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Abstract: We analyze quarterly occupation-level data from the US Current Population Survey for
1976-2013. Based on common cyclical employment dynamics, we identify two clusters of occupa-
tions that roughly correspond to the widely discussed notion of “routine” and “non-routine” jobs.
After decomposing the cyclical dynamics into a cluster-specific (“structural”) and an occupation-
specific (“idiosyncratic”) component, we detect significant structural breaks in the systematic dy-
namics of both clusters around 1990. We show that, absent these breaks, employment in the three
“jobless recoveries” since 1990 would have recovered significantly more strongly than observed
in the data, even after controlling for observed idiosyncratic shocks.

JEL: J21, E32, E24
Keywords: employment polarization, jobless recoveries, factor model

Paul Gaggl1

University of North Carolina at Charlotte

Belk College of Business

Department of Economics

9201 University City Blvd

Charlotte, NC 28223-0001

Email: pgaggl@uncc.edu

Sylvia Kaufmann1

Study Center Gerzensee

Dorfstrasse 2, P.O. Box 21

CH-3115 Gerzensee

Switzerland

Email: sylvia.kaufmann@szgerzensee.ch

1We are grateful to Nir Jaimovich, Jim Nason, Travis Berge as well as participants of the 2013 SEA meetings for
extremely valuable comments and feedback. We would further like to thank Debapriti Chakraborty and Jonathan
Viscount for their invaluable help with data collection.

1

mailto:pgaggl@uncc.edu
mailto:sylvia.kaufmann@szgerzensee.ch


1. Introduction

The “recoveries” after the last three recessions in the US were “jobless”. That is, while output

was recovering, jobs were not—or at least at a much slower pace. To this date (April 2014), it

remains unclear whether this phenomenon is simply due to a sequence of unfavorable shocks or

whether the US labor market is undergoing systematic structural change. Following Jaimovich

and Siu (2012), we consider labor market ”polarization” as one possible structural cause and de-

velop a statistical framework to disentangle it from idiosyncratic shocks.

A number of recent studies document that, over the past several decades, the employment

share of the lowest and highest skilled occupations increased, while it declined for middle skilled

jobs. Over the same period, wages for middle skilled occupations grew substantially less than

wages at the tail ends of the skill distribution. These trends are in large part attributed to the

widespread adoption of computing technology and the rising importance of offshoring, which

substitutes for tasks performed by middle skilled workers.2

Much less is known about the cyclical aspects of this apparent trend. In pioneering work,

Jaimovich and Siu (2012) use a crude and highly aggregated mapping of skills into jobs and docu-

ment that 92% of the decline in “routine” jobs in the US—ones that are considered easily replace-

able by technology and require “middle” skills—occurred within a 12 month window of NBER

dated recessions since the mid 1980s.3 Moreover, as is immediately apparent from panel A of Fig-

ure 1, “routine” (middle skill) occupations used to strongly rebound after recessions prior to 1990,

while these swift rebounds were absent in the last three recessions. To the contrary, “non-routine”

occupations—ones considered to directly or indirectly complement technology and comprising

both low and high skilled workers—appear to be fairly immune to recessions and do not seem

to have experienced a marked change in employment dynamics around 1990. Jaimovich and Siu

2Acemoglu (1999) was the first to document employment polarization in the US over the period 1983–1993. For
more recent periods, Goos and Manning (2007) find similar patterns in the UK, Goos et al. (2009) for 16 EU countries,
and Autor et al. (2008) as well as Autor and Dorn (2013) for the US. Autor and Dorn (2013) further show compelling
evidence that PC adoption was more prevalent in areas with a historical abundance of workers performing “routine
tasks”.

3The crude mapping of aggregate job categories into three broad skill groups is based on the work surveyed in
Acemoglu and Autor (2011).
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Figure 1: Group Employment Trends

(A) Jaimovich and Siu (2012) Groups (B) Endogenous Clusters
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Notes: Panel A plots employment trends as reported in Jaimovich and Siu (2012). Data prior to 1983 are taken from the US Department
of Labor’s Employment & Earnings publications and from FRED thereafter. The occupations are grouped as suggested in Acemoglu
and Autor (2011). Panel B illustrates the cumulative growth of employment/population in each occupation assigned to factors 1 and 2
in model (1), which are listed in Table 3. Data for this graph are directly constructed from the monthly basic CPS files for the consistent
panel of occupations compiled by Dorn (2009). The levels in both figures are imputed from quarterly growth rates and start with the
level of employment/population at the beginning of each sample. We seasonally adjusted all time series from both data sources using
the US Census X11 method.

(2012) then provide a counterfactual based on descriptive statistics to illustrate that the change

in the cyclical pattern of routine jobs alone may be an important driver for the jobless recoveries

since 1990.

If these stark cyclical patterns are truly due to a distinguishing feature, that is common to

occupations within each broad category considered by Jaimovich and Siu (2012), then we should

be able to identify this group-specific component as well as potential group-specific structural

breaks form high frequency employment dynamics in the underlying detailed occupations.

To accomplish this, we estimate a dynamic factor model with latent clusters based on detailed

occupation level data from the US Current Population Survey (CPS) for the period 1976-2013. Our

model is designed to capture three important aspects of the data: We estimate and thereby identify

occupation clusters displaying common cyclical dynamics in the employment to population ratio,

we allow for group-specific structural breaks in the common cyclical dynamics, and we ultimately

disentangle structural (cluster-specific) dynamics from idiosyncratic shocks.

