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Abstract 
 
The U.S. Environmental Protection Agency (USEPA) maintains networks of pollution monitors 
for two basic purposes: to check and enforce the attainment of national ambient air quality 
standards (NAAQS) and to provide useful data for studying pollution and its effects. These 
purposes imply conflicting criteria for the locations of a limited number of monitors. To check 
the attainment of standards, monitors are placed where pollution levels are highest. Monitors are 
not required where standards have always been met and there are no new pollution sources. To 
provide useful data for studying pollution and its effects, monitors are placed to observe 
outcomes under a variety of pollution levels. This study asks the following questions. What 
factors affect when a monitor is retired from the network? What drives the decision to add a new 
site? What causes year-to-year changes in the number of monitors? We tackle these questions 
with a particular focus on the role of regulatory compliance and pollution levels in the context of 
monitors for tropospheric ozone (O3). Using a panel dataset of monitors in the contiguous US 
spanning the years 1993 to 2011, we find that peak O3 readings in the prior period are 
significantly associated with the regulator’s decision of whether to add or to drop a monitor in 
the following period. While compliance with the NAAQS for O3 is not consistently associated 
with network composition, compliance with the PM2.5 NAAQS does appear to affect changes 
to the network. 

JEL-codes: Q530, Q580, C230, C250. 
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1. Introduction 

The U.S. Environmental Protection Agency (USEPA) maintains networks of pollution 

monitors for two basic purposes: to check and enforce the attainment of national 

ambient air quality standards (NAAQS) and to provide useful data for studying 

pollution and its effects (40 C.F.R. § 58, Appendix D).  These purposes imply conflicting 

criteria for the locations of a limited number of monitors.  To check the attainment of 

standards, monitors are placed where pollution levels are highest.  Monitors are not 

required where standards have always been met and there are no new pollution sources.  

To provide useful data for studying pollution and its effects, monitors are placed to 

observe outcomes under a variety of pollution levels.   

Federal regulations that govern the monitoring networks reflect both purposes.  In this 

paper, we make an initial systematic assessment of the relative importance of the 

regulations and the potential for biased sampling that may undermine the study of 

national public welfare.   

Even for research into national public welfare conflicts about monitor placement arise.  

Often, different research questions suggest different placement designs.  Exploring the 

transport of pollution requires a geographical distribution of monitor sites whereas 

measuring the health effects of pollution is best served by wide distributions of 

pollution levels and socioeconomic conditions across sites.  Studying the welfare effects 

of pollution for American residents implies a monitoring network that provides a 

representative view of the experiences across that population. 
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The USEPA recently responded to the needs for representative sampling by organizing 

the National Core Network (NCore) multipollutant monitoring network, which began 

to operate formally in January 2011.  But this is a modest start, requiring only one 

monitoring station for each state.  The USEPA also runs a monitoring system 

assessment program that guides state, local, and tribal authorities responsible for 

monitor placement and maintenance.  Our analysis complements these efforts by 

looking at the network as a whole. 

In order to explore the factors that affect the spatial composition of the monitoring 

networks, this paper uses observations on tropospheric ozone (O3) in the contiguous US 

between 1993 and 2011 gathered by the USEPA’s Aeromatic Information Retrieval 

System (AIRS), (see 

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm). Over this 

time period the number of monitoring stations in the US has increased from 

approximately 900 in 1993 to about 1,200 in 2011 (see figure 1).  

O3 is a criteria pollutant regulated by the USEPA. This pollutant is associated with a 

variety of respiratory illnesses and in more recent studies has been associated with 

premature mortality (Bell et al., 2004; Jerrett et al., 2009). O3 also affects timber yields 

and crop production (Lesser et al., 1990). These myriad effects drive the determination 

of the NAAQs for O3 which were first set in 1979. The standard was set at that time to 

be 120 ppb for the maximum hourly concentration over the course of a year. This 

approach held until 1997 when the standard was reduced to 80 ppb for the fourth 

http://www.epa.gov/ttn/airs/airsaqs/detaildata/downloadaqsdata.htm
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highest daily maximum concentration averaged over three years. This standard was 

modified slightly to 75 ppb in 2008 (see 

http://www.epa.gov/ttnnaaqs/standards/o3/s_o3_history.html). 

As stipulated by the Clean Air Act (CAA), the USEPA recently reviewed the NAAQS 

for ozone set in 2008. The standard was reduced again to 70 ppb. This new standard 

was motivated, in part, by additional evidence on the human health effects of ozone 

exposure.  We focus on the ozone-monitoring network, providing a new view of the 

network that has produced data supporting the USEPA review. 

That is, this paper explores the regulators’ decision-making process in terms of locating 

air pollution monitors. What factors affect when a monitor is retired from the network? 

What drives the decision to add a new site? What causes year-to-year changes in the 

number of monitors? We tackle these questions with a particular focus on the 

relationship between regulatory compliance, pollution levels, and network design.  

1.1 Policy Background 

The USEPA’s ambient air quality monitoring network has many components. The 

principle ozone-monitoring network is the State and Local Air Monitoring Stations 

(SLAMS).  Within SLAMS, Photochemical Assessment Monitoring Stations (PAMS) 

measure ozone and its precursors specifically for areas of acute nonattainment.  Since 

2011, the USEPA also has used the Clean Air Status and Trends Network (CASTNET), 

which focuses on rural areas.  Finally, Special Purpose Monitoring Stations (SPMS) 

provide ozone measurements from about 20 rural monitors that are part of the Portable 

http://www.epa.gov/ttnnaaqs/standards/o3/s_o3_history.html
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O3 Monitoring System (POMS) network operated by the National Park Service (NPS).  

Figure A-1 shows the geographic distribution of these monitors. 

The SLAMS network is a collection of monitors operated by state or local air monitoring 

agencies.  The monitors are required to satisfy regulatory requirements and provide air 

quality information to public health agencies.  As a result, the SLAMS network is 

focused on urban areas.  As the regulatory agency, the USEPA must approve SLAMS 

sites and works with the state or local authorities on the design and maintenance of 

their network.  While there are general monitoring requirements, the USEPA evaluates 

the state and local networks and may specify additional monitoring for particular 

circumstances.  

Each state or local network must include a monitor site for one of six roles, all related to 

ozone.  Three roles concern monitoring various pollution levels:  (1) peak air pollution 

levels within the area covered by the network, (2) typical levels in densely populated 

areas, and (3) background concentration levels.  A fourth role is to measure the impact 

of particular significant sources of pollution.  Observing regional movement of air 

pollution between populated areas is the fifth role.  Finally, monitors are dedicated to 

measuring pollution effects on visibility, vegetation damage, or other welfare-based 

impacts.  SLAMS ozone monitors generally collect data exclusively on ozone.  The 

regulations suggest no necessary interaction between siting ozone monitors and 

monitors for other pollutants. 
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In addition, SLAMS ozone monitoring networks must meet location requirements that 

depend on the size of the area covered and typical peak concentrations.  Specific 

SLAMS ozone site minimum requirements are included in Table D-2 of 40 CFR Part 58, 

Appendix D, which is included as table A-1 in the appendix to this paper. The minima 

shown in A-1 are generally exceeded in order to cover all of the roles mentioned above.  

The regulations emphasize measuring maximum concentration and specifically state 

that every MSA must have at least one monitor for this purpose and specify siting 

requirements:  “In many cases, these maximum concentration O3 sites will be located 10 

to 30 miles or more downwind from the urban area where maximum O3 precursor 

emissions originate. The downwind direction and appropriate distance should be 

determined from historical meteorological data collected on days which show the 

potential for producing high O3 levels. Monitoring agencies are to consult with their 

USEPA Regional Office when considering siting a maximum O3 concentration site.” (40 

C.F.R. § 58, Appendix D, Section 4.1, Paragraph f) 

Generally, monitor number and locations are proposed by state or local authorities and 

submitted to the USEPA, as part of the State Implementation Plan (SIP) required of all 

states.  In practice, these groups work together to develop each monitoring network.  

The USEPA also provides technical guidance documents on ozone monitoring network 

design for evaluating the adequacy of each existing monitor, to relocate or retire an 

existing site, or to locate any new sites. 



7 
 

The regulations also address modification of existing monitoring networks (40 C.F.R. § 

58.14).  Generally, monitors required by an attainment or maintenance plan may not be 

altered.  Discontinuation of a monitor is permitted when it “has shown attainment 

during the previous five years [and] … has a probability of less than 10 percent of 

exceeding 80 percent of the applicable NAAQS during the next three years based on the 

levels, trends, and variability observed in the past.”  Also, a monitor that “has 

consistently measured lower concentrations than another monitor for the same 

pollutant in the same [region] … during the previous five years” may be retired.  

Another monitor may replace a monitor that “is designed to measure concentrations 

upwind of an urban area for purposes of characterizing transport into the area” for the 

same purpose (40 C.F.R. § 58.14). 

In 1993, the USEPA began requiring Photochemical Assessment Monitoring Stations 

(PAMS) sites in each ozone nonattainment area classified as serious, severe, or extreme.  

In 2006, new requirements dropped several siting specifications and required only two 

monitoring sites for each so-called PAMS area.  The USEPA is currently considering 

additional changes to the requirements in order to give monitoring agencies more 

flexibility to pursue local objectives and to provide wider spatial distribution for 

research purposes. The PAMS network currently covers 25 areas with 75 sites.  As 

shown in figure A-2, these sites are concentrated in California, Texas, and the 

northeastern seaboard. 
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The Clean Air Status and Trends Network (CASTNET) was established under the 1990 

Clean Air Act Amendments.  CASTNET was created to observe long-term trends in 

regional atmospheric sulfur, nitrogen, and ozone concentrations and deposition of 

sulfur and nitrogen pollutants in rural areas.  The network is managed by the USEPA in 

cooperation with the National Park Service (NPS) and the Bureau of Land Management 

(BLM). In 2012, there were 91 CASTNET monitoring sites operating at 88 distinct 

locations.  As figure A-3 shows, the USEPA operates sites in the east while the NPS 

operates sites in the west.  The BLM operates four sites in Wyoming that joined the 

network in 2012. 

In 2011, the USEPA put into operation a new National Core (NCore) network of 

monitors where multiple pollutants are measured.  This network does not affect this 

study but we mention it for two reasons.  First, the USEPA is considering requiring 

PAMS measurements at all NCore sites.  This is one proposal of several addressing the 

desire, mentioned above, to give PAMS wider spatial distribution for research purposes. 

Second, the sites are chosen to be “representative” of a broad range of rural and urban 

sites, as opposed to focused in areas with high ambient pollution concentrations.  Thus, 

the USEPA has acknowledged the unrepresentative nature of its SLAMS network. 

1.2 Network Design 

The two basic purposes of the USEPA monitoring network, to check and enforce the 

attainment of NAAQS and to provide useful data for studying pollution and its effects, 

represent a range of specific uses that are best served by different network designs.  The 
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purpose of this study is to estimate the relative importance of these two purposes and to 

serve as a first step in assessing inference problems that arise as a result.  Two basic 

issues for any use are whether the monitor network data are representative and 

whether they are informative. 

