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Abstract 
 
We present a multi-country theory of economic growth in which countries are connected by a 
network of mutual knowledge exchange. Knowledge in any country depends on the human 
capital of the countries it exchanges knowledge with. The diffusion of knowledge throughout 
the world explains a period of increasing world inequality after the take-off of the forerunners of 
the industrial revolution, followed by decreasing relative inequality. Knowledge diffusion 
through a Small World network explains the ‘New Kaldor facts’ and produces an extraordinary 
diversity of country growth performances, including the overtaking of individual countries in the 
course of world development. 
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1. Introduction

In pre-modern times, before the take-off to long-run growth of the countries that led the

industrial revolution, national income differences were minuscule from today’s perspective.

Bairoch (1993, Ch. 9) reviews the literature and comes to the conclusion that even in

the mid-18th century the income differential between future least developed countries

and future developed countries was of the order of 1.1 to 1.3. With the beginning of

the industrial revolution, the world witnessed the “great divergence”. Income inequality

between countries, measured by the Theil index, increased from 0.06 in 1820 to 0.25 in

1870 to 0.48 in 1950 to 0.5 in 1980 (according to Bourguignon and Morrisson, 2002). Since

then, the increase of inequality has slowed down to a point such that researchers speculate

whether it has settled at a steady state or started to decline (e.g. Jones, 1997; Acemoglu

and Ventura, 2002; Sutcliffe, 2002). Figure 1 shows the gradual increase of world income

growth and the evolution of world inequality since the onset of the industrial revolution.1

Figure 1: World Economic Growth and Inequality
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Data from De Long (1998) and Bouguignon and Morrisson (2002).

The country-specific differences in the timing of the gradual take-off from stagnation

to long-run growth are a major theme in unified growth theory (Galor, 2005, 2011). It is

1We refer to the inequality of GDP per capita between countries, which is the relevant measure for the
theory developed below. For inequality of income between world citizens, the evidence is stronger that it
actually declined since the 1980s due to the take-off of populous China and India (Sala-i-Martin, 2006).
The term Great Divergence was initially coined by Pommeranz (2000) with respect to the divergent
evolution of China and the West. It is now more broadly applied to the divergent evolution of income
per capita across the world (Galor, 2005).
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argued that the varying time of the take-off to growth contributed significantly to both in-

creasing world inequality and the emergence of convergence clubs (i.e. clusters of countries

that grow similarly with respect to each other but differently to other countries). Unified

growth theory, however, largely focuses on countries conceptualized as closed economies,

which implies, in particular, the notion that each country independently generated its

own impulse for the take-off to growth.2

This paper proposes a different approach. It considers a world of many countries con-

nected by a network of knowledge exchange. As knowledge diffuses gradually through

the world, more and more countries are “infected”, their population starts investing in

education, and their economy takes off to long-run growth. With more and more coun-

tries jumping on the bandwagon of growth, world income per capita increases gradually

towards a balanced growth path. The individual timing of the take-off is explained by

the countries’ closeness to the leaders of the industrial revolution. Knowledge created in

the leader countries is adopted earlier by directly connected countries, or within only a

few links, compared to poorly connected or “remote” countries. Take-off to growth of the

forerunners of the industrial revolution is, naturally, accompanied by increasing world in-

equality, as the income gap with respect to the backward countries gets larger. Eventually,

however, knowledge diffuses through the whole world and the remote countries also take

off. Because the available knowledge has increased tremendously since the take-off of the

original leaders, the latecomers of the industrial revolution have more to learn from and

thus, they take off faster, at rates that temporarily exceed the balanced growth rate. This

feature, that the growth rates of latecomers temporarily overshoot the balanced growth

rate implies that relative world inequality eventually declines.

Most of the related literature focuses exclusively on relative inequality measured e.g.

by the conventional Gini index or Theil index. One exception is Atkinson and Brandolini

(2010) who discuss alternative measures of absolute inequality based on Kolm (1976) and

find that it accelerated since the 1950s, i.e. during the period when relative inequality

leveled off. We show that our network theory of long-run growth captures this phenom-

enon as well. We compute the absolute Gini index, defined by the product of the Gini

index and average income (Chakravarty 1988), and show that declining relative income

inequality is predicted to be accompanied by increasing income gaps in absolute levels.

In order to focus on the knowledge diffusion process, the underlying economic model is

a deliberately simple one. It is basically a multi-country version of Romer (1986). The

main difference is that a country’s factor productivity not only depends on the human

2See Galor and Weil (2000), Kögel and Prskawetz (2001), Jones (2001), Galor and Moav (2002, 2004),
Boucekkine et al. (2002), Doepke (2004), Strulik and Weisdorf (2008), and many others. The study by
Galor and Mountford (2008) is an exception in that it considers two interacting countries (or regions). It
investigates trade – but not knowledge exchange – and argues that the fact that countries are connected
delays the take-off to growth of the initially backward country.
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capital of its own workforce but also on the human capital of the countries with which

it is connected. Figuratively speaking, countries need not to re-invent the wheel or the

steam engine. Backward countries benefit from knowledge exchange with the technological

leaders. Together with a network for knowledge exchange, the Romer model provides

a minimum setup in order to explain how a diversity of individual growth experiences

evolves out of initial similarity between countries. In contrast to conventional unified

growth theory, the model is too simple to explain how leader countries transition out of

stagnation. Here, we simply give the leader countries a small head start that supports the

initial growth process. We think that this approach is justifiable because of our focus on

the differentiated take-offs and growth experiences across countries that happened after

the take-off of the leader countries.

Our study was inspired by the work of Lucas (2000, 2009). Similar to our study, Lucas

investigates the initial divergence and subsequent convergence of income across countries

in a multi-country version of a simple economic model. In the 2000 paper, growth is

exogenous and in the 2009 paper, growth is, as in our study, driven by human capital

accumulation and access to the human capital of others. An important difference is

that in Lucas’ studies, countries have either full access or no access to world knowledge.

There is no network of knowledge exchange and no evolving diversity of individual growth

experiences. A stochastic mechanism determines when countries gain access to world

knowledge. According to our approach, in contrast, the economic take-off and subsequent

growth of the leaders, followers and trailers of the industrial revolution is endogenously

explained and understood by the increasing diffusion of knowledge throughout the world.

Growth of the leading country (the knowledge frontier) is exogenous in Lucas’ world,

whereas in our model, all growth is endogenous. This allows us to explain a richer set

of phenomena. For example, according to Lucas’ approach, the US would never had

outpaced England, the industrial leader. In our setup, countries do not only temporarily

diverge and converge but they also (occasionally) overtake each other.

There also exists a relatively large literature on R&D spillovers between countries (e.g.

Eaton and Kortum, 1999; Howitt, 2000). This literature usually involves a rather sophis-

ticated modeling of households and firms but the way knowledge is exchanged between

countries is straightforward and (most of) the analysis concerns the steady state. In

3



this paper, the economic model is straightforward but the process of knowledge diffu-

sion is non-trivial and the analysis focuses on transitional dynamics.3 Another strand

of literature investigates multi-country models in which convergence is driven by capital

accumulation and trade (e.g. Acemoglu and Ventura, 2002). Conceptually, the available

multi-country growth literature focuses on the question of whether and how countries at

initially different income levels converge while we also investigate how countries that were

initially similar diverged. In other words, as with the available multi-country growth lit-

erature, we also share an interest in the question of where the steady-state cross-country

income distribution lies. Additionally, as with unified growth theory, we share an interest

in the question of how the presently observable diversity of growth experiences evolved out

of an initial similarity between countries. In a unifying framework, our network theory of

knowledge diffusion offers an explanation for both “the great divergence” as well as “the

great convergence”.

There is a relatively small body of literature on networks in the context of economic

growth. The most closely related work is perhaps the study by Cavalcanti and Gian-

nitsarou (2012) who investigate learning externalities between households (or schools) in

simple networks and focus on convergence behavior. Fogli and Veldkamp (2012) provide

a study on the role of network connectivity for the diffusion of knowledge and diseases.

Lindner and Strulik (2015) investigate how economic development is affected by globaliza-

tion conceptualized as an evolving network, i.e. how decreasing local connectivity affects

occupational choice and investment behavior through eroding trust and trustworthiness.

According to Jones and Romer (2010) the “old” stylized facts of growth, set up by

Kaldor (1961), are now largely explained by neoclassical theory. Meanwhile, they argue

that results from contemporary growth empirics established “new Kaldor facts” as a

guideline and challenge for future developments in the theory of economic growth. We

think that our theory addresses five of the six new facts: 1) an increasing flow of ideas

through globalization, 2) accelerating growth rates, 3) cross-country variation of growth

rates that increases with distance from the technology frontier, 4) large income and TFP

differences across countries and 5) increases in human capital per worker throughout the

world.4 Since the underlying Romer (1986) model is – as a stand-alone unit – too simple

3Klenow and Rogriguez-Clare (2005) survey the literature on knowledge externalities in economic growth
and propose some extensions. In particular, they consider treating knowledge diffusion as being country-
pair specific and depending on distance (but they do not pursue this approach very far, cf. pp. 852-3).
Recently, Comin et al. (2012) developed a micro-founded theory of spacial knowledge diffusion based
on the random interaction of individuals. Their paper is also indirectly supportive of our approach
by empirically showing that knowledge diffuses slower to countries farther away from the technological
leaders.
4We cannot address Jones and Romer’s (2010) sixth fact concerning the stable skill premium because
countries are, for simplicity, assumed to be populated by representative households.
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to allow for an explanation of (most of) the new facts, we conclude a non-negligible value

added from the consideration of networks in the theory of economic growth.