In particular, our model identifies two occupation clusters that broadly coincide with groups

that have previously been labeled “routine” and “non-routine” jobs, respectively (see Acemoglu
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and Autor, 2011, for a survey). Moreover, a comparison of panels A and B in Figure 1 illustrates

that the aggregate dynamics of these clusters strongly resemble the dynamic patterns of the crude

aggregates considered by Jaimovich and Siu (2012).4

Our estimates further deliver a fairly agnostic measure of “exposure to polarization” at the

occupation level. Most previous studies classify occupations into “routine” and “non-routine”

groups using cross-sectional information on the “task content” of each occupation (see Acemoglu

and Autor, 2011, for a survey). This approach faces numerous challenges, including the lack of

high quality longitudinal information, difficult to interpret ordinal metrics, as well as the necessity

to make ad hoc assumptions about these ordinal metrics (see Autor, 2013, for a detailed discussion

of these difficulties). Our approach, on the other hand, is based on common cyclical dynamics

across individual occupations and thereby circumvents these issues. Nevertheless, the estimated

classification maps surprisingly well into groupings found in previous research. In particular,

the estimated occupation clusters suggest that traditional blue collar jobs as well as sales and

administrative support are most strongly associated with the gradually disappearing occupation

group (cluster 1), while managerial and service jobs—such as child and health care—are most

representative for the strongly growing occupation group (cluster 2).

To capture the group-specific business cycle dynamics, we adopt a Markov switching structure

that allows for asymmetric dynamics across expansions and recessions and for a potential break

in these dynamics. Based on this flexible setup, we find a significant structural break in the group-

specific cyclical dynamics for both “routine” and “non-routine” occupations around 1990. In fact,

our analysis suggests that the break in “non-routine” occupations was at least as pronounced as

that in “routine” occupations.

Finally, we construct counterfactuals to assess whether the break in the structural components

was large enough to explain a significant portion of the low aggregate job growth during the last

three recoveries in the US. As descriptively suggested by Jaimovich and Siu (2012), we find that

the aggregate employment/population ratio would have recovered significantly more strongly

4In Section 3 we discuss in detail why the levels in panels A and B of Figure 1 don’t match up. We argue that the
information about the dynamics of aggregate employment contained in either aggregation scheme is essentially the
same.
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in the absence of the observed structural change around 1990. This is an important finding as it

suggests scope for directed policy interventions—in addition to undirected policy measures like

monetary easing—that may directly affect the structural aspect of jobless recoveries.

While our findings are generally in line with Jaimovich and Siu (2012) as well as Cortes et al.

(2014), they contrast the main conclusions of Foote and Ryan (2012). These authors argue that large

aggregate shocks caused jobless recoveries in the US and that labor market polarization played

only a minor role in this context. They reach this conclusion by observing that the variance share

explained by industry-skill-specific variation is low compared to the variance share explained by

a single unobserved common component. Our results refine this picture. We identify two distinct

clusters of occupations with common cyclical dynamics, which jointly explain at least 60% of the

variation in the data. The two common components display vastly different dynamic patterns

over the business cycle and each experiences a component-specific structural break in the cyclical

employment dynamics after 1990. Furthermore, our endogenously determined clusters are in line

with the grouping of occupations suggested in previous work (Acemoglu and Autor, 2011) and

the dynamic patterns of the common components reflect the stylized features observed in panel A

of Figure 1.

2. Empirical Model

Let yit denote the growth in the employment/population ratio of occupation i = 1, . . . , N in

period t = 1, . . . , T . We capture the notion of “common dynamics” within a set of K “occupation

clusters” by specifying a factor model with K factors. To identify distinct occupation clusters,

each occupation, i, is exclusively assigned to one factor. We write the model compactly as

yit =

K∑
k=1

λikfkt + εit (1)

= λiδifδit + εit (2)

φk(L)fkt = µkSt + νkt, νkt ∼ N (0, 1) (3)

ψi(L)εit = εit, εit ∼ N
(
0, σ2i

)
(4)
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where going from (1) to (2) reflects the fact that the latent classification indicator δi ∈ {1, . . . ,K}

exclusively assigns one factor to each occupation: λik 6= 0 if δi = k and 0 otherwise, with k =

1, . . . ,K. To capture remaining idiosyncratic dynamics, the idiosyncratic shocks εit follow an

autoregressive (AR) process of order q, ψi(L) = 1− ψ1L− · · · − ψqLq.

Ex post, the latent classification indicator δi is inferred from the co-movement in yit across

occupations, yet our framework allows to incorporate occupation-specific, cross-sectional infor-

mation information into the prior classification probability distribution:

P (δi = k|Zi, β) =
exp (Ziβk)

1 +
∑K

j=2 exp (Zjβj)
k = 1, . . . ,K and β1 = 0 (5)

where Z ′i is a vector containing fixed effects and occupation-specific characteristics. By default, the

reference effects are the ones for the probability to load on the first factor, β1 = 0. All our results

in Section 4 are based on the special case of a discrete uniform prior classification probability of

P (δi = k) = 1/K, in which we incorporate no additional prior information, and which is nested

in (5) when setting Zi = 1 and βk = 0,∀k.

The factor equation (3) is dynamic of order p and restricted to the stationary region, i.e., we

assume the roots of the characteristic equation of φk(L) to lie outside the unit circle. Period-specific

factor growth, µkSt , is determined by the second latent indicator, St ∈ {1, . . . , 4}, which takes one

of four values. In all our empirical applications, the four possible states have the following ex-

post interpretation: 1 = pre-break recession, 2 = pre-break expansion, 3 = post-break recession, 4 =

post-break expansion.

We assume that the factor processes are independent of each other. However, since each occu-

pation is governed by a single factor, we could relax this independence assumption and allow for

a general vector autoregressive dynamic structure driving the factors. Since our goal is to provide

a first set of empirical results with a clear-cut interpretation, we leave this generalization for a

future investigation.

We specify a time-varying transition distribution for St, in which real GDP growth, xt, deter-

mines the transition distributions between recessions and expansions. We define the state transi-
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tion probability matrix as

ξt =



ξ11,t ξ12,t 0 ξ14,t

ξ21,t ξ22,t ξ23,t 0

0 ξ33,t ξ34,t

ξ43,t ξ44,t


, (6)

where ξjl,t = P (St = l|St−1 = j) is the probability to switch to state l if state j prevailed in period

t − 1. To ensure identification, and inspired by the stylized patterns in Figure 1, we put two sets

of restrictions on the transition probabilities. First, we only allow a structural break to happen

once. That is, once states 3 or 4 are reached, the economy cannot go back to either 1 or 2. This

is implemented by setting the lower-left block of transition probabilities to 0. Second, a potential

structural break must happen in transition from a recession to an expansion, or vice versa. For

example, we don’t allow the economy to switch from a pre-break expansion into a post-break

expansion. This is implemented by setting the upper-right diagonal elements of the transition

distribution to 0.