1.2.1 Representative Monitoring 

The USEPA seeks to identify nonattainment of NAAQS wherever it occurs throughout 

the United States.  To this end, monitors are maintained where nonattainment has 

occurred in the past and in locations where nonattainment is probable.  At the same 

time, the USEPA wants to know the health effects of various pollution concentrations 

and to inform members of the general population about the pollution levels they face.  

Health effects are critical inputs to the choice of design values and their associated 

ambient standards.  Providing accurate information to the public “sufficient to 

effectively participate in managing human health and environmental risks” (USEPA, 

2016) is one of the basic missions of the USEPA.  If the USEPA monitor network focuses 

on monitoring high pollution areas where nonattainment occurs or is probable then 

there is a risk that the USEPA cannot fulfill its mission for those people who live 

elsewhere. 

Because monitors cannot be placed everywhere, the monitoring network must be used 

to predict (or forecast) criteria pollutant levels where there are no monitors.  This is the 

fundamental motivation for representative monitoring.  By monitoring a site that is 

typical of other, unmonitored locations, the USEPA could infer the conditions in those 

http://www2.epa.gov/aboutepa/our-mission-and-what-we-do
http://www2.epa.gov/aboutepa/our-mission-and-what-we-do
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unmonitored areas, albeit with some uncertainty.  Matters are, of course, more 

complicated because sites do not fall into a few types.  Inference about unmonitored 

conditions requires extrapolation based on conditional probability models and 

estimation of model parameters.  If the conditions of a conditional probability model 

characterize an informative distribution of pollution everywhere in the nation, then 

accurate information can be provided to public. 

Usually, estimation rests on data collection, or sampling, that is also representative in 

the same conditional sense as the conditional probability model.  Focusing monitors on 

high pollution areas results in two weaknesses related to conditioning.  The first is that 

the variation in conditions may be too narrow to project accurately in other areas with 

markedly different conditions.  We will discuss this weakness more in the next section 

on informative data.  The second, more fundamental, weakness arises from the 

restriction that a probability model for pollution levels in all areas does not condition on 

pollution levels.  Focusing on high pollution levels is an example of sampling 

conditional on pollution levels.  From the perspective of statistical inference, the data 

from such sampling are unrepresentative or biased.  Statistical inference that ignores 

this bias may be misleading. 

For example, the USEPA’s Office of Air Quality Planning and Standards manages a 

program called AirNow that is the USEPA’s primary means of informing the public 

about air quality.  AirNow is the national repository of real-time air-quality data and 

forecasts for the United States based on measurements from the ambient air monitoring 

http://www.airnow.gov/index.cfm?action=ani.airnowUS
http://www.airnow.gov/index.cfm?action=ani.airnowUS
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networks.  One of our long-term goals is to assess the potential biases that the current 

monitor network could have on AirNow forecasts.  This paper takes a first step toward 

that goal by investigating sampling biases. 

Another important use of the air quality monitoring data is research evaluating the 

effects of pollution on human health.  Health is influenced not only by pollution but 

also by other environmental factors such as population density and socioeconomic 

characteristics.  Sampling bias can confound these determinants of health. Researchers 

may then mistakenly attribute the effects of other factors to pollution exposure. 

Note that sampling biases do not necessarily lead to misleading inference.  Statistical 

inference may be able to account for sampling biases and avoid deception.  In some 

cases, sampling bias may be present but inconsequential to inference. 

1.2.2 Informative Monitoring 

A second issue for monitor networks is how informative they are.  Monitor placement 

affects the ability to measure the effects of such influences as pollution on health 

accurately.  Even though it is unbiased, a measure may be ambiguous because a large 

amount of statistical uncertainty is present.  If, for example, pollution concentration is 

similar over the monitor network then the influence of changes in concentration on 

health will be estimated imprecisely. Hence, the estimates will be uncertain. 

In addition, monitor placement affects the degree of detail in the observed variation of 

pollution across regions.  When neighboring monitors in a network produce highly 

correlated measurements, then several monitors are measuring essentially the same 

http://www.airnow.gov/index.cfm?action=ani.airnowUS
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process.  In such a case, one monitor can accurately forecast the conditions at the others.  

Alternatively, monitors might be placed so that they pick up the idiosyncrasies of each 

site so that their measurements are not highly correlated and forecasts based upon other 

monitors are inaccurate. 

The USEPA and federal regulations have expressed attention to both aspects of creating 

an informative monitoring network.  Required specifications for the roles of monitors 

ensure, in part, that monitors are not redundant.  Remarks about representativeness 

also suggest the desire to obtain a wide variety of observed pollution levels for research 

on human health, ecological health, public welfare, and pollution transport.   

Specifically, data gathered at monitoring stations are used to assess the impact of 

exposure to air pollutants on a number of sensitive receptors: people, crops, timber, and 

ecosystems, to name a few. This phenomenon has broad importance in that Title I of the 

Clean Air Act (CAA) uses such scientific criteria—relationships between exposure and 

impact—to set the NAAQS. These standards are ostensibly set to protect human health 

and welfare with an adequate margin of safety. However, if collectively our sense of the 

threat that such pollutants pose to human health is derived from a biased set of 

observations then it is certainly possible, if not probable, that the NAAQs embody this 

bias.  

Second, air quality models are tools used to estimate the link between emissions and 

concentrations. A critical role played by air quality models is the ability to estimate 

concentrations in areas without monitors. Importantly, these models are often calibrated 
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to the monitor readings.1 And if the set of observations is in some way biased, then the 

“correction” applied to the air quality models may not be appropriate. That is, the post-

calibration estimates in locations without monitors will then embody the bias 

embedded in the monitor readings. Further, model projections in areas without 

monitors are (in part) used to inform new monitor placement decisions. Again, if the 

model is calibrated to a selected sample of monitors, then the estimates that are used to 

inform changes to network design are likely to be biased and future network design 

and arrangement is also likely to reflect this bias. 

In its recent Integrated Science Assessment for Ozone and Related Photochemical Oxidants, 

(USEPA, 2013) the USEPA investigated the correlation among monitors in the networks 

of twenty cities (CITE).  This investigation, admittedly, sought high correlations in 

support of health studies based upon aggregate pollution measures.  

1.2.3 Empirical Approach. 

In this context the current paper tests for endogenous monitor placement in the O3 

monitoring network using several approaches. First, the analysis explores the 

determinants of monitor density in each cross section from 1993 to 2012. That is, we 

regress two measures of network density (monitor counts by county and within a 

radius of each extant site) on lagged O3 levels, and NAAQs compliance status, among 

                                                           
1 This process, and guideline for it, is described by the USEPA at: 
http://www.epa.gov/ttn/scram/guidance/guide/final-03-pm-rh-guidance.pdf 

 

http://www.epa.gov/ttn/scram/guidance/guide/final-03-pm-rh-guidance.pdf
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other controls. We repeat this over all cross sections and then, using monitor fixed 

effects, assembling all years in a panel. The motivation for this initial specification is 

that if monitors in a given cross section are not placed endogenously with respect to O3, 

the bias in the resulting surface is likely to be small. Detection of a link between lagged 

O3 levels and monitor placement motivates more sophisticated modeling techniques. 

Next, we use site-by-site observations and identify when a particular monitoring station 

is dropped (permanently) from the network. This approach encompasses locations that 

have been subject to measurement at some time in the panel but have been permanently 

dropped. By design it does not encompass locations that have never been monitored. A 

second approach identifies new sites in the network. An important consideration when 

modeling new monitors is to identify whether a new monitor is simply acting as a 

replacement for a retired monitor in basically the same location. We control for this by 

specifying an indicator for whether a monitor was dropped (one period prior) in the 

same county in which the new monitor is located.  

These models make use of detailed information on each monitoring station including 

the number of (and reason for) missing observations and whether the station is 

managed by federal, state, or county governments or by private firms. The management 

controls are motivated by the prior discussion of different monitoring networks; these 

different network types (SLAMS, PAMS, CASTNET, e.g.) have somewhat different 

purposes and controlling for inclusion in the different networks is, therefore, likely to 

be important. Also included as controls are the age of the monitors, the number of 
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monitors in a county, and the latitude and longitude coordinates of the monitors. Given 

the focus of the analysis we are particularly interested in testing whether lagged O3 

levels and lagged compliance status with the NAAQS affect the composition of the 

monitoring network. The “drop” probit models enable a test of whether lagged O3 

levels and regulatory compliance status influences the decision to remove a monitoring 

station from the network. The “new” probit models facilitate a test of whether lagged 

O3 levels and regulatory compliance status affect the choice to add a monitor to the 

network.  

The manner in which the NAAQS are implemented by the USEPA under the CAA also 

affects model specification. In particular, the USEPA requires that states submit State 

Implementation Plans (SIP) in order to demonstrate how each state will comply with 

the standards set under the CAA. In certain cases, the USEPA may promulgate a 

Federal Implementation Plan (FIP). This may occur if a state has not submitted a SIP 

(when it is required to do so), or if a submitted SIP is deemed to be incomplete or 

inadequate in some way (76 FR 48207, 2011). One aspect of a SIP that is especially 

relevant to the current analysis stipulates that plans for monitoring ambient pollution 

levels are typically delineated in or by a SIP (or its replacement FIP), (42 USC § 7410). 

As a result of this, regulators in a state facing a FIP may have different incentives in 

regards to monitor network composition. The econometric models control for SIP/FIP 

status.  
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The conceptual basis for potential associations between lagged O3 readings, NAAQS 

compliance, and the decision to either add or drop a monitor to (or from) the network 

stem from network design decisions being embedded in the SIP approval process. 

Recall from the discussion above that SIPs cover, among other topics, rules for 

discontinuation and replacement of monitoring sites. Further, monitors in the PAMS 

network are placed in areas designated as out-of-attainment with the NAAQS. 

1.2 Preview of Results 

Beginning with the cross-sectional regressions, for each year, maximum O3 readings are 

a significant and positive determinant of monitor counts when using either Poisson of 

negative binomial regressions. This finding holds for both the county and the distance-

based (radius) monitor counts. Using the first-difference estimator, maximum O3 

readings are a significant and positive determinant of monitor counts in 15 out of 17 

cross sections for the county specification. In the radius specification maximum O3 

readings are a significant and positive determinant of monitor counts in just 2 out of 17 

cross sections. 

In the panel, O3 maximum readings are a significant and positive determinant of 

monitor counts for all county models. O3 standard deviations are a significant and 

negative determinant of monitor counts for all county models. O3 mean readings are 

also a significant and positive determinant of monitor counts for Poisson and negative 

binomial regressions for the county models. Using the distance based monitor counts O3 
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maximums are a significant and positive determinant of monitor counts in the Poisson 

and negative binomial regressions. 