The paper is organized as follows. The next section introduces the basic model. Sec-

tion 3 then provides analytical results for comparative statics and comparative dynamics

(steady-state, S-shaped transitions, overshooting growth of latecomers, rising and eventu-

ally declining world inequality). Proofs of the propositions are delegated to the Appendix.

In Section 4 we investigate the implied growth dynamics for some very simple networks

in order to provide a better understanding of the impact of the network architecture on

knowledge diffusion. In Section 5, we introduce the Small World network (Watts and

Strogatz, 1998) and investigate the distribution and growth of world income when coun-

tries are connected by such a network. We argue that the Small World network is already

sufficiently complex to generate growth trajectories consistent with the new Kaldor facts.

We provide a sensitivity analysis with respect to network parameters and initial condi-

tions and discuss the phenomenon of endogenously changing world economic leaders and

overtaking in general in the course of global development. Section 6 concludes.

2. The Model

2.1. Households and Firms. Consider a world consisting of a number n of countries

indexed by i. Countries share the same economic structure but differ potentially in their

endowments and their connections to other countries. Each country is inhabited by two

overlapping generations of measure one. A household consists of one adult and one child.

The representative adult born at time t−1 in country i maximizes the utility experienced

from consumption above subsistence needs cit and from the future income of his or her

child yi,t+1. Assuming, for simplicity, a log form of the utility function, the objective is to

maximize

uit = log cit + β log yi,t+1. (1)

for yit > c̄. The parameter β denotes the weight of future income in utility. The household

budget constraint is given by

yit = c̄+ cit + eit, (2)

in which c̄ are subsistence needs and eit is expenditure for child education. Moreover, we

require cit, eit ≥ 0 and set cit = yit and uit = −∞ for yit ≤ c̄. The existence of subsistence

needs motivates the fact that investment in education increases gradually with increasing

family income. Education translates into human capital via a simple iso-elastic production

function,

hi,t+1 = max {1, Beηit} . (3)

The assumption that the next generation has at least one unit of human capital (innate

skills) ensures the long-run survival of mankind. It implies that the equation of motion
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exhibits a kink at unity. Such a kink could be motivated by assuming that hit = 1 is

associated with the skills to perform subsistence farming, i.e. skills which are obtained

without cost by observing the parents working on the fields and which become obsolete

when the individual gets an education and an occupation outside subsistence farming.

The assumption allows us to capture the fact that all countries experienced a history in

which mass education was not worthwhile. We assume 0 < η ≤ 1 but focus mainly on the

case where η = 1 because it allows for positive growth at the steady-state. Our description

of human capital accumulation is admittedly very stylized compared with its sophisticated

modeling in unified growth theory (Galor and Weil, 2000; Galor, 2005) but it captures

the same stylized facts: mass education becomes only worthwhile when technology has

advanced sufficiently far and it then gradually increases with economic development. We

introduce this “shortcut” modeling of intergenerational decision making because we want

to focus on the phenomenon of knowledge diffusion around the world.

Countries are populated by a large number of competitive firms. The representative

firm of country i at time t produces per capita output (GDP)

yit = Aith
α
it. (4)

Factor productivity Ait is given for a single firm but endogenously determined through

knowledge externalities from other firms. Because there are no other private inputs in

production aside from human capital, the representative household earns income yit. In-

serting (2)–(4) into (1) and solving the problem provides education effort

eit =

 αβη
1+αβη

· (yit − c̄) for αβη
1+αβη

· (yit − c̄) > (1/B)1/η

0 otherwise.
(5)

Education effort increases in household income except for poor households, i.e. those that

are close to subsistence and cannot afford education. For perpetually growing income,

the income share spent on education converges towards a constant.

Inserting income (4) and education (5) into (3), we obtain the (gross) growth rate of

human capital.

ghit ≡
hi,t+1

hit

= max

{
1

hit

, L · (Aith
α
it − c̄)η

hit

}
, L ≡ B

(
αβη

1 + αβη

)η

. (6)

2.2. Knowledge Externalities. Following Arrow (1962) and Romer (1986) we assume

that firm productivity is given by the knowledge that can be absorbed from knowledge

created via production elsewhere. In contrast to Arrow and Romer, we assume that firms

have access to knowledge created in other countries (for example, through the flow of

goods and people). A link between two countries i and j thus means that these countries

are open with respect to each other and that they are in mutual knowledge exchange.
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The world network of knowledge exchange is represented by a matrixW whose elements

indicate whether countries are linked with each other. For simplicity, we assume that links

are unweighted and undirected. This means that the entry wij = wji is equal to one if

countries i and j are linked, and zero otherwise. The nodes to which country i is linked

are called neighbors of i. Assume country i has di links. By definition, each country is

not linked to itself such that di can assume any value between 0 (isolation) and n − 1

(connected to all other countries). Let Ni denote the neighborhood of i, i.e. the set of

countries to which country i is linked to.

Let ϵ denote the share of international knowledge spillovers, ϵ ∈ [0, 1]. Knowledge

spillovers from abroad are derived from the externality matrix W̄, which is obtained by

normalizing W such that for every linked country, di > 0, the sum of weights to neighbors

in W̄ is equal to ϵ, that is w̄ij = ϵ/di for j ∈ Ni. In case of isolation, di = 0 and we set

w̄ij = 0 for all j ̸= i. Finally, we assign w̄ii = 1 − ϵ for all i. Hence, all rows of W̄ have

positive elements and sum up to one if every country has at least one link.

We define the knowledge externality for country i as the average human capital input

in production of all neighbors, including the country itself.

Ait =

(
n∑

j=1

w̄ijhjt

)1−α

=
(
ϵ h̄it + (1− ϵ)hit

)1−α
, (7)

in which average human capital of the neighbors of i is denoted by h̄it =
(∑

j∈Ni
hjt

)
/di.

For ϵ = 0, the model collapses to the Romer (1986) model, in which countries are treated

as if in isolation.5

The intuition behind the use of country averages is that at any time increment any

person in country i can exchange knowledge either with a person in country j or country

k. The fact that aggregate time for knowledge exchange per country is normalized to

unity then implies that the total knowledge acquired is given by the average of the human

capital of its neighbors. Ceteris paribus, a link to a backward country (with hjt < hit)

leads to a lower knowledge externality for country i and a link to a forward country (with

hjt > hit) implies a higher knowledge externality. This means that initially backward

countries that are well connected to initially rich countries have an advantage in learning

from abroad whereas initially rich countries that are mainly connected with poor countries

experience a drawback in knowledge accumulation because there is relatively little to be

learned from abroad.

5In the Appendix we also discuss the case of Ait =
(∑n

j=1 w̄ijhjt

)ω
, ω < 1− α. In this case, knowledge

externalities are too weak for positive growth to be sustainable at the steady-state. Nevertheless, the
calibrated model can produce plausible adjustment dynamics vis-a-vis the historical trends. In this sense,
the “knife-edge” assumption ω = 1− α is not crucial for our main results.
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3. Long Run Dynamics

From (6) and (7) we get a description of the world as a vector-valued difference equation,

hit+1 = max
{
1, L ·

(
[ϵ h̄it + (1− ϵ)hit]

1−αhα
it − c̄

)η}
, (8)

i = 1, . . . , n, and a network W̄. Note that in case of isolation, h̄it = 0 which is always

harmful to growth.

Let Ht ≡
∑n

i=1 hit and h̄t ≡ Ht/n denote the world-wide stock of human capital

and the average human capital endowment per person, respectively. Furthermore, let

ght ≡ Ht+1/Ht denote the growth rate of world human capital and xit = hit/h̄t country i’s

relative endowment, i.e. the ratio between country i’s human capital and average human

capital. Whether economies are able to have positive growth in the long run is determined

by η and L.

Proposition 1. There is no long run growth, i.e. limt→∞ ghit = 1 for all i = 1, ...n, for

η < 1 and for η = 1 if L ≤ 1.

Definition 1. A steady state is defined by each country growing at the same constant

growth rate, i.e. git = g such that the relative human capital stays the same for each

country, i.e. xit+1 = xi.

Proposition 2. When all countries start with equal initial human capital h0 and there

are no isolated countries, the network is irrelevant and the economy is always at the

steady-state where xit+1 = xi = 1 for all i ∈ N and t = 1, 2, ....

This means that the Romer (1986) model is included as a special case when the world

consists of identical countries. The next proposition rules out unequal equilibria for η < 1

if the network is connected.6

Proposition 3. Consider the world as a connected network W̄. For η < 1, human

capital and income of all countries eventually converge to the same finite level. There are

at most two different steady states above subsistence level. If η = 1 and L ≤ 1, the world

eventually converges to subsistence level c̄.

So far, results have just confirmed for the multi-country world what we already know

from the closed country Romer model. From now on, however, results deviate.

6A network is connected if there exists a path between any two nodes. Formally, this means that for any
i and j, i ̸= j, there exists a k ≥ 1 such that

(
W̄k

)
ij
> 0.
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Proposition 4 (Long-Run Growth).

(i) If the network W̄ is connected, the world economy converges towards a steady state

(of growth or stagnation).

(ii) For η = 1 and L > 1, the economy has the potential for positive long-run growth

at a uniquely determined rate g∗ = L. A sufficient condition for long run growth is all

countries having a human capital level greater than Lc̄/(L− 1) > 1.

