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inter-temporal knowledge externality. An appropriate policy of investment subsidies may 
implement the efficient allocation. 

JEL-Codes: O310, O330, O410. 

Keywords: endogenous technical change, induced innovation, capital- and labor-augmenting 
technical change, neoclassical growth model. 
 
 

Andreas Irmen* 
University of Luxembourg 

CREA / Faculty of Law, Economics 
and Finance 

162a, avenue de la Faïencerie 
Luxembourg – 1511 Luxembourg 

airmen@uni.lu 

Amer Tabaković 
University of Luxembourg 

CREA / Faculty of Law, Economics 
and Finance 

162a, avenue de la Faïencerie 
Luxembourg – 1511 Luxembourg 

amer.tabakovic@uni.lu 
  

 
  

*corresponding author 
 
This Version: November 30, 2015 
We would like to thank Burkhard Heer, Martin Hellwig, Christos Koulovatianos, Thomas 
Seegmuller, Henri Sneessens, Gautam Tripathi, and Benteng Zou for useful comments and 
suggestions. Both authors gratefully acknowledge financial support from the University of 
Luxembourg under the program “Agecon C - Population Aging: An Exploration of its Effect on 
Economic Performance and Culture.” 



1 Introduction

Since its inception in the late 1980s modern growth theory has strongly emphasized the
importance of endogenous technical change for our understanding of the differential
growth performance of actual economies (see, e. g., Acemoglu (2009)). However, this the-
ory almost always neglects the possibility of capital-augmenting technical change and,
by design, focusses on the causes and the consequences of labor-augmenting technical
change. Is this neglect benign? Do the positive implications and the policy recommenda-
tions of these models still hold in the presence of capital-augmenting technical change?
Can policy recommendations still be justified on normative grounds? Moreover, what de-
termines the direction of technical change? To address all these questions we introduce
endogenous capital- and labor-augmenting technical change into the workhorse model
of Dynamic Macroeconomics, namely, the competitive one-sector neoclassical growth
model of Ramsey (1928), Cass (1965), and Koopmans (1965).

To render this possible, we devise a novel micro-foundation for a competitive production
sector that builds on and complements concepts developed in the competitive endoge-
nous growth models of Hellwig and Irmen (2001) and Irmen (2013a). It rests on the idea
that the fabrication of output requires tasks to be performed. Some tasks are carried out
by capital, others by labor. Innovation investments increase the productivity of capital
and labor in the performance of their respective tasks. Identical, price-taking firms un-
dertake these innovation investments in an attempt to maximize infra-marginal rents.
In equilibrium, these rents cover factor costs as well as all investment outlays. Innova-
tion investments are associated with new technological knowledge that accumulates over
time. Inter-temporal knowledge spill-overs support sustained economic growth.

Our main new findings include the following. First, the key determinant of the direction
of technical change is the relative scarcity of “efficient capital” with respect to “efficient
labor” measured by the ratio of these two variables at the beginning of each period. This
ratio determines relative factor prices and the relative profitability of innovation invest-
ments. For instance, if this ratio falls then efficient capital becomes relatively scarcer and
the price of capital increases relative to the price of labor. Accordingly, an innovation
investment enhancing the productivity of capital is more advantageous and the direction
of technical change shifts towards capital. It is in this sense that our analysis provides
a formal interpretation of Hicks’ famous assertion according to which technical change
is directed to economizing the use of a factor that has become relatively more expensive
(Hicks (1932), pp. 124-125).

Second, along the transition towards the steady state, the growth rate of the economy
reflects both capital- and labor-augmenting technical progress. However, in steady state
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capital-augmenting technical progress vanishes. Hence, in the long run, the growth rate
of per-capita variables reflects only labor-augmenting technical change. The reason for
this finding is closely related to the generalization of Uzawa’s steady-state growth theo-
rem formulated in Irmen (2013b). Roughly speaking, in steady state technical progress
must be labor-augmenting since capital accumulates and the economy’s net output func-
tion, which cannot be written in Cobb-Douglas form, exhibits constant returns to scale in
capital and labor.

The third set of results relates to the positive properties of the steady state. We show that
the steady state is a “balanced growth path” that satisfies all of Kaldor’s famous stylized
facts (Kaldor (1961)). Moreover, the steady-state growth rate of all per-capita variables
is predicted to increase in parameters capturing the positive effect of institutions, tech-
nical infrastructure, or geography on the efficiency of the production sector. However,
other parameters that often bring about steady-state growth effects in models that feature
only labor-augmenting technical change such as the discount factor of the representative
household, the size and the growth rate of the population have no impact on the steady-
state growth rate. The mere feasibility of capital-augmenting technical change is shown
to be the reason for this. Due to its presence, the steady-state growth rates of capital- and
labor-augmenting technical change are determined by the properties of the production
sector alone.

Fourth, we analyze the local stability properties of the steady state and establish saddle-
path stability in the state space. Interestingly, this finding does not hinge on the elasticity
of substitution between efficient capital and efficient labor. The relative scarcity measured
by the ratio of efficient capital to efficient labor is a key stabilizing force. In steady state,
this ratio and, therewith, the direction of technical change are constant. A small, one-time
shock that lowers this ratio renders efficient capital relatively scarcer and shifts the direc-
tion of technical change towards more capital-augmenting and less labor-augmenting
technical progress. This adjustment and the concomitant effect of capital accumulation
tend to reduce the relative scarcity of efficient capital and move the economy back to-
wards its steady state.

Fifth, we study the effect of different fiscal policies on the steady-state growth rate. First,
we consider a linear tax on capital. We find that the steady-state growth rate of the econ-
omy is unaffected by the tax. This reflects the fact that due to the presence of capital-
augmenting technical change this growth rate is determined within the production sec-
tor. Second, we study the consequences of a policy that pays a subsidy to either capital-
or labor-augmenting innovation investments. We find that both kinds of subsidy in-
crease the steady-state growth rate of the economy. However, while the subsidy to labor-
augmenting innovation investments induces a direct effect on investment incentives, the
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subsidy to capital-augmenting innovation investments increases the steady-state growth
rate through a general equilibrium effect.

Finally, we conduct a welfare analysis. We find that the equilibrium allocation is not
Pareto efficient. Innovation investments in a given period increase the stock of knowl-
edge that is available for subsequent innovative activity and create inter-temporal knowl-
edge spill-overs which are not taken into account by private firms. A benevolent social
planner may choose a policy of investment subsidies that implements the Pareto efficient
allocation. We fully characterize the policy that implements the efficient steady state. It
involves a subsidy to both kinds of innovation investments, however, at different rates.

The present paper contributes to at least three strands of the modern literature linking
technical change to economic growth. First, it is related to the endogenous technical
change literature initiated by Romer (1990), Grossman and Helpman (1991), and Aghion
and Howitt (1992). These contributions and those that emanated from them focus on
endogenous labor-augmenting technical change.1 The present paper shows that the de-
termination of the steady-state growth rate is very different in the presence of capital-
augmenting technical change. In particular, it no longer hinges on the interplay between
the household side and the production side. We clarify this point in Section 3.4. As a
consequence, parameters, e. g., the discount factor, or policies, e. g., a tax on capital, that
appear in the household’s Euler equation will no longer affect the steady-state growth
rate.

Second, this paper makes a contribution to the modern literature on endogenous capital-
and labor-augmenting technical change (see, e. g., Funk (2002), Acemoglu (2003b), Irmen
(2011), and Irmen (2013a)). This research has its roots in the so-called induced innova-
tions literature of the 1960s (see, e. g., von Weizsäcker (1962), Kennedy (1964), Samuelson
(1965), or Drandakis and Phelps (1966)).

In contrast to the literature of the 1960s, the present paper depicts capital- and labor-
augmenting technical change as resulting from a well-defined profit-maximization prob-
lem solved by price-taking firms. The solution to this problem gives rise to a (possi-
bly convex) equilibrium innovation possibility frontier that replaces the exogenous and
concave innovation possibility frontier stipulated in the old literature. Moreover, in our

1Observe that the research sector in Romer (1990) invents new varieties of capital goods. It is in this
sense that technical change is capital-augmenting in his setting. However, as Romer’s aggregate production
function is of the Cobb-Douglas type, the distinction between capital-augmenting and labor-augmenting
becomes meaningless. Technical change can always be represented as labor-augmenting. This is a direct
consequence of Uzawa’s theorem (see, Uzawa (1961) and Irmen (2013b) for applications to models of en-
dogenous technical change).

3



framework technical change is not costless but has a cost in terms of current output.2

In addition, the present paper gives a different answer to the question about whether
and why technical change is eventually only labor-augmenting. In the literature of the
1960s and in Funk (2002) or Acemoglu (2003b) the answer hinges on the elasticity of
substitution between capital and labor being greater or smaller than unity. This elasticity
determines the (local) stability of the balanced growth path because innovation incentives
hinge on the factor shares in final-good production. To the contrary, our steady state is
locally stable irrespective of the elasticity of substitution.3 As argued above, local stability
is due to innovation incentives that hinge on relative factor prices which, in turn, respond
to changes in the relative scarcity of factors.4

Finally, it is worth mentioning that we contribute the first welfare analysis to the litera-
ture on endogenous capital- and labor-augmenting technical change. Due to two inter-
temporal externalities the competitive equilibrium allocation is not Pareto-efficient. In
spite of the intricate equilibrium interdependency between capital- and labor-augmenting
technical change, we establish the subsidy rates that implement the Pareto-efficient steady
state.

The third strand of the literature to which we contribute depicts endogenous techni-
cal change in competitive economies (see, e. g., Zeira (1998), Hellwig and Irmen (2001),
Boldrin and Levine (2002), or Boldrin and Levine (2008)). The present paper shows that
capital- and labor-augmenting technical change can arise endogenously in the competi-
tive neoclassical growth model. As we detail in Section 2.2.3 competitive firms maximize
infra-marginal rents which in equilibrium cover their factor costs and investment out-
lays. This provides another counter-example to the commonly held view that perfect
competition is incompatible with endogenous innovation investments (see, e. g., Romer
(2015)).

The remainder of this paper is organized as follows. Section 2 presents the model. In
particular, we detail the micro-foundation of the competitive production sector and jus-

2Arguably, with these properties the present paper overcomes the main weaknesses of the literature of the
1960s that according to Nordhaus (1973), Burmeister and Dobell (1970), Funk (2002), or Acemoglu (2003a)
include (i) the arbitrary optimization problem solved by firms to determine the endogenous growth rate, (ii)
the ad hoc assumption of an exogenous Kennedy-von Weizsäcker Innovation Possibilities Frontier, and (iii)
the fact that technical progress is costless in terms of real resources.

3Klump, McAdam, and Willman (2007) find empirical evidence for persistent exponential labor-
augmenting technical change and positive, but declining rates of capital-augmenting technical change using
US data for the period between 1953 and 1998. This pattern is consistent with near steady-state behavior
under local stability.

4Local stability also obtains in the models of Irmen (2011) and Irmen (2013a) where the savings rate is
either exogenously given or derived for two-period lived individuals.
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tify why innovation investments are possible in our perfectly competitive economy. Sec-
tion 3 studies the dynamic competitive equilibrium. Its definition is given and explained
in Section 3.1. Section 3.2 sets up the canonical dynamical system. The steady state
analysis is presented in Section 3.3. Section 3.4 clarifies the role of capital-augmenting
technical change for our findings. The focus of Section 4 is on the positive implications
of fiscal policies. Policies considered include a linear taxation of capital (Section 4.1),
a subsidy to capital-augmenting innovation investments (Section 4.2), and a subsidy to
labor-augmenting innovation investments (Section 4.3). Section 5 discusses the norma-
tive implications of endogenous capital- and labor-augmenting technical change. Here,
we study the choices of a benevolent planner (Section 5.1), solve for the optimal steady-
state allocation (Section 5.2), and show that it can be implemented with an appropriate
choice of subsidies to innovation investments (Section 5.3). Section 6 concludes. All
proofs are contained in Section 7, the Appendix.

2 The Model

Consider a competitive closed economy in an infinite sequence of periods t = 0, 1, 2, ..., ∞.
The economy consists of a household sector and a production sector. In each period
there is a single final good that can be consumed or invested. If invested, it may either
become future capital or an input in contemporaneous innovation investments that raise
the productivity of capital or labor. Households supply labor and capital. Each period has
a market for all three objects of exchange. The final good serves as numéraire.

2.1 Households

The economy is populated by a single representative household comprising one mem-
ber.5 In each period, the household cares about the level of consumption, Ct, and supplies
inelastically the labor endowment, L.

The per-period utility function is logarithmic, i. e., u (Ct) = ln Ct. Moreover, the house-
hold evaluates sequences of consumption {Ct}∞

t=0 according to

∞

∑
t=0

βt ln Ct, (2.1)

5For ease of exposition we make a few simplifying assumptions that are, however, innocuous with respect
to our main qualitative results. They include a constant household size, i. e., there is no population growth,
an inelastic labor supply, and logarithmic utility. We discuss in detail the role of these assumptions in the
concluding Section 6.
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where 0 < β < 1 is a discount factor. The household owns all firms and the capital stock.
Since profits, i. e., dividends, vanish in equilibrium, we do not explicitly account for the
profit distribution. Capital is the only asset in the economy. Capital at t, Kt, is installed
at t − 1, and firms pay a real rental rate, Rt, per unit of capital they work with. After
use the capital stock decays at rate δK ∈ [0, 1]. Accordingly, the household’s flow budget
constraint at t is given by

Kt+1 =
(

Rt + 1− δK
)

Kt + wtL− Ct, (2.2)

where wt is the real wage.