To specify the period specific transition probabilities in ξt we use a logit prior and assume state

1 to be the reference state, γj1,· = 0, j = 1, 2:

ξt =



1
1+

∑
s={2,4}

exp(X′tγ1s)
exp(γ12,0+γ12,1xt+γ12,2t)

1+
∑

s={2,4}
exp(X′tγ1s)

0
exp(γ14,2t)

1+
∑

s={2,4}
exp(X′tγ1s)

1
1+

∑
s={2,3}

exp(X′tγ2s)
exp(γ22,0+γ22,1xt+γ22,2t)

1+
∑

s={2,3}
exp(X′tγ2s)

exp(γ23,2t)
1+

∑
s={2,3}

exp(X′tγ2s)
0

0 0
exp(γ33,0+γ33,1xt)∑4
s=3 exp(γ3s,0+γ3s,1xt)

exp(γ34,0+γ34,1xt)∑4
s=3 exp(γ3s,0+γ3s,1xt)

0 0
exp(γ43,0+γ43,1xt)∑4
s=3 exp(γ4s,0+γ1,4sxt)

exp(γ44,0+γ44,1xt)∑4
s=3 exp(γ4s,0+γ4s,1xt)


,

(7)

in which Xt = (1, xt, t)
′ contains a constant, GDP growth, xt, which determines the transition

probabilities between recessions and recoveries, and a time trend, t, which is used to introduce

prior information on the break date. The parameters γjl,m, with j, l = 1, . . . , 4, and m = 0, 1, 2,

correspond to the state-dependent, state-specific effects of the variables in Xt. So, γjl,m is either

the mean (m = 0) effect, the effect of GDP growth (m = 1) or the trend effect (m = 2) on the

probability of switching from state j to state l. The denominators are written in a general form,
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but note that appropriate elements of γ14 and γ23 are restricted to zero.

Time explicitly enters the transition distribution of the states 1 and 2, to include prior informa-

tion on the break date around 1990. We normalize t to be zero in the third quarter of 1990, which

corresponds to the peak of the 1980s expansion. The effect of time t should be decreasing for ξj2,t,

j = 1, 2 and increasing for ξ14,t and ξ23,t. Therefore, we expect to estimate (γ12,2, γ22,2) ≤ 0 and

(γ14,2, γ23,2) > 0.

The prior specification on the latter parameters is currently quite informative and favors a

break after the expansion of the 1980s going into the early 1990s recession. We explicitly make this

choice based on the stylized patterns in Figure 1 and because our prime interest is to identify the

existence and potential effects of a structural break around 1990, rather than the timing of the break

itself.5 The current specification provides a convenient framework to conduct posterior inference

on the dynamics of the structural component before and after 1990. Yet, we set out to construct a

framework that is general enough to conduct inference on the break date itself in future research.

2.1. Bayesian Posterior Inference: Likelihood and Priors

We adopt a Bayesian approach to draw posterior inference on the latent factors f = (f1, . . . , fT ),

on the values of both the unobserved latent indicators, S = (S1, . . . , ST ) and δ = (δ1, . . . , δN ), and

all population parameters, θ = {λ,ψ,φ,µ,σ,γ}. The complete data likelihood of the model is

L (y|f , δ, θ) =
N∏
i=1

T∏
t=q+1

l (yit|fδit, θ) (8)

where the period t density contribution of unit i, l (yit|·), is normal

l (yit|fδit, θ) =
1√

2πσεi
exp

− 1

2σ2εi

y∗it − q∑
j=0

ψjλiδifδi,t−j

2 (9)

5Note that, the prior is not dogmatic in the sense that the break could still be estimated to occur after the 1990s
recession, however.

8



and y∗it represents the filtered value y∗it = yit−ψi1yi,t−1− . . . ψiqyi,t−q. Our prior for the unobserved

factors is

π (f |S, θ) =
T∏

t=p+1

π
(
ft|f t−1, St, θ

)
π (fp|Sp, θ) (10)

where π (fp|Sp, θ) is the density of the initial states. The prior for the unobserved state indicator

factorizes to

π (S|x, θ) =
T∏

t=p+1

π
(
St|St−1, xt, θ

)
(11)

The prior for the classification indicator δ = (δ1, . . . , δN ) is assumed to be uniform discrete, i.e.

β = 0, P (δi = k) = 1/K, ∀i.

To complete the model, we assume that the parameters are block-independent a priori, which

allows us to write their joint distribution as

π (θ) = π(λ|δ)π(ψ)π(φ)π(µ)π(σ)π(γ) (12)

and to specify the following individual priors:

1. π(λ|δ) =
∏N
i=1 π(λiδi) =

∏N
i=1N(l0,L0)

2. π(ψ) =
∏N
i=1 π(ψi1, . . . , ψiq) =

∏N
i=1N(q0, Q0)I{Z(ψi)>1}

where I{·} is the indicator function and Z(ϕ) > 1 means that the characteristic roots of the

process ϕ(L) lie outside the unit circle.

3. π(φ) =
∏K
k=1 π(φk1, . . . , φkp) =

∏K
k=1N(p0, P0)I{Z(φk)>1}

4. π(µ) =
∏K
k=1 π(µk1, . . . , µk4) =

∏K
k=1N(m0,M0)

5. π(σ) = π(σ21, . . . , σ
2
N ) =

∏N
i=1 IG(e0,E0)

6. π(γ) =
∏S
s=2 π(γs) =

∏S
s=2N(g0s, G0s)

where γs = (γ1s, . . . , γSs), s = 2, . . . , 4, and g0s and G0s have appropriate dimensions.