O3 readings are significantly associated with the decision to drop a monitor from the 

network throughout the 1993–2011 period. Specifically, a one part per billion (ppb) 

increase in the hourly maximum reading is associated with a -0.04% decrease in the 

probability that a monitor will be dropped in the subsequent time period(α = 0.01). We 

find limited evidence that O3 NAAQs compliance status is associated with dropping a 

monitor; however, PM2.5 compliance does predict the decision to drop a monitor from 

the network. The results also suggest that lagged ambient maximum readings are a 

significant factor in predicting whether to locate a new monitor in a given county. In 

particular, a one ppb increase to the hourly maximum reading is associated with 

approximately a 0.04% increase in the probability that a monitor will be added in the 

subsequent time period (α = 0.01).  

Because a new monitor may simply replace a retired monitor, one alternative estimation 

strategy is to restrict the sample to counties in which there was not a dropped monitor in 

the prior period in order to focus on net additions to the network. In this setting we find 

roughly equivalent marginal effects of ambient O3 as documented above. However, we 

find evidence that O3 NAAQs attainment status is a significant determinant of whether 

there is a new monitor in a given county in FIP states. In contrast, in SIP states, we find 

no evidence that attainment status affects the decision to add a monitor. Hence, whether 

a state manages its own compliance strategies or whether this role is assumed by the 
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federal government is a significant factor in determining if lagged compliance status 

affects changes to the monitoring network. 

So, summarizing the results of the current analysis, there are four essential findings. 

1. Monitor counts are higher in areas with high maximum O3 readings. 

2. The regulator is less likely to drop an existing monitor for which prior maximum 

readings are high. 

3. The regulator is more likely to add a new monitor to counties for which prior 

maximum readings are high. 

3.a. In counties that dropped a monitor during the prior period, the propensity of 

the regulator to add a new monitor is not affected by O3 levels or attainment 

status. 

3.b. In counties that did not drop a monitor during the prior period, the 

propensity of the regulator  to add a new monitor is positively associated with O3 

levels in states managed by a SIP and attainment status in states managed by a 

FIP. 

4. Evidence of an association between adding a new monitor and prior O3 attainment 

status is mixed.  

4.a. Regulators appear more likely to add monitors to counties with a legacy of 

non-attainment and this association is especially strong in FIP states. 

4.b. Regulators in states managed by a SIP are less likely to add a monitor to 

previously unmonitored counties that are chronically out of attainment. 
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The remainder of the manuscript is structured as follows. Section 2 touches on the areas 

in the literature to which this paper relates. Section 3 presents ours methods; this section 

describes the various model specifications as well as the data. Section 4 presents the 

empirical results and section 5 concludes. 

2. Literature 

To the authors’ knowledge no papers in economics directly tackle the issue of pollution 

monitoring network design from the perspective of regulator choice. However, there 

are aspects of this paper that relate indirectly to areas in the economics literature. We 

begin with a discussion of papers that touch on the incentives faced by firms when the 

stringency of policy constraints varies across space. Hoel (1997) explores implications 

for plant or facility location in a context of multiple jurisdictions competing both in 

terms of growth or output and in terms of environmental quality. Hoel (1997), who 

draws on the work of Oates and Schwab (1996), notes that heterogeneity in stringency 

of environmental policy has implications for firms’ location decisions. The interplay 

between exogenous and endogenous policy, explored by Markusen, Morey, and 

Olewiler (1993) is relevant in the current context as the federal government sets the O3 

NAAQs, but it leaves implementation up to the states (in most cases). Thus, the way in 

which states choose to implement federal standards may reflect industry composition 

within and across states, which in turn, may affect industry or market structure. 
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Many papers estimate the impacts associated with exposure to air pollutants (including 

tropospheric O3). Notable examples include:  Muller, Mendelsohn, and Nordhaus (2011) 

which conducted an environmental accounting exercise in the US economy in 2002, 

Adams et al., (1989) which quantified the value of crop yield losses due to O3 exposure, 

and the USEPA’s cost-benefit analyses of the Clean Air Act (USEPA, 1999; 2010) which, 

among other pollutants, assessed the impact on health, timber and agriculture of 

exposure to O3.  

A literature exists in the fields of atmospheric chemistry and physics specifically related 

to the design of air pollution monitoring networks. The World Health Organization 

outlined a list of nine objectives for the design of pollution monitoring networks (WHO, 

1977). This broad list includes: the ability to evaluate health and environmental risk, 

evaluation of control strategies, and calibrating air quality models, among others. Only 

one objective appears to relate strictly to measurement without a direct connection to 

regulatory compliance: assessing spatial and time series trends in pollution levels. 

However, later papers zero-in on relatively few objectives in network design including: 

(1) maximization of the detection capability of peak pollution concentrations and (2) 

maximizing the detection capability of regulatory violations (Cheng and Tseng, 1997). 

Liu et al., (1986) state that early network composition was based on: 

“Subjective considerations; semiquantitative rules supported by experience; or 

sometimes, limited use of analytic tools like simple Gaussian Plume models.” 
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Further, Liu et al., (1986) note that factors such as convenience in accessing monitoring 

stations (ostensibly for the purposes of installation or routine maintenance) also plays 

an important role in driving specifically where monitors are sited. And, as in Cheng and 

Tseng, 1997, placing monitors in such a way as to capture peak readings and regulatory 

violations appears to be the overarching objective. The problem, as Liu et al., (1986) note, 

is that optimization with respect to this goal requires some knowledge or prior 

information regarding the underlying spatio-temporal distribution of pollution. This 

can only come from two places: existing monitors or air quality models that are used to 

estimate levels. Since air quality models are calibrated to or validated against readings 

from monitors, network design is clearly endogenous with respect to existing 

information on pollution levels.  

An additional objective in network design is minimizing the number of distinct 

monitoring stations (Venegas, Mazzeo, 2003). Liu et al., (1986) propose the Sphere Of 

Influence (SOI) approach which explores spatial correlations in predictions made by air 

quality models. This tack proposes siting a new monitor whenever the correlation 

between the readings at an existing station falls below a predetermined threshold value 

in a spatial correlation index.  

Baldauf, Lane, and Marote (2001) identify a different objective that focuses on exposure 

analysis. Specifically, this approach optimizes design with respect to identification of 

impacts on human health. Potential monitoring locations are prioritized based on likely 

health risks to proximal populations. Baldauf, et al., (2001) describe a three-part 
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optimization routine in which concentration, toxicity, and population density are used 

to identify differing levels of risk. The highest priority is given to potential locations 

with the highest risk. Although this approach embodies a slightly different objective in 

network design optimization, like the earlier papers, it is motivated by regulatory 

considerations,2 not objective measurement of the pollution surface. Baldauf et al., (2002) 

explicitly state that: 

“Monitoring sites should be established at locations with the highest health risks 

to maximize the potential of obtaining a representative air quality measurement 

at the location(s) where adverse health effects occur.” 

However, selection of sites based on a metric that seeks out the highest health risks is 

not likely to yield a representative sample of air pollution measurements, by definition. 

That is, if the siting mechanism selects locations in the right-hand tail of the underlying 

distribution, it will produce measurements that tend to be larger than more typical 

observations from the distribution. This holds whether health risk or concentration 

levels comprise the objective function in network design. 

Kainuma, Shiozawa, and Okamoto (1990) appear to move the discussion in a different 

direction by developing a multi-attribute strategy by which potential monitoring sites 

are ranked. These include factors such as effectiveness in providing readings on mean 

and episodic pollution levels, costs of building and maintaining the station, as well as 

                                                           
2 Baldauf, Lane, and Marote (2003) note that the primary objective of the NAAQs is the protection of 
human health. Hence a methodology focusing on, effectively, a ranking of sites by health risks is still 
motivated by regulatory concerns, rather than purely measurement. 
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(but not limited to) population density. Kainuma et al., (1990) interview air quality 

regulators in an attempt to determine their preferences regarding the citing attributes. 

Air quality officers show a preference for networks with wide coverage and for 

coverage in highly polluted areas. Their ranking is declining in the number of stations 

(Kainuma et al., 1990). 

3. Methods 

The analysis of this paper focuses on a regulator’s decision-making process regarding 

how to measure ambient O3 pollution readings across space and through time. As 

mentioned above, if the primary goal or purpose of measurement were to obtain an 

unbiased estimate of the O3 surface, the preferred approach would be to place the 

monitors exogenously (not necessarily randomly) with respect to observed levels and to 

distribute monitors more densely where the surface variation is greatest.  This is 

described in some of the literature review above.  Given a budget constraint, it is 

wasteful to put monitors in places where neighboring monitors are giving the exact 

same readings and better to put monitors where there is little correlation among 

neighboring monitors.. Historically, monitors are used to inform regulatory 

enforcement. As such, monitors are not randomly scattered across space. Instead, they 

are placed in areas where statutory exceedances are possible if not likely. Monitor 

placement is a function (at least partially) of the variable being measured. This 
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contextual feature motivates an exploration of the factors that affect the spatial patterns 

in the network and the regulator’s decision to make changes in the monitoring network3. 

3.1 Monitor Count 

This analysis begins by examining factors that determine the number of monitors in 

various locations across the country. We begin cross-sectionally; for each monitor in 

each cross section (from 1994 to 2010) we tabulate the number of monitors in that 

county, Cc i,t. The monitor count is then regressed on lagged ambient O3 readings (Oi,t-1), 

the age of the monitoring station (Ageit-1), the fraction of missing observations at site i,  

Mit-1, and the population in the county where monitor i is located, Pit-1. Note that (M) 

contains five covariates describing whether and why observations are missing. The 

reasons for missing data include maintenance, malfunction, damage, weather, and an 

anomaly. Model (1.c) also controls for location, Li, (latitude and longitude) of the 

monitors. Model (1.c) is fitted using Poisson regression, negative binomial regression, 

and in first differences. 

),,,( 11,11,, −−−−= ctticttiti
c PAgeOgC M     (1.c) 

The second approach to modeling the monitor count computes the number of O3 

stations within a specified radius of each station in each cross section, Cri,t. Model (1.c) is 

fitted using this measure as the dependent variable. The default radius is 50 miles, and 

this measure is altered in a sensitivity analysis. 
                                                           
3 We computed goodness-of-fit tests for these parametric models using the approach described in Andrews 
(1988).  Despite fitting the data reasonably well, these tests reject the parametric models because the sample sizes 
are quite large.  Given the qualitative agreement among our parametric models, we remain confident that the 
parameter estimates give an accurate representation of the patterns in the data. 
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In the count models, we employ three different measurements of ambient O3 readings. 

The first is the O3 season mean, a lagged average across monitoring stations in the 

county. The lag structure here is important because over such a long time period, there 

is likely to be considerable inertia in network design. That is, ambient concentrations 

many years earlier may affect the composition of the network which consists of capital 

installations that last many years. As such, the lag is a multi-year average back to the 

first year in the sample, 1993. So for observations in the year 1994, this is a one-year lag. 

For 1995, it is an average over 1994 and 1993, and so on up to 2011.  

The second measurement is the O3 standard deviation across monitoring stations in a 

given county, with the same lag structure as above. And the third is the maximum 

hourly O3 level, across monitoring stations in a given county, with the same lag 

structure as above. We explore these different measures because the mean (what might 

be considered a default measure of O3 levels) may not capture, in effect, what matters to 

the regulator in terms of whether or not to modify the monitoring network. That is, 

since 1979, the NAAQs for O3 have been defined in terms of maximum hourly readings. 