Given K0 > 0 and L > 0, the representative household maximizes (2.1) subject to (2.2),
Ct ≥ 0, Kt+1 ≥ 0, and an appropriate no-Ponzi game condition by choosing a sequence
{Ct}∞

t=0 . By standard arguments, the solution to this problem satisfies for all t the flow
budget constraint (2.2), the Euler condition,

Ct+1

Ct
= β

(
Rt+1 + 1− δK

)
, (2.3)

and the transversality condition

lim
t→∞

βtC−1
t Kt+1 = 0. (2.4)

2.2 The Production Sector

The production sector has a continuum of identical, competitive firms of measure one.
Without loss of generality, the analysis proceeds through the lens of a single representa-
tive firm.

2.2.1 Technology

To produce output two types of tasks need to be performed. The first type needs capital,
the second labor as the only input. Denote by m ∈ R+ a task performed by capital, and
let n ∈ R+ be a task performed by labor. Further, let Mt and Nt denote the measure of
all tasks of the respective type performed at time t so that m ∈ [0, Mt] and n ∈ [0, Nt].
Tasks of the respective type are identical. Therefore, total output hinges only on Mt and
Nt. The production function F : R2

+ → R+ assigns the maximum output, Yt, to each pair
(Mt, Nt) ∈ R2

+, i. e.,

Yt = F(Mt, Nt), (2.5)
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where F has constant returns to scale in its arguments and is C2 on R++ with F1 > 0 > F11

and F2 > 0 > F22.6 Let κt denote the period-t task intensity,

κt =
Mt

Nt
. (2.6)

Then, output in intensive form is F(κt, 1) ≡ f (κt), where f : R+ → R+, with f ′(κt) >

0 > f ′′(κt) for all κt > 0.

At t, a task m requires kt(m) = 1/bt(m) units of capital whereas a task n needs lt(n) =

1/at(n) units of labor. Hence, bt(m) and at(n) denote the productivity of capital and
labor in the respective task. The levels of productivity are given by

bt(m) = Bt−1

(
1− δB

) (
1 + qB

t (m)
)

,

(2.7)

at(n) = At−1

(
1− δA

) (
1 + qA

t (n)
)

.

Here, Bt−1
(
1− δB) and At−1

(
1− δA) represent stocks of technological knowledge that

the firm inherits from the previous period. More precisely, Bt−1 and At−1 denote the
respective stocks of technological knowledge used in the production sector at period t−
1, and δj ∈ (0, 1), j = A, B, is the rate of depreciation of the respective knowledge stock.
Finally,

(
qB

t (m), qA
t (n)

)
∈ R2

+ are indicators of productivity growth at t associated with
task m and n, respectively.

To fix ideas, one may think of δB > 0 as capturing the loss in technical functionality
that comes along with the physical depreciation of capital at rate δK > 0. In the same
vein, depreciation at rate δA > 0 makes sense if, e. g., some specific knowledge required
to master the labor-augmenting technology represented by At−1 gets lost due to labor
turnover.

To achieve positive productivity growth, i. e., qj > 0, j = A, B, the firm must engage in an
innovation investment. More precisely, at t it must invest i

(
qB

t (m)
)
> 0 units of the final

good to achieve qB
t (m) > 0 and, similarly, i

(
qA

t (n)
)
> 0 units of the final good to obtain

qA
t (n) > 0.

The function i : R+ → R+ is the same for all tasks, time invariant, C2 on R++, strictly in-
creasing and strictly convex in q. Moreover, it satisfies the following regularity conditions
for j = A, B:

i(0) = 0, lim
qj→0

i′
(

qj
)
= 0, lim

qj→∞
i′
(

qj
)
= lim

qj→∞
i
(

qj
)
= ∞. (2.8)

6Throughout, we denote derivatives of functions with several arguments using subscripts. For functions
of a single argument we use either primes or subscripts. Hence, the first derivative of f (x) is either f ′(x) or
fx(x), its second derivative is either f ′′(x) or fxx(x), and so on.

7



Any new piece of technological knowledge is proprietary knowledge of a particular firm
only in the period when it occurs. Subsequently, it becomes public and embodied in ag-
gregate economy-wide productivity indicators (At, Bt), (At+1, Bt+1), .... The details will
be specified below.7

2.2.2 Firm Behavior

The representative firm takes the sequence {Rt, wt, At−1, Bt−1}∞
t=0 of real rental rates of

capital, real wages, and aggregate productivity indicators as given. Its choice involves a
production plan comprising a sequence{

Mt, Nt, kt(m), lt(n), qB
t (m), qA

t (n)
}∞

t=0

for m ∈ [0, Mt] and n ∈ [0, Nt], respectively. This plan maximizes the sum of the present
discounted values of profits in all periods. Because an innovation investment generates
proprietary knowledge only in the period when it is made, the inter-temporal profit max-
imization problem of the firm boils down to the maximization of per-period profits given
by

F (Mt, Nt)− TCt, (2.9)

where TCt is the firm’s total cost, comprising factor costs and investment outlays for all
performed tasks, i. e.,

TCt =
∫ Mt

0

[
Rtkt(m) + i

(
qB

t (m)
)]

dm

(2.10)

+
∫ Nt

0

[
wtlt(n) + i

(
qA

t (n)
)]

dn.

Here,

kt(m) =
1

Bt−1 (1− δB)
(
1 + qB

t (m)
) ,

(2.11)

lt(n) =
1

At−1 (1− δA)
(
1 + qA

t (n)
)

are the respective input coefficients.

7If at t the firm makes no investment in a productivity enhancing technology, it nevertheless has access
to the economy-wide technology represented by Bt−1

(
1− δB) and At−1

(
1− δA). Then, its task-specific

productivity of capital and labor is given by bt(m) = Bt−1
(
1− δB) and at(n) = At−1

(
1− δA). However,

since limqj→0 i′
(

qj
)
= 0 the option not to invest will not be chosen in equilibrium.
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The maximization of (2.9) can be split up into two parts. First, for each m ∈ [0, Mt] and
n ∈ [0, Nt] the choices of qB

t (m) and qA
t (n) minimize TCt, i. e., they minimize the cost of

each task. This leads to the first-order (sufficient) conditions

qB
t (m) :

−Rt

Bt−1 (1− δB) (1 + qB
t (m))2

+ i′(qB
t (m)) = 0, (2.12)

qA
t (n) :

−wt

At−1 (1− δA) (1 + qA
t (n))2

+ i′(qA
t (n)) = 0. (2.13)

Intuitively, for each task, faster productivity growth means lower factor costs. At the
margin, this advantage is equal to the required additional investment outlays. In light
of (2.8), and assuming Rt > 0 and wt > 0, the conditions (2.12) and (2.13) determine
unique values qB

t (m) = qB
t > 0 and qA

t (n) = qA
t > 0 to which we refer as the cost-

minimizing growth rates of productivity.

Combining respectively (2.12) and (2.13) with (2.11) delivers minimized factor costs as
Rtkt =

(
1 + qB

t
)

i′
(
qB

t
)

and wtlt =
(
1 + qA

t
)

i′
(
qA

t
)
. Let c

(
qB

t
)

and c
(
qA

t
)

denote the
minimized costs per task featuring factor costs and investment outlays, i. e.,

c
(

qB
t

)
=

(
1 + qB

t

)
i′
(

qB
t

)
+ i
(

qB
t

)
, (2.14)

c
(

qA
t

)
=

(
1 + qA

t

)
i′
(

qA
t

)
+ i
(

qA
t

)
. (2.15)

Accordingly, total cost of (2.10) boils down to

TCt = Mtc
(

qB
t

)
+ Ntc

(
qA

t

)
. (2.16)

Second, the firm determines how many tasks of either type to perform. Using (2.16), it
solves

max
(Mt,Nt)∈R2

+

F(Mt, Nt)−Mtc
(

qB
t

)
− Ntc

(
qA

t

)
. (2.17)

The respective first-order (sufficient) conditions are

Mt : f ′ (κt) = c
(

qB
t

)
, (2.18)

Nt : f (κt)− κt f ′ (κt) = c
(

qA
t

)
. (2.19)

Hence, for the marginal task of each type the marginal value product is equal to the
minimized cost per task.
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Equations (2.12), (2.13), (2.18), and (2.19) fully characterize the equilibrium behavior
of the representative firm at all t. The following proposition shows that these profit-
maximizing conditions allow us to express in an intuitive way the productivity growth
rates

(
qB

t , qA
t
)

in terms of κt and the corresponding factor prices (Rt, wt) in terms of κt,
Bt−1, and At−1.

Proposition 1 Suppose equations (2.12), (2.13), (2.18), and (2.19) are satisfied. Then, the fol-
lowing holds:

1. There are maps gA : R2
++ → R++ and gB : R2

++ → R++ such that

qB
t = gB(κt) with gB

κ (κt) < 0, (2.20)

qA
t = gA(κt) with gA

κ (κt) > 0. (2.21)

2. There are maps R : R2
++ → R++ and w : R2

++ → R++ such that the real rental rate of
capital and the real wage satisfy

Rt = R (κt, Bt−1) with Rκ (κt, Bt−1) < 0 and RB (κt, Bt−1) > 0, (2.22)

wt = w (κt, At−1) with wκ (κt, At−1) > 0 and wA (κt, At−1) > 0. (2.23)

The intuition for Claim 1 can be gained from the first-order conditions (2.18) and (2.19).
Roughly speaking, the functions gB(κt) and gA(κt) exist since c(qB

t ) and c(qA
t ) are strictly

increasing on their respective domain. Moreover, an increase in κt has the following
simultaneous effects. First, the marginal value product of task Mt falls and so must qB

t .
Second, the marginal value product of task Nt increases and so will qA

t . Hence, gA
κ (κt) >

0 > gB
κ (κt).

To understand Claim 2 consider the first-order conditions (2.12) and (2.13). Solving these
conditions for the respective factor price replacing qB

t by gB(κt) and qA
t by gA(κt) deliv-

ers R (κt, Bt−1) and w (κt, At−1). Recall that an increase in κt implies a smaller qB
t and

a greater qA
t . To make these adjustments consistent with the minimization of the cost of

each task, Rt must decrease in (2.12) to reduce the marginal advantage associated with an
innovation investment in capital-augmenting technology. Similarly, wt must increase in
(2.13) so that the marginal advantage associated with an innovation investment in labor-
augmenting technology increases. Accordingly, Rκ (κt, Bt−1) < 0 and wκ (κt, At−1) > 0.
Finally, to support some given qB

t = gB(κt) condition (2.12) requires Rt to increase in Bt−1
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to keep the ratio Rt/Bt−1 constant. Similarly, to support some given qA
t = gA(κt) con-

dition (2.13) requires wt to increase in At−1 to keep the ratio wt/At−1 constant. Hence,
RB (κt, Bt−1) > 0 and wA (κt, At−1) > 0.

The following corollary shows that Proposition 1 implies an equilibrium innovation pos-
sibility frontier and an equilibrium factor price frontier.

Corollary 1 Suppose equations (2.12), (2.13), (2.18), and (2.19) are satisfied. Then, the following
holds:

1. There is an equilibrium innovation possibility frontier g : R++ → R++ such that

qA
t = g

(
qB

t

)
with g′

(
qB

t

)
< 0. (2.24)

2. There is an equilibrium factor price frontier h : R3
++ → R++ such that

Rt = h (wt, At−1, Bt−1) with hw (wt, At−1, Bt−1) < 0. (2.25)

According to Claim 1 of Corollary 1 profit-maximization implies a functional relationship
between both cost-minimizing productivity growth rates. We refer to this relationship as
the equilibrium innovation possibility frontier (EIPF) to distinguish this concept from the
exogenous innovation possibility frontier stipulated by the induced innovations literature
of the 1960s: in the present model, this frontier is endogenous as it results from the profit-
maximizing choices of firms.

To develop a heuristic for the EIPF it proves useful to take a look at the dual of the
profit-maximization problem (2.17). Accordingly, suppose the firm seeks to find the pair
(Mt, Nt) that minimizes total costs, TCt, of (2.16) for a quantity of output at least equal to
Yt. Then, the firm solves

min
(Mt,Nt)∈R2

+

Mtc
(

qB
t

)
+ Ntc

(
qA

t

)
s.t. F (Mt, Nt) ≥ Yt. (2.26)

The solution to this problem delivers “conditional demand functions”,

Mt = M
(

c
(

qB
t

)
, c
(

qA
t

))
Yt and Nt = N

(
c
(

qB
t

)
, c
(

qA
t

))
Yt.

Linearity in Yt follows since F has constant returns to scale. Plugging these functions into
the objective function of (2.26) delivers the cost function

TC
(

c
(

qB
t

)
, c
(

qA
t

)
, Yt

)
= tc

(
c
(

qB
t

)
, c
(

qA
t

))
Yt, (2.27)

11



where tc
(
c
(
qB

t
)

, c
(
qA

t
))

is the minimum cost per unit of Yt. From Euler’s law firms earn
zero-profits. Hence, it must hold that

tc
(

c
(

qB
t

)
, c
(

qA
t

))
= 1. (2.28)

The latter condition defines the EIPF implicitly. Hence, the EIPF may be seen as an equi-
librium constraint on

(
qB

t , qA
t
)

resulting from the zero-profit condition of a cost-efficient
firm operating under constant returns to scale. As tc (·, ·) as well as c

(
qB

t
)

and c
(
qA

t
)

are time-invariant, so is the EIPF. Moreover, as tc (·, ·) is strictly increasing in both argu-
ments, c′

(
qB

t
)
> 0, and c′

(
qA

t
)
> 0, it follows that the slope of the EIPF is negative, i. e.,

g′
(
qB

t
)
< 0.