2.2. Posterior Sampler

We briefly outline the sampling steps here and refer the interested reader to Appendix A for

more details.
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1. Draw the latent factors from π (f |y,S, δ, θ) using the efficiency-based sampler developed by

Chan and Jeliazkov (2009) (see also Kaufmann and Schumacher, 2013).

2. Given the factors, we use multi-move sampling (adjusted for the restricted transition distri-

bution (7)) to draw the states from π (S|x,f ,µ,γ,φ). For details see Chib (1996) or Frühwirth-

Schnatter (2010).

3. Given a draw for the states we draw the parameters governing the transition distribution

from π (γ|S,x). Introducing two layers of data augmentation, the non-linear, non-normal

model (7) becomes linear-normal and we can sample from posterior conditional normal dis-

tributions. For details see Frühwirth-Schnatter and Frühwirth (2010), and Kaufmann (2011)

for the extension to sampling state-dependent parameters.

4. To draw the latent classification indicator from π (δ|y,f ,ψ,σ) we sample independently

over N from the discrete distribution

π
(
δi = k|yi,f , ψi, σ2i

)
∝ exp

−
T∑

t=q+1

(
y∗it −

∑
y∗itf

∗
ikt∑

f∗ikt
2 f
∗
ikt

)2
P (δi = k) , k = 1, . . . ,K

(13)

where y∗it and f∗ikt represent the filtered values y∗it = yit − ψi1yi,t−1 − . . . ψiqyi,t−q and f∗ikt =

fkt − ψi1fk,t−1 − . . . ψiqfk,t−q, respectively.

5. Given draws for f , S and δ, it is then straightforward to sample the remaining parame-

ters from their posterior distributions (see Appendix A.4 for the derivation of the posterior

moments):

(a) π(λ|y,f , δ,σ, ψ) =
∏N
i=1N(li,Li)

(b) π(ψ|y,f , δ,σ, λ) =
∏N
i=1N(qi, Qi)I{Z(ψi)>1}

(c) π(φ,µ|f ,S)
∏K
k=1N(pk, Pk)I{Z(φk)>1}

(d) π(σ|y,f , δ,ψ, λ) =
∏N
i=1 IG(ei,Ei)

3. Data

Our main data source are detailed individual level data from the basic US Current Population

Survey (CPS) covering the period 1976m1-2013m12. Based on CPS sampling weights we estimate
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employment levels at the detailed occupation level on a monthly frequency throughout the entire

sample. Since the US Department of Labor’s (DOL) classification of occupations changes several

times during our sample period, we aggregate individuals into a panel of 330 consistent occu-

pations as designed by Dorn (2009).6 For our baseline specification, summarized in Table 1, we

further aggregate the detailed occupations into 21 groups, as also designed by Dorn (2009). Fol-

lowing Jaimovich and Siu (2012) we use the share of employment within the US population of age

16 and older to obtain each occupation’s labor market dynamics over time.

To compare our results to Jaimovich and Siu (2012) we also replicate their dataset, spanning the

period 1967-2012, for which data prior to 1983 are taken from the DOL’s Employment & Earnings

publications and from the Federal Reserve Bank of St. Louis’ FRED database thereafter. These

data contain the level of employment and are already aggregated to about 10 broad occupation

groups. Unfortunately, the group definitions are neither fully consistent over time (especially prior

to 1983) nor between the aggregates in FRED and in the Employment & Earnings publications.

However, consistent with Jaimovich and Siu (2012), we are able to group occupations into the

four broad occupation groups suggested by Acemoglu and Autor (2011): non-routine cognitive

(professional, managerial, and technical occupations), routine cognitive (clerical, support, and

sales occupations), routine manual (production and operative occupations), non-routine manual

(service occupations). We further seasonally adjust all time series (from both data sources) using

the US Census X11 method. Based on this dataset, panel A of Figure 1 displays employment as a

share of population for the two groups of non-routine and routine occupations. As expected, this

figure resembles Figure 4 in Jaimovich and Siu (2012).

One of the biggest challenges in working with the detailed CPS data are the frequent changes

in the DOL’s system for classifying occupations. Even Dorn’s (2009) consistent panel features

many jumps in the level of employment since various occupations “jump” from one group to

another, new occupations are introduced, or old ones disappear. These jumps are not readily

visible in long run comparisons (e.g. across decades) but they become immediately apparent at

6The DOL has implemented the latest change in their occupation classification system in 2011, and we thank Nir
Jaimovich for providing a crosswalk (as used in Cortes et al., 2014) to extend Dorn’s (2009) panel of occupations beyond
this newest change of occupation classifications.
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Figure 2: Employment Trends Based on Growth Rates
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Notes: The figure illustrates the cumulative growth of employment/population in each occu-
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level series start with the level of employment/population in 1976q1 and illustrate the variation
in growth rates used in our estimation procedure. The series labeled “raw” are are based on
the unadjusted growth rates in the occupation level series while those labeled “adjusted” are
based on a growth rate series in which the administrative “jumps” were interpolated based
on the median January growth (all administrative jumps happen in January). Data for this
graph are directly constructed from the monthly basic CPS files for the consistent panel of
occupations compiled by Dorn (2009).

higher frequencies. To avoid this problem, Foote and Ryan (2012), who also study the cyclicality

of labor market polarization, decide to use industry-skill cells as a proxy for jobs/tasks instead of

occupations specified by the DOL.

However, since the level jumps are due to purely administrative changes, they always happen

in a single month. Therefore, one way to accommodate the level jumps, is to use growth rates

instead of levels and average out the jumps for the occupations in which administrative changes

happen. Figure 2 shows the levels implied by our adjusted growth rate series. It is obvious that

any adjustment procedure introduces some measurement error, but Figure 1 illustrates that the

dynamic patterns in the level of routine and non-routine jobs implied by these adjusted growth

rates is virtually the same as in the level series employed by Jaimovich and Siu (2012). In fact, our
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Table 1: Preferred Model Specification

A. Specification

Number of Factors K 2
Number of States S 1 = pre-recession, 2 = pre-expansion, 3 = post-recession, 4 = post-expansion
Factor AR lags p 2
Idiosyncratic AR lags q 2

B. Sample

Employment Variable yi,t Quarterly growth in employment/population (CPS basic files, SA X11)
Aggregate Variable xt Quarterly growth in real GDP
Estimation Sample T 150 quarters: 1976q2 – 2013q3
Occupation Groups N 21 Dorn (2009) detailed occupation groups

B. Posterior Sampler

Total Posterior draws 500,000
Burn-in 300000
Retained Observations 50,000 (every fourth draw after burn-in)

approach to adjust in growth rates is very similar in spirit to the “flows approach” of Cortes et al.