Notice the difference to Romer (1986). There, L > 1 and linear factor accumulation,

i.e. η = 1 (in our notation), inevitably produce long-run growth. Here, these conditions

make long-run growth feasible. In fact, if the network architecture is unfavorable, long-

run growth will not occur. We elaborate on this phenomenon in Section 5.2. If the

network is connected, all knowledge is eventually shared by all countries. This feature

implies that the world economy converges towards a steady state, i.e. a situation in which

all countries grow at a common rate. A steady-state of positive growth means that

all countries of the world irrespective of their backward initial situation are eventually

“infected” by knowledge diffusion and will grow eventually at the same rate as the leaders

of the industrial revolution.

Countries adjust gradually with first increasing and eventually leveling growth rates

towards the steady-state. In order to see this s-shaped transition of growth rates, write

the growth rate as git = max
{
0, L

[
ϵh̄it/hit + (1− ϵ)

]1−α − Lc̄/hit

}
. At the beginning

of the take-off to growth the second term, Lc̄/hit dominates and growth is barely positive.

Education expenditure is relatively low because subsistence needs are relatively important.

However, as the country develops, subsistence needs become less important and the second

term vanishes to zero. The first term, in contrast, increases initially for followers of the

industrial revolution, driven by the externality ratio h̄it/hit. After take-off, a country is

poorer than the average of its neighborhood, implying that the neighborhood invests more

in education and accumulates human capital at a faster rate. Altogether, this means that

growth is increasing during the early phase after the take-off. As the country gets richer,

the second term vanishes and h̄it/hit declines to unity. Along the transition, growth rates

of initially backward countries overshoot the balanced growth rate.

Proposition 5 (Overshooting Growth). Suppose that W̄ is connected and a steady

state of long-run growth g∗ > 0 exists.

(i) Forerunners of the industrial revolution converge monotonously towards g∗.

(ii) Followers of the industrial revolution converge non-monotonously at growth rates that

are temporarily above g∗ if their initial lag of human capital with respect to the neighbor-

hood average is sufficiently large.

Intuitively, for initially backward countries there is a lot to learn from the rest of the

world or, more precisely, from the countries to which a link of mutual knowledge exchange
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exists (i.e. the neighbors). The opportunity to tap into a greater pool of knowledge creates

an advantage of backwardness (Gerschenkron, 1962). When the drag from subsistence

needs on education vanishes, these countries reach a phase of above-steady-state growth

because of the high learning potential from the neighbors. This means that the initially

backward countries manage to double their income per capita in a much shorter amount

of time than the leaders of the industrial revolution (Parente and Prescott, 1994, 2005).7

Recall that both neoclassical growth theory and Romer’s (1986) endogenous growth

theory fail to predict the gradual take-off to growth (the new Kaldor fact number 2). The

neoclassical model predicts that growth is highest for the poorest countries, i.e. for the

countries farthest away from the steady-state. This counterfactual feature follows imme-

diately from decreasing returns of factor accumulation. According to the linear Romer

(1986) model there are no transitional dynamics. The original Romer (1986) article –

in contrast to its textbook presentations – also discussed the case of accelerating growth

rates by assuming increasing returns to scale. This mechanism, however, leads to an

explosion of the economy without further assumption that stops growth rates from grow-

ing. Growth is not S-shaped. The present model, in line with the historical observation,

generates S-shaped transitions. The growth rate of GDP per capita accelerates gradu-

ally during the first phase after take-off. During the second phase growth decelerates, a

phenomenon which renders convergence towards the steady-state.

In order to develop a comprehensive picture of the evolution of world income inequality,

we distinguish between relative and absolute income inequality. To see the difference, con-

sider a world of 2 countries with endowment (y1, y2) = (10, 40). Assume the endowment

changes to (20, 80). This means that the absolute gap increases from 30 to 60, while the

relative difference 30/50 stays constant. Relative income inequality can be expressed by

the Gini index (or the Theil index), whereas absolute income inequality can be measured

by the so-called absolute Gini index, defined as the product of the Gini index and average

income (Chakravarty, 1988). In the present example of 2 countries the Gini index is 0.3

for both distributions but the absolute Gini index changes from 7.5 to 15. In order to op-

erationalize these ideas, let Dt = maxi,j(yit−yjt) denote the absolute income gap between

the richest and poorest country and Y =
∑n

i=1 yi. Let the relative gap be defined by

dt = Dt/Yt. The following proposition summarizes the main properties of these measures

of inequality.

Proposition 6.

(i) The Gini index stays constant if income grows at the same rate for all countries. It

tends to zero for t → ∞ if and only if dt → 0.

7Parente and Prescott (1994, 2005) offer an alternative explanation of the phenomenon. According to
their theory world knowledge grows at an exogenously given rate and adoption of world knowledge is
easier for a country when it is farther away from world knowledge because barriers to adoption are smaller.
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(ii) The absolute Gini index stays constant if income in every country increases by the

same absolute amount. It tends to zero if and only if Dt → 0.

(iii) If the absolute Gini index tends to zero, then the Gini index tends to zero as well,

but not vice versa.

Statement (iii) follows immediately from the fact that dt → 0 occurs if the gap between

rich and poor countries Dt increases at a lower rate than growth of Yt.

Proposition 7. [The World Kuznets Curve] Suppose W̄ is connected and that a steady

state of growth g∗ > 0 exists.

(i) Relative income inequality between countries eventually vanishes. The Gini index

converges to zero.

(ii) If some countries initially grow and others stagnate, then relative income inequality

increases initially and declines subsequently.

Proposition 8. [No Convergence in Levels] Suppose W̄ is connected and that a steady-

state of growth g∗ > 0 exists. Despite eventually declining relative world inequality there

is not necessarily convergence of income levels.

The model produces not only a “great divergence” (Pommeranz, 2000), initiated by the

take-off of the leaders of industrial revolution, but also a “great convergence” in terms

of relative income levels. Convergence occurs after the take-off of the latecomers of the

industrial revolution. The latecomers are identified as the countries with inferior initial

endowments and missing links to the forerunners of the industrial revolution. Recall that

a connected network ensures the existence of a steady-state. This means that eventually

all knowledge is shared between all countries, which explains the phenomenon of vanishing

relative income inequality. This result is in disagreement with some popular articles on the

world income distribution (Jones, 1997; Acemoglu and Ventura, 2002) but it is in line with

Lucas (2000, 2009) vision of the world’s future development. Notice that the prediction

that relative income inequality vanishes eventually does not imply that absolute income

levels converge. In fact, as we show later, countries may even overtake each other (several

times) and the absolute income gap may increase while income inequality measured by

the (relative) Gini or Theil index disappears. In order to investigate this phenomenon

and other interesting features, we next turn to a numerical presentation of the model.

4. Adjustment Dynamics: The Great Divergence And The Great

Convergence

We assume that initially, there are at most two distinct groups of countries. A small

group of countries with relatively high human capital endowment (the rich) and a large

group with relatively low endowment (the poor). Initial endowments are such that rich
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countries are growing, albeit at a very low rate, while poor countries are stagnating be-

cause aggregate productivity is so low that investment in human capital is not worthwhile.

This setup is the most interesting case because it allows for evolving country heterogeneity.

As time proceeds and knowledge crosses borders, income and productivity of the coun-

tries grow differently according to their connections with other countries and countries

become more dissimilar with respect to economic growth. Having two different groups of

countries is the minimum setup to discuss evolving heterogeneity (cf. Proposition 2).

4.1. Stylized Networks. We first investigate adjustment dynamics for some particularly

simple examples of the externality matrix W̄. This allows us to provide an understanding

of the main mechanism behind the international flow of knowledge and world income

dynamics. Suppose the world network is given alternatively by a stylized network from the

set of networks depicted in Figure 2. Rich countries, i.e. countries in which the population

is better educated, are represented by red circles and poor countries are represented by

blue squares.

A bridge network is partitioned into two components. The rich and the poor are each

internally representing a complete network. The two components share exactly one link,

the bridge. The bridge network could be understood as a metaphor for a world of different

continents connected by a minimum of links.

Figure 2: Stylized Networks

Stylized networks: Bridge (left), Ring (middle), and Core-Periphery (right). Rich
countries are represented by red circles and poor countries are represented by blue
squares.

A ring network is obtained by positioning each country along a line, ordered by country-

specific human capital. In order to establish a symmetric architecture, the line is closed to

form a circle. Each country is connected to its k nearest neighbors (not counting itself as a

neighbor). This means that there are 2k poor countries connected with rich countries. In

the example we have k = 1. The ring network emphasizes the role of geographic proximity

for knowledge exchange. The world is “round” and countries are directly connected only

with their geographical neighbors.

Finally we consider the core-periphery network. Here, the core consisting of initially

rich countries forms a complete network to which a number of peripheries consisting of

initially poor countries are connected. The poor countries are connected in series implying
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that there is one bridge per periphery, linking it with the core. The core-periphery network

describes a situation in which a subset of rich countries is already fully integrated and

another subset of poor countries (the colonies) is less well integrated.

4.2. Numerical Specification. We begin with a benchmark specification of the model.

Later on, we discuss the sensitivity of results on parameter choice. Suppose the world

consists of 100 countries of which 10 percent are initially rich, i.e. better endowed with

human capital. We do not ask where the initial differences between countries come from

but assume, in line with the historical evidence on economic conditions in pre-modern

times, that the initial differences are small. The challenge is thus to explain how a great

variety of growth performances evolves out of small initial differences.