The flip side of the EIPF is the equilibrium factor price frontier (EFPF) of Claim 2 of
Corollary 1. It also reflects the firm’s zero-profit condition (2.28), however, now in the
space of factor prices.8 To see this, consider condition (2.12) which pins down qB

t as a
function of

(
Rt, Bt−1

(
1− δB)). We call this function zB

t = zB (Rt, Bt−1
(
1− δB)). Simi-

larly, one finds that condition (2.13) pins down qA
t as a function of

(
wt, At−1

(
1− δA)),

and we call this function zA
t = zA (wt, At−1

(
1− δA)). Substitution of qB

t by zB
t and

of qA
t by zA

t in (2.28) delivers the EFPF. As the relevant partial derivatives are strictly
positive, i. e., zB

R
(

Rt, Bt−1
(
1− δB)) > 0 and zA

w
(
wt, At−1

(
1− δA)) > 0, it follows that

hw (wt, At−1, Bt−1) < 0. Pairs of factor prices consistent with the EFPF depend on At−1

and Bt−1 and, therefore, will change over time.

The following example shows that the position and the shape of the EIPF will be deter-
mined in an intuitive way by parameters that capture geographical, technical, or institu-
tional properties of the economy in which firms operate. Moreover, the EIPF turns out
to be a convex function which contrasts with the (strictly) concave innovation possibility
frontier stipulated by the induced innovation literature of the 1960s.9

Example 1 Suppress time arguments and let

F (M, N) = Γ ·Mα · N1−α and ij
(

qj
)
= γj ·

(
qj)2

2
, γj > 0, j = A, B.

The parameter, Γ > 0 may reflect cross-country differences in geography, technical and social
infrastructure that affect the transformation of tasks into the final good. Here, we allow for in-
novation outlays to differ across task types, i. e., to achieve qB(m) > 0 the firm must invest

8This line of reasoning is familiar from the factor price frontier introduced by Samuelson (1962).

9Concavity is necessary in this literature to turn the frontier into a suitable constraint for the maximization
of the instantaneous rate of output growth (see, e. g., Burmeister and Dobell (1970), Chapter 3, for details).
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γB (qB(m)
)2 /2 units of the final good whereas to achieve qA(n) > 0 the firm must invest

γA (qA(n)
)2 /2 units and γA 6= γB is permissible.

Then, the cost-minimizing productivity growth rates (2.20) and (2.21) of Proposition 1 are equal
to

qB = gB (κ) =
1
3

(
−1 +

√
1 +

6Γα

γB κα−1

)
,

qA = gA (κ) =
1
3

(
−1 +

√
1 +

6Γ(1− α)

γA κα

)
.

As expected, gA
κ (κ) > 0 > gB

κ (κ). Moreover, both productivity growth rates increase in Γ and
decline in the cost parameters γB or γA.

The time-invariant equilibrium innovation possibility frontier is equal to

qA =
1
3

−1 +

√
1 +

6Γ(1− α)

γA

(
2Γα

γBqB (3qB + 2)

) α
1−α

 .

Hence, given qB, a greater Γ and lower values for the cost parameters γB and γA imply a greater
qA. Some tedious but straightforward algebra also reveals that the EIPF is indeed strictly convex.

2.2.3 Perfect Competition and the Cost of Innovation Investments

It is frequently argued that perfect competition is inconsistent with innovation invest-
ments, hence with endogenous economic growth (see, e. g., Romer (2015)). The argument
is that perfectly competitive firms will not engage in such investment activities because
they have no way to recover the costs of investment. The purpose of this section is to
show that this opinion is untenable. Indeed, we establish that the firms of the competi-
tive production sector outlined above compete for infra-marginal rents. Moreover, their
choices are meant to maximize these rents.

Without loss of generality we focus on the representative firm. The rent that this firm
earns from performing tasks with capital is10

∫ Mt

0

[
∂F (m, Nt)

∂m
− Rtkt(m)− i

(
qB

t (m)
)]

dm. (2.29)

10Mutatis mutandis, an analogous argument holds for the rent earned on tasks performed by labor.
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This expression sums up the differences between the marginal value product and the cost
of all Mt tasks. At the intensive margin, this rent is maximized if for all m ∈ [0, Mt] the
first-order condition (2.12) holds. Then, qB

t (m) = qB
t and (2.29) becomes∫ Mt

0

[
∂F (m, Nt)

∂m
− c

(
qB

t

)]
dm. (2.30)

At the extensive margin, (2.30) is maximized when Mt takes on the value that is con-
sistent with the first-order condition (2.18). The resulting configuration is illustrated in
Figure 2.1. The shaded area shows the infra-marginal rent on all tasks performed by cap-
ital. Obviously, the firm earns a strictly positive rent on all but the marginal task, Mt. The
shaded area corresponds to the maximum of (2.30) and is equal to

F (Mt, Nt)− F (0, Nt)−Mtc
(

qB
t

)
. (2.31)

The term F (0, Nt) will be strictly positive unless tasks performed by capital constitute
an essential input. Conceptually, it is subtracted here since (2.31) is meant to state the
rent earned on tasks performed by capital. However, F (0, Nt) > 0 constitutes the part
of F (Mt, Nt) that can be fully attributed to the Nt tasks performed by labor and is, thus,
unrelated to the performance of any task by capital. Nevertheless, this correction has the
flavor of a bookkeeping convention since the gross rent that the firm actually earns on
tasks performed by capital is

F (Mt, Nt)−Mtc
(

qB
t

)
. (2.32)

Observe that profits of (2.17) exhibit constant returns to scale in (Mt, Nt). Therefore,
conditions (2.18) and (2.19) in conjunction with Euler’s law imply that maximum firm
profits are zero. Hence, profit-maximization implies that the gross rent of (2.32) is equal
to the total cost incurred from tasks performed by labor, i. e.,

F (Mt, Nt)−Mtc
(

qB
t

)
= Ntc

(
qA

t

)
. (2.33)

In sum, there is a rent earned on each infra-marginal task performed by capital since the
marginal value product of each infra-marginal task is greater than the minimized cost of
performing it. Moreover, profit-maximization implies that the sum of these rents gross of
F (0, Nt) just covers the entire cost of performing Nt tasks by labor.

2.2.4 The Evolution of Technological Knowledge

The evolution of the technological knowledge to which firms have access is given by the
evolution of the aggregate task-specific productivity indicators At and Bt. We stipulate
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Figure 2.1: Inframarginal Rents on Tasks Performed by Capital.

that At and Bt correspond to the highest level of labor productivity and capital produc-
tivity attained across all tasks of the respective type at t, i. e.,

At = max
{

at(n) = At−1

(
1− δA

) (
1 + qA

t (n)
)
| n ∈ [0, Nt]

}
,

(2.34)

Bt = max
{

bt(m) = Bt−1

(
1− δB

) (
1 + qB

t (m)
)
| m ∈ [0, Mt]

}
.

Firm’s optimization implies qB
t (m) = qB

t and qA
t (n) = qA

t , as well as at(n) = at and
bt(m) = bt so that

At = at = At−1

(
1− δA

) (
1 + qA

t

)
,

(2.35)

Bt = bt = Bt−1

(
1− δB

) (
1 + qB

t

)
,

for all t = 0, 1, 2, · · · with A−1 > 0 and B−1 > 0 given.

3 Dynamic Competitive Equilibrium

3.1 Definition

The dynamic competitive equilibrium is defined as follows.
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Definition 1 Given Lt = L, initial values of the capital stock, K0 > 0, and of technological
knowledge, A−1 > 0 and B−1 > 0, a dynamic competitive equilibrium is a sequence{

Mt, Nt, kt(m), lt(n), qB
t (m), qA

t (n), At, Bt, wt, Rt, Ct, Kt+1, Yt

}∞

t=0
,

for all m ∈ [0, Mt] and n ∈ [0, Nt], such that

(E1) the behavior of the representative household is described by (2.3) and (2.4).

(E2) the production sector satisfies Proposition 1,

(E3) for all t, both factor markets clear, i. e.,∫ Mt

0
kt(m)dm ≤ Kt and

∫ Nt

0
lt(n)dn ≤ L,

each holding as equality if the corresponding factor price is strictly positive,

(E4) for all t, the market for the final good clears,

(E5) the productivity indicators At and Bt evolve according to equation (2.35).

Condition (E1) requires household optimization while (E2) ensures optimal behavior of
firms and zero profits. Since equilibrium factor prices will be strictly positive, there will
be full employment of capital and labor. Moreover, profit-maximization implies kt(m) =

kt = 1/bt = 1/Bt and lt(n) = lt = 1/at = 1/At. Hence, condition (E3) determines the
total number of each task type to be equal to the amount of the respective production
factor in efficiency units, i. e.,

Mt = BtKt and Nt = AtLt. (3.1)

Let Vt denote the economy’s net output at t defined as the difference between total output
of the final good, the investment outlays for all tasks performed by capital, Mti

(
qB

t
)
, and

the investment outlays for all tasks performed by labor, Nti
(
qA

t
)
. Then,

Vt = F(Mt, Nt)−Mti
(

qB
t

)
− Nti

(
qA

t

)
. (3.2)

Accordingly, the market clearing condition for the market of the final good, (E4), requires

Kt+1 = Vt − Ct +
(

1− δK
)

Kt, (3.3)

i. e., next period’s capital stock is equal to the surviving capital plus the difference be-
tween net output, Vt, and consumption, Ct.
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Finally, observe that (E2), (E3), and (E5), imply that in equilibrium the task intensity of
equation (2.6), may be expressed as

κt =
BtKt

AtL
=

Bt−1
(
1− δB) (1 + gB(κt))Kt

At−1 (1− δA) (1 + gA(κt))L
. (3.4)

Thus, in equilibrium the task intensity is equal to the ratio of efficient capital to efficient
labor, or, for short, to the efficient capital intensity. Since innovations are induced, the
respective efficiency units depend on the task intensity. The following proposition estab-
lishes that there is a unique value κt > 0 that satisfies (3.4). We refer to this value as the
equilibrium task intensity. To simplify the notation let us introduce

Θt ≡
Bt−1

(
1− δB)Kt

At−1 (1− δA) L
. (3.5)

Proposition 2 There is a unique equilibrium task intensity κt > 0 that satisfies (3.4). More-
over, there is a function κ : R++ → R++ such that

κt = κ (Θt) with κ′ (Θt) > 0.

The ratio Θt has an interpretation as the efficient capital intensity of period t before any in-
vestment activity is undertaken. It is the correct measure of the relative scarcity of factors of
production at t to which firms’ investment behavior responds. In line with Hicks’ famous
assertion (Hicks (1932), p. 124) this ratio induces the degree to which firms will engage in
capital- and labor-augmenting technical change. To see this, suppose the economy enters
period t with Θt > Θt−1. Then, (efficient) labor has become scarcer between period t− 1
and t. Moreover, as κ′ (Θt) > 0 we have κt > κt−1, and, in accordance with Proposition 1,
qA

t > qA
t−1, qB

t < qB
t−1, wt > wt−1, and Rt < Rt−1.

3.2 The Canonical Dynamical System

The canonical dynamical system comprises two state variables, the equilibrium task in-
tensity, κt, and the stock of capital-augmenting technological knowledge, Bt, and one
control variable, the level of consumption per unit of efficient labor, ct ≡ Ct/ (AtL). The
following proposition has the complete description of this system. To simplify the nota-
tion, we denote by vt ≡ Vt/ (AtL) the net output per unit of efficient labor at t. Using the
two factor market clearing conditions of (3.1) and replacing

(
qB

t , qA
t
)

by
(

gB (κt) , gA (κt)
)

in accordance with Proposition 1 one obtains

vt = v (κt) ≡ f (κt)− κti
(

gB
t (κt)

)
− i
(

gA
t (κt)

)
, (3.6)

where v : R++ → R++.
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Proposition 3 (Canonical Dynamical System)

Given L > 0 and initial conditions (A−1, B−1, K0) > 0, the transitional dynamics of the dynamic
competitive equilibrium is given by a unique sequence {κt, ct, Bt}∞

t=0 that satisfies

κt+1 =

(
1− δB) (1 + gB(κt+1)

)
(1− δA) (1 + gA(κt+1))

·
[

Bt (v (κt)− ct) +
(

1− δK
)

κt

]
, (3.7)

ct+1

ct
= β ·

Bt
(
1− δB) (1 + gB(κt+1)

) (
f ′ (κt+1)− i

(
gB (κt+1)

))
+
(
1− δK)

(1− δA) (1 + gA(κt+1))
, (3.8)

Bt = Bt−1

(
1− δB

) (
1 + gB (κt)

)
, (3.9)

the transversality condition

lim
t→∞

βt κt+1
(
1 + gA (κt+1)

)
ctBt+1

= 0, (3.10)

and for t = 0,

κ0 = κ (Θ0) . (3.11)

Intuitively, equation (3.7) reflects the economy’s resource constraint (3.3). It is obtained
using (3.1), Kt = (AtL/Bt) κt, Ct = AtLct, (2.35), and Claim 1 of Proposition 1. Equation
(3.8) restates the Euler equation (2.3) using (2.12), (2.18), Ct = AtLct, (2.35) and Claim 1
of Proposition 1. Finally, equation (3.9) states the evolution of capital-augmenting tech-
nological knowledge. It obtains from (2.35) and Claim 1 of Proposition 1. In conjunction
with the transversality condition and the set of initial conditions, these equations form a
three-dimensional system of first-order, non-linear difference equations and characterize
a unique sequence {κt, ct, Bt}∞

t=0 .