(Note that the standards changed in 1997 and then again in 2008 and 2015, but their 

basic structure retains this hourly maximum-type definition.)   

Model (2.c) adds controls for county-level attainment status, Ait-1 with the O3 NAAQs 

and the PM2.5 NAAQs. 

),,,,( 1,1,1,1,1,, −−−−−= titititititi
c APAgeOgC M    (2.c) 
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While this analysis focuses on O3, we include PM2.5 attainment status because some air 

pollution monitoring stations gather data on multiple pollutants. We use two different 

measures of attainment. The first measure of attainment is the sum of years, prior to t, 

in which a given county has been out of attainment with the current NAAQs. The 

measure changes through time for different counties in the sense that it is a running 

total. So, for example, if a given county was out of attainment in 1995 and in no other 

prior period, in 1996 this attainment measure would assume a value of unity. If, in 1996, 

this same county was out of attainment again, then in 1997 this measure would assume 

a value of two. The measure is computed separately for both O3 and PM2.5. The second 

measure is a categorical variable that assumes a value of unity if the monitor is in a 

county that was partially out of attainment in the prior period, and it assumes a value of 

two if the entire county was out of attainment in the prior period4. 

),,,,,( 1,1,1,1,1,, ititititititi
c RAPAgeOgC −−−−−= M      (3.c) 

Model (3.c) controls for “ownership” of the monitors (Ri). These are a series of indicator 

variables coding whether each monitor is managed by federal, state, or county 

regulators, or if the stations are managed by a private firm. 

The next step in modeling the distribution of monitoring stations across the country is 

to control for spatial fixed effects. Models (1.c), (2.c), and (3.c) are estimated by 

assembling each of the cross sections into a 17-year panel while controlling for monitor 

                                                           
4 This is how attainment status is coded by the USEPA (see: 
http://www.epa.gov/oaqps001/greenbk/data_download.html) 
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fixed effects (γi) and the full set of year dummies (Yt). The fixed-effects models are 

estimated using both the county-based and the radius-based monitor count 

specifications. Model (4.f) adds controls for changes to the NAAQs: the 1997 O3 NAAQs 

revision, the 1997 and the 2006 PM2.5 NAAQs revisions, indexed by N in (4.f). These are 

dummy variables that assume a value of unity after the regulatory change. 

),,,,,,,,( 1,1,1,1,1,, ttiititititititi
c NYRAPAgeOgC g−−−−−= M      (4.f) 

3.2 Decision to Drop Monitors 

The next step in the empirical analysis uses a probit model to test whether O3 levels and 

regulatory status affects the regulator’s decision to remove a monitor from the network. 

Let (Dit) represent a dichotomous variable assuming a value of unity if monitor i is 

dropped from the network at time t and zero otherwise. 

),,,,,( 1111 itititititit LYPAgeOfD −−−−= M     (1.d) 

Model (1.d) describes the decision to drop a monitor from the network at time t as a 

function of lagged ambient O3 readings (Oit-1), the age of the monitoring station (Ageit-1), 

the fraction of missing observations at site i,  Mit-1, the population in the county where 

monitor i is located, Pit-1, as well as a year control, Yt. Note that (M) contains five 

covariates describing whether and why observations are missing. Model (1.d) also 

controls for location, Li, (latitude and longitude) of the monitors. 

),,,,,,( 1,1111 −−−−−= tcitititititit ALYPAgeOfD M    (2.d) 
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Model (2.d) maintains the form from (1.d) while, as in (2.c), adding controls for county-

level attainment status, Ait-1 with the O3 and PM2.5 NAAQs.  

),,,,,,,( 11,1111 −−−−−−= ttcitititititit NALYPAgeOfD M         (3.d) 

Model (3.d) includes indicator variables for the major regulatory changes: the 1997 O3 

NAAQs revision, the 1997 and the 2006 PM2.5 NAAQs revisions, indexed by N in (3.d). 

These are dummy variables that assume a value of unity after the regulatory change. 

),,,,,,,,,( 11,1111 iittcitititititit SIPRNALYPAgeOfD −−−−−−= M    (4.d) 

Model (4.d) controls for “ownership” or management agency of the monitors (Ri) and 

SIP status; states are coded (1) if they are governed by an approved state SIP and (0) if 

they are governed by a FIP.  

3.2 Decision to Add Monitors. 

We approach the specification of models that describe the decision to add a station to 

the monitor network in a similar manner to the models focusing on dropped monitors. 

There are, however, some important differences. In most cases, monitors are added to 

counties that already have at least one monitoring station. As such, the lag structure is one 

in which the county average becomes the relevant measure. That is, the analog to model 

(1.d), denoted (1.n) features county average O3 measures, fractions of missing 

observations, monitor age, population, and location. Also note that we add a control for 

whether a monitor was dropped from the county in the prior period. The thrust is to 
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distinguish between new monitors that replace a monitor that was eliminated versus a 

new monitor that in some sense adds to the network. 

),,,,,,( 11111 −−−−−= ctctctctctctit DropLYPAgeOhN M     (1.n) 

The next three models track closely to the approach used to model the dropped 

monitors discussed above. 

),,,,,,,( 1,11111 −−−−−−= tcctctctctctctit ADropLYPAgeOhN M    (2.n) 

Model (2.n) adds controls for county-level attainment status,Ait-1, as above. 

),,,,,,,,( 11,11111 −−−−−−−= ttcctctctctctctit NADropLYPAgeOhN M         (3.n) 

Model (3.n) includes indicator variables for the major regulatory changes: the 1997 O3 

NAAQs revision, the 1997 and the 2006 PM2.5 NAAQs revisions as in (3.d) above. 

),,,,,,,,,,( 11,11111 ccttcctctctctctctit SIPRNADropLYPAgeOhN −−−−−−−= M   (4.n) 

Model (4.n) controls for “ownership” of the monitors (Ri) and SIP status. 

3.4 Data 

The O3 readings used in this analysis are publicly available from the USEPA’s AIRS 

databases (USEPA, 2012). The data are comprised of hourly observations from 

individual monitoring stations over the period 1993 to 2011. The USEPA AIRS publishes 

extensive documentation on the monitors including reasons for missing observations, 
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ownership or management of monitors, land use, and starting and ending date of 

service (see: http://www.epa.gov/ttn/airs/airsaqs/manuals/codedescs.htm).  

Table A-2 in the appendix reports summary statistics for the O3 monitoring data. The 

average O3 reading across all sites in the panel is 33.5 ppb with a standard deviation of 

7.64. The average maximum hourly reading is 103.1 ppb with a standard deviation of 

22.6. Roughly 3 percent of the dataset are comprised of missing observations. Nearly all 

of these are due to monitor malfunctions or maintenance. Approximately two-thirds of 

the monitors are operated by state regulatory agencies, 11% are managed by county 

agencies, and 1% is operated by a private firm. Less than 1% is operated by the (federal) 

USEPA. Monitors for O3 have been in use for an average of 15 years. The oldest monitor 

has been in use for 51 years. 

Figure 1 indicates that in 1993 there were roughly 900 distinct stations recording O3 in 

the contiguous US in 1993. The monitors were distributed among about 600 counties5. 

This network increased to approximately 1,200 stations in 2010. The number of stations 

has been roughly constant since 2003. Despite this, stations have been dropped and 

added (permanently) throughout the panel. As further evidence of continued change in 

the allocation of monitors across space, the number of counties with a monitor has 

increased to 750 in 2010. 

Figure 2 shows changes to the monitoring network between 1993 and 2010. Dropped 

monitors have ranged between about 25 and 50 monitors dropped per year without a 

                                                           
5 Note that the coterminous US is comprised of 3,100 counties in all.  

http://www.epa.gov/ttn/airs/airsaqs/manuals/codedescs.htm
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discernible trend. New monitors were added at a rate of about 75 annually from 1993 to 

2003 and then the rate of additions was more comparable to dropped sites. This pattern 

is of course reflected in the total number of monitors in the network with a distinct 

period of growth in the network up until about 2003.  

The top-left panel of figure 3 shows that national average O3 levels have been roughly 

constant over the 1993 to 2010 time period. The readings show a slight downward trend. 

There were two fairly major regulatory changes pertaining to O3 that occurred in this 

time period. In 1997, the O3 NAAQs were revised for the first time since 1979. The 

standard was reduced from a maximum hourly concentration of 120 ppb to 80 ppb. In 

2008, this was further reduced to 75 ppb.    While these changes have had a limited 

effect on the mean, the maximum O3 readings have declined sharply since the early 

1990’s. The top-right panel of figure 3 shows this phenomenon. Along with a reduction 

in the maximum hourly readings, the O3 standard deviation has declined since the 

1990’s (shown in the bottom-left panel of figure 3) as has the coefficient of variation 

(bottom-right panel). 

In the appendix, figure A-4 and table A-3 show the differences in terms of O3 levels by 

monitor ownership. Ownership is broken up into the following groups: federal 

monitors (which tend to be operated by the USEPA, but also include those run by the 

military and other agencies), state monitors which are operated by state environmental 

protection agencies, and non-federal monitors which are mostly comprised of sites run 

by city and county municipal governments. The key insight of table A-3 and figure A-4 



32 
 

is that federal monitors tend to be placed in areas of relatively higher O3 than monitors 

run by other agencies.  

Figures A-5 and A-6 in the appendix display the share of counties out of attainment 

with the PM2.5 NAAQs and the O3 NAAQs, respectively. Prior to 20056, NAAQs for PM 

was defined in terms of PM10. Non-attainment rates were relatively low; figure A-5 

indicates that less than 5% of counties with monitors were out of attainment. In 2006, 

the PM2.5 NAAQs (proposed in 1997) was enacted. Non-attainment rates jumped to 

over 10% of monitored counties. In 2008, the second PM2.5 NAAQs revision came into 

effect. Compliance rates with this standard are about 7.5%. 

Figure A-6 in the appendix displays compliance rates with the O3 standards. Prior to 

2005, the acting standard for O3 was a 1-hour maximum reading of 120 ppb. 

Compliance rates improved dramatically from the 1980’s (more than 20% of monitored 

counties out of attainment) to 2005 (about 15% non-compliant). In 2006, an 8-hour 

standard was enacted. Non-compliance rates jumped back above 20%, but then rapidly 

declined back to 15%. 

4. Results 

Table 1 explores the differences in various O3 measures according to whether a site is 

dropped or retained in the network or if a new site is added. For sites that are dropped, 

the (one year lagged) mean O3 level is equivalent to sites that are retained. However, the 

                                                           
6 Note that the date of passage and enactment of the NAAQs revisions may, and in fact do, differ. In specifying the 
NAAQs revision controls in the econometric models we employ the date of enactment. 
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hourly maximum reading is significantly lower at sites that are dropped than at 

retained sites. Specifically, the mean hourly maximum O3 reading in the sample is 99 

ppb at sites that are dropped the following year. The mean hourly maximum O3 reading 

in the sample is 103 ppb at sites that are retained the following year (the difference is 

significant at α = 0.01). Since the O3 NAAQs are set according to the hourly maximum 

values, it makes sense that sites with higher maximum values are retained in the 

network; they are likely to be in counties that are (at least at risk of) being out of 

attainment the following period.  Hence, such sites are important for compliance 

assessments. And recall from section 1.1 that, consistently low relative readings is 

grounds for removal of a monitor from the network (40 CFR 58.14). 