All countries share the same parameters values. We set η = 1 in order to allow for long-

run growth. We set α = 0.5, such that at the steady state, productivity growth explains

half of GDP per capita (approximating the findings by e.g. Barro and Sala-i-Martin, 2004

and Easterly and Levine, 2001). We set the utility weight for children’s income to β = 0.23

such that at the steady state, 7 percent of income are spent on education, as observed

approximately for most fully developed countries (Eurostat, 2012). We then adjust the

value of B such that the implied steady-state growth rate is 2 percent annually. The

parameter values of ϵ and c̄ are irrelevant for the steady-state but shaping adjustment

dynamics. Eaton and Kortum (1999) estimate, for a sample of fully developed countries,

that between one half and three-fourths of the knowledge adopted has been generated

abroad. We take the benchmark value for our (temporarily) more heterogenous set of

countries from the lower bound of their estimates and set ϵ = 0.5. This means that one

half of the knowledge available in a country has been generated by domestic firms and

the other half stems from international knowledge diffusion. We set c̄ = 0.33 in order to

get the best fit of economic growth of the leader country with the historical data.

After running the simulation we convert the generational data into annual data assum-

ing that a generation takes 20 years. We convert generational growth rates into annual

ones for better comparability with real data. We set initial time to the year 1700, i.e.

shortly before the onset of the first industrial revolution. The poor countries are endowed

with minimum human capital, hpoor,0 = 1. The rich countries are assumed to be 20 percent

better endowed hrich,0 = 1.2. This implies that – depending on the respective network –

income in the rich countries is initially 1.23 to 1.3 times higher than in poor countries.

These values correspond well with the estimates of the head start of Western European

countries vis-a-vis the rest of the world at the dawn of the first industrial revolution

(Bairoch, 1998, Ch. 9). Most importantly, this specification means that poor countries

initially stagnate while rich countries initially grow at a low rate of around 0.3 percent.
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Figure 3: Evolution of Economic Growth in 100 Countries when the World is a...
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For all three “ worlds”: 10% of countries initially better endowed with human capital
(in 1680). h0 = 1 for poor countries, h0 = 1.2 for rich countries. Parameters:
α = 0.33, β = 0.4, η = 1, c̄ = 0.33, ϵ = 0.5. Middle panel: 2 neighbors per node.
Bottom panel: 9 peripheries of 10 countries.

Figure 3 shows the evolution of growth predicted by the numerical experiments. The

upper panel assumes that the world network is a bridge. Knowledge diffusion through

the network generates four visibly distinct adjustment trajectories. Naturally, the rich

countries take off first. The rich country linked directly to the poor world takes off a bit

later because there is less to learn from the poor neighbor. In contrast, the poor country

equipped with a direct link to the rich world experiences a huge advantage vis-a-vis its

poor neighbors and takes off about two centuries earlier, fueled by knowledge diffusion

from its rich neighbor. The remaining club of less developed countries takes off late but

experiences an “advantage of backwardness” (Gerschenkron, 1962) in the sense that their

income growth surpasses the income growth of the forerunners of the industrial revolution.

The fact that growth rates of latecomers overshoot the balanced growth rate means that

relative income inequality declines eventually. The explanation is that latecomers, once

growth is initiated, tap into a greater reservoir of world knowledge. This knowledge has
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been accumulated in the recent past and was not yet available when the forerunners took

off. This phenomenon relates the model to the new Kaldor fact no. 1: the increasing flow of

ideas via globalization. Globalization here means that an increasing share of countries gets

out of stagnation with education becoming worthwhile and that the educated workforce

benefits from and contributes to an increasing stock of knowledge diffusing through the

network.

The bridge network already displays one important phenomenon of growth in networks,

the overshooting growth of latecomers, but it generates insufficient variety of economic

performance across countries. This is different for the ring network, as evidenced in the

center panel of Figure 3. The initially rich countries are again experiencing a very similar

take-off to growth, in which the countries surrounded by other rich countries perform

only slightly better than those at the border to the poor world. The poor countries, on

the other hand, experience a very varied take-off. The reason is that new knowledge

is “handed over” along the circle. The two countries neighboring the rich take off first

among the poor, then the countries next to these countries follow, etc. There is also

more variety in growth rates. Generally, we observe that overshooting growth is higher,

the later the take-off time is. This is the case because there is more to learn from the

neighbors once education becomes worthwhile for the latecomers. Consequently, growth

during the early take-off phase is much faster for latecomers. While it took about 200

years for the forerunners of the industrial revolution to reach a growth rate of 2 percent,

the countries taking off in the 1950s needed only about two generations to achieve the

same rate of growth.

Compared with other networks, the circle predicts a very long period of take-offs, im-

plying a very long period of increasing world inequality. The reason is that it takes time

until knowledge is passed on along the circle from neighbor to neighbor toward the most

unfortunate country “at the other side of the world”. Moreover, the take-offs are “too

predictable”. Their sequence follows the position of countries on the circle.

The core-periphery network, shown in the bottom panel of Figure 3, eliminates some

of the flaws of the two previous networks. It produces a variety of growth experiences,

largely overshooting growth rates, and a reasonable duration of the “era of take-offs to

growth” from 1700 to the mid 21st century. Yet the growth experience of countries is still

too easily predicted. The countries next to the bridges to the core take off just after the

initially rich and then we observe departures from stagnation according to the order of

countries along the peripheries. Altogether, we observe “only” 10 different growth paths,

one for the core countries and one for each position on the periphery. There is still too

little heterogeneity in the world. Moreover, the connectivity between the initially rich

countries is “too high” in all three simple networks. This is evident from the result that

the take-off of the forerunners of the industrial revolution happens too fast in all three
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panels of Figure 3. By the year 1800, the forerunners of the industrial revolution are

counterfactually predicted to grow already at a rate of 1.5 percent annually.

5. Knowledge Diffusion and Income Evolution in A Small World

5.1. Model Setup. The small world model (Watts and Strogatz, 1998) is a device to

investigate an irregular network that features both local connectivity and long-distance

links between nodes in a simple way. Mathematically, it is easily understood but complex

enough to allow for an application to a plethora of biological and social phenomena (see

Newman, 2003, for an overview). The small world model appears to be particularly suited

for our purpose because it retains the importance of local connectivity, capturing the fact

that most knowledge diffuses from direct neighbors, but at the same time allows for the

establishment of long-distance links between distant countries.

Here, we consider a modification of the Watts and Strogatz model, developed by New-

man and Watts (1999), which appears to be more appropriate for our purpose. The idea

of the Small World model can be illustrated best by considering a network on a one-

dimensional lattice. It is constructed from a regular network in which any node (country)

is connected with its direct neighbors that are m or fewer lattice spaces away. In the ex-

ample of Figure 4, m = 2. Each country is connected to 4 neighbors, 2 at each side. The

regular network is then modified by randomly adding long-distance links. The probability

for a long-distance link per link of the underlying lattice is denoted by p. The middle

panel of Figure 4 shows an example for which p is low and the panel on the right shows

an example for larger p.

Figure 4: Small World Network

For international knowledge flows, the feature of local connectivity, created through

positioning the countries on a ring, captures the empirical fact that knowledge spillovers,

in principle, decline with geographic distance (e.g. Keller, 2002). The presence of long-

distance links means that this generality is occasionally broken and that the effective dis-

tance is (much) shorter than geographic distance. Figuratively speaking we could imagine

the US to be geographically only two neighbors away from Guatemala but exchanging

much more knowledge with England because both countries are connected with a long-

distance link. This may turn out to be crucial for comparative development because the
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US benefits directly from knowledge created in England while Guatemala benefits only

indirectly via the US. Moreover, in order for the knowledge to arrive in Guatemala it has

to cross Mexico, another initially less educated country, such that a part of the knowledge

created in England gets “lost in transition”.

5.2. Results for the Benchmark Model. As a benchmark we take the specification of

the economic model from above and consider p = 0.3, i.e. the case in which 30 percent of

the countries are equipped with a long-distance link. We subsequently provide sensitivity

analysis with respect to p and other important parameters. Figure 5 shows the implied

adjustment dynamics for the benchmark case. In contrast to the simple networks discussed

above, the small world generates a lot of heterogeneity. Basically, each of the 100 countries

follows its own idiosyncratic growth trajectory. Recalling that initially, in the year 1700,

there were only two different types of countries and that the initial difference between rich

and poor countries was small (1.2:1), we conclude that diversity evolves out of similarity.

We assume that the initially rich countries are all direct neighbors.

Comparing the model prediction with the historical facts (Bairoch, 1993; Galor, 2005),

we would imagine the group of initially rich countries as Western Europe, which reaches

on average a growth rate of 1 percent from 1820-1870 also coinciding with the phase in

which some of the Latin American countries started to grow. In the 20th century, when

the latecomers take off, the initially rich countries grow at an almost constant rate of 2

percent annually. It is also interesting to observe that growth of the leaders is already

surpassed by growth of some followers in 19th century and that despite the presence

of long-distance links, some countries are predicted to take off very late in the mid-21st

century. The differentiated and relatively rapid take-offs of the latecomers of the industrial

revolution in the 20th century produce the picture of a great variety of subsequent growth

experiences of countries that were almost equally poor just a generation ago.

The second panel of Figure 5 shows the implied average economic growth in the world.