(2014).

Ultimately, it should be clear that all four approaches, crude aggregation as in Jaimovich and

Siu (2012), forming industry-skill cells as in Foote and Ryan (2012), the “flows approach” by Cortes

et al. (2014), and our adjustment in growth rates, are an imperfect solution and introduce some

form of measurement error. However, given the nature of administrative changes in the DOL’s

definition of occupations, these are the best options available.7

Finally, we employ real GDP growth as our aggregate measure to help identify business cycles

and we draw these data from FRED.

4. Empirical Analysis

We estimate model (1) using the Markov Chain Monte Carlo (MCMC) posterior sampler de-

scribed in Section 2.2. In total, we draw 500,000 times out of the posterior distribution and discard

the first 300,000 as burn-in. To remove autocorrelation across draws, we retain every fourth of

7We obtain the same qualitative results when we estimate our model with 9 occupation groups assembled as in
Jaimovich and Siu (2012).
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Table 2: Model Selection

V ar(Ŷk)/V ar(Yk)

q p Cluster 1 Cluster 2 Avg.

1 1 0.345 0.353 0.349
1 2 0.286 0.216 0.251
2 1 0.138 0.138 0.138
2 2 0.607 0.588 0.597
2 3 0.306 0.213 0.260
3 2 0.484 0.620 0.552
3 3 0.223 0.199 0.211
Notes: The table reports the fraction
of the variation in aggregate employ-
ment/population that is explained by com-
mon cluster dynamics, conditional on the
median factor assignment. Maxima are
highlighted.

the remaining 200,000 draws.8 Our preferred specification is summarized in Table 1. Note that

we obtain the most precise factor assignment (see Section 4.1) when we set K = 2 and since the

ultimate goal of this study is to analyze aggregate labor market dynamics, we choose the specifi-

cation for which the variance share explained by cluster specific variation is largest. In particular,

Table 2 lists this statistic for alternative AR lag lengths, p and q, and shows that a specification

with p = q = 2 performs best on average according to this metric.

4.1. Occupation Clusters

Our model identifies two clusters of occupations with distinct cyclical patterns in employment

dynamics. Panel B of Figure 1 illustrates that the identifying feature of cluster 2 is the relatively

steady average growth in the employment/population ratio throughout the entire period 1976-

2013. The employment share of this group grew from less than 20% in 1976 to more than 30% in

2013. Moreover, employment of this group does not appear particularly “cyclical”.

On the other hand, cluster 1 groups occupations with employment patterns that differ dramat-

ically from those of cluster 2. First, the employment/population ratio of this group has declined

from around 33% at its peak in 1980 to about 25% at its trough in 2013. Second, employment in

8In Appendix B, we graphically illustrate the retained draws for selected model parameters after conditioning on
the specific cluster assigment tabulated in Table 3.
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these occupations appears highly “cyclical”. Growth rates obviously differ between recessions

and expansions, and there seems to be a change in these growth rates around 1990.

Overall, the groups identified by our preferred model specification resemble the patterns in

employment dynamics presented by Jaimovich and Siu (2012), as displayed in panel A of Figure

1.9 While the aggregate levels in panels A and B of Figure 1 don’t perfectly match up, the long

run growth patterns are virtually the same. Both aggregation schemes indicate roughly a 50%

increase in the employment/population ratio for cluster 2 (non-routine in Panel A) and about a

25% decrease for cluster 1 (routine) over the period 1980 to 2013. There are two major reasons for

why the aggregate level series don’t match up exactly. First, our consistent panel does not cover all

occupations, since some occupations are simply not available consistently over the entire sample

period (see Dorn, 2009, for details). Second, our model is based on adjusted growth rates instead of

the actual level series. This comes at the expense of losing some information about the “true” level

of employment but allows for a straightforward way to accommodate the administrative changes

in the occupation classification. However, since the focus of our analysis are the dynamics in group-

specific employment, this choice does not dramatically affect our inference or our conclusions (see

the strong similarity in the dynamic patterns between panel A and panel B of Figure 1).

Our clustering approach at the disaggregated level allows us to further analyze the composi-

tion of the two identified occupation groups. The first two columns of Table 3 tabulate the pos-

terior assignment probabilities for the two factors. Notice that almost all of the 21 Dorn (2009)

occupation groups are nearly perfectly assigned to one of the two clusters. Only a handful of

occupations have an assignment probability of less than 2/3. Panels A and B respectively group

occupations for which the posterior probability of being determined by factors 1 and 2 is larger

than 50%.10

Notice that there are two service occupations (C.35 and C.1) that essentially have a 50/50

9Note that both panels in Figure 1 simply plot the data, but for different aggregation schemes. Panel A is based on
the same data and aggregation as in Jaimovich and Siu (2012), while in panel B we use our detailed CPS dataset and
aggregate the employment/population ratios in the two clusters of occupations listed in Table 3.