The standard deviation measure is also significantly lower in sites dropped from the 

network than for retained sites. The standard deviation at dropped sites is 17.6 ppb, 

while at retained sites it is 18.2 ppb. This difference is significant at α = 0.01. Monitors 

with greater variability are likely to have higher peaks readings than sites with lower 

standard deviations, all else equal. As such, NAAQs violations are probably more apt to 

occur and these more variable monitors are also likely to be in counties at risk of non-

attainment. Hence, they tend to be retained. 

The right-hand panel of table 1 displays the same cross-tabulations except for new and 

existing monitors. Recall that the measurements in this context are one-year lagged 

county averages. The mean O3 level is marginally greater at new sites than at existing 

sites: the difference of 0.4 ppb is significant at α = 0.10. The difference in the maximum 
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hourly readings is about 5 ppb which is significant at α = 0.01. The standard deviation 

shows a small, weakly significant difference. The right-hand panel of table 1 suggests 

that O3 monitors are placed in locations with higher mean O3 levels, higher peak 

readings, and greater standard deviations. In summary, table 1 provides initial evidence 

that changes to the monitor network are associated with differences in O3 levels. 

4.1 Monitor Count 

Figure 4 plots the parameter estimates corresponding to maximum O3 readings from 

the cross-sectional regressions. The results are from model (4.c). The top two panels 

correspond to Poisson regression. Beginning with the top left panel of figure 4, O3 

maximum readings are a significant, positive determinant of the monitor count for all 

17 years when using the county monitor count. The effect on a one-ppb increase in O3 

maximum readings ranges between 0.02 and 0.04. The top right panel uses the distance 

count method. Notice that the magnitude of the parameter estimates is smaller and the 

standard errors are larger (the 95 percent confidence intervals are wider). Casual 

empiricism suggests a reason for the systematically lower precision when using the 

distance-radius monitor count models. Clean Air Act attainment status is defined or 

determined at the county level. Therefore, readings drawn from the monitoring 

network within a county are likely to drive whether monitors are added to or dropped 

from (the count) the network. The distance-radius approach may cross county (or even 

state) lines. 
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The middle panel shows the cross section results from the negative binomial models. 

The parameter estimates are quite similar to those produced by the Poisson models. 

That is, using the county count method (left panel) the effect of a one-ppb increase in 

maximum O3 readings ranges between 0.02 and 0.04. The right-hand panel, employing 

the distance count, shows smaller parameter estimates and wider confidence intervals. 

The bottom panel reports the results from the first-difference models. Using the county 

count, O3 maximum readings are a significant, positive determinant of monitor counts 

in 15 out of 18 years. Using the distance count O3 maximum readings are a significant, 

positive determinant of monitor counts in only 2 of 18 years. In fact, O3 maximums are 

significantly, negatively associated with O3 monitor counts in 6 out of 18 years.  

Table 2 reports the partial results for the panel data monitor count models. The table is 

bifurcated such that the left-hand panel reports results from the county count models 

while the right-hand panel displays results from the distance count models. Beginning 

with the county count models, in specification 1.c, O3 maximum readings are a 

significant (α = 0.01), positive determinant of the number of monitors in a given county 

for all three regressions (Poisson, negative binomial, and first differences). A one ppb 

increase in O3 maximum readings yields between a 0.008 (Poisson and negative 

binomial) and a 0.07 (first difference) increase to the monitor count, per county.  

O3 mean readings are also significant (α = 0.01), positive determinant of the number of 

monitors for Poisson and negative binomial regressions. A one unit increase to the 

average O3 reading yields a 0.03 increase to the monitor count. And O3 standard 
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deviations are a significant (α = 0.01), negative determinant of the number of monitors 

for Poisson and negative binomial regressions. A one unit increase in the O3 standard 

deviation is associated with a 0.07 decrease in the monitor count. In the first difference 

regression, O3 standard deviations also have a significant (α = 0.05), negative effect on 

the number of monitors in the first difference regression. These results are robust across 

the 1.c, 2.c, and 3.c models. 

For the distance count models O3 maximum readings are significantly (α = 0.01), 

positively associated with monitor counts in the Poisson and negative binomial 

regressions. A one ppb increase in O3 maximum readings yields a 0.006 (Poisson and 

negative binomial) increase to the monitor count, per county. O3 averages are 

significantly and negatively associated with monitor counts for Poisson (α = 0.10) and 

negative binomial (α = 0.01) regressions. O3 standard deviations are positively 

associated with monitor counts in the negative binomial (α = 0.01) and first difference 

models (α = 0.05). These results are robust to the three different model specifications: 1.c, 

2.c, 3.c. Comparing the county and distance monitor counts, only the association 

between the O3 maximum readings and counts is robust to the different count 

approaches.  

4.2 Dropped Monitors 

Table 3 displays the results from the probit regressions in which the dependent variable 

measures whether a monitor is dropped (1) or retained (0) in the network (table 3 

reports marginal effects). Table 3 reveals that dropped monitors are associated with 
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lower peak O3 levels in each of the four model specifications. For each model, a one unit 

increase in the maximum hourly O3 reading is associated with roughly a 0.03% decrease 

in the probability of the monitor being dropped in the next period. The associations are 

significant at α = 0.01. This result reinforces the cross-tabulations reported in table 1.  

Using the cumulative measure of attainment status (sum of prior years out of 

attainment)  with the O3 NAAQs, we find evidence of an association between 

attainment status and whether a monitor is dropped from the network. In particular, in 

models 2.d and 3.d cumulative non-attainment is associated with a reduction in the 

probability of a monitor being dropped (α = 0.01). This association is not detected in 

model 4.d which adds SIP status. In contrast, a one year increase in the number of 

periods out of attainment with the PM2.5 NAAQs is associated with a 0.03% increase in 

the probability of a monitor being dropped. Note that the attainment measures 

employed in table 2 tabulates the sum of years out of attainment up to the year in which 

the regulator determines to drop or retain the monitor.  

The passage and enactment of the 1997 O3 NAAQs increases the probability that 

monitors are dropped from the network. In models (3.d) and (4.d) monitors are about 

1.2% more likely to be dropped from the network after the 1997 NAAQs (α = 0.05). 

Passage of the second PM2.5 NAAQs revision is associated with a 0.8% increase in the 

probability of a monitor being dropped from the network. Counties in states that 

manage attainment with a SIP are about 7% more likely to have a monitor dropped than 

FIP states. 
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A number of other controls included in models (1.d) through (4.d) are significantly 

associated with dropping a monitor. As the average age of monitors increases, the 

likelihood of a monitor being dropped decreases up to approximately 20 years; beyond 

20 years, increasing age of monitors increases the chance that a monitor will be dropped 

from the network. Of the four different reasons for missing observations, malfunction 

and maintenance are consistently significantly associated with dropping a monitor. A 

greater share of missing observations due to monitor malfunction is positively and 

significantly associated with the monitor being dropped (α = 0.01) in all four models. 

Specifically, a one percentage point increase in the share of observations missing due to 

malfunction results in roughly a 10% increase in the probability of the monitor being 

dropped. Missing observations due to maintenance are also positively associated with a 

monitor being dropped in all four models (α = 0.01); a one percentage point increase in 

the share of observations missing due to maintenance results in roughly a 13% increase 

in the probability of the monitor being dropped.  

In terms of ownership of the monitoring stations, counties with a higher share of 

monitors operated by county regulators are 5.5% more likely to add an additional 

monitor than other counties with monitors run by other local regulators. Table 3 

indicates evidence of a slight, downward yearly trend with the probability of adding a 

monitor dropping by 0.2% to 0.3% per year (α = 0.01). The number of monitors in a 

county (not shown in table 3), the average age of monitors, and the population are also 
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positively, and significantly associated with the probability of adding a monitor to the 

network. 

4.3 New Monitors 

Table 4, which also reports marginal effects, displays the results from the probit models 

focusing on new monitors in the network. Specifically, the response variable is coded 1 

if a monitor was not active in any prior period and 0 otherwise. Because this tack 

focuses on new monitors, many of the covariates are one year lagged averages of 

observations in the county receiving the new monitoring station. Counties that had a 

monitor dropped from the network in the prior period are 12% more likely to have a 

monitor added (α = 0.01) than counties without a dropped monitor in the prior period.  

Table 4 indicates that maximum hourly O3 readings are positively associated with the 

addition of a new monitor in models 1.n and 4.n. That is, the average maximum reading 

(across existing monitors in a given county) during the prior year is associated with an 

increase in the probability of a new monitor being located in that county of about 0.04%. 

This association is significant at (α = 0.05). In models 2.n and 3.n, the average O3 level is 

associated with a 0.07% increase in the likelihood of adding a new monitor (α = 0.05).  

In addition, the standard deviation of O3 readings is associated with a decrease in the 

probability of a new monitor being located in a county of between 0.16% and 0.27%. 

This association is significant at (α = 0.01) in models (2.n), (3.n), and (4.n) and (α = 0.05) 

in model (1.n).   
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A one-unit increase in O3 NAAQs attainment status is associated with an increase of 

0.04% in the probability of a new monitor being added to the network (α = 0.01). 

Attainment status with the PM2.5 NAAQs is not associated with the probability of 

adding a new monitor. There is no evidence that the passage of the NAAQs revisions 

impact the decision to add a new monitor to the network. If a state employs a SIP to 

manage NAAQs compliance, the likelihood of adding a new station to the network 

increases by about 2% (α = 0.01) relative to a state subject to direct federal management 

under an FIP. Having a monitor dropped from the network in the same county (one 

year earlier) increases the probability of adding a monitor by 12% (α = 0.01). 

4.3.1. New Monitors and SIP, Drop Status. 

The importance of a county having dropped a monitor in determining whether that 

same county subsequently adds a monitor speaks to a larger point in the analysis. That 

is, the question of whether to replace a monitor that has mechanically failed or has been 

permanently removed from the network for some other reason is a distinct question 

from whether to add a new monitor to the network in order to obtain observations in 

areas not previously subject to measurement. In order to examine these two questions 

separately, table 5 reports results from model (4.n) applied to two restricted samples.  

First, table 5 reports results from model (4.n) fitted to data from counties that did not 

have a monitor dropped in the prior period. Second, table 5 reports results from model 

(4.n) fitted to data from counties that did have a monitor dropped in the prior period.  

Table 5 also differentiates between states that implement approved SIPs from states that 
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are subject to FIPs. The impetus for this latter distinction being that SIP states may face 

different incentives (than FIP states) that are related to regulatory enforcement and may 

have a direct bearing on network composition. 