Dots represent the data points from De Long (1998) shown in Figure 1. The model

predicts the take-off of aggregate world growth reasonably well. World growth rises from

almost zero to just below 1 percent in the mid-19th century and to about 1.5 percent

in the mid-20th century. Compared to the data, the take-off is somewhat too slow, an

outcome that could be corrected (by assuming a higher p or ϵ) at the expense of predicting

a take-off that is “too early” for the latecomers. Altogether, however, the model generates

plausible S-shaped transitions. On the individual level, as well as on the global level, the

model provides an explanation for the new Kaldor fact no. 2, the gradual increase of the

rate of economic growth.

The differentiated take-off of countries produces the Great Divergence: relative world

inequality increases strongly from 1800 to 2000. This is shown in the third panel of
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Figure 5: Economic Growth in a Small World
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Dots in the second panel: world GDP growth according to De Long (1998); Third
panel: solid line: Theil-index; dashed line: Gini index; dots: Theil index from Bour-
guignon and Morrison (2002); Fourth Panel: log of absolute absolute Gini index;
dots: absolute Gini from Atkinson and Brandolini (2010). Sample size: 100 Coun-
tries. Parameters as for Figure 3; small world based on ring with 1 neighbor to left-
and right-hand side; long-distance links added with probability p = 0.3.

Figure 5, in which dots represent the data points from Figure 1 (Bourguignon and Mor-

rison, 2002). The solid and dashed line, respectively, show the model’s prediction for the

evolution of the Gini index and the Theil index, computed from the individual income

trajectories of the 100 countries. According to the model, for its benchmark calibration,

relative inequality stops growing in the late 20th century. From the early 21st century on-

wards, the model predicts a “great convergence”. As more and more latecomers catch up

with overshooting growth rates, relative world inequality declines. The inequality curve,

however, is skewed. The great convergence is predicted to take several centuries longer

than the great divergence. The intuition is straightforward. The fact that the original

leaders of the industrial revolution keep growing makes the catch up harder than the quick
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departure of the leaders from the almost stagnant income of the followers and latecomers

two centuries earlier.

The focus on the conventional Gini index, however, conceals that absolute world in-

equality keeps on rising. The bottom panel of Figure 5 shows the absolute Gini, i.e. the

relative index from the third panel multiplied by mean income. The log-scaling means

that absolute inequality grows exponentially. These findings illustrate Proposition 8 and

highlights the importance of distinguishing relative and absolute convergence. The rel-

ative income gap between rich and poor tends to zero because the absolute gap grows

slower than the total level of income (cf. Lemma 1). Dots in the bottom panel show the

absolute Gini index computed for the Bourguignon and Morrison (2002) data by Atkinson

and Brandolini (2010). The network model somewhat underestimates absolute inequality

at the dawn of industrialization but gets the exponential increase over the 20th century

about right. It predicts this trend to continue in the future.

5.3. The Evolution of TFP and GDP across Time and Space. With rising income,

households spend more on education, in line with the new Kaldor fact no. 5. The share

of income spent on education converges gradually towards 7 percent of GDP. Increasing

education at home as well as abroad means that aggregate productivity (TFP) also in-

creases. TFP of country i at time t is given by Ait. In order to explore the evolution

of TFP growth, we sorted the countries for any time t into income quintiles, with the

poorest 20 percent of countries in the first quintile and the richest 20 percent in the 5th

quintile. We then computed the average growth rate of TFP for each quintile.

Figure 6 shows excerpts of the computation for two specific years, 1820 and 1960. In

line with the historical evidence, TFP growth, compared to contemporary rates, was low

in the 18th century, even for the leaders of the second industrial revolution (Crafts, 2003).

According to the model, TFP growth was about 0.8 percent for the richest countries and

about 0.2. percent in the second richest income group. That TFP growth is predicted

to be lower in poorer countries comes as no surprise. It is perhaps more interesting to

observe that the growth of TFP increases over time across all income groups. This is the

case because at earlier times in history, more countries had neighbors who were not yet

well educated and produced hardly new knowledge. This means that average knowledge

was low, and that on average, comparatively little new knowledge diffused internationally.

In general, as evidenced by Figure 5 and 6 taken together, the model captures the new

Kaldor fact no. 4, the large income and TFP differences across countries.

The variability of growth rates is shown in Figure 7, again exemplarily for 1820 and

1960. The figure shows the standard deviation (in percent) of GDP growth for each

income quintile. The panel for the year 1960 corresponds with the new Kaldor fact no.

3, stating that the variance of growth rates across countries increases with distance to
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Figure 6: TFP Growth Across Countries
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the technological frontier. The stylized fact is well replicated by the model. The variance

is lower among the richer groups. The figure also suggests that Kaldor fact no. 3 is

a phenomenon of the 20th century. In the 19th century, when the frontier countries

themselves sequentially experienced their take-offs to growth, while the rest of the world

was still close to subsistence, the variance of growth rates was highest among the richest

countries.

Figure 7: Standard Deviation of GDP Growth Across Countries
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5.4. Is the Present World Income Distribution Close to Its Steady State? As

evidenced in Figure 5, the model predicts that relative income inequality across the world

will eventually decline after the take-off of the latecomers of industrialization. In contrast

to such an optimistic outlook, some related studies developed theories in order to explain

a constant world income distribution at a state of high inequality, most notably perhaps

the study of Acemoglu and Ventura (2002). Acemoglu and Ventura’s work was inspired
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by the observation of “a relatively stable” world income distribution in the second half of

the 20th century.

Figure 8: Income Relative to Leader: 1960 vs. 2000
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A “relatively stable” distribution, however, could also be inferred from an actually

slowly evolving distribution. This is particularly the case if the window of observation is

relatively short and if the observation happens to be taken at a period of time when the

trajectory of relative world inequality is flat because it is close to its maximum. In order

to verify this claim by way of example, we compute for the outcome from the benchmark

economy a relative income plot similar to the one displayed in Jones (1997, Figure 2) and

Acemoglu and Ventura (2002, Figure 1). Specifically, we compute from the time series

shown in Figure 5 for all countries, the relative income with respect to the leader country in

the year 1960 and in the year 2000 and plot the result on a loglog scale, as shown in Figure

8. In accordance with the earlier studies, we observe little deviation from the 45 degree

line. Relative income in 1960 is a good predictor of relative income in 2000. Confronted

with this picture alone, one could indeed be tempted to conclude that the world income

distribution is basically constant. In fact, however, we know from Proposition 7 that

income relative to the leader country moves to unity for all countries as time goes to

infinity. This convergence process, however, is very slow and presumably not discernable

within a 40 year time window. The observation of an almost stable distribution of high

inequality is consistent with a moving distribution toward equality.

5.5. Overtaking and Falling Behind. The phenomenon of income convergence is at

the center of modern growth economics. The phenomenon of overtaking, however, is rarely
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investigated in the context of an economic growth model.8 Since overtaking and the falling

behind of countries is observed in the real world, it is challenging to model this behavior

while not relying on stochastic (i.e. unexplained) fluctuation and not giving up global

stability, i.e. convergence to a global steady-state with vanishing income inequality. To

demonstrate this extraordinary behavior, we perform the following numerical experiment.

We follow the 10 initially richest countries, named 1, 2, . . . , 10, along the way towards the

steady state and visualize their relative position in the world income ranking. Figure 9

shows the resulting “income ladders” for four different years. For example, a dot at the

(1,10) position in the 1800 diagram means that country 1 was ranked 10th place in the

year 1800.

Figure 9: World Ranking Position for Country 1 - 10
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In the numerical experiment, country 4 leads the world income ranking in the year 1700.

Obviously, it was favorably connected with other rich countries. By the year 1800, country

4 gave up the lead to country 5, which presumably benefitted from favorable connections

with quick followers of the industrial revolution. We also observe that country 2 and 3

8Some researchers modeled overtaking in a purely stochastic context of Markov chains of income distri-
butions, see e.g. Jones (1997).
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fall behind whereas country 7 advances by two positions. In 2300, country 6 is at the top

and the original number one dropped to the sixth place while country 1 and 2 fell out of

the top 10 altogether. And in the year 3000, we observe yet another leader, country 8, as

well as a new number 2, country 9, while country 3 also left the top 10. These changes

in rank are explained by the changing advantage of links as knowledge is accumulated

and diffused through the network. For example, an initially rich country connected only

to another initially rich country, which in turn is connected only to latecomers of the

industrial revolution, grows initially fast and then slows down. It is potentially overtaken

by a country that is connected with initially poor countries, which are, however, well

connected and “infected” by the growing knowledge of their neighbors at an early stage

of the diffusion process.

In order to develop an intuition for these results, consider a “network” of two countries,

one with initial human capital level h, the other with initial human capital level h + ∆.

Neglecting the corner solution, the equation of motion (8) for the first country is given by

f1(h, h+∆) = L
{
[ϵ(h+∆) + (1− ϵ)h]1−α hα − c̄

}
. For the second country, it is given by

f2(h + ∆, h) = L
{
[ϵh+ (1− ϵ)(h+∆)]1−α (h+∆)α − c̄

}
. Consider the implausible yet

illuminating case in which all knowledge comes from abroad, i.e. ϵ = 1, and human capital

is not a stand-alone production factor, i.e. α = 0. In this case, the two economies have

changed their roles in the next period. Now, the first country is the better endowed one

but it keeps this status only for one period after which the advantage is again transferred

to the second country. There is overtaking in every period.

Generally, overtaking seems to be more likely the greater ϵ and the lower α. To verify

this claim for the simple example, take a first order Taylor approximation around ∆ = 0

and compute f1 − f2 = L∆(2ϵ(1− α)− 1). This expression becomes positive, indicating

overtaking, for ϵ(1 − α) > 1/2. For the actual model with a complex network of one

hundred participating economies we cannot obtain a simple condition for overtaking.