10Except for the particular assignemnt of the few occupaions that are not decisevly associated with either cluster, this
classification is robust across all other model specifications with K = 2 factors that we considered. As discuessed in
the text, the “unassigned” occupations are quantitatively small and show little growth throughout the entire sample.
Therefore, they are not likely to have much influence on aggregate employment dynamics.
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Table 3: Cluster Analysis: Factor Assignment

Assignment δi Factor Loading λik|δ50

21 Occupation Groups (Dorn, 2009) Pr[δi = 1|y] Pr[δi = 2|y] Mean Median 68% Coverage

A. Factor 1 (Routine)

F.1 Machine Operators, Assemblers, and Inspectors 0.999 0.001 1.069 1.072 0.950 1.191
E.2 Construction Trades 0.999 0.001 0.883 0.890 0.770 0.991
E.4 Precision Production 0.999 0.001 0.840 0.844 0.750 0.939
F.2 Transportation and Material Moving 1.000 0.000 0.686 0.684 0.617 0.754
E.1 Mechanics and Repairers 1.000 0.000 0.626 0.622 0.552 0.695
B.2 Sales 0.975 0.025 0.466 0.463 0.413 0.516
B.3 Administrative Support 0.760 0.240 0.243 0.250 0.170 0.322
C.31 Food Preparation and Service 0.608 0.392 0.168 0.167 0.100 0.240

B. Factor 2 (Non-Routine)

E.3 Extractive 0.229 0.771 0.941 0.940 0.544 1.361
A.2 Management Related 0.000 1.000 0.818 0.821 0.729 0.918
C.37 Misc. Personal Care and Service 0.031 0.969 0.800 0.785 0.574 1.013
A.1 Executive, Administrative, and Managerial 0.001 0.999 0.599 0.598 0.532 0.675
C.36 Child Care Workers 0.130 0.870 0.586 0.567 0.411 0.750
C.32 Healthcare Support 0.076 0.924 0.444 0.439 0.359 0.536
A.3 Professional Specialty 0.005 0.995 0.374 0.379 0.329 0.425
C.2 Protective Service 0.335 0.665 0.329 0.325 0.256 0.411
C.33 Building/Grounds Cleaning/Maintenance 0.105 0.895 0.296 0.290 0.198 0.388
C.34 Personal Appearance 0.326 0.674 0.241 0.245 0.128 0.363
B.1 Technicians and Related Support 0.144 0.856 0.239 0.240 0.171 0.307
C.35 Recreation and Hospitality 0.476 0.524 -0.061 -0.061 -0.251 0.142
C.1 Housekeeping and Cleaning 0.418 0.582 -0.257 -0.259 -0.376 -0.141

Notes: The first two columns report the fraction of posterior draws that classify each occupation into either factor k = 1 or k = 2.
Panel A groups occupations with Pr[δi = 1|y] > 1/2 while panel B collects those with Pr[δi = 2|y] > 1/2 based on 50, 000

retained posterior draws. The last three columns report the posterior mean, median, as well as the upper and lower bound of the
68% posterior coverage region for the factor loading λik|δ50, conditional on the median factor assignment, δ50. Within each panel,
the occupations are sorted in decreasing order by their conditional factor loading λik|δ50.

chance of belonging to either factor. It turns out that employment in these occupations is essen-

tially constant (in levels) throughout the entire sample and that their share in total employment

is very small. Therefore, these occupations do not contain much information about the factor dy-

namics, which is also reflected in an insignificant factor loading for the recreation and hospitality

group (C.1).

In addition to the assignment probabilities, the last four columns of Table 3 report the poste-

rior mean and median factor loading, λik|δ50, as well as the associated 68% posterior coverage
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interval, conditional on the median factor assignment, δ50.11 Notice that all but one of these in-

tervals exclude zero. The occupation with an insignificant factor loading is precisely one of the

two service occupations for which the assignment probability is not decisive. If we estimate spec-

ifications with K > 2, the assignment classification deteriorates considerably for all occupations,

which further suggests that the “unassigned” occupations simply experience very idiosyncratic

employment dynamics rather than being influenced by an additional factor.

Within panels A and B of Table 3, we sort occupations in decreasing order of the posterior

mean/median factor loading. This provides a measure of the “intensity” with which a given occu-

pation is influenced by the common factor dynamics and we observe that a considerable amount

of heterogeneity is present across the factor loadings. This measure indicates that employment

dynamics for an occupation with a factor loading close to zero are mostly driven by idiosyncratic

dynamics, captured by the mean zero AR(q) process εit in our model.

The long run patterns (see Figure 1) as well as the composition (see Table 3) of the two identi-

fied clusters are consistent with recent evidence presented in Autor and Dorn (2013). They show

that polarization in the US labor market over the period 1980-2005 is mainly driven by the growth

in service and in “abstract cognitive” occupations combined with the decline in “routine” occupa-

tions, which are easily replaceable by technology or offshoring. In line with their evidence, panel

B of Table 3 illustrates that cluster 2 largely consists of managerial and professional specialty oc-

cupations and of a number of service occupations. However, our classification also suggests that

some service occupations, like “recreation and hospitality” and “housekeeping and cleaning”, are

not decisively assigned to either factor, and that one service occupation (“food preparation and

service”) is assigned to cluster 1 with a 60% probability. On the other hand, one traditional “blue

collar” occupation (“extractive”) is decisively assigned to factor 2. This may very well be driven

by a rising demand for highly skilled engineers in areas such as “fracking”, off-shore drilling, and

other recent high-tech resource extraction techniques.

11That is, these moments are computed from joint posterior draws for which Pr[δi = 2|y] > 1/2 and for which each
occupation, i, is assigned to one of the two clusters exactly as in Table 3.
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Figure 3: Cluster Specific vs. Idiosyncratic Dynamics (Full Sample)

(A) Factor Specific Growth: Factor 1 (B) Factor Specific Growth: Factor 2
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(C) Idiosyncratic Shocks: Factor 1 (D) Idiosyncratic Shocks: Factor 2
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Notes: Panels A and B illustrate the median of f̂kt (green) as well as f̂kt− ν̂kt (red) for the two factors k ∈ {1, 2}. Panels
C and D depict the occupation specific idiosyncratic shocks aggregated over all occupations according to the median
assignment probability within each cluster, ε̂kt =

∑
i|δ̂i=k

ε̂it for k ∈ {1, 2}.