The top panel of table 5 shows the results when the sample is restricted to counties in 

which a monitor was not dropped in the prior period. These cases constitute net 

additions to the network. The first (left hand) column indicates that the marginal effects 

of O3 readings (maximums, means, and standard deviation) are roughly equivalent to 

those reported for model (4.n) in table 4 with the exception of weak evidence that 

average O3 levels affect the propensity to add a monitor (α = 0.10). Specifically, the 

average maximum reading (across existing monitors in a given county) during the prior 

year is associated with an increase in the probability of a new monitor being located in 

that county of 0.05% (α = 0.10). The O3 standard deviation is negatively associated with 

the installation of a new monitor (α = 0.01). These marginal effects are relatively robust 

to including just SIP states. There is no evidence that maximum or average O3 readings 

affect the decision to add a monitor in states subject to an FIP. We detect weak evidence 

that O3 standard deviations are associated with a decrease in the likelihood of adding a 

monitor (α = 0.10) in FIP states. 

Also of interest in table 5 is the association between attainment status and the 

probability of adding a new monitor. As in table 4, O3 NAAQs attainment status shows 

a significant association with the probability of adding a monitor across all states. When 

the sample is restricted to just SIP states there is no evidence of an association. In 
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contrast, for states subject to a FIP, there is strong evidence of a positive, significant 

association: being out of attainment in a state subject to direct federal management (as 

implied by the FIP) increases the probability of adding a new monitor by 0.11% (α = 

0.01). For counties without a dropped monitor, O3 NAAQs attainment status appears to 

be a factor in determining whether a new monitor is added to the existing network in 

states that are subject to a FIP. Attainment status has no impact on new monitors in states 

governed by their own SIP. 

The findings in the top panel of table 5 yield some insight as to regulatory strategies in 

FIP and SIP states. Since SIPs and FIPs specify, in part, strategies for monitoring O3 the 

fact that O3 readings are only significant in the SIP sample suggests state level 

regulators incorporate information on pollution levels into network composition while 

federal regulators (those that develop the FIPSs) do not. In contrast, federal regulators 

make additions to the network based on cumulative evidence of O3 NAAQs attainment. 

This is more of a long-term, stable measure which is based on existing federal 

regulation.  

In terms of PM2.5 attainment, table 5 reports weak evidence of an association with the 

decision to add a monitor in all states and in FIP states. In all states, the effect on a one-

year increase in years out of attainment is a 1.9% increase in the likelihood of adding a 

monitor (α = 0.10). In FIP states, the effect on a one-year increase in years out of 

attainment is a 4.3% increase in the likelihood of adding a monitor (α = 0.10). In 

counties that did not drop a monitor in the prior period, attainment status has no 
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impact on new monitors in states governed by their own SIP. Further, we find no 

evidence that O3 NAAQs revisions affects new monitor placement.  

The bottom panel of table 5 focuses on counties in which a monitor was dropped in the 

prior period. In all states, O3 peak readings reduce the likelihood of adding a monitor 

(replacing a dropped monitor). Specifically, a one unit increase in O3 maximum 

readings reduces the probability of replacing a dropped monitor by 1.9% (α = 0.01). This 

effect is driven by SIP states. That is, the association is also detected in only SIP states 

and there is no evidence of an association for FIP states. In addition, there is no 

evidence that O3 NAAQs attainment status is associated with the likelihood of adding a 

monitor to the network in counties where a monitor was dropped in the prior period.  

Table 6 explores the significance of two different attainment measures in determining: 

the monitor count (column 1), the probability a monitor is dropped from the network 

(column 2), and added to the network (column 3). In each case, the reported coefficients 

are estimated in model specification (4) which includes controls for O3 readings, 

missing observations, and monitor ownership. The first measure of attainment is the 

sum of years in which a given county has been out of attainment with the current 

NAAQs. (This is the default measure used throughout the paper.) Recall that the 

measure changes through time for different counties in the sense that it is a running 

total. The measure is computed separately for both O3 and PM2.5. Table 6 indicates that 

there is no evidence of an association between O3 attainment status (in the cumulative 

measure) and the probability of dropping a monitor,  or the monitor count.  However, 
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this measure is positively associated with the decision to add a monitor.  Attainment 

status for PM2.5 is significantly associated with the probability of dropping a monitor. 

First, one additional year of cumulative, non-attainment is associated with a 0.03% 

increase in the likelihood of dropping a monitor (α = 0.01). Table 5 suggests that this 

effect manifests in counties without a dropped monitor in the prior period. 

The second measure of attainment status is an indicator variable which is coded (2) if 

the entire county was out of attainment in the prior period, (1) if a part of the county 

was out of attainment in the prior period, and (0) if the county was deemed to be 

compliant. For the dropped monitor models, O3 attainment status is not associated with 

changes to the monitoring network. For the add monitor model, being out of attainment 

is weakly associated (α = 0.10) with an increase in the probability of adding a monitor; a 

one unit increase in attainment status is associated with an increase of 0.004 to the 

likelihood of adding a monitor. For PM2.5, a one unit increase in non-attainment status is 

associated with a 0.7% increase in the likelihood of dropping a monitor (α = 0.01).  

Table 7 extends the analysis by incorporating monitors that are added to the network in 

counties that do not have a monitor in the prior period. The drawback of this tack is that 

none of the lagged measures of O3 levels can be included. However, because USEPA 

estimates attainment status for all counties in the U.S. we can fit a model with reasonable 

explanatory power to the more inclusive sample of new monitors. Column (1) of table 7 

simply reports the results of fitting model (4.n) to the original sample (denoted: “No 

New Counties”) for the purposes of comparison with the spatially extended sample. In 
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the original sample, only O3 attainment status and the SIP indicator are associated with 

the probability of adding a new monitor. However, including previously unmonitored 

counties into the sample produces some significant, and different, associations.  

First, when the new monitors in previously unmonitored counties are added, O3 

attainment status is negatively associated with the likelihood of adding a new monitor; 

a one unit increase in the years of non-attainment status is associated with a 0.1% 

decrease in the likelihood of adding a monitor (α = 0.01). This is greater than a two-fold 

increase in the marginal effects relative to the default specification. Further, SIP states 

are more likely to add a monitor. Although evidence of this association was detected in 

the sample without previously unmonitored counties, the magnitude of the effect of SIP 

status is nearly one order of magnitude larger in the expanded sample. The second 

PM2.5 NAAQs revision is also associated with an increased probability (3.0% increase, α 

= 0.01) of adding a monitor. 

The third column restricts the sample to SIP states (again inclusive of previously 

unmonitored counties). The results for SIP states mirror those of the full sample in that 

the O3 attainment measure is negatively associated with the probability of adding a 

monitor (α = 0.01), and the magnitude of the effect is nearly equivalent to the full 

sample. Further, the effect of the second PM2.5 NAAQs revision is also significant and 

similar in magnitude to the full sample. The results for FIP states suggest that the 

associated between O3 attainment and the decision to add a monitor is weaker. First, the 

magnitude of the effect is one-half that estimated in SIP states. Second the level of 
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significance drops to α = 0.05. The association between the second PM2.5 NAAQs 

revision and adding a monitor persists in FIP states. 

The fact that prior O3 non-attainment is inversely related to the decision to add a 

monitor when the sample includes previously unmonitored counties suggests that regulators 

are averse to spatial expansions to the network in counties in which attainment status is 

in question. Coupled with the fact that SIP states are nearly 20% more likely to add 

monitors, the negative association with prior O3 attainment status suggests that state 

regulators are relatively eager to add new monitors, but not in counties with a history of 

non-attainment. 

In contrast, when the sample is restricted to counties previously monitored, regulators 

appear to target additional monitors at problematic (chronically out-of-attainment) 

counties. A few candidate explanations emerge. First, regulators may choose to add 

monitors to non-attainment counties to try to lower the average reading in that county 

(in an attempt to improve future attainment status). This might be achieved by 

strategically placing the monitor in cleaner zones within the county. Second, recall from 

table 5 that the positive association between O3 attainment status and propensity to add 

a monitor is strongest in FIP states. Since these states are directly managed by federal 

regulators, this positive association may be intended to increase precision of O3 

measurements by adding more observations (new monitors). These findings provide 

evidence of a complex relationship between NAAQs attainment status and network 
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composition that depends on SIP/FIP status, and whether the sample under 

consideration includes previously unmonitored counties. 

5. Conclusions 

In the US, air pollution monitors are used to assess environmental conditions and for 

purposes of regulatory enforcement. As we noted previously, if the primary objective of 

measurement were to derive an unbiased estimate of the O3 surface, the approach 

would be to place the monitors exogenously with respect to observed levels and to 

allocate monitors more densely where the surface variation is greatest. However, 

because the monitors are used for enforcement, the monitors are not randomly placed. 

The stations tend to be in areas where compliance with existing standards and rules is 

in question. The goal of this paper is to test whether monitor location is endogenous 

with respect to ambient pollution levels and regulatory compliance status. A secondary 

goal is to describe the factors that systematically affect the monitor network. 

Specifically, the paper asks: What factors affect when a monitor is retired from the 

network? What drives the decision to add a new site? What factors are associated with 

the spatial distribution of monitors? We tackle these questions using a panel dataset of 

monitors from the O3 network over the period 1993 to 2011. Three specifications are 

employed: a count model with monitor density proximal to each extant station as the 

response variable; a probit model with the decision to drop existing monitors from the 

network as the response variable; and a probit model with the decision to add new 

monitors to the network as the response variable. 
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The empirical results of the paper can be boiled down to four essential points.  

1. Monitor counts are higher in areas with high maximum O3 readings. 

2. The regulator is less likely to drop an existing monitor for which prior maximum 

readings are high. 

3. The regulator is more likely to add a new monitor to counties for which prior 

maximum readings are high. 

3.a. In counties that dropped a monitor during the prior period, the propensity of 

the regulator  to add a new monitor is not affected by O3 levels or attainment 

status. 

3.b. In counties that did not drop a monitor during the prior period, the 

propensity of the regulator  to add a new monitor is positively associated with O3 

levels in states managed by a SIP and attainment status in states managed by a 

FIP. 

4. Evidence of an association between prior O3 attainment status is mixed.  

4.a. Regulators appear more likely to add monitors to counties with a legacy of 

non-attainment and this association is especially strong in FIP states. 

4.b. Regulators in states managed by a SIP are less likely to add a monitor to 

previously unmonitored counties that are chronically out of attainment. 

More specifically, the empirical results indicate that O3 readings are significantly 

associated with the decision to drop a monitor from the network throughout the 1993–

2010 period. Specifically, a one part per billion (ppb) increase to the hourly maximum 
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reading is associated with a -0.04% decrease in the probability that a monitor will be 

dropped in the subsequent time period(α = 0.01). We find some evidence that O3 

NAAQs compliance status is negatively associated with dropping a monitor.  

The results also suggest that lagged ambient maximum readings are a significant factor 

in determining to add a new monitor to the network; a one ppb increase to the hourly 

maximum reading is associated with approximately a 0.03% increase in the probability 

that a monitor will be added in the subsequent time period (α = 0.01). O3 compliance 

status is significantly and positively associated with the regulator’s decision to add a 

monitor to the network (α = 0.01). 