Instead, we investigate overtaking frequencies by way of numerical experiments. For

that purpose, we run the model 5000 times (i.e. for 5000 alternative specifications of the

Small World network) and count the average number of overtakings in each period. An

overtaking is defined as the advancement by one step in the income-ranking of countries.

Countries of the same income level are assigned the same rank. If, for example, a country

advances from rank 5 to 4 in one period, it is recorded as 1 overtaking. However, if it

advances from rank 5 to rank 3 we count 2 overtakings.

The results for the benchmark model are shown by solid lines in Figure 10. The top

panel shows the total number of overtakings per period. On average, we observe about

8 overtakings. Overtakings are relatively rare during early global development, gradually

increasing until they reach a maximum in the late 20th century and then gradually de-

clining to a level of about 8. Then, they stay at this level even if the simulation runs far
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Figure 10: Overtaking Frequencies
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Solid lines: benchmark run (ϵ = 0.5). Dashed lines: low international knowledge
diffusion (ϵ = 0.2). Dash-dotted lines: high international knowledge diffusion (ϵ =
0.8).

way beyond the year 2500. This suggests that overtaking never stops. The world reaches

a steady state only in terms of growth rates and relative income levels (see Section 2).

Although overtaking takes place surprisingly frequently at the world level, it is at the

same time quite rare among the world leaders. But even the world leader cannot expect to

maintain his position permanently. This is shown in the middle panel of Figure 10 where

we consider the top 5 countries in terms of GDP per capita. On average, only about 1

percent of overtaking takes place among the top 5. If overtakings were equally distributed

among countries, we would have expected about 5 percent of them taking place in the

top 5. When 1 percent of overtaking takes place among the world leaders, and there

are on average 10 overtakings, this means that there are on average 10 × 0.01 = 0.1

overtakings among the leaders in that year (as for example in the year 1900). In order

to better assess these results quantitatively, the bottom panel computes the cumulated

sum of average overtakings among the top 5. For the benchmark case, there is about 1

overtaking happening before the year 2000 and 2 overtakings before the year 2500.
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The incidence of overtaking, naturally, depends on the degree of openness (ϵ). Dashed

lines in Figure 10 show that there are fewer overtakings in total and among the top 5,

when only 20 percent of productivity advancements are learned from abroad (ϵ = 0.2).

More overtakings can be expected when openness is large, as demonstrated by the dashed

lines for ϵ = 0.8. We thus find numerical evidence in large networks for the theoretical

conclusions about the role of ϵ derived from small (two-country) networks. Results for

similar numerical experiments on α (available upon request) confirm the conclusion de-

rived from small country networks as well: more overtaking is taking place when α is low,

i.e. when knowledge is relatively more important in production than human capital.

Interestingly, Figure 10 also reveals that the degree of openness affects the chronological

nature of overtaking behavior. When ϵ is large, we observe just one historical peak in

the number of overtakings (the roaring 20’s). When ϵ is low, however, knowledge diffuses

so slowly through the world network that we observe “waves of overtaking”. Relatively

turbulent times are followed by calm periods, concerning rank changes in the world income

distribution.

5.6. Network Effects on Global Inequality and Growth. We next investigate how

the specific make up of the network affects the evolution of the world income distribution.

For that purpose we focus on two characteristic numbers, the calendar time when the

last country takes off from stagnation and the maximum Gini index reached during the

transition. Since long-distance links are set at random in the Small World model, we ran

each specification of the model 1000 times and took averages afterwards.

Figure 11: Inequality and Growth – Degree of International Knowledge Diffusion
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Example with 100 countries; 10 percent initially rich, p = 0.3, varying ϵ.

Figure 11 shows that a large contribution of international knowledge flows to produc-

tivity (that is large ϵ) increases the pace of world development. Larger international

knowledge spillovers are helpful to reduce world-wide inequality faster because a greater

share of the initial knowledge advantage of the leaders is passed on through the network.
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The original Romer (1986) model is a knife-edge case since there will never be conver-

gence for ϵ = 0, that is in isolation. When no knowledge flows towards the initially poor

countries, they do not escape from stagnation (without exogenous impulse) and the world

remains at an asymmetric equilibrium in which only the club of rich countries is growing.

Figure 12: Inequality and Growth – Share of Long-Distance Links
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Example with 100 countries; 10 percent initially rich, ϵ = 0.5, varying p.

Next, in Figure 12, we investigate how the share of long-distance links affects the

evolution of the world income distribution. The year of the last take-off decreases very

quickly for low values of p but remains rather insensitive for p’s larger than 0.5. The

outcome reflects a well known feature of the Small World model, namely that average path

length between nodes decreases sharply at low values of p and not much at high values

(Watts and Strogatz 1998). Maximum inequality also decreases sharply with increasing

p, in an almost linear way. If every country had a long-distance link (p = 1), the last

take-off would have been, according to the model, around the year 1900 with an associated

maximum Gini index of 0.4.9

5.7. Country-Specific Degrees of Openness. It could be argued that the degree of

openness to knowledge flows from abroad (ϵ) varies across countries. We thus finally

demonstrate that allowing for country-specific openness adds more realism but leaves our

main results basically unaffected. The performance of individual countries, of course,

depends crucially on their degree of openness. In particular, we expect initially backward

countries with high degree of openness to catch up relatively quickly and relatively closed

countries to be latecomers of industrialization. At the world level, however, we expect

little change in performance. In order to verify this claim we assume that the degree of

openness is a normally distributed random variable with mean ϵ and standard deviation

9It can be shown that the year of the last take-off and the maximum Gini also depends quite strongly on
the share of initially rich countries. The initial income ratio between rich and poor countries, in contrast,
does not much affect the speed of transition and maximum inequality. The reason is that the negative
impact on income inequality of an initially higher income gap is almost completely balanced by the fact
that more can be learned from initially better endowed economies.
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σ. We then run the Small World model 1000 times for alternative values of σ and record

the year of the last take-off and the maximum Gini index during the transition.

Figure 13 shows the outcome for alternative σ ∈ (0, 0.4) and ϵ drawn from a (truncated)

normal distribution.10 For better comparison, we kept the scaling of Figure 11. There is

basically no change in the average maximum Gini along the transition and the year of

the last take-off as the standard deviation of the degree of openness increases from 0 (our

benchmark case) to 0.4.

Figure 13: Inequality and Growth – Varying Distribution of Openness
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Example with 100 countries; 10 percent initially rich. Country-specific degree
of openness, ϵ is normally distributed with mean 0.5 and standard deviation
σ ∈ (0, 0.4).

Summarizing the results from the last two subsections, we observe that the speed of

industrialization and the evolution of world inequality crucially depends on the aggregate

structure of the network, summarized in the (average) degree of openness (ϵ) and the

share of long-distance links (p). The distribution of comparative advantage of countries as

measured, for example, by the standard deviation of country-specific ϵ, has comparatively

minor effects on aggregate behavior.

6. Conclusion

In this paper, we laid out a network-based theory of knowledge diffusion as an expla-

nation for the divergence of countries as well as for their subsequent global convergence.

Besides the endogenous evolution of the world income distribution, the theory contributes

also to the explanation of the new Kaldor facts (Jones and Romer, 2010). The theory

generates S-shaped transition paths with gradual take-off from stagnation as well as over-

shooting growth rates at later stages of development. In the long run, it thus predicts

(slow) convergence of relative income across the globe.

10In the rare event when the random draw provided a value above unity or below zero, we assign a value
of 0.01 and 0.99, respectively.
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The model could be extended such that it predicts permanent relative income inequality

by assuming that some countries use the available knowledge less efficiently than others.

From the perspective of the very long run, however, convergence appears to be more

intuitively appealing. However, even with all knowledge eventually diffusing through the

whole world, inequality vanishes only in relative terms, measured, for example, by the

conventional Gini index. Absolute inequality, measured, for example, by the absolute

Gini index, is predicted to keep on rising with increasing global development.

Although the underlying economic model has been a deliberately simple one, the the-

ory can already explain a great variety of individual growth performances, including the

overtaking of countries in the course of global development. Naturally, further exten-

sions are conceivable. For example, the reliance on learning-by-doing could be relaxed

by introducing a two-state process according to which learning-by-doing eventually trig-

gers market R&D activities as in Strulik et al. (2013). Another interesting application

could be to investigate the spread of the fertility transition through a global network. In

the present paper, we conceptualized globalization as the increasing flow of knowledge

through the world. The network itself, however, may be subject to globalization as well.

Integrating an increasing share of long-distance links over time, as in Lindner and Strulik

(2015), could be an interesting extension of our network-based theory of global knowledge

diffusion and growth.
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Appendix

Proof of Proposition 1. Assume the society starts in h0 = (h10, ..., hn0). Put hmax0 =

max {h10, ..., hn0}. Let i denote the country with hi0 = hmax0. Since Ait takes weighted

averages of human capital we get as an upper bound , Aimax 0 ≤ himax 0.Growth of country-

specific human capital is therefore bounded from above by the scenario where i is linked

exclusively to a country j ̸= i that belongs to the richest group at the beginning and there

are no other links between i and j. In this case, we get Ait = hjt = hit and (8) simplifies

to hi,t+1 = max {1, L · (hit − c̄)η}. The scalar function f(h) = L · (h− c̄)η is concave for

η < 1 and intersects the identity line at most twice, depending on parameter values.