To develop an intuitive understanding of the mechanics of the dynamical system start
with the initial conditions. They deliver κ0 from equation (3.11). Using this and B−1 > 0
in (3.9) gives a unique B0 > 0. The resource constraint describes a relation between c0

and κ1 for any given pair (κ0, B0) ∈ R2
++. For any such pair the transversality condition

pins down the initial choice of consumption c0. Then, the resource constraint delivers a
unique κ1 > 0, whereas the Euler equation determines a unique c1. Mutatis mutandis, the
same reasoning applies to all periods t > 0. Hence, (κt, Bt) are indeed the state variables
of the canonical dynamical system.
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3.3 Steady State Analysis

Definition 2 A steady state is a path along which all variables grow at constant, but possibly
different rates.

We use an asterisk to denote steady-state variables, e. g., g∗ is the steady-state growth
rate of the economy.

3.3.1 Existence

To guarantee the existence of a steady state with strictly positive and finite state variables
we make the following two assumptions:

Assumption 1 It holds that

lim
κ→0

f ′(κ) > c
(

δB

1− δB

)
> lim

κ→∞
f ′(κ). (3.12)

Assumption 2 It holds that

1− δA > β
(

1− δK
)

. (3.13)

The discussion of the following proposition will reveal the significance of these assump-
tions.

Proposition 4 (Steady State)

1. The dynamical system of Proposition 3 has a unique steady state involving (κ∗, B∗, c∗) ∈
R3

++ if Assumptions 1 and 2 hold. The steady state is a solution to

c∗ = v (κ∗)− κ∗

B∗
(

g∗ + δK
)

, (3.14)

B∗ =
(1 + g∗)− β

(
1− δK)

β ( f ′ (κ∗)− i (gB (κ∗)))
, (3.15)

gB (κ∗) =
δB

1− δB . (3.16)
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2. The steady-state growth rate of the economy is

g∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 + gA (κ∗)

)
− 1.

Moreover, along the steady-state path, it holds that

a) Yt+1
Yt

= Vt+1
Vt

= Kt+1
Kt

= Ct+1
Ct

= Mt+1
Mt

= Nt+1
Nt

= wt+1
wt

= 1 + g∗,

b) R∗ = B∗
(

f ′ (κ∗)− i
(

δB

1−δB

))
, k∗ = 1

B∗ ,
lt+1

lt = 1
1+g∗ .

According to Statement 1 of Proposition 4 there is a unique steady state if Assumptions 1
and 2 hold. To develop the explanation for this finding, start with the evolution of
capital-augmenting technological knowledge of (3.9). Accordingly, any trajectory with
Bt/Bt−1− 1 = const. requires κt = κt+1 = κ∗. Intuitively, the level of κ∗ must be such that
profit-maximizing firms undertake innovation investments that generate new capital-
augmenting technological knowledge just enough to offset its depreciation. Invoking
Proposition 1 this is the case if

(
qB)∗ = gB (κ∗) = δB/(1− δB) as stated in (3.16).

Assumption 1 assures that (3.16) has a solution κ∗ ∈ R++. To see this, observe that a
choice of

(
qB)∗ means that (minimized) costs per task performed by capital are equal to

c
(
(qB)∗

)
= c

(
δB/(1− δB)

)
. Hence, for tasks m < Mt the marginal value product, f ′(κ),

must exceed, for m > Mt it must fall short of these costs. This is what condition (3.12)
guarantees.11

In steady state, the Euler equation makes sure that the household’s desired consump-
tion growth rate is equal to the growth rate of the economy. As discussed below, the
latter satisfies (1 + g∗) =

(
1− δA) (1 + gA (κ∗)

)
. Then, using (2.22) and the fact that

κ∗ is determined by (3.16), the Euler equation pins down B∗ as a solution to (1 + g∗) =

β
(

R (κ∗, B) + 1− δK). Assumption 2 provides a sufficient condition for a solution B∗ > 0
to exist. Intuitively, it assures that the numerator in (3.15) is strictly positive even if κ∗

and gA (κ∗) are very small which is the case if δB is very large.

Finally, given (κ∗, B∗), the resource constraint (3.14) determines a finite c∗ > 0 as the dif-
ference between net output per unit of efficient labor and the required capital investment
per unit of efficient labor needed to keep κ∗ constant.

Statement 2 of Proposition 4 establishes that the steady-state growth rate of the econ-
omy is given by the growth rate of labor-augmenting technological knowledge. Absent

11Obviously, Assumption 1 is also necessary for κ∗ ∈ R++ to exist. Notice that a value κ∗ ∈ (0, ∞) would
always exist if we had imposed the usual Inada conditions on F.
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population growth, this is the growth rate of final-good output, net output, consump-
tion, capital, the respective total number of tasks, and of the real wage. The steady-state
rental rate of capital is constant. Moreover, the input coefficients of capital are constant,
whereas the one of labor hinges on g∗.

Why is it that in steady state only the stock of labor-augmenting technological knowledge
evolves whereas the one of capital-augmenting technological knowledge stagnates? The
conceptual answer to this question provides the “Generalized Steady-State Growth The-
orem” developed in Irmen (2013b). This theorem generalizes Uzawa’s Theorem (Uzawa
(1961)) to settings where technical change has a cost in terms of current final-good out-
put. Roughly speaking, it says that an economy where capital accumulates and the equi-
librium net output function has constant returns to scale in capital and labor, technical
change must be labor-augmenting in steady state whereas capital-augmenting technical
change must vanish. With full employment of capital and labor as stated in (3.1) net
output of (3.2) becomes Vt = F(BtKt, AtLt) − BtKti

(
qB

t
)
− AtLti

(
qA

t
)

and satisfies this
property. Hence, in steady state, Bt = B∗ and At evolves at rate g∗.

Observe that the steady-state growth rate of the economy may be negative, i. e., g∗ ≤ 0.
Intuitively, this is the case if gA (κ∗) ≤ δA/

(
1− δA) which may be satisfied if κ∗ is small

due to a large δB. However, as B∗ > 0 is required, the Euler equation (3.15) implies a
lower bound on steady-state growth rate, i. e., g∗ > β(1− δK)− 1. Finally, observe that
Assumption 2 is sufficient (but not necessary) for B∗ > 0.

3.3.2 Comparative Statics

Proposition 5 (Comparative Statics of the Steady State)

1. Consider two economies that differ only with respect to their discount factor such that β′ >

β. Then, their steady states satisfy

(κ∗)′ = κ∗, (g∗)′ = g∗, (B∗)′ < B∗,

(3.17)

(R∗)′ < R∗, (c∗)′ < c∗.

2. Consider two economies that differ only with respect to their depreciation rate of the stock
of capital-augmenting technological knowledge such that

(
δB)′ > δB. Then, their steady

states satisfy

(κ∗)′ < κ∗, (g∗)′ < g∗, (B∗)′ < B∗,

(3.18)

(R∗)′ < R∗, (c∗)′ Q c∗.
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3. Consider two economies that differ only with respect to their depreciation rate of the stock of
labor-augmenting technological knowledge such that

(
δA)′ > δA. Then, their steady states

satisfy

(κ∗)′ = κ∗, (g∗)′ < g∗, (B∗)′ < B∗,

(3.19)

(R∗)′ < R∗, (c∗)′ > c∗.

Arguably, Statement 1 has the most important result of Proposition 4. The steady-state
growth rate of the economy, g∗, does not hinge on characteristics of the household sector.
Intuitively, this is so since the discount factor neither interferes with the incentives to
engage in innovation investments as summarized by the function gB nor does it directly
affect the evolution of the stocks of technological knowledge. However, differences in
the discount factor have level effects. The more patient economy is predicted to have the
lower steady-state level of capital-augmenting technological knowledge, or, equivalently,
a lower rental rate of capital. This follows from the steady-state Euler equation (3.15) that
requires both economies to have consumption grow at the same rate (g∗)′ = g∗. Then,
a greater discount factor must be entirely offset by a decline in the rental rate of capital.
This is accomplished through a decline in capital-augmenting technological knowledge.
Finally, with (B∗)′ < B∗ the resource constraint (3.14) requires the more patient economy
to reduce its consumption per unit of efficient labor. Intuitively, since κ∗ is the same in
both economies it must be that

(
(Kt/AtL)

∗)′ > (Kt/AtL)
∗, i. e., capital per efficient labor

is greater in the more patient economy. Therefore, more current output is needed to keep
this ratio constant. Accordingly, (c∗)′ < c∗.

Statements 2 and 3 highlight that differences in the depreciation rate of the stock of factor-
augmenting technological knowledge generate growth effects. First, consider the steady-
state effects of changing δB. A higher depreciation rate of capital-augmenting technolog-
ical knowledge requires stronger private incentives to engage in innovation investments
that raise the productivity of capital. Hence, in line with Proposition 1 and (3.16) the ef-
ficient capital intensity must fall, i. e., (κ∗)′ < κ∗. This weakens the private incentives to
engage in innovation investments that raise the productivity of labor so that (g∗)′ < g∗.
As consumption must grow at the latter rate the Euler condition requires (R∗)′ < R∗.
This adjustment implies (B∗)′ < B∗. Finally, the effect on the steady-state consumption
per unit of efficient labor remains indeterminate in general.

Second, consider changes in δA of Statement 3. As these changes leave (3.16) unaffected,
we have (κ∗)′ = κ∗, and (g∗)′ < g∗ is due to faster depreciation of the stock of labor-
augmenting technological knowledge. As above, slower growth of consumption requires
adjustments in the Euler equation and the resource constraint. They lead to (B∗)′ < B∗,
(R∗)′ < R∗, and (c∗)′ > c∗.
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Additional and intuitive comparative static results are obtained if we impose more struc-
ture.

Example 2 Reconsider the setup of Example 1, and suppose that Assumption 2 holds. Then, a
unique steady state exists and involves

κ∗ =

(
2Γαδ̃B

γB

) 1
1−α

, (3.20)

where δ̃B =
(
1− δB)2 /

(
δB (2 + δB)).

To interpret this equation recall that κ∗ is the task intensity necessary to sustain innovation in-
vestments such that

(
qB)∗ = δB/

(
1− δB). Moreover, from Proposition 1 a higher κ reduces qB.

Then, it is straightforward to see why κ∗ increases in the productivity parameter Γ and decreases
in the cost parameter γB or in the depreciation rate δB. Since g∗ =

(
1− δA) (1 + gA (κ∗)

)
− 1

we arrive at

g∗ =
(
1− δA)

3

2 +

√
1 +

6Γ(1− α)

γA

(
2Γαδ̃B

γB

) α
1−α

− 1. (3.21)

Here, Γ exerts two positive effects on g∗. First, there is a direct effect since innovation incentives
are higher the more productive the aggregate production function is. Second, there is a general
equilibrium effect since κ∗ also increases. A greater γA or δA has a direct negative effect on g∗,
greater values for γB or δB reduce g∗ through negative general equilibrium effects on κ∗.

Finally, let us note that the steady state of Proposition 4 is consistent with Kaldor’s facts
if g∗ > 0 (see, Kaldor (1961)). Indeed, one readily verifies that the productivity of labor,
measured either by at, Vt/L, or Yt/L and capital per worker, Kt/L, grow at rate g∗ > 0.
Moreover, the capital coefficient in aggregate output, Kt/Yt, or in aggregate net output,
Kt/Vt, and the return on capital are stable. Since in steady state Rt = R∗, the factor shares
are also stable. Hence, the steady state is consistent with Kaldor’s facts.

3.3.3 Local Stability

Proposition 6 (Local Stability of the Steady State)

The steady-state equilibrium of Proposition 4 is asymptotically locally stable in the state space.
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To establish Proposition 6 the nonlinear dynamical system of Proposition 3 is linearly
approximated about the steady state (κ∗, c∗, B∗). Given L > 0 and the initial values
(A−1, B−1, K0) > 0 the state of the economy in period t is fully described by the two
state variables κt and Bt, so that ct is the only control variable. Hence, given the two
state variables we need a stable eigenspace of dimension two for the dynamical system
to exhibit a unique convergent path toward the steady state. The proof of Proposition 6
shows that the linearized dynamical system has two stable eigenvalues and one unstable
eigenvalue. The convergence toward the steady state may be monotonic or oscillatory.

To gain intuition for Proposition 6 consider the case of a monotonic convergence. Initially,
the economy is in its steady-state equilibrium (κ∗, c∗, B∗). Suppose that at the beginning
of some period t an exogenous event destroys a part of its capital-augmenting technolog-
ical knowledge so that B′t−1 < B∗. Then, compared to the steady state Θ of (3.5) falls. In
other words, at the beginning of period t efficient capital is relatively scarcer than along
the steady-state path. Accordingly, from Proposition 2 we have κ′t < κ∗, and with Propo-
sition 1 it follows that

(
qB

t
)′
>
(
qB)∗ and

(
qA

t
)′
<
(
qA)∗. This leads to B′t−1 < B′t < B∗ and

A′t < A∗. Hence, the immediate effect of induced technical change is to partly offset the
initial loss in capital-augmenting technological knowledge. For the periods that follow,
κ′t < κ∗ triggers a process of capital accumulation so that the sequences

{
κ′t+i

}∞
i=1 and{

B′t+i
}∞

i=1 monotonically converge to κ∗ and B∗, respectively.