Because a new monitor may simply replace an old, retired monitor, one alternative 

estimation strategy is to restrict the sample to counties in which there was not a dropped 

monitor in the prior period in order to focus on net additions to the network. In this 

setting we find roughly equivalent marginal effects of ambient O3 as documented above 

in SIP states. And, we find evidence that O3 NAAQs attainment status in the prior 

period is a significant determinant of whether there is a new monitor in a given county 

in FIP states. In contrast, in SIP states, we find no evidence that attainment status affects 

the decision to add a monitor. Hence, whether a state manages its own compliance 

strategies or whether this role is assumed by the federal government is a significant 

factor in determining if lagged compliance status affects changes to the monitoring 

network. When the analysis is expanded to encompass new monitors in previously 
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unmonitored counties, we detect evidence that regulators in SIP states are less likely to 

add a new monitor to counties chronically out of attainment.  

This analysis suggests future research on a number of fronts. First, further work could 

apply this apparatus to other pollutants. Do these results found herein hold for PM2.5 

monitoring stations or for sulfur dioxide? Second, future research could test for 

selection bias in the O3 surface resulting from the endogenous placement of monitors. 

This might explore whether selection, and the mechanisms driving selection, changed 

over time and to what extent regulatory constraints have affected estimates of such bias. 

Third, authors could explore the removal of selection bias from the O3 surface and test 

whether this impacts our understanding of how O3 affects health and other valuable 

receptors such as crops and trees. 
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Tables 

Table 1: O3 Measures for Dropped and Retained Monitors 

Seasonal O3 
Measure 
(ppbv) 

Drop Status Add Status 
Drop = 1  Drop = 0 New = 1 New = 0 

Mean 33.25 
(0.289) 

33.48 
(0.052) 

33.95* 
(0.301) 

33.53 
(0.066) 

Maximum 99.18*** 
(0.889) 

103.24 
(0.154) 

106.01*** 
(0.870) 

101.65 
(0.200) 

Standard 
Deviation 

17.61*** 
(0.158) 

18.16 
(0.028) 

18.40* 
(0.154) 

18.16 
(0.037) 

Obs. 731 21,293 620 9,518 
For t-tests: *** p<0.01, ** p<0.05, * p<0.1 
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Table 2: Monitor Count and O3 Levels: 1993–2012. 

 Lag O3 Readings in  County Lag O3 Readings within 50 Mile Radius 
Model 1.c O3 max O3 mean O3 sd O3 max O3 mean O3 sd 
Poisson 0.008*** 

(0.001) 
0.029*** 
(0.008) 

-0.071*** 
(0.013) 

0.006*** 
(0.002) 

-0.011* 
(0.006) 

0.017 
(0.011) 

Negative  
Binomial 

0.008*** 
(0.001) 

0.029*** 
(0.008) 

-0.071*** 
(0.013) 

0.006*** 
(0.001) 

-0.011*** 
(0.001) 

0.017*** 
(0.003) 

First  
Differences 

0.069*** 
(0.019) 

-0.015 
(0.112) 

-0.352** 
(0.160) 

-0.012 
(0.011) 

-0.015 
(0.035) 

0.135** 
(0.064) 

Model 2.c O3 max O3 mean O3 sd O3 max O3 mean O3 sd 
Poisson 0.008*** 

(0.001) 
0.030*** 
(0.008) 

-0.071*** 
(0.013) 

0.006*** 
(0.002) 

-0.011* 
(0.006) 

0.015 
(0.011) 

Negative  
Binomial 

0.008*** 
(0.001) 

0.030*** 
(0.008) 

-0.071*** 
(0.013) 

0.006*** 
(0.002) 

-0.011*** 
(0.006) 

0.015*** 
(0.003) 

First  
Differences 

0.069*** 
(0.019) 

-0.015 
(0.112) 

-0.352** 
(0.160) 

-0.012 
(0.011) 

-0.015 
(0.035) 

0.135** 
(0.064) 

Model 3.c O3 max O3 mean O3 sd O3 max O3 mean O3 sd 
Poisson 0.008*** 

(0.001) 
0.029*** 
(0.008) 

-0.070*** 
(0.013) 

0.006*** 
(0.002) 

-0.011* 
(0.006) 

0.015 
(0.011) 

Negative A 

Binomial 
0.008*** 
(0.001) 

0.029*** 
(0.008) 

-0.070*** 
(0.013) 

0.006*** 
(0.002) 

-0.011*** 
(0.001) 

0.015*** 
(0.003) 

First  
Differences 

0.069*** 
(0.019) 

-0.015 
(0.112) 

-0.352** 
(0.160) 

-0.012 
(0.011) 

-0.015 
(0.035) 

0.135** 
(0.064) 

 

Robust Standard Errors in Parenthesis (except for negative binomial models): *** p<0.01, ** p<0.05, 
* p<0.1. All models contain full list of controls as in (1.c), (2.c), and (3.c). Poisson and negative 
binomial employ site fixed effects, first-differences employ county fixed effects. n = 24,460.  
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Table 3: The decision to drop a monitor: 1993–2009. 

 (1.d) (2.d) (3.d) (4.d) 
Year -0.000831*** -0.000901*** -0.00178*** -0.00174*** 
 (0.000264) (0.000282) (0.000612) (0.000606) 
O3 max, t-1 (ppb) -0.000345*** -0.000304*** -0.000301*** -0.000331*** 
 (9.76e-05) (0.000102) (0.000101) (0.000103) 
O3 sd, t-1 (ppb) -0.000843* -0.00141*** -0.00128*** -0.00101** 
 (0.000473) (0.000480) (0.000482) (0.000483) 
Age -0.00260*** -0.00248*** -0.00247*** -0.00228*** 
 (0.000345) (0.000343) (0.000342) (0.000342) 
Age2 

 
5.96e-05*** 5.60e-05*** 5.57e-05*** 5.10e-05*** 
(9.06e-06) (9.01e-06) (8.99e-06) (8.96e-06) 

Share Missing Obs. 
from Damage 

0.0592 0.0555 0.0573 0.0614 
(0.128) (0.131) (0.133) (0.130) 

Share Missing Obs. 
from Malfunction 

0.105*** 0.104*** 0.105*** 0.100*** 
(0.0170) (0.0171) (0.0171) (0.0172) 

Share Missing Obs. 
from Maintenance 

0.149*** 0.137*** 0.136*** 0.128*** 
(0.0418) (0.0419) (0.0417) (0.0425) 

Share Missing Obs. 
from Weather 

-0.0841 -0.0884 -0.109 -0.0985 

 (0.154) (0.153) (0.157) (0.151) 
Sum of O3  
Non-Attainment Years 

 -0.000207*** -0.000209*** -0.000114 
 (7.61e-05) (7.60e-05) (7.66e-05) 

Sum of PM2.5  
Non-Attainment Years 

 0.000334*** 0.000324*** 0.000326*** 
 (5.42e-05) (5.38e-05) (5.36e-05) 

O3 NAAQs 
Revision 

  0.0116** 0.0114** 
  (0.00567) (0.00564) 

PM NAAQs  
Revision (2006) 

  -0.00690 -0.00724 
  (0.00531) (0.00528) 

PM NAAQs  
Revision (2009) 

  0.00881** 0.00812** 
  (0.00414) (0.00412) 

SIP State    0.00753** 
    (0.00373) 
Wald Chi2 257.49 291.38 295.64 387.06 
Pseudo R2 0.035 0.040 0.040 0.049 

 
Robust Standard Errors in Parenthesis: *** p<0.01, ** p<0.05, * p<0.1. All models contain controls 
for monitor latitude, longitude (linear and quadratic forms). n = 24,996. Marginal effects reported. 
Dependent Variable: 1 if Dropped O3 Monitor, 0 if Active Monitor in Subsequent Period. 
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Table 4: The decision to add a new monitor: 1994–2010. 

 (1.n) (2.n) (3.n) (4.n) 
Dropped Monitor, t-1 0.123*** 0.123*** 0.123*** 0.121*** 
 (0.00551) (0.00551) (0.00552) (0.00553) 
Year -0.00219*** -0.00304*** -0.00414*** -0.00420*** 
 (0.000395) (0.000456) (0.000766) (0.000772) 
O3 max, t-1 (ppb) 0.000361** 0.000215 0.000227 0.000365** 
 (0.000141) (0.000149) (0.000149) (0.000145) 
O3 mean, t-1 (ppb) 0.000435 0.000655** 0.000654** 0.000444 
 (0.000311) (0.000313) (0.000313) (0.000316) 
O3 sd, t-1 (ppb) -0.00166** -0.00244*** -0.00235*** -0.00269*** 
 (0.000788) (0.000822) (0.000834) (0.000838) 
Share Missing Obs. 
from Damage 

0.118 0.124 0.130 0.118 
(0.137) (0.137) (0.136) (0.133) 

Share Missing Obs. 
from Malfunction 

0.0402 0.0471 0.0460 0.0424 
(0.0389) (0.0387) (0.0388) (0.0398) 

Share Missing Obs. 
from Maintenance 

-0.174** -0.206** -0.205** -0.129 
(0.0873) (0.0889) (0.0884) (0.0861) 

Share Missing Obs. 
from Weather 

-0.625* -0.596* -0.563 -0.523 
(0.363) (0.348) (0.352) (0.349) 

Age 3.38e-05 7.46e-06 3.79e-06 4.18e-06 
 (2.78e-05) (3.09e-05) (3.14e-05) (3.18e-05) 
Sum of O3  
Non-Attainment Years 

 0.000418*** 0.000416*** 0.000443*** 
 (0.000128) (0.000127) (0.000126) 

Sum of PM2.5  
Non-Attainment Years 

 0.000158 0.000148 0.000166 
 (0.000114) (0.000114) (0.000116) 

O3 NAAQs 
Revision 

  -0.000446 0.000616 
  (0.0101) (0.0102) 

PM NAAQs  
Revision (2006) 

  0.0117 0.0121 
  (0.00967) (0.00970) 

PM NAAQs  
Revision (2009) 

  0.00820 0.00769 
  (0.00746) (0.00741) 

SIP State    0.0211*** 
    (0.00551) 
Wald Chi2 1,012.83 1,041.78 1,054.34 1,136.03 
Pseudo R2 0.203 0.206 0.207 0.213 

Robust Standard Errors in Parenthesis: *** p<0.01, ** p<0.05, * p<0.1. All models contain controls 
for monitor latitude, longitude (linear forms). n = 12,824. Marginal effects reported. Dependent 
Variable: 1 if New O3 Monitor, 0 if Active Monitor in Previous period. 
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Table 5: The decision to add a new monitor: Sample restricted to areas with and without 
concurrent dropped monitor in SIP/FIP states. 