Case 1: Two intersection points with the identity line. In this case, the larger fix point

of the equation h∗ = f(h∗) is stable.

Case 2: Less than two intersection points. Here, f(h) is either equal or below the

identity line for all h. Hence himax,t+1 ≤ max {1, L · (himax 0 − c̄)η} for all t ≥ 0 such that

growth eventually declines.

For η = 1, L ≤ 1 ensures that himax,t+1 = max {1, L · (himax t − c̄)} ≤ max {1, himax 0},
which verifies the absence of long-run growth.

Proof of Proposition 2. With identical human capital endowments, the neighborhood

weighted average of human capital is given by Ait = hit. Equation (6) simplifies to

ghit ≡
hi,t+1

hit

= max

{
1

hit

, L · (hit − c̄)η

hit

}
,

which provides equal growth rates for equal levels of human capital. �

Proof of Proposition 3. We first discuss the case η < 1. From Proposition 1 follows

convergence to an equilibrium for all countries. Assume that there is an asymmetric

stable equilibrium h∗ = (h∗
1, ..., h

∗
n) and put h∗

max = max {h∗
1, ..., h

∗
n}. Since the network

is connected, there exists a country r with h∗
r = h∗

max but lower average human capital of

its neighborhood h̄∗
r < h∗

max. We will show below that the function

f(h) = L ·
(
[ϵh̄+ (1− ϵ)h]1−αhα − c̄

)η
(A.1)

derived from (8) is concave in h for η < 1. For the moment note that (A.1) is the same

for all countries aside from the neighborhood average h̄. If f(h) is concave, the stable

equilibrium is the upper intersection of f(h) with the identity line. The upper intersection

increases with h̄. The country with the highest intersection h∗
max is therefore a country

with maximal neighborhood average h̄max which contradicts our construction of r. We

conclude that there are no stable asymmetric equilibria which also rules out unstable

asymmetric equilibria (lower intersection of (A.1)).

It remains to be shown that f(h) in (A.1) is concave. Put f(h) = z(g(h)), with g(h) =
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[
εh̄+ (1− ε)h

]1−α
hα − c̄ and z(y) = Lyη. For the second derivative of f follows

f ′′(h) = z′′(g(h))(g(h))2 + z′(g(h))g′′(h). (A.2)

For η < 1 we have z′′(g(h)) < 0 such that the left term in the sum of (A.2) is negative.

A sufficient condition for f ′′(h) < 0 is therefore that g′′(h) < 0 since z′(h) > 0. Put

g(h) = u(h)v(h) with u(h) =
[
εh̄+ (1− ε)h

]1−α
and v(h) = hα.

The second derivative of g is g′′ = u′′v + 2u′v′ + uv′′ and after dividing g′′(h) < 0 by

u′v′ we get
u′′

u′
v

v′
+ 2 +

u

u′
v′′

v′
< 0. (A.3)

The fractions in this inequality are given by

u′′

u′ = − α(1− ε)

εh̄+ (1− ε)h
,

v

v′
=

h

α
,

u

u′ =
εh̄+ (1− ε)h

(1− α)b
,

v′′

v′
= −(1− α)

h
. (A.4)

Inserting (A.4) into (A.3) gives

−(1− ε)
h

εh̄+ (1− ε)h
+ 2− 1

(1− ε)

εh̄+ (1− ε)h

h
< 0. (A.5)

Multiplying (A.5) by

− 1

(1− ε)

h

εh̄+ (1− ε)h

provides (
h

εh̄+ (1− ε)h

)2

− 2
h

εh̄+ (1− ε)h

1

(1− ε)
+

(
1

(1− ε)

)2

> 0

which simplifies to (
h

εh̄+ (1− ε)h
− 1

(1− ε)

)2

> 0,

which always holds unless h̄ = 0.

Finally, consider the case η = 1. The term z′′(g(h) in (A.2) equals zero such that a

sufficient condition for f ′′(h) < 0 is g′′(h) < 0, which is analogous to the case η < 1.

Analogously, we can rule out asymmetric equilibria for η = 1. For h̄ = h and η = 1,

the function f(h) in (A.1) is linear and lies below the identity line f(h) = h without

intersection, a fact that implies convergence to subsistence.

�
The insight of Proposition 6 is a general mathematical statement about the relation

between the Gini index and income gap. This insight will be helpful in proving Proposition

4 and 5. We therefore deduce Proposition 6 first.
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Proof of Proposition 6. For notational convenience we omit the time index t.

(i) The Gini index is defined by G = (1−2B), where B is the area under the Lorenz curve.

Without loss of generality assume the countries are labeled such that y1 ≤ y2 ≤ ... ≤ yn.

Put Yk =
∑k

i=1 yi. The Lorenz curve is a polygonal line defined by the set of points{
(0, 0), (

1

n
,
Y1

Y
), (

2

n
,
Y2

Y
), ..., (

n− 1

n
,
Yn−1

Y
), (1, 1)

}
.

If all countries grow by the same rate, the fractions Yi/Y stay the same for all i = 1, ..., n.

The Gini index is zero if and only if the Lorenz curve is the identity line which means,

in particular, that the first slope of the polygonal line ny1/Y and the slope of the last

polygonal line nyn/Y are identical. We conclude that the relative Gini index converges

to zero if and only if

nd̂ = n
(yn
Y

− y1
Y

)
→ 0.

(ii) The term B̃ = nY B measures the area under the re-scaled Lorenz curve where the

horizontal axis ranges from 0 to n and the vertical axis from 0 to Y . The re-scaled Lorenz

curve is a polygonal line defined by the set of points

{(0, 0), (1, Y1), (2, Y2), ..., (n− 1, Yn−1), (n, Y )} .

We get

B̃ =
n∑

k=1

yk
2

k−1∑
i=1

yi =
Y

2
+

n∑
k=1

(n− k)yk.

For the absolute Gini index follows

G · Ȳ = G · (1/n)Y = (1− 2B)(1/n)Y = (1− 2B̃/(nY )) · (1/n)Y

=
2

n2

[
(nY )/2− B̃

]
. (A.6)

We are now ready to prove the first claim of (ii) by induction. Note that the first term in

(A.6) is just a scaling factor such that it suffices to prove the statement for the term in

square brackets

Tn =
n

2
Yn − B̃n,

where the index indicates the number of countries. For n = 2 follows

B̃2 =
y1
2

+ (y1 +
y2
2
) = y1 +

y1 + y2
2

,

T2 = (2 ∗ Y2)/2− B̃2 = Y2 − y1 −
y1 + y2

2
=

y2 − y1
2

.

Hence T2 does not change if y1and y2 change by the same absolute amount. Suppose this

holds for Tn with n countries. We get

Tn+1 =
(n+ 1)

2
∗ Yn+1 − B̃n+1 =

(n+ 1)

2
∗ (Yn + yn+1)− B̃n+1 ,
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where B̃n+1 is given by B̃n+1 = B̃n + Yn + yn+1/2. For Tn+1 follows

Tn+1 =
(n+ 1)

2
∗ (Yn + yn+1)− B̃n+1 =

n

2
∗ (Yn + yn+1) +

1

2
∗ (Yn + yn+1)− B̃n+1

=
n

2
∗ Yn +

n

2
∗ yn+1 +

1

2
∗ Yn +

1

2
∗ yn+1 − B̃n − Yn −

yn+1

2

=
n

2
∗ Yn − B̃n +

n

2
∗ yn+1 −

1

2
∗ Yn = Tn +

1

2
(n ∗ yn+1 − Yn) . (A.7)

From (A.7) we conclude that the term in brackets does not change if all income levels

increase by the same amount.

Finally, note that the relative Gini index is given by the area between the identity line

and the Lorenz curve divided by the total area under the identity line from 0 to 1 (which

is 1/2). Multiplying the relative Gini index by Y/n is equivalent to studying this ratio

with a rescaling of the vertical axis ranging from 0 to Y/n. Here, the rescaled Lorenz

curve is a polygonal line defined by the set of points{
(0, 0), (

1

n
,
Y1

n
), (

2

n
,
Y2

n
), ..., (

n− 1

n
,
Yn−1

n
), (1,

Y

n
)

}
.

The area between the identity line and the rescaled Lorenz curve is 0 if and only if the first

polygonal line of the Lorenz curve has the same slope as the last one. This is equivalent

to y1 = yn.

(iii) From (3), (4) and (7) we conclude 1 ≤ Ȳ . Hence the product GȲ can only tend

to zero if the relative Gini index tends to zero. However, the latter is not a sufficient

condition since GȲ does not decrease if Ȳ grows with a higher rate than the declining

rate of G as illustrated by Figure 5. �

The next Lemma is a characterization of (8). For η = 1 it shows that the dynamics

hit+1 = L ·max
{
1, u(hit, h̄it)

}
(A.8)

with

u(hit, h̄it) = [ϵ h̄it + (1− ϵ)hit]
1−αhα

it − c̄ (A.9)

consists of 2 subsequent steps:

(i) u is a non-expansive mapping such that the gap between highest and lowest capital

level does not increase and decreases eventually.

(ii) Scaling, i.e. multiplication by L.