4.2. Cluster-Specific Cyclical Dynamics

Conditional on the median factor assignment from Table 3, we now shift our focus to the de-

composition of employment dynamics into a “structural” (factor specific) and an “idiosyncratic”

(occupation-specific) component. Starting with the structural component, we illustrate the esti-

mated factor specific growth in the employment/population ratio, f̂tk for k ∈ {1, 2}, in panels A

and B of Figure 3 (“shocks”). These panels also graphically illustrate the importance and statistical
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properties of the factor specific residuals, νkt, by plotting f̂kt− ν̂kt = µ̂kSt + φ̂k1f̂k,t−1 for k ∈ {1, 2}

(“no shocks”).

Two important features of the factor-specific dynamics are immediately apparent from the “fil-

tered” series, labeled “no shocks”: first, both factors feature substantial systematic cyclical varia-

tion, which is not immediately visible in Figure 1. Second, factor 1 appears to have become “more

cyclical” after 1990, while factor 2 became “less cyclical”.12 Finally, growth rates in both clusters

are lower after 1990 both in expansions and recessions. Specifically, for factor 1 the decrease in

growth rates has been more pronounced in recessions, while for factor 2 the decrease has been

more pronounced in expansions. We will further investigate these factor and state-specific breaks

in section 4.3.

To illustrate the “idiosyncratic” component of employment dynamics, panels C and D of Fig-

ure 3 plot the estimated idiosyncratic shocks, aggregated over all occupations according the me-

dian posterior assignment probability within each cluster, ε̂kt =
∑

i|δ̂i=k ε̂it for k ∈ {1, 2}. One

interesting feature of this illustration is that negative idiosyncratic shocks during the most recent

recessions for factor 1 have been substantially more pronounced than in the past. We will discuss

this aspect further below in our counterfactual analysis.

Since we are ultimately interested in aggregate employment dynamics, Figure 4 illustrates

what the estimated dynamics imply for cluster-specific employment levels. To construct these

graphs, we first recursively compute the occupation-specific implied level series (setting εit = 0

for all t) for each of the retained joint posterior draws, conditional on the median posterior factor

assignment probability δ50 = {δ̂1, . . . , δ̂N}:

ỹ
(m)
i,t =

(
1 + λ̂

(m)

δ̂i
f̂
(m)

δ̂i,t

)
ỹ
(m)
i,t−1 for all draws m|δ50, (14)

where m is the respective MCMC draw, ỹ(m)
i,0 = yi,0 is the observed initial level of the employ-

ment/population ratio for occupation i, and ỹ
(m)
i,t denotes the implied level in period t. Based on

these occupation-specific implied level series we then aggregate across occupations within each

12When we say “more cyclical” we mean that the difference between the median growth rates of expansions and
recessions has increased.
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Figure 4: Structural Employment Dynamics (Full Sample)

(A) Factor 1 (B) Factor 2
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Notes: Conditional on Pr[δ̂i|y] > 0.5, the figure shows the cluster-specific observed aggregate employment/population
ratio and the estimated implied aggregate employment/population ratio, setting εit = 0. We construct these aggregates
by summing occupation-specific implied levels. The posterior coverage region is obtained from quantiles of the empirical
posterior implied by all MCMC draws, conditional on the median factor assignment, δ50.

cluster:

Ŷ
(m)
kt =

∑
i|δ̂i=k

ỹ
(m)
i,t for all m = 1, . . . ,M and k = 1, 2, (15)

These implied cluster-specific level series capture the predictive ability of the common factor dy-

namics, while the deviations from observed employment levels are explained by the accumulation

of the occupation-specific idiosyncratic component, εit. We utilize the quantiles of the empirical

posterior distribution of the cluster-specific level series to compute posterior coverage regions.13

Figure 4 shows that, for factor one, the data lie within the 95% posterior coverage region almost

throughout the entire sample. This implies that the common dynamics of occupations in cluster 1

capture a large portion of the aggregate dynamics in employment. In fact, Table 2 reveals that the

structural component of factor 1 explains about 61% of the variation in the data. The structural

component of factor 2 captures less of the observed aggregate employment dynamics, given that

the data series lies marginally outside the 95% coverage region for some quarters in the second

half of the 1990s (see panel B of Figure 4). Nevertheless, the explained variance share of the

13Note that, while inference for this simulation is conditional on the median factor assignment, δ50, we fully account
for conditional uncertainty in all other parameters.
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structural component in cluster 2 amounts to about 59% (see Table 2). Therefore, as suggested by

Jaimovich and Siu (2012), a significant structural break in the common component of employment

dynamics has the potential to significantly affect aggregate employment dynamics. In fact, our

model identifies a significant structural break in the factor dynamics around the NBER recession

in 1990 and we will discuss its properties and implications in Sections 4.3 and 4.4.

Despite the importance of the structural component, Figure 4 also reveals that there is a sig-

nificant amount of variation originating from the idiosyncratic component, εit, especially since

the recession in 2001. Evidently, both the 2001 and 2008 recessions were “unusually” severe for

occupations associated with factor 1, given that the common factor dynamics over-predict the

data development. On the other hand, common dynamics in factor 2 significantly under-predict

the data in a number of periods, especially throughout 1995-2000, while developing largely “in

parallel” thereafter.

This illustrates that our model provides a convenient framework to disentangles the factor-

specific from the idiosyncratic component of employment dynamics. In Section 4.4, we will utilize

this aspect of our model to draw inference about the importance of a structural break in the com-

mon component for explaining aggregate employment dynamics after the 1990 recession, while

simultaneously controlling for the idiosyncratic variation in εit.

4.3. A Structural Break in the Cluster Dynamics

Inspired by panel A of Figure 1, Jaimovich and Siu (2012) have recently hypothesized that

the marked change in the business cycle dynamics of “routine” occupations around 1990 may

constitute a structural break. They then provide a counterfactual based on descriptive statistics to

illustrate that the apparent break in the cyclical dynamics of “routine” jobs alone has the potential

to explain the three “jobless recoveries” since 1990.