 Drop = 0 
VARIABLES All States SIP FIP 
O3 max, t-1 (ppb) 0.000349*** 0.000356** -1.70e-05 
 (0.000130) (0.000139) (0.000316) 
O3 mean, t-1 (ppb) 0.000494* 0.000573* 0.000855 
 (0.000279) (0.000321) (0.000646) 
O3 sd, t-1 (ppb) -0.00317*** -0.00324*** -0.00315* 
 (0.000757) (0.000849) (0.00165) 
Sum of O3  
Non-Attainment Years 

0.000378*** 0.000184 0.00111*** 
(0.000115) (0.000126) (0.000305) 

Sum of PM2.5  
Non-Attainment Years 

0.000236** 0.000137 0.000326 
(0.000100) (0.000120) (0.000200) 

O3 NAAQs 
Revision 

-0.0109 -0.0147 0.00149 
(0.0105) (0.0115) (0.0248) 

PM NAAQs  
Revision (2006) 

0.0190* 0.0116 0.0433* 
(0.0101) (0.0110) (0.0231) 

PM NAAQs  
Revision (2009) 

0.00877 0.00456 0.0137 
(0.00640) (0.00694) (0.0150) 

    
Observations 11,984 8,836 3,148 
 Drop = 1 
 All States SIP FIP 
O3 max, t-1 (ppb) -0.0190*** -0.0184** -0.0173 
 (0.00613) (0.00735) (0.0115) 
O3 mean, t-1 (ppb) -0.000704 -0.000169 -0.00331 
 (0.00125) (0.00155) (0.00282) 
O3 sd, t-1 (ppb) 0.000563 -0.00268 0.00516 
 (0.00264) (0.00391) (0.00414) 
Sum of O3  
Non-Attainment Years 

0.000805 0.000171 0.00103 
(0.000974) (0.00120) (0.00201) 

Sum of PM2.5  
Non-Attainment Years 

-0.00184** -0.000517 -0.00311*** 
(0.000902) (0.00138) (0.00118) 

O3 NAAQs 
Revision 

0.0940 0.0623 0.101 
(0.0688) (0.0821) (0.123) 

PM NAAQs  
Revision (2006) 

-0.0582 -0.0662 0.00385 
(0.0683) (0.0803) (0.119) 

PM NAAQs  
Revision (2009) 

0.0341 -0.0256 0.0945 
(0.0612) (0.0778) (0.100) 

    
Observations 840 533 304 

 
 Robust Standard Errors in Parenthesis: *** p<0.01, ** p<0.05, * p<0.1. All models contain controls 
for monitor latitude, longitude (linear forms). Marginal effects reported. Dependent Variable: 1 
if New O3 Monitor, 0 if Active Monitor in previous period. 
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Table 6: Alternative Measures of NAAQs Attainment. 
 
Attainment Measure Poisson   

Count 
Drop  
Monitors 

Add  
Monitors 

Sum of O3  
Non-Attainment Years 

0.0009 
(0.0045) 

-0.000114 
(7.66e-05) 

0.000443*** 
(0.000126) 

Sum of PM2.5  
Non-Attainment Years 

-0.0013 
(0.0011) 

0.000326*** 
(5.36e-05) 

0.000166 
(0.000116) 

One year lag O3  
Attainment Status 

-0.0037 
(0.0070) 

0.00224 
(0.0014) 

0.0040* 
(0.0024) 

One year lag PM2.5 
Attainment Status 

0.0022 
(0.0139) 

0.0074*** 
(0.0013) 

0.0032 
(0.0031) 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

 
 
Table 7: The decision to add monitors in counties without existing stations. 
 
 No  

New Counties 
With  

New Counties 
With  

New Counties 
SIP States 

With  
New Counties 

FIP States 
Sum of O3  
Non-Attainment Years 

0.0004*** -0.00104*** -0.00131*** -0.000701** 
(0.0001) (0.000151) (0.000179) (0.000330) 

Sum of PM2.5  
Non-Attainment Years 

0.0002 0.000261* 6.45e-05 0.000387 
(0.0001) (0.000153) (0.000209) (0.000246) 

O3 NAAQs 
Revision 

0.0006 -0.00385 -0.00659 0.00661 
(0.0102) (0.0131) (0.0149) (0.0275) 

PM NAAQs  
Revision (2006) 

0.0121 -0.000684 -0.00883 0.0184 
(0.0097) (0.0129) (0.0148) (0.0265) 

PM NAAQs  
Revision (2009) 

0.0077 0.0301*** 0.0273*** 0.0369** 
(0.0074) (0.00922) (0.0106) (0.0188) 

SIP 0.0211*** 0.1985***   
 (0.0055) (0.0060)   
     
Observations 12,284 13,318 9,787 3,531 
Pseudo R2 0.104 0.059  0.112 
Robust Standard Errors in Parenthesis: *** p<0.01, ** p<0.05, * p<0.1. All models contain controls 
for monitor latitude, longitude (linear forms), population, and Year. Marginal effects reported. 
Dependent Variable: 1 if New O3 Monitor, 0 if Active Monitor in previous period. 
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Figures 

Figure 1: National O3 Monitor Count. 
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Figure 2: Changes to the Monitor Network (1993-2010). 

 

Dot: (New – Dropped Sites), Solid: New Sites, Dash: Dropped Sites. 
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Figure 3: National Average O3 Readings. 

 

Top left: Arithmetic mean. Top right: Hourly maximum. Bottom left: Standard deviation. 
Bottom right: Coefficient of Variation. 
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Figure 4: Cross sectional regression coefficients for maximum O3 readings in monitor count 
models. 

 

Left hand panel corresponds to county monitor count models. Right hand panel corresponds to 
distance monitor counts. Dots are the mean parameter estimate for O3 maximum readings. 
Pluses indicate 95% confidence intervals. Dependent variable in all models: monitor count. 
Results presented from fitted model 4.c.  
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Appendix. 

Figure A-1: Map of U.S. ambient O3 monitoring sites in operation during 2006-2010 in 
Welfare Risk and Exposure Assessment for Ozone:  Final 
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Figure A-2.  Summary of Existing PAMS Site Locations  
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Figure A-3:  CASTNET Sites Operational During 2012 
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Figure A-4: O3 Levels by Monitor Ownership 
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Figure A-5: PM NAAQs Attainment Status. 

 

+ = PM10 NAAQs, o = PM2.5 1997 NAAQs, x = PM2.5 2006 NAAQs. 

Source: http://www.epa.gov/oaqps001/greenbk/data_download.html 
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Figure A-6: O3 NAAQs Attainment Status 

 

+ = 1 Hour O3 NAAQs, o = 8 Hour O3 NAAQs 1997. 

Source: http://www.epa.gov/oaqps001/greenbk/data_download.html 
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Tables. 

Table A-1. 

MSA 
population 

Most recent 3-year design 
value concentrations ≥85% of 

any Ozone NAAQS 

Most recent 3-year design 
value concentrations <85% of 

any Ozone NAAQS 

>10 million 4 2 

4-10 million 3 1 

350,000-<4 
million 

2 1 

50,000-
<350,000 

1 0 

 

Source: Table D-2 of 40 CFR Part 58, Appendix D: Network Design Criteria for Ambient Air 
Quality Monitoring, Section 4 - Pollutant-Specific Design Criteria for SLAMS Sites.  
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Table A-2. Summary Statistics. 

Variable Mean Std. 
Dev. 

Min Max 

Drop 0.033 0.179 0 1 
O3 mean (ppb) 33.475 7.639 0.86 68.68 
O3 max (ppb) 103.10 22.562 21.4 256 
O3 sd (ppb) 18.147 4.111 3.078 42.36 
Year 2002.8 4.543 1995 2010 
Missing 0.032 0.058 0 1 
Damage 0.000 0.006 0 0.68 
Malfunction 0.015 0.048 0 1 
Maintenance 0.014 0.028 0 1 
Weather 0.001 0.008 0 0.39 
Anamoly 0.003 0.010 0 0.64 
Private 0.013 0.112 0 1 
State  0.673 0.469 0 1 
County  0.107 0.309 0 1 
EPA 0.004 0.066 0 1 
Other 0.170 0.376 0 1 
Attainment 
Status (t-1) 

0.474 0.538 0 2 

Attainment 
Status (t-2) 

0.484 0.539 0 2 

Latitude 37.183 4.771 25.39 48.95 
Longitude -94.43 16.430 -124.63 -67.06 
Age 14.59 10.03 0 51 
Pop 694810 1267741 741 9830420 
NAAQs 1997 0.892 0.310 0 1 
NAAQs 2008 0.200 0.400 0 1 
 

  



72 
 

Table A-3. O3 Levels by Monitor “Ownership” Type. 

 Mean O3 (ppb) 
  

Years Federal 
Monitors 

State 
Monitors 

City, County, or 
District Monitors 

Private 
Monitor 

1993 
/1994 

37.69 
(0.051) 

31.71 
(0.014) 

30.85 
(0.022) 

31.99 
(0.046) 

1994 
/1995 

41.90 
(0.054) 

32.29 
(0.010) 

31.46 
(0.022) 

34.25 
(0.056) 

1995 
/1996 

40.31 
(0.059) 

33.70 
(0.014) 

32.33 
(0.022) 

33.13 
(0.055) 

1996 
/1997 

41.08 
(0.053) 

33.08 
(0.013) 

32.52 
(0.022) 

34.52 
(0.057) 

1997 
/1998 

38.61 
(0.050) 

33.36 
(0.013) 

31.65 
(0.020) 

33.70 
(0.057) 

1998 
/1999 

42.30 
(0.052) 

35.71 
(0.013) 

34.08 
(0.021) 

35.21 
(0.070) 

1999 
/2000 

42.99 
(0.053) 

35.32 
(0.013) 

33.87 
(0.020) 

34.41 
(0.068) 

2000 
/2001 

39.01 
(0.051) 

33.15 
(0.012) 

32.29 
(0.019) 

32.86 
(0.068) 

2001 
/2002 

38.88 
(0.049) 

33.32 
(0.012) 

32.64 
(0.019) 

33.79 
(0.065) 

2002 
/2003 

41.64 
(0.053) 

34.92 
(0.012) 

34.51 
(0.019) 

35.00 
(0.069) 

2003 
/2004 

39.80 
(0.044) 

30.80 
(0.010) 

31.96 
(0.017) 

32.98  
(0.065) 

2004 
/2005 

39.49 
(0.042) 

30.80 
(0.010) 

31.92 
(0.017) 

32.70 
(0.064) 

2005 
/2006 

40.37 
(0.044) 

33.21 
(0.011) 

32.98 
(0.018) 

31.37 
(0.065) 

2006 
/2007 

41.32 
(0.043) 

33.46 
(0.010) 

33.71 
(0.018) 

31.85 
(0.064) 

2007 
/2008 

42.67 
(0.039) 

33.92 
(0.010) 

34.08 
(0.017) 

33.80 
(0.066) 

2008 
/2009 

41.62 
(0.039) 

32.32 
(0.010) 

33.58 
(0.017) 

32.58 
(0.058) 

2009 
/2010 

40.06 
(0.036) 

30.09 
(0.009) 

31.53 
(0.016) 

33.39 
(0.059) 
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