Lemma 1. Let the network be connected and put η = 1. For any L > 0 we have

Dt = o(Lt). (A.10)

For L ≤ 1 this gap decreases monotonically to zero and with strict monotonicity for L < 1.
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Proof. Let v = h − h̄ denote the difference between human capital and the externality

level. For the Cobb-Douglas production function of (A.9) follows

f(ν) = [ϵ(h− ν) + (1− ϵ)h]1−α hα = hα (h− νϵ)1−α , (A.11)

with f(0) = h. We will use the Taylor expansion of f at v = 0 to estimate the amount

by how much Dt shrinks to Dt+1. For the derivatives of f follows

f (k)(v) = (−ϵ)k [h− νϵ]1−α−k hα

k∏
i=1

(2− α− i), f (k)(0) = (−ϵ)kh
k∏

i=1

(2− α− i)

for k ≥ 1. For k even (odd) the factor (−ϵ)k is positive (negative) and the factor
k∏

i=1

(2−

α− i) is negative (positive) which implies f (k)(0) < 0 for k ≥ 1. For the Taylor expansion

of (A.11) follows

f(v) =
∞∑
k=0

f (k)(0)
vk

k!
< f(0) + f (1)(v)v = h− ϵ(1− α)v (A.12)

for v > 0. Put hmax,t = maxi hit and h̄max,t = maxi h̄it as well as hmin,t = mini hit and

h̄min,t = mini h̄it. For L = 1 we get

∥hmax,t+1 − hmin,t+1∥

≤
∥∥∥[ϵh̄max t + (1− ϵ)hmax t

]1−α
hα
max t −

[
ϵh̄min t + (1− ϵ)hmin t

]1−α
hα
min t

∥∥∥ .(A.13)
Put vmax t = hmax t − h̄max t ≥ 0. If vmax t = 0 inequality (A.13) simplifies to

∥hmax,t+1 − hmin,t+1∥ ≤
∥∥∥hmax t −

[
ϵh̄min t + (1− ϵ)hmin t

]1−α
hα
min t

∥∥∥ ≤ ∥hmax,t − hmin,t∥ .

For vmax t > 0 we conclude from (A.12)

∥hmax,t+1 − hmin,t+1∥ <
∥∥∥hmax,t − ϵ(1− α)vmax,t −

[
ϵh̄min,t + (1− ϵ)hmin,t

]1−α
hα
min,t

∥∥∥
≤ ∥hmax,t − hmin,t − ϵ(1− α)vmax,t∥ < ∥hmax,t − hmin,t∥ .

We conclude that the effect of the mapping u is that it shrinks the gap between highest

and lowest human capital level by at least ϵ(1−α) times the externality difference vt of the

richest country. In (A.8) this non-expansive part is followed by multiplication by L. For

L ≤ 1 this implies that Dt = max (yit − yjt) = hmax,t+1−hmin,t+1 converges monotonically

to zero, with strict convergence for L < 1. For general L > 0 we conclude that Dt/L
t

converges to zero which confirms (A.10). �

Lemma 2. The Gini coefficient tends to zero in connected networks.

Proof. From Lemma 1 follows that all yit values lie in an interval It with measure µ(It) =

o(Lt). As discussed in the proof of Proposition 1 growth of any country is bounded from
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above by the scenario where the richest country is isolated in the beginning such that own

capital level and externality level are always at a maximum. We get

hit/L ≤ [ϵhrt + (1− ϵ)hrt]
1−α hα

rt − c̄ < hrt

and therefore

hit < max
k

{hk0}Lt.

In other words, there exists a y∗ such that yit/L
t → y∗ for any i ∈ N . For Yt =

∑n
i=1 yi,t

follows Yt/L
t → ny∗ and hence,

d̂t =
Dt

Yt

=
Dt/L

t

Yt/Lt
→ 0

ny∗
= 0.

From Proposition 6 we conclude that the Gini coefficient tends to zero. �

Proof of Proposition 4. From Proposition 1 we conclude stagnation for η < 1. For

η = 1 the growth rate of country i after take-off is given by

hit+1/hit = L
(
[ϵ h̄it + (1− ϵ)hit]

1−αhα
it − c̄

)
/hit = L

(
[ϵ
h̄it

hit

+(1− ϵ)]1−αhit − c̄

)
/hit

= L

[
ϵ
h̄it

hit

+ (1− ϵ)

]1−α

− L
c̄

hit

.

From Proposition 4 and Lemma 2 we conclude that the relative gap Dt/Yt between coun-

tries in connected components tends to zero. This is equivalent to h̄it/hit tending to

one, either because both h̄it and hit stagnate, or because both grow forever. The implied

growth rate in the latter case is hit+1/hit = L[ϵ · 1 + (1− ϵ)]− L · 0 = L.

Inserting hit = h̄it = Lc̄/(L− 1) > 1 into (8) shows that it is a fixed point and that any

hit, h̄it > Lc̄/(L− 1) > 1 leads to growth. �

Proof of Proposition 5. We define overshooting as the temporary surpassing of the

long run growth rate (global overshooting). In case of positive long-run growth, the long-

run growth rate is given by L. Thus, country i overshoots at time t if ghit > L. We next

show that overshooting occurs due to a sufficiently high lag of human capital with respect

to the neighborhood average. For η = 1 we have ghit > L iff

[
ϵ
h̄it

hit

+ (1− ϵ)

]1−α

=

[
1 + ϵ

(
h̄it

hit

− 1

)]1−α

> 1 +
c̄

hit

.

We first prove that the richest country can never overshoot. The second step provides

a sufficient condition for overshooting.

(i) Put mt = argmaxi hit. It follows that growth at time t is bounded from above by a

growth scenario in which country m is exclusively linked with an identical twin and vice

versa. For ghmt we get
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ghmt ≤ L · ([ϵ hmt + (1− ϵ)hmt]
1−αhα

mt − c̄)

hmt

=
L · (hmt − c̄)

hmt

≤ L.

(ii) The growth rate is given by g(h) = L ·
(
[ϵ h̄+ (1− ϵ)h]1−αhα − c̄

)
/h.

According to Proposition 4 the long-run growth rate is L. Overshooting means that at

some point g(h) > L, i.e.[
ϵ
h̄

h
+ (1− ϵ)

]1−α

− c̄

h
> 1 ⇔

[
ϵ
h̄

h
+ (1− ϵ)

]1−α

> 1 +
c̄

h
.

Note that for ϵ = 0 the left-hand side simplifies to 1 such that the inequality never

holds. This confirms that global overshooting is triggered by sufficiently large h̄/h. In

particular, overshooting occurs if

ϵ
h̄

h
+ (1− ϵ) >

(
1 +

c̄

h

) 1
1−α

⇔ h̄

h
>

1

ϵ

(
1 +

c̄

h

) 1
1−α

− 1− ϵ

ϵ
> 1

⇔ h̄

h
> 1+

1

ϵ

[(
1 +

c̄

h

) 1
1−α

− 1

]
.

�

Proof of Proposition 6. If some countries initially grow and others stagnate the Lorenz

curve keeps bending below the identity line such that the Gini index increases. According

to Lemma 2, however, it tends to zero eventually. �

Proof of Proposition 7. The proposition is proven by way of example. Consider the

bridge network from Figure 2 with n = 10 with half of the population starting rich. All

other settings are as in the benchmark case, in particular, η = 1 and L = 1.48 > 1 ensure

long-run growth. Figure A.1 illustrates the time path of absolute income gap Dt. Due

to the dense connectedness of neighbors with similar human capital levels the externality

ratio h̄t/ht is close to one. With Lc̄/h ≈ 0 the rich grow approximately at rate L. As

there is only one link to the other part of the network the positive externality of the

forerunners is too weak for the poor countries to catch up.

�
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Figure A.1: Absolute Gap of Human Capital Levels in Bridge Network

Time measured in generations. The red square indicates the time of the last take-off
to growth; the blue circle indicates the time when the Gini coefficient assumes its
maximum.

Appendix: For Online Publication

Decreasing and Increasing Returns. Consider a generalization of the model in which

Ait =
(∑n

j=1 w̄ijhjt

)ω
, ω ̸= 1−α, replaces (7). Aggregate production displays decreasing

returns to scale for ω < (1 − α) and increasing returns to scale for ω > (1 − α). The

latter case is interesting because it allows for positive growth at the steady-state without

the need of linear returns to education (without the need of η = 1). Figure A.2 shows

such a case in which a high value for the importance of international knowledge flows ω

compensates for decreasing returns in education (ϵ = 0.75). Nevertheless, there is long-

run growth. The value of B has been adjusted in order to arrive at a steady-state growth

rate of 1.5 percent. To the naked eye, the figure looks very similar to Figure 6 in the

paper.

Figure A.2: Decreasing Returns to Education and Steady Growth
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GDP growth (η = 0.8; ω = 0.75, B = 11.3 ⇒ g = 0.015)

year

The case of decreasing returns to scale is interesting to investigate dynamics when

there is no positive growth at the steady state. Figure A.3 shows the result for an

example in which there are mildly decreasing returns to scale (ω = 0.45) as well as mildly

decreasing returns to education (η = 0.95). It demonstrates that historically plausible
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Figure A.3: Decreasing Returns to Education and Decreasing Returns to Scale
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growth trajectories can be obtained without relying on positive exponential growth at the

steady-state.

Just England. It could be argued that initially, there was just one forerunner of the

industrial revolution, England. From there, the take-off to growth spread across the

world. To cover this case, we assume that initially, there was only 1 rich country and

99 poor countries. All other parameters are kept from the benchmark model. Recall

that in the benchmark case c̄ = 0.33 such that industrialization is possible (but not

inevitable) when there is just one initially growing country. Figure A.4 shows the growth

trajectories for such an example. Compared to the benchmark case it takes much longer

until the industrial revolution diffuses around the world but otherwise, the evolution of

world income is structurally similar.

Figure A.4: Just England
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