In contrast to the existing literature on endogenous capital- and labor-augmenting techni-
cal change, the local stability of the steady-state equilibrium does not require the elasticity
of substitution of the production function to be less than unity.12 Indeed, Proposition 6
holds irrespective of the elasticity of substitution. To highlight this point consider the fol-
lowing numerical example. Notice in passing that here the elasticity of substitution in the
aggregate production function plays a role for the type of convergence to the steady-state
equilibrium and also for the steady-state growth rate.

Example 3 Reconsider the economy described in Example 1. We now choose the following pa-
rameter values: Γ = γA = γB = 1, α = 1/3, δB = 1/4, δA = 1/4, β = 0.99, and δK = 0.06.
Furthermore, we allow for the production function to be of the CES-type, i. e.,

F(M, N) =


Γ
(

αM
σ−1

σ + (1− α)N
σ−1

σ

) σ
σ−1 if σ 6= 1,

Γ ·Mα · N1−α if σ = 1,

12The contributions of the induced innovations literature that involve capital accumulation (e. g., von
Weizsäcker (1962), Drandakis and Phelps (1966), Samuelson (1966)), and the more recent analysis of Ace-
moglu (2003b) all require an elasticity of substitution smaller than unity for the stability of the steady state.
This result is driven by the fact that the direction of technical change hinges on the factor shares.
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where σ > 0 is the elasticity of substitution between the two types of tasks. We emphasize that
the aim of our numerical example is not to calibrate the model, but rather to show the qualitative
results.

Table 1 shows the eigenvalues of the dynamical system of Proposition 3 linearized around the
steady state of Proposition 4 for various values of the elasticity of substitution, σ. For different
values of σ the convergence to the steady-state equilibrium may be monotonic or oscillatory. It

Table 1: Elasticity of Substitution of the Production Function, Local Stability of the
Steady State, and Steady-State Growth.

σ eigenvalues g∗(%)

0.25 1.07941, 0.949732, 0.561591 0.51
0.5 1.09029, 0.939364, 0.71533 0.94
0.75 1.10048, 0.926904, 0.790202 1.31

1 1.11007, 0.908942, 0.841108 1.64
1.25 1.11917, 0.884550 ± 0.0280296i 1.92
1.5 1.12791, 0.890272 ± 0.0448385i 2.18
1.75 1.13637, 0.893694 ± 0.0535632i 2.41

2 1.14464, 0.895618 ± 0.0593213i 2.61

is worth emphasizing that σ = 1 does not represent a critical value below which convergence is
necessarily monotonic and above which it is oscillatory. Notice also that, naturally, the variables
do not need to converge at the same speed to their steady-state levels. Finally, observe that the
steady-state growth rate increases in the elasticity of substitution thus confirming the analytical
finding established in Irmen (2011).

3.4 The Role of Capital-Augmenting Technical Change

What is the role of capital-augmenting technical change for the results derived so far? To
address this question we contrast the model of the previous sections with a version that
altogether dispenses with capital-augmenting technical change. To accomplish this, re-
consider the model of Section 2 for Bt = bt = kt = 1, qB

t = δB = i
(
qB

t
)
= 0, and Mt = Kt.

Then, the efficient capital intensity of (3.4) boils down to κt = Kt/ (AtL). Mutatis mutan-
dis, the latter ratio also satisfies Proposition 2 where now Θt ≡ Kt/

(
At−1

(
1− δA) L

)
.

With these changes, the dynamical system of Proposition 3 reduces to a two-dimensional
system of non-linear first-order difference equations involving one state variable, κt, and
one control variable, ct. These difference equations include the resource constraint and
the Euler condition.
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Proposition 7 (Canonical Dynamical System Without Capital-Augmenting Technical Change)

Given L > 0 and initial conditions (A−1, K0) > 0, the transitional dynamics of the dynamic
competitive equilibrium is given by a unique sequence {κt, ct}∞

t=0 that satisfies

κt+1 =
v(κt)− ct +

(
1− δK) κt

(1− δA) (1 + gA(κt+1))
, (3.22)

ct+1

ct
= β · f ′(κt+1) + 1− δK

(1− δA) (1 + gA(κt+1))
, (3.23)

the transversality condition

lim
t→∞

βt κt+1
(
1 + gA (κt+1)

)
ct

= 0, (3.24)

and for t = 0,

κ0 = κ (Θ0) . (3.25)

From Definition 2 a steady state involves At+1/At − 1 = const. Hence, with (2.35) and
Proposition 1 we have κt = κt+1 = κ∗ and

(
qA)∗ = gA (κ∗). Moreover, from (3.22) we

obtain ct = ct+1 = c∗. To guarantee the existence of a steady state with κ∗ ∈ R++, we
replace Assumptions 1 and 2 by

Assumption 3 It holds that

lim
κ→0

f ′(κ) >
1− δA

β
−
(

1− δK
)
> lim

κ→∞
f ′(κ). (3.26)

The significance of Assumption 3 will become clear below.

Proposition 8 (Steady State Without Capital-Augmenting Technical Change)

1. The dynamical system of Proposition 7 has a unique steady state involving (κ∗, c∗) ∈ R2
++

if Assumption 3 holds. The steady state is a solution to

c∗ = v(κ∗)− κ∗
(

g∗ + δK
)

, (3.27)

1 + g∗ = β
(

f ′ (κ∗) + 1− δK
)

. (3.28)
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2. The steady-state growth rate of the economy is

g∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 + gA (κ∗)

)
− 1.

Moreover, along the steady-state path, it holds that

a)
Yt+1

Yt
=

Vt+1

Vt
=

Kt+1

Kt
=

Ct+1

Ct
=

Nt+1

Nt
=

wt+1

wt
= 1 + g∗,

b) R∗ = f ′ (κ∗) ,
lt+1

lt
=

1
1 + g∗

.

The comparison of the steady state with and without capital-augmenting technical change
(Proposition 4 versus Proposition 8) reveals two important structural differences. First, in
a world without capital-augmenting technical change the steady-state capital-labor ratio
in efficiency units is pinned down by the Euler condition (3.28). Hence, κ∗ is such that the
desired growth rate of consumption (and of the economy as a whole), g∗, is supported
by the steady-state rental rate of capital, R∗ = f ′ (κ∗). If Assumption 3 holds then this
alignment has a solution κ∗ > 0 which will naturally depend on β.

On the contrary, in the world with capital-augmenting technical change, the role of κ∗ is
to induce innovation investments so that the stock of capital-augmenting technological
knowledge remains constant over time. The necessary adjustments to meet this require-
ment reflect only the characteristics of the production sector including the way how tech-
nological knowledge accumulates. As a consequence condition (3.16) is independent of
β.

Second, the comparative statics with respect to β and δA of the steady state of Proposi-
tion 8 involve adjustments in κ∗. In contrast, for the steady state with capital-augmenting
technical change of Proposition 4 changes in the same parameters induce adjustments in
B∗. The following proposition documents the resulting differences.

Proposition 9 (Steady-State Comparative Statics Without Capital-Augmenting Technical Change)

1. Consider two economies that differ only with respect to their discount factor such that β′ >

β. Then, their steady states satisfy

(κ∗)′ > κ∗, (g∗)′ > g∗, (R∗)′ < R∗, and (c∗)′ R c∗. (3.29)

2. Consider two economies that differ only with respect to their depreciation rate of the stock
of capital-augmenting technological knowledge such that

(
δA)′ > δA. Then, their steady

states satisfy

(κ∗)′ > κ∗, (g∗)′ < g∗, (R∗)′ < R∗, and (c∗)′ R c∗. (3.30)
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The comparison between Proposition 9 and Claim 1 and 3 of Proposition 5 highlights
two important differences. First, without capital-augmenting technical change the more
patient economy grows faster in steady state. Intuitively, this economy saves more and,
as a result ends up with a greater efficient capital intensity. According to Proposition 1
this induces faster labor-augmenting technical change, hence, faster steady-state growth.
Second, the negative effect on the steady-state growth rate of the economy associated
with a greater depreciation rate of labor-augmenting technological knowledge is partly
offset by an increase in κ∗.

4 Positive Implications: Fiscal Policy

This section establishes the effect of three different fiscal policy measures on the steady-
state growth rate. First, we study the effects of a linear tax on the return to capital. Sec-
ond, we analyze the role of subsidies for innovation investments that increase the pro-
ductivity of capital. Finally, we turn to subsidies for innovation investments that increase
the productivity of labor. We follow the literature and assume that the government redis-
tributes its tax revenues in a lump-sum fashion to balance its budget. Similarly, it finances
its subsidies through a lump-sum tax. Accordingly, none of the considered policies affects
the household’s flow budget constraint (2.2).

4.1 A Linear Tax on Capital

Suppose the government levies a tax on capital such that the net after-tax rate of return
per unit of capital at t is (1 − τ)

(
Rt − δK) , τ ∈ [0, 1). Then, the Euler condition (2.3)

becomes Ct+1/Ct = β
(
(1− τ)

(
Rt+1 − δK)+ 1

)
, i. e., from the household’s point of view,

the relative price of consumption tomorrow increases in τ.

However, such a tax does not affect the steady-state growth rate of the economy. Ac-
cording to Proposition 4, the latter is equal to the growth rate of labor-augmenting tech-
nological knowledge and hinges on

(
qA)∗ = gA (κ∗). As κ∗ is determined by (3.16) it

reflects only the production side of the economy. Accordingly, the tax on capital leaves
the economy’s steady-state growth rate unchanged.

4.2 A Subsidy to Capital-Augmenting Innovation Investments

Suppose the government pays a subsidy σBi
(
qB

t (m)
)

for all innovation investments that
raise the productivity of capital at t. Here, σB ∈ [0, 1) is the subsidy rate. The sub-
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sidy reduces the (minimized) cost per task performed by capital and, therefore, ren-
ders innovation investments more attractive. This shows up in the conditions for profit-
maximization that now involve

f ′ (κt) =
(

1− σB
)

c
(

qB
t

)
. (4.1)

The latter generalizes (2.18) to the case where σB > 0 and implicitly defines

qB
t = gB(κt, σB), with gB

κ (κt, σB) < 0 and gB
σB(κt, σB) > 0. (4.2)

Hence, a greater subsidy means a higher productivity growth rate qB
t . The subsidy also

increases the steady-state growth rate of the economy. To see this, recall that the latter
is equal to the growth rate of labor-augmenting technological knowledge and hinges on(
qA)∗ = gA (κ∗). However, here κ∗ depends on and increases in σB. Indeed, in light of

(4.2) condition (3.16) must be replaced by

gB(κ∗σB , σB) =
δB

1− δB , (4.3)

where κ∗
σB is the steady-state equilibrium task intensity consistent with a subsidy rate

σB > 0. Implicit differentiation of (4.3) reveals that κ∗
σB increases in σB as

dκ∗
σB

dσB = −
gB

σ

(
κ∗

σB , σB)
gB

κ

(
κ∗

σB , σB
) > 0. (4.4)

The intuition is the following. In steady state qB must be equal to δB/
(
1− δB) to keep

B constant. A subsidy rate σB > 0 reduces the (effective) cost per task,
(
1− σB) c

(
qB

t
)
,

on the right-hand side of (4.1). Given κt, this tends to increase qB
t . To offset this ten-

dency κt must increase so that the left-hand side of (4.1) can fall until qB is again equal to
δB/

(
1− δB).

These adjustments increase the steady-state growth rate which is now give by

g∗σB =
(

1− δA
) (

1 + gA (κ∗σB

))
− 1. (4.5)

Then, with (4.4) we have

dg∗
σB

dσB =
(

1− δA
)

gA
κ

(
κ∗σB

) dκ∗
σB

dσB > 0. (4.6)

The following proposition summarizes the result of this reasoning.

Proposition 10 (Subsidy to Capital-Augmenting Innovation Investments and Steady-State Growth)

Consider two economies that differ only with respect to the subsidy rate to capital-augmenting
innovation investments such that 1 >

(
σB)′ > σB ≥ 0. Then, it holds that(
g∗σB

)′
> g∗σB . (4.7)
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4.3 A Subsidy to Labor-Augmenting Innovation Investments

Suppose the government pays a subsidy σAi
(
qA

t (n)
)

for all innovation investments that
raise the productivity of labor at t. Here, σA ∈ [0, 1) denotes the subsidy rate. This
subsidy reduces the cost per task performed by labor and, therefore, renders innovation
investments more attractive. This shows up in the conditions for profit-maximization
that now involve

f (κt)− κt f ′ (κt) =
(

1− σA
)

c
(

qA
t

)
. (4.8)

The latter generalizes (2.19) to the case where σA > 0 and leads to changes in Proposi-
tion 1. In particular, we now have

qA
t = gA(κt, σA), with gA

κ (κt, σA) > 0 and gA
σA(κt, σA) > 0, (4.9)

The subsidy for labor-augmenting innovation investments increases the the steady-state
growth rate of the economy. However, the channel is quite different from the one iden-
tified for a subsidy of capital-augmenting innovation investments. To see this, observe
that the subsidy leaves κ∗ unchanged which is still determined by (3.16). However, in
light of (4.9) and Proposition 4, the steady-state growth rate of the economy may now be
written as

g∗σA =
(

1− δA
) (

1 + gA
(

κ∗, σA
))
− 1. (4.10)

Then, using (4.9) we obtain indeed that

dg∗
σA

dσA =
(

1− δA
)

gA
σ

(
κ∗, σA

)
> 0. (4.11)

This leads to the following proposition.

