a low of 50% in the 80%-quantile to a high of 90% in the 10%-quantile. Evidently,

reduced travel cost causes households with an already high demand for automotive

service to extend their demand to a lesser degree than households with low automotive

mobility.

From a policy perspective, the fact that the estimated rebound is relatively high

irrespective of driving intensity calls into question the effectiveness of efficiency stan-

dards as a pollution control instrument. The median regression rebound estimate amounts

to 62% (see Table A1 in the appendix), which is just slightly higher in magnitude than

the mean estimate of 57% from the corresponding random-effects specification. Moreo-

ver, it is virtually of the same order as that obtained by FRONDEL, PETERS, and VANCE

(2008), who used an abridged version of the current data set that extended to the ye-

ar 2005. Since that time, annually averaged fuel prices climbed another 9% to reach a

peak in 2008, followed by a drop of 9% in the following year (ARAL 2009). These fluc-

tuations appear to have had no bearing on a key conclusion emerging from the data,

namely that some 60% of the potential energy saving from efficiency improvements in
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Germany is lost to increased driving.

On the basis of these findings, the European Commission’s expressed reserva-

tions with reliance on fuel excise taxes (COM 2007) coupled with a corresponding

emphasis on per-kilometer emissions reductions as a key instrument for reducing to-

tal emissions from transport should be met with skepticism. We would instead concur

with STERNER (2007) that fuel taxes should continue to play an important role in cli-

mate policy, but should potentially be coupled with other measures that reduce the

burden to the poor, such as lower payroll taxes. Unlike fuel efficiency standards, fuel

taxes directly confront motorists with the costs of driving, which not only encoura-

ges the purchase of more fuel efficient vehicles, but also has an immediate impact on

driving behavior.
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Appendix

Proposition: If service demand s solely depends on ps, fuel prices pe are exogenous,

and energy efficiency µ is constant, then

ηpe(s) = ηps(s). (9)

Proof: Using price relation ps = pe/µ, the chain rule, and the assumption that the

service amount s solely depends on the price ps, we obtain

ηpe(s) =
∂ ln s

∂ ln pe
=

∂ ln s
∂ ln ps

· ∂ ln ps

∂ ln pe
= ηps(s) · ∂ ln(pe/µ)

∂ ln pe

= ηps(s) · [∂ ln pe

∂ ln pe
− ∂ ln µ

∂ ln pe
] = ηps(s) · [1− ∂ ln µ

∂ ln pe
] = ηps(s),

where the last term in the most right bracket vanishes if efficiency µ is constant, i. e. ,

if ∂ ln µ
∂ ln pe

= 0.

Table A1: OLS, Median Regression, and Random-Effects Results for the Rebound Ef-

fect based on Definition 4.

Pooled OLS Median Regression Random Effects

Coeff.s Std. Errors Coeff.s Std. Errors Coeff.s Std. Errors

ln(pe) ∗∗-0.694 (0.073) ∗∗-0.618 (0.064) ∗∗-0.574 (0.063)

children 0.043 (0.030) 0.003 (0.028) ∗0.065 (0.027)

logged income ∗∗ 0.127 (0.039) ∗∗ 0.194 (0.048) ∗0.077 (0.032)

# driving licenses ∗∗ 0.082 (0.020) ∗∗ 0.052 (0.018) ∗∗ 0.079 (0.019)

# employed ∗∗ 0.161 (0.017) ∗∗ 0.162 (0.016) ∗∗ 0.128 (0.016)

job change ∗0.072 (0.032) ∗0.079 (0.038) 0.051 (0.029)

vacation with car ∗∗ 0.301 (0.023) ∗∗ 0.288 (0.027) ∗∗0.252 (0.020)

population density ∗∗-0.064 (0.013) ∗∗-0.068 (0.000) ∗∗-0.073 (0.013)

multi-car households ∗∗ 0.466 (0.029) ∗∗ 0.476 (0.026) ∗∗ 0.456 (0.028)

constants ∗∗ 5.625 (0.282) ∗∗ 5.212 (0.355) ∗∗ 6.059 (0.235)

Note: ∗ denotes significance at the 5 %-level and ∗∗ at the 1 %-level, respectively. Observations used: 4,097.
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