Proposition 11 (Subsidy to Labor-Augmenting Innovation Investments and Steady-State Growth)

Consider two economies that differ only with respect to the subsidy rate for labor-augmenting
innovation investments such that 1 >

(
σA)′ > σA ≥ 0. Then, it holds that(
g∗σA

)′
> g∗σA . (4.12)

5 Optimal Growth

This section studies the welfare properties of the dynamic competitive equilibrium and
establishes two main results. First, we show that the equilibrium is not Pareto optimal
since both forms of technical change give rise to an inter-temporal knowledge external-
ity. Second, we prove that the Pareto-efficient steady state may be implemented with an
appropriate policy of investment subsidies.
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5.1 The Planner’s Problem

To derive the Pareto-efficient allocation, we assess allocations with regard to their ef-
fects on the overall utility of the representative household (2.1). Moreover, we focus on
allocations with the same structural properties as in the decentralized equilibrium. In
particular, we restrict attention to symmetric configurations that involve qB

t (m) = qB
t and

qA
t (n) = qA

t .13 To save space, we directly take capital and labor as fully employed.

Then, given L > 0, initial values of the capital stock, K0 > 0, and of technological knowl-
edge, A−1 > 0 and B−1 > 0, the planner solves

max
{qB

t ,qA
t ,Ct}∞

t=0
∈R3

+

∞

∑
t=0

βt ln Ct, (5.1)

subject to the resource constraint

Ct + Kt+1 = F (BtKt, AtL)− BtKti(qB
t )− AtLi(qA

t ) +
(

1− δK
)

Kt, (5.2)

the evolution of the two stocks of technological knowledge of (2.35) and a set of appro-
priate non-negativity constraints. Besides these constraints and three transversality con-
straints,14 the planner’s problem satisfies the following first-order (sufficient) conditions
for Kt+1, qB

t , and qA
t , respectively:

13This excludes, e. g., asymmetric patterns where the planner chooses, say, qB
t (m) > 0 for a small subset

of tasks m ∈ [0, m̄t], m̄t < Mt, and does not undertake innovation investments in all other tasks performed
by capital. This strategy reduces current outlays for innovation investments and, at the same time, allows
to start period t + 1 with a high level of Bt

(
1− δB) as knowledge accumulates according to (2.34). Of

course, such a strategy also has a downside since the productivity of capital at t in all tasks m ∈ [m̄t, Mt]

is Bt−1
(
1− δB). At all events, in a decentralized economy such patterns cannot arise in equilibrium and

would even be very difficult to implement by a planning authority.

14The transversality constraints are limt→∞ βtµK
t Kt+1 = 0, limt→∞ βtµA

t At = 0, and limt→∞ βt
tµ

B
t Bt = 0,

respectively, where µK
t , µA

t , µB
t are the Lagranage multipliers associated with the resource constraint and the

appropriate technological constraint, respectively.
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Ct+1

Ct
= β

[
Bt(1− δB)(1 + qB

t+1)
(

f ′ (κt+1)− i
(

qB
t+1

))]
(5.3)

+ β
(

1− δK
)

,

0 =
Kt

Ct

[
f ′ (κt)− i

(
qB

t

)
−
(

1 + qB
t

)
i′
(

qB
t

)]
(5.4)

+ β · Kt+1

Ct+1

(
1− δB

) (
1 + qB

t+1

)2
i′
(

qB
t+1

)
,

0 =
Kt

Ct

[
f (κt)− κt f ′ (κt)− i

(
qA

t

)
−
(

1 + qA
t

)
i′
(

qA
t

)]
(5.5)

+ β · Kt+1

Ct+1

(
1− δA

) (
1 + qA

t+1

)2
i′
(

qA
t+1

)
.

Condition (5.3) is the Euler condition of the planner’s problem. The comparison with
the Euler condition (3.8) of the competitive equilibrium reveals that the inter-temporal
equilibrium allocation of capital is the efficient one. This, however, is not the case for the
equilibrium choices of qB

t and qA
t . To see this compare (5.4) and (5.5) to their respective

equilibrium counterparts (2.18) and (2.19). The decentralized equilibrium has productiv-
ity growth rates such that the minimum costs per task are equal to the respective value
product of the marginal task. If these conditions hold for t then the first lines of (5.4) and
(5.5) vanish whereas the second remain positive. In other words, evaluated at the equi-
librium allocation the (marginal) value of qB

t and qA
t is strictly positive for the planner.

The presence of β suggests that the additional advantage is of an inter-temporal nature.
To see this more clearly, consider the following variational argument applied to the first-
order condition (5.4) that describes the social planner’s choice of qB

t . Mutatis mutandis,
an analogous argument applies to (5.5).

Suppose the economy evolves along an optimal path given by
{

At, Bt, Kt+1, Ct, qB
t , qA

t
}∞

t=0.
Now, the planner considers an increase in qB

t at some period t ≥ 0 in conjunction with
a decrease in qB

t+1 such that the sequence
{

Aτ−1, Bτ, Kτ, qB
τ+1, qA

τ−1

}∞
τ=t+1 remains un-

changed. To study the effects of this variation, consider the planner’s net output at time
t,

Vt = F (BtKt, AtL)− AtLi
(

qA
t

)
− BtKti

(
qB

t

)
, (5.6)
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in conjunction with the evolution of the two stocks of technological knowledge of (2.35).
Then, a small increase in qB

t changes Vt by

dVt = Bt−1

(
1− δB

)
Kt

[
f ′ (κt)− i

(
qB

t

)
−
(

1 + qB
t

)
i′
(

qB
t

)]
dqB

t . (5.7)

Here, the first term in the bracketed expression represents the increase in net output due
to a greater productivity of capital. The second term captures the additional investment
outlays that arise since a greater productivity of capital increases the number of tasks
performed by capital under full employment of the capital stock. The third term repre-
sents the additional investment outlays that arise since the investment outlays of each
performed task increase.

Since Bt+1 is unaffected by the variation in qB
t and qB

t+1, the changes in these variables
must satisfy dqB

t+1 = −
(
1 + qB

t+1

)
/
(
1 + qB

t
)

dqB
t . Then, the effect of dqB

t on net output in
t + 1 is

dVt+1 = −Bt+1Kt+1i′
(

qB
t+1

)
dqB

t+1,

= Bt+1Kt+1i′
(

qB
t+1

)(1 + qB
t+1

1 + qB
t

)
dqB

t ,

= Bt−1

(
1− δB

)2
Kt+1

(
1 + qB

t+1

)2
i′
(

qB
t+1

)
dqB

t . (5.8)

Hence, net output in t + 1 increases since dqB
t > 0 and the concomitant decline in qB

t+1

reduces the investment outlays for all Mt+1 = Bt+1Kt+1 tasks performed by capital. To
link these findings to the first-order condition (5.4) observe that the latter may be written
as

0 =
dVt

Ct
+ β

dVt+1

Ct+1
. (5.9)

Hence, along the optimal path the sum of the contemporaneous and the inter-temporal
effect of a variation in dqB

t vanishes when compared in “utils” of period t. In other words,
the respective second terms in conditions (5.4) and (5.5) represent the inter-temporal ad-
vantage of greater values for qB

t and qA
t that are not taken into account in the decentralized

equilibrium.

5.2 Steady-State Analysis

The economy of the planner involves the net output function (5.6) with constant returns
to scale in capital and labor and the resource constraint (5.2). Therefore, we may invoke
the generalized steady state growth theorem of Irmen (2013b). Hence, a steady state
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has Bt = B∗∗ and the growth rate of the economy is given by the growth rate of labor-
augmenting technological knowledge, g∗∗ = g∗∗A . Moreover, g∗∗V = g∗∗Y = g∗∗C = g∗∗K =

g∗∗. The evolution of technological knowledge (2.35) is consistent with this pattern. The
task of this section is to establish the existence of such a steady state and to compare it to
the steady state of the dynamic competitive economy.

To support Bt = B∗∗, the evolution of the stock of capital-augmenting technological
knowledge of (2.35) requires(

qB
)∗∗

=
δB

1− δB =
(

qB
)∗

. (5.10)

Hence, the steady state of the planner’s problem involves the same qB as the competitive
equilibrium. This is so, even though the planner internalizes the inter-temporal knowl-
edge spill-over associated with innovation investments that increase the productivity of
capital.

Constant consumption growth in (5.3) and (5.10) imply κt = κ∗∗. Then, in steady state
conditions (5.4) and (5.5) boil down to

c
(

δB

1− δB

)
= f ′ (κ∗∗) + β ·

i′
(

δB

1−δB

)
1− δB , (5.11)

c
((

qA
)∗∗)

= f (κ∗∗)− κ∗∗ f ′ (κ∗∗)

(5.12)

+ β
(

1− δA
) (

1 +
(

qA
)∗∗)2

i′
((

qA
)∗∗)

.

Hence, the planner’s steady-state choice of qB and qA is such that the minimized costs per
task are equal to the sum of the contemporaneous marginal product of the respective task
and the inter-temporal advantage arising from the knowledge spill-over. The comparison
with (2.18) and (2.19) of the competitive equilibrium shows that the inter-temporal effect
is neglected by the competitive production sector. The reason for this is straightforward.
While innovation investments give rise to new technological knowledge that increases
the productivity of the factors of production, this advantage is confined to the period in
which the innovation investment is made. For all subsequent periods the newly created
technological knowledge becomes publicly available and can be used by any firm free of
charge. It is in this sense that the investment behavior of firms does not account for the
future.

One readily verifies that condition (5.11) determines κ∗∗ > 0. The comparison with (2.18)
evaluated at the steady state reveals immediately that κ∗∗ > κ∗. This reflects the presence
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of the inter-temporal effect that forces the marginal product of tasks performed by capital
to fall. Condition (5.12) determines

(
qA)∗∗ > (

qA)∗. There are two reinforcing reasons
for this inequality. First, κ∗∗ > κ∗ means that the marginal product of tasks performed
by labor increases. Therefore, the cost-minimizing level of qA will be higher. Second,
the inter-temporal advantage is itself increasing in qA. In steady state, the Euler condi-
tion, (5.3), pins down B∗∗ such that consumption grows at the same rate as the economy.
The following proposition summarizes these results.

Proposition 12 (Planner’s Steady-State Allocation)

1. Suppose Assumptions (1) and (2) hold. Then, the planner’s problem has a unique steady
state involving

(
κ∗∗,

(
qB)∗∗ ,

(
qA)∗∗) ∈ R3

++, and

c∗∗ = f (κ∗∗)− κ∗∗i
(

δB

1− δB

)
− i
((

qA
)∗∗)

(5.13)

− κ∗∗

B∗∗
(

g∗∗ + δK
)

,

B∗∗ =

(
1− δA) (1 +

(
qA)∗∗)− β

(
1− δK)

β
(

f ′ (κ∗∗)− i
(

δB

1−δB

)) > B∗, (5.14)

2. The welfare-maximizing steady-state growth rate of the economy is

g∗∗ ≡ At+1

At
− 1 =

(
1− δA

) (
1 +

(
qA
)∗∗)

− 1 > g∗.

Moreover, along the planner’s steady-state path, it holds that

a)
Yt+1

Yt
=

Vt+1

Vt
=

Kt+1

Kt
=

Ct+1

Ct
=

Mt+1

Mt
=

Nt+1

Nt
= 1 + g∗∗,

b) k∗ =
1

B∗∗
,

lt+1

lt
=

1
1 + g∗∗

5.3 Pareto-Improving Fiscal Policy

The discrepancy between the steady-state growth rates of the dynamic competitive equi-
librium and the planner’s solution suggests the possibility of Pareto-improving policy
measures. The following proposition establishes that appropriately chosen investment
subsidies accompanied by a lump-sum tax to balance the government’s budget may close
the gap between the allocation chosen by the planner and the one obtained under laissez-
faire.
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Proposition 13 Suppose the government subsidizes innovation investments at rates(
σB
)∗∗

=
βi′

i′ + (1− δB) i
∈ (0, 1), (5.15)

where i is evaluated at qB = δB/
(
1− δB) , and

(
σA
)∗∗

=
β
(
1− δA) (1 +

(
qA)∗∗) i′

((
qA)∗∗)

c
(
(qA)

∗∗) ∈ (0, 1), (5.16)

and balances its budget with a lump-sum tax. Then,
((

σB)∗∗ ,
(
σA)∗∗) implements the planner’s

steady-state allocation.

Notice that the two subsidies differ. The reason is that they fulfill different purposes.
The subsidy to innovation investments that increase the productivity of capital induces
a higher steady-state value of the equilibrium task intensity. To see this consider (4.1)
in steady state and (5.15). Since qB = δB/(1− δB), the optimal subsidy rate is such that(
σB)∗∗ c(δB/(1− δB)) is just equal to the inter-temporal spill-over on the right-hand side

of (5.11). Next, consider (4.8) in steady state and (5.12). Since κ = κ∗∗, the optimal
subsidy rate is such that

(
σA)∗∗ c((qA)∗∗) is just equal to the inter-temporal spill-over on

the right-hand side of (5.16). Accordingly, firms internalize both inter-temporal effects
associated with their innovation investments so that the planner’s steady-state allocation
is implemented and the economy grows at rate g∗∗ .

6 Concluding Remarks

This paper shows that endogenous capital- and labor-augmenting technical change can
be incorporated into the neoclassical growth model with both infinitely lived dynasties
and firms behaving competitively. We establish that due to the presence of endogenous
capital-augmenting technical change positive and normative implications substantially
change. We conclude that the neglect of capital-augmenting technical change is not be-
nign.

To a large extent, this is due to the “straightjacket” imposed by the necessity for capital-
augmenting technical progress to vanish in the steady state (Irmen (2013b)). This require-
ment pins down the steady-state value of one of the economy’s state variables, namely,
the efficient capital intensity. In steady state this variable must induce innovation vest-
ments in capital-augmenting technological knowledge just enough to offset its deprecia-
tion. At the same time, the efficient capital intensity determines the growth rate of labor-
augmenting technological knowledge, thus, the economy’s steady-state growth rate.
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The reader may recall that our results are obtained for a logarithmic per-period utility
function of the representative household. This begs the question of whether our qual-
itative findings are different under a more general utility function allowing for a con-
stant inter-temporal elasticity of substitution (CIES) different from unity. In fact, little
will change. To see this, remember that neither the steady-state efficient capital intensity
nor the steady-state growth rate hinge on household preferences. Both are entirely de-
termined by the production sector of the economy. Therefore, the CIES will only affect
steady-state levels as well as the transition while leaving the local stability property of
the steady state intact.

For a CIES exceeding unity an additional restriction on permissible parameter constel-
lations is called for. This condition assures that the steady-state growth rate is not too
large so that the household’s problem remains well-defined. The presence of a CIES also
introduces an additional parameter for comparative static exercises. However, since the
household becomes less willing to accept deviations from a uniform consumption profile
the smaller the CIES, the comparative-static effect of a decline in the CIES delivers the
same sign as a decline in the discount factor, β.

In the main text we also abstract from population growth. Let us now consider the main
consequences of a constant population growth rate, gL. Again, since the steady-state
growth rate is determined within the production sector it will neither depend on gL nor
on the size of the population. Moreover, from (3.6) evaluated at the steady state it be-
comes apparent that in steady state the equilibrium net output per unit of efficient labor
is also independent of gL and the size of the population. Hence, in the terminology of
Jones (2005) there are neither “strong” nor “weak” scale effects. Clearly, there will be
level effects along the transition associated with gL that, however, do not affect the local
stability property of the steady state.

It is worth noting that the respective roles of the CIES and of gL are quite different in
the model variant of Section 3.4 where only labor-augmenting technical change is feasi-
ble. As both parameters appear in the Euler condition they will affect the steady-state
growth rate.15 This observation corroborates our conclusion that the neglect of capital-
augmenting technical change is not benign.

Our paper leaves some important issues unresolved. They include the plausibility of
a time-invariant equilibrium innovation possibility frontier (EIPF). Should this frontier

15To be precise, gL will appear in the Euler condition if the representative household evaluates sequences
of per-capita consumption {c̃t}∞

t=0 according to ∑∞
t=0 βt ln c̃t. If the household cares for the per-period utility

of all household members at t then the objective functional is ∑∞
t=0 βt (1 + gL)

t ln c̃t and the Euler condition
is independent of gL.
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move over time? Empirical studies such as Caselli and Coleman (2006) suggest the ex-
istence of country-specific frontiers which may actually change over time. One way to
think about this is in terms of investment-specific technical change that lowers the rela-
tive price of the resources used as innovation investments. This route may also open the
door to a new mechanism that links the empirically observed decline of labor shares to
the relative price of investment goods (see, e. g., Karabarbounis and Neiman (2014)).

Another desirable feature would be a more flexible role for tasks. So far, we restrict atten-
tion to time-invariant factor-specific tasks. However, in practice the boundary between
tasks performed by labor and those performed by capital shifts over time. Technical
change may tend to transfer tasks from one factor of production to another. Moreover,
history shows that technical change may make certain tasks redundant altogether and
eliminate them from the production process. We leave these challenging questions for
future research.
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7 Appendix: Proofs

The numbering within each proof refers to the respective claims. Without loss of generality, we may suppress
the time argument when appropriate.

7.1 Proof of Proposition 1

1. Consider c(qj), j = A, B, of (2.14) and (2.15). The properties of i(qj) ensure that c(qj) is strictly
increasing with limqj→0 c(qj) = 0 and limqj→∞ c(qj) = ∞. Next observe that f ′(κ) and f (κ)− κ f ′(κ)
are strictly monotonic. Therefore, (2.18) defines some function qB

t = gB(κt) where gB : R++ → R++

whereas (2.19) defines some function qA
t = gA(κt) where gA : R++ → R++. Implicit differentiation

of these equations reveals that gA
κ (κt) > 0 > gB

κ (κt) for all κ > 0 as claimed in (2.20) and (2.21).

2. Solving (2.12) and (2.13) for the respective factor price R and w and using Claim 1 delivers

R = B−1

(
1− δB

) (
1 + gB (κ)

)2
i′
(

gB (κ)
)
≡ R (κ, B−1) ,

w = A−1

(
1− δA

) (
1 + gA (κ)

)2
i′
(

gA (κ)
)
≡ w(κ, A−1),

where R : R2
++ → R++ and w : R2

++ → R++. The partial derivatives indicated in (2.22) and (2.23)
follow immediately from Claim 1 and the properties of the function i. �

7.2 Proof of Corollary 1

1. Consider equations (2.20) and (2.21). Since gB is strictly decreasing on its domain it is invertible. Let
GB : R++ → R++ denote the inverse of gB. Then, from (2.20), κ = GB (qB) . Hence, with (2.21), we
may write

qA = gA
(

GB
(

qB
))
≡ g

(
qB
)

.

The slope of the function g(qB) is given by

g′
(

qB
)
≡ dqA

dqB =
dgA (κ)

dκ

dGB (qB)
dqB =

gA
κ (κ)

gB
κ (κ)

< 0. (7.1)

2. Consider equations (2.22) and (2.23). From equation (2.23), the function w (κ, A−1) is strictly increas-
ing in κ on its domain. Hence, given A−1, this function is invertible in κ. Let W : R2

++ → R++ denote
this inverse. Then, κ = W(w : A−1). Hence, with (2.22), we may write

R = R(W(w : A−1), B−1) ≡ h(w, A−1, B−1),

where h : R3
++ → R++. The partial derivative of h(w, A−1, B−1) with respect to w is given by

hw(w, A−1, B−1) ≡
dR
dw

=
dR(κ, B−1)

dκ

dW(w : A−1)

dw
(7.2)

=
Rκ(κ, B−1)

wκ(κ, A−1)
< 0.

�
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7.3 Proof of Proposition 2

Consider equation (3.4). Given Θ > 0, its right-hand side defines a continuous function, RHS (κ, Θ) > 0
for all κ > 0. Moreover, following Proposition 1, the properties of gA (κ) and gB (κ) imply that RHS (κ, Θ)

is continuous and strictly decreasing in κ > 0. Hence, limκ→0 RHS (κ, Θ) > 0. By continuity of RHS (κ, Θ),
there is a unique κ > 0 that satisfies κ = RHS (κ, Θ). Implicit differentiation delivers that this value increases
whenever Θ increases. �

7.4 Proof of Proposition 3

We show in the main text how to derive the three-dimensional system (3.7) - (3.9). There, we also argue that
κt and Bt describe the state of the economy at all t. Here, it remains to be shown that for any set of initial
values (A−1, B−1, K0, L) the transitional dynamics is given by a unique sequence {κt, ct, Bt}∞

t=0.

To accomplish this we introduce

Ω(κt+1) ≡
(
1− δA) (1 + gA (κt+1)

)
(1− δB) (1 + gB (κt+1))

κt+1. (7.3)

Then, equation (3.7) may be rewritten as

Ω(κt+1) = Bt

(
v(κt)− ct

)
+
(

1− δK
)

κt. (7.4)

For any triple (κt, Bt, ct) ∈ R3
++ such that the right-hand side of (7.4) is strictly positive, there will be a unique

value of κt+1 > 0 satisfying equation (7.4) if Ω(κt+1) is strictly positive, continuous and monotonically
increasing in κt+1 > 0 and may take any value in R++.

Observe first that Ω(κt+1) > 0 indeed holds for all κt+1 > 0. Moreover, Ω(κt+1) is continuous. These
properties follow from the properties of the functions gA and gB, as established in Proposition 1. It remains
to be shown that limκ→0 Ω(κt+1) = 0 and limκ→∞ Ω(κt+1) = ∞. To establish this, consider the right-hand
side of (7.3). Recall from Proposition 1 that gB(κ) is decreasing on R++ and bounded below by zero. Hence,
limκ→∞ gB(κ) is finite, while limκ→0 gB(κ) is either finite or infinite. Further, Proposition 1 implies that
limκ→0 gA(κ) is finite and bounded below by zero while limκ→∞ gA(κ) is finite or infinite since gA is increas-
ing on R++. Consequently, as κ tends to zero we have limκ→0 Ω(κt+1) = 0 and as κ tends to infinity we
have limκ→∞ Ω(κt+1) = ∞.

It follows that Ω(κt+1) is increasing in κt+1 > 0, approaches zero as κ → 0 and approaches infinity as κ → ∞.
Therefore, there is a unique κt+1 > 0 that satisfies equation (3.7) given (κt, Bt, ct) ∈ R3

++.

Given a unique κt+1 > 0 equation (3.8) delivers a unique ct+1 > 0 and equation (3.9) a unique Bt+1 > 0. �

7.5 Proof of Proposition 4

1. Equations (3.14) - (3.16) follow immediately from the corresponding equations (3.7) - (3.9) of the dy-
namical system for the reasons discussed in the main text. Obviously, in steady state the transversality
condition (3.10) is also satisfied. As explained in the main text, Assumption 1 and Assumption 2 guar-
antee a strictly positive solution to (3.16) and (3.15), respectively. It remains to be shown that c∗ > 0
or B∗v (κ∗) > κ∗

(
g∗ + δK). Using (3.15) the latter inequality may be written as[

(1 + g∗)− β
(
1− δK)] v (κ∗)

β ( f ′ (κ∗)− i (gB (κ∗)))
> κ∗

(
g∗ + δK

)
(7.5)
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A sufficient condition for this to hold is obtained for β = 1. This gives

v (κ∗) >
(

f ′ (κ∗)− i
(

gB (κ∗)
))

κ∗. (7.6)

Since equilibrium profits are zero, we have f (κ) = c
(
qA)+ κc

(
qB). Using the latter in (3.6) delivers

in steady state

v∗ (κ∗) =
(

1 + gA (κ)∗
)

i′
(

gA (κ)∗
)
+ κ∗

(
1 + gB (κ)∗

)
i′
(

gB (κ)∗
)

.

Then, with the understanding that both gA and gB are evaluated at κ∗, inequality (7.6) becomes(
1 + gA

)
i′
(

gA
)
+ κ∗

(
1 + gB

)
i′
(

gB
)

>
(

f ′ (κ∗)− i
(

gB
))

κ∗,(
1 + gA

)
i′
(

gA
)

> 0,

as f ′ (κ∗)− c
(

gB) = 0 from (2.18).

2. The expression for the steady-state growth rate, g∗, follows from (2.35) and Proposition 1. The deriva-
tion of the remaining findings is explained in the main text. �

7.6 Proof of Proposition 5

1. From (3.16), κ∗ is independent of β. Therefore, g∗ does not depend on β either. From (3.15) it is
immediate that a higher β requires a lower B∗. According to the expression for R∗ in Claim 2 of
Proposition 4 the rental rate of capital must also fall. From (3.14) the same is true for c∗.

2. Implicit differentiation of (3.16) delivers

dκ∗

dδB =
1

(1− δB)2gB
κ (κ∗)

< 0 (7.7)

as gB
κ < 0. Hence, (κ∗)′ < κ∗. The concomitant effect on the steady-state growth rate, g∗, is

dg∗

dδB =
dg∗

dκ

dκ∗

dδB < 0.

The sign follows since dg∗/dκ =
(
∂g∗/∂qA) (dgA (κ∗) /dκ

)
> 0. Hence, (g∗)′ < g∗.

To obtain the effect of δB on B∗ consider (3.15). Then,
dB∗

dδB =
dB∗

dκ

dκ∗

dδB

(7.8)

=
1

β ( f ′ − i (gB))

[
dg∗

dκ
−
(

g∗ + δK) ( f ′′ − i′
(

gB) gB
κ

)
f ′ − i (gB)

]
dκ∗

dδB < 0,

where f and gB are evaluated at κ∗. To verify the sign of this expression note from (2.14) that

gB
κ (κ) ≡

dqB

dκ
=

f ′′(κ)
2i′ (qB) + (1 + qB) i′′ (qB)

. (7.9)

Hence, f ′′(κ∗)− i′
(

gB(κ∗)
)

gB
κ (κ
∗) < 0 and (B∗)′ < B∗.

Using (3.15) the steady-state rental rate of capital may be written as R∗ = (1 + g∗) /β −
(
1− δK) .

Following dg∗/dδB < 0 it is immediate that (R∗)′ < R∗.

Finally, consider the effect of δB on c∗ of (3.14). It is given by

dc∗

dδB =
dc∗

dκ

dκ∗
dδB

(7.10)

=

v′(κ∗)−

(
g∗ + δK + κ∗ dg∗

dκ

)
B∗ − dB∗

dκ

(
g∗ + δK) κ∗

(B∗)2

 dκ∗
dδB

and is indeterminate in general.
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3. From (3.16), κ∗ is independent of δA. Therefore, it holds that (κ′)∗ = κ∗. Since g∗ =
(
1− δA) (1 + gA (κ∗)

)
−

1 it is immediate that
(
δA)′ > δA ⇒ (g∗)′ < g∗.

From (3.15) we have sign[dB∗/dδA] = sign[dg∗/dδA] < 0. Hence, (B∗)′ < B∗. Invoking R∗ =

(1 + g∗) /β−
(
1− δK)) and (3.14) one finds that sign[dR∗/dδA] = −sign[dc∗/dδA] = sign[dg∗/dδA] <

0. Hence, (R∗)′ < R∗ and (c∗)′ > c∗. �

7.7 Proof of Proposition 6

We characterize the local stability of the dynamical system of Proposition 3 in the proximity of its steady-
state equilibrium, (κ∗, c∗, B∗).16

Consider first the system of autonomous, nonlinear, first-order difference equations given by (3.7), (3.8)
and (3.9), and notice that equations (3.7) and (3.8) define continuously differentiable functions, Φi : R3

++ →
R++, where i = κ, c, such that

κt+1 = Φκ(κt, ct, Bt), ct+1 = Φc(κt, ct, Bt).

Next, forward equation (3.9) one period and use κt+1 ≡ Φκ(κt, ct, Bt) to obtain

Bt+1 = Bt(1− δ)(1 + gB(Φκ(κt, ct, Bt))) ≡ ΦB(κt, ct, Bt),

where ΦB is also a continuously differentiable function.

With this notation the dynamical system may be rewritten as

κt+1 = Φκ(κt, ct, Bt),

ct+1 = Φc(κt, ct, Bt),

Bt+1 = ΦB(κt, ct, Bt).

This nonlinear dynamical system is approximated locally about its steady-state equilibrium, (κ∗, c∗, B∗), by
the following linear system: κt+1

ct+1

Bt+1

 = J

κt

ct

Bt

+ X,

where J is the Jacobian matrix of the dynamical system evaluated at (κ∗, c∗, B∗), and X is a constant column
vector.

To obtain the elements of J take the total differential of

Ω(κt+1) = Bt (v(κt)− ct) + (1− δK)κt,

ct+1 = β

[
Bt+1

(
f ′(κt+1)− i

(
gB(κt+1)

))
+ (1− δK)

]
ct

(1− δA)
(
1 + gA(κt+1)

) ,

Bt+1 = Bt(1− δB)
(

1 + gB(κt+1)
)

,

16See Tabaković (2015) for a general discussion of the local stability analysis for three-dimensional discrete
dynamical systems.
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where Ω(κt+1) is given by (7.3). This gives

Φκ
κ =

B∗v′(κ∗) + 1− δK

(1 + g∗)
(
1 + εA

κ + εB
κ

) > 0,

Φκ
c = − B∗

(1 + g∗)
(
1 + εA

κ + εB
κ

) < 0,

Φκ
B =

v(κ∗)− c∗

(1 + g∗)
(
1 + εA

κ + εB
κ

) > 0,

Φc
κ =

βB∗
[(

f ′′(κ∗)− i′gB
κ

)
+
(

f ′(κ∗)− i(gB(κ∗))
)
(1− δB)gB

κ

]
1 + g∗

c∗Φκ
κ

− βB∗(1− δA)gA
κ

1 + g∗
c∗Φκ

κ < 0,

Φc
c = 1 +

Φc
κΦκ

c
Φκ

κ
> 1,

Φc
B =

β
(

f ′(κ∗)− i(gB(κ∗))
)

c∗

(1 + g∗)
+

Φc
κΦκ

B
Φκ

κ
(sign indeterminate),

ΦB
κ = B∗(1− δB)gB

κ Φκ
κ < 0,

ΦB
c = B∗(1− δB)gB

κ Φκ
c > 0,

ΦB
B = 1 + B∗(1− δB)gB

κ Φκ
B = 1 +

ΦB
κ Φκ

B
Φκ

κ
∈ (0, 1).

The local stability properties of our three-dimensional system are fully determined by the eigenvalues λ1, λ2

and λ3 of the Jacobian matrix. The eigenvalues of the Jacobian result as the solution to the following charac-
teristic polynomial:

c(λ) ≡ λ3 − tr(J)λ2 + ∑ M2(J)λ− det(J), (7.11)

where tr(J) denotes the trace, ∑ M2(J) the sum of principal minors of order two and det(J) the determinant
of the Jacobian matrix. One can show that

tr(J) = λ1 + λ2 + λ3 = Φκ
κ + Φc

c + ΦB
B > 0, (7.12)

∑ M2(J) = λ1λ2 + λ1λ3 + λ2λ3 = 2Φκ
κ + Φc

cΦB
B −Φc

BΦB
c > 0, (7.13)

det(J) = λ1λ2λ3 = Φκ
κ > 0. (7.14)

By Descartes’ rule of signs we know that if the terms of a polynomial with real coefficients are ordered by
descending variable exponent, then the number of positive roots of the polynomial is either equal to the
number of sign differences between consecutive nonzero coefficients, or is less than it by an even number.
Moreover, the number of negative roots is at most equal to the number of continuations in the signs of the
coefficients. Inspection of equation (7.11) reveals that it has

(α) either three real positive roots,
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(β) or one real positive root and one pair of complex conjugate roots.

Next, evaluate the characteristic polynomial at λ = 1 to obtain c(1) = −ΦB
c c∗/B∗ < 0, implying that one

eigenvalue is of magnitude greater than 1, say λ1 > 1. If the remaining two eigenvalues are real then

(α1) either both have magnitude greater than one,

(α2) or both have magnitude smaller than one.

Otherwise, the remaining two eigenvalues are complex and

(β1) either have modulus greater than one, i. e., | x±ωi |> 1,

(β2) or have modulus smaller than one, i. e., | x±ωi |< 1.

To determine the magnitude of the remaining two eigenvalues use equations (7.12) - (7.14) to obtain

C(λpλq) = (λpλq)
3 −∑ M2(J)(λpλq)

2 + tr(J)det(J)(λpλq)− det(J)2

(7.15)

= 0.

Here, (λpλq) represents any of the three product pairs of the eigenvalues of c(λ). Moreover, we have that, by
construction, the three roots of C(λpλq) are the three product pairs of the eigenvalues of c(λ) and therefore
all roots of C(λpλq) are greater than zero.

(α) Consider the case in which all eigenvalues are real. Without loss of generality, let λ1 > 1. We can
determine the magnitude of the remaining eigenvalues by evaluating C(λpλq) at λpλq = 1. Some
algebra delivers

C(1) = B∗
(

1− δB
)

gB
κ︸ ︷︷ ︸

<0

[
β ( f ′ − i)

1 + g∗
c∗Φκ

c

]
︸ ︷︷ ︸

<0

+ Φκ
B︸︷︷︸

>0

[
ΦB

κ − B∗
(

1− δB
)

gB
κ

]
︸ ︷︷ ︸

>0

> 0.

This implies that either all three roots of C are smaller than one, or that one is smaller than one and
two are greater than one. Since the three roots of C(λpλq) are given by the three product pairs of the
eigenvalues of c(λ) it follows that only alternative (α2) is compatible with c(1) < 0 and C(1) > 0.
Therefore, we may conclude that if all eigenvalues are real and positive, the system is asymptotically
locally stable in the state space.

(β) Consider now the case of one real eigenvalue and a pair of complex eigenvalues. Without loss of
generality let λ1 > 1 be the real eigenvalue and let λ2, λ3 be the complex conjugate pair. First notice
that in this case only one root of C(λpλq) is real, namely, the product of the two complex conjugate
eigenvalues of c(λ). Then the fact that C(1) > 0 implies that the only real root of C must be smaller
than one which is only possible if | λ2,3 |=| x±ωi |< 1. Therefore, we may conclude that if the system
features one real eigenvalue and a pair of complex conjugate eigenvalues, it will be asymptotically
locally stable in the state space. �
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7.8 Proof of Proposition 7

Proposition 7 claims that for given L > 0 and initial values (A−1, K0) > 0 the transitional dynamics of the
dynamic competitive equilibrium is given by a unique sequence {κt, ct}∞

t=0 that satisfies equations (3.22)
- (3.25). Mutatis mutandis, the proof is essentially the same as the one of Proposition 3. Without capital-
augmenting technical change Ω(κt+1) of (7.3) boils down to

Ω(κt+1) =
(

1− δA
) (

1 + gA (κt+1)
)

κt+1. (7.16)

Then, equation (3.22) may be rewritten as

Ω(κt+1) = v(κt)− ct +
(

1− δK
)

κt. (7.17)

However, Ω(κt+1) of (7.16) inherits all relevant properties of its counterpart of (7.3). Hence, there is a unique
κt+1 > 0 that satisfies equation (3.22) given (κt, ct) ∈ R2

++. With this value of κt+1 and ct > 0, equation (3.23)
delivers a unique ct+1 > 0. �

7.9 Proof of Proposition 8

1. Equations (3.27) and (3.28) follow immediately from the corresponding equations (3.22) - (3.23) of the
dynamical system for reasons discussed in the main text. Obviously, in the steady state the transversality
condition (3.24) is also satisfied. Assumption 3 ensures that (3.28) is satisfied for a unique value ∞ > κ∗ > 0.
It remains to be shown that c∗ > 0, i. e., v(κ∗) > κ∗(g∗ + δK). A sufficient condition for this to hold may be
obtained for β = 1. Using β = 1 in (3.28) the latter inequality may be expressed as

v(κ∗) > κ∗ f ′(κ∗). (7.18)

Since equilibrium profits are zero we have f (κ) = κ f ′(κ) + c(qA). Evaluating the latter at the steady state
yields v(κ∗) = κ∗ f ′(κ∗) +

(
1 + (gA)

)
i′(gA), where gA is evaluated at κ∗. Then, inequality (7.18) becomes

κ∗ f ′(κ∗) +
(

1 +
(

gA
))

i′
((

gA
))

>κ∗ f ′(κ∗),(
1 +

(
gA
))

i′
((

gA
))

>0.

2. The expression for the steady-state growth rate follows from (2.35) and Proposition 1. We give the expla-
nation of the remaining findings in the main text. �

7.10 Proof of Proposition 9

1. Implicit differentiation of (3.28) reveals that dκ∗/dβ > 0, hence (κ∗)′ > κ∗. Further, dg∗/dβ =(
dg∗/dqA) (dgA (κ∗) /dκ

)
(dκ∗/dβ) > 0 as all three derivatives are strictly positive. Hence, (g∗)′ >

g∗. Diminishing returns to capital and dκ∗/dβ > 0 deliver (R∗)′ < R∗. Since v′ (κ∗) cannot be signed
in general, the effect of the discount factor on c∗ is indeterminate in general.

2. Implicit differentiation (3.28) yields dκ∗/dδA > 0, hence (κ∗)′ > κ∗. In conjunction with diminish-
ing returns to capital, we have (R∗)′ < R∗. The effect of δA on g∗ is immediate from ∂g∗/∂δA =

−
(
1 + gA (κ∗)

)
< 0. Again, the effect on c∗ through equation (3.27) remains indeterminate in gen-

eral. �
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7.11 Proof of Proposition 10

To be found in the main text. �

7.12 Proof of Proposition 11

To be found in the main text. �

7.13 Proof of Proposition 12

1. Equations (5.13) and (5.14) follow immediately from equations (5.2) and (5.3) for reasons given in the
main text. Moreover, the tranversality conditions are satisfied. Assumption 1 and Assumption 2 guarantee
a strictly positive solution to (5.11) and (5.14). Showing that c∗∗ > 0 is analogous to showing that c∗ > 0 in
the competitive equilibrium.

2. The expression for the steady-state growth rate, g∗∗, follows from (2.35) and Proposition 1. The remaining
results follow from the arguments given in the main text. �

7.14 Proof of Proposition 13

With σB ∈ (0, 1) the relevant first-order condition is (4.1). In steady state, the latter gives rise to a function
κ
(
σB) with κ′

(
σB) > 0 that satisfies

f ′
(

κ
(

σB
))

=
(

1− σB
)

c
(

δB

1− δB

)
. (7.19)

Hence, the desired value for σB is such that κ
(
σB) = κ∗∗. Using (5.4) gives

(
σB)∗∗ of (5.15).

With σA ∈ (0, 1) the relevant first-order condition is now (4.8). Using (5.5) at κt = κ∗∗ and qA
t =

(
qA)∗∗, the

latter determines
(
σA)∗∗ as stated in (5.16). �
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VON WEIZSÄCKER, C. C. (1962): “A New Technical Progress Function,” mimeo, MIT; published in: German
Economic Review (2010), 11, 248–265.

ZEIRA, J. (1998): “Workers, Machines, And Economic Growth,” Quarterly Journal of Economics, 113(4), 1091–
1117.

48


	CESifo Working Paper No. 5643
	Category 6: Fiscal Policy, Macroeconomics and Growth
	December 2015
	Abstract