Our econometric approach allows us to address this question more formally. Specifically, the

Markov switching specification allows for a structural break in the cyclical dynamics of both fac-

tors and our posterior estimates provide evidence for such a break at the end of the long-lasting

expansion during the 1980s (see Figure 5).
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Figure 5: Markov Switching
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Notes: The figure illustrates the estimated assignemnt probabilities (mean of retained MCMC
draws) for the four latent states of the economy: pre-break recession (state 1), pre-break
expansion (state 2), post-break recession (state 3), post-break expansion (state 4).

Figure 5 depicts the estimated posterior state probabilities and reveals an almost perfect match

with the NBER’s business cycle dating committee’s classification. The state probabilities are jointly

identified from variation in the employment/population ratios and variation in real GDP growth.

In particular, GDP growth mainly helps to identify expansions and recessions, while the factor

dynamics—inferred from dynamics in the individual employment/population ratios—identify

the structural break. Specifically, Figure 5 reveals that the structural break occurred during the

1990/91 recession, as our posterior estimates assign this recession to state 3. The break date is

obviously influenced by our informative prior on timing, but the differences in the estimates of

several structural parameters confirm the existence of a break.

To discuss the source of the structural break we plot the posterior distributions of the esti-

mated factor- and state-specific means, µkSt , in Figure 6. Panels A.1 and B.1 compare the posterior

distribution of pre-1990 and post-1990 growth rates for factor 1 during expansions and recessions,

respectively. Panels A.2 and B.2 plot the same comparisons for factor 2. Finally, panels C.1 and

C.2 show the posterior distributions of the difference between post- and pre-1990 state-specific
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Figure 6: Structural Breaks in Estimated Factor Means
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growth rates in factor 1 and 2, respectively..

Several insights are worth noting: First, after 1990, both clusters of occupations experienced

lower average growth during recessions and expansions. Second, and somewhat surprisingly, fac-

tor 2 (non-routine) occupations experienced the most pronounced decrease in employment growth

during expansions after 1990, while factor 1 occupations (routine) experienced the largest decline

in growth during post-1990 recessions. In particular, the state-specific growth rates in panel A.1

and B.1 suggest that the more pronounced employment losses during recessions after 1990 were

no longer offset by positive growth rates during expansions. Furthermore, panel A.2 and B.2 show

that, although employment in factor 2 occupations was still fairly immune to recessions, average

employment growth during expansions was significantly weaker after 1990.

4.4. Can the Structural Break Explain Jobless Recoveries?

We use our model to formally assess whether the structural break in the cluster-specific struc-

tural component—discussed in Section 4.3—has the potential to explain the “jobless recoveries” in

the aftermath of the last three US recessions. To assess this hypothesis, we consider the following

thought experiment: If state specific average factor growth after 1990 (µk3 and µk4) had remained

the same as before 1990 (µk1 and µk2), how would the employment/population ratio have evolved

after 1990?

While this thought experiment is similar to the one analyzed by Jaimovich and Siu (2012), ours

differs in several respects. First, Jaimovich and Siu (2012) consider a structural break in post-1990

average employment growth for routine jobs and during recoveries only. In light of the estimates

displayed in Figure 6, we find it more natural to allow for a structural break in the dynamics for

both occupation groups and in both states of the economy. Job polarization is a phenomenon that

works jointly through the dynamics of routine and non-routine occupations. Thus, if forces like

routine biased technical change or a trend toward offshoring are truly the ultimate cause for the

observed structural break—and in turn job polarization—, then it seems important to account for

structural changes in the dynamics of both routine and non-routine jobs, as one may offset the

other.

24



Second, although we are ultimately interested in the effect of a structural change in the common

component of routine and non-routine jobs, we also detect a substantial amount of idiosyncratic

variation in employment growth (see Figure 4), captured by εit in our model. We believe that a

clean test should control for this idiosyncratic variation and we therefore isolate common from

idiosyncratic components which jointly drive aggregate employment dynamics. Finally, our em-

pirical framework allows us to draw formal posterior inference about all estimated effects.

To construct our counterfactual, we simulate factor dynamics for the post-1990 period under

the assumption that µ̃k3 = µ̂k1 (recessions) and µ̃k4 = µ̂k2 (expansions), where µ̂ki, i = 1, 2,

denotes the factor-specific growth in the respective business cycle states prior to 1990.14 Based on

the resulting hypothetical factor series, f̃kt = µ̃kSt+φ̂kf̃kt−1+ ν̂kt, and conditional on the estimated

occupation classification, we then compute two versions of the occupation-specific employment

growth: one in which we assume that εit = 0 for all t (“no shocks”),

yNSit = λ̂itf̃δ̂it for all i,

and one in which we postulate that εit = ε̂it (“shocks”), that is

ySit = yNSit + ε̂it for all i,

where ε̂it = yit − λ̂itf̂δ̂it are the idiosyncratic shocks implied by the estimated factors. The cluster-

specific aggregate of these shocks is illustrated in panels C and D of Figure 3.

Panel A of Figure 7 illustrates the counterfactual implied cluster-specific employment level

without idiosyncratic shocks (based on yNSit with εit = 0), while panel B depicts the implied

cluster-specific employment when we control for idiosyncratic shocks (based on ySit with εit =

ε̂it). In both thought experiments we start the simulation at the trough of the 1990/91 recession

(1991m3). Panel A shows that the data in cluster 1 lie outside the 95% coverage region during

14Generally, we denote all MCMC estimates for the pre and post-break period with a “hat”. To draw proper inference
on the counterfactuals, we compute implied employment levels for each of the MCMC draws, m|δ50, and use the
resulting empirical posteriors to construct coverage regions. For the ease of notation we omit m for the rest of this
section and we ask the reader to keep this in mind.
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Figure 7: Counterfactual Experiment: Individual Groups

A. Counterfactual: No Idiosyncratic Shocks
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B. Counterfactual: Controlling for Idiosyncratic Shocks

(B.1) Factor 1 (Routine) (B.2) Factor 2 (Non-Routine)
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Notes: Panel A illustrates inference for a counterfactual experiment, in which the factors fkt are governed by the systematic component
of the the pre-break dynamics (µk3 = µ̂k1 during recessions and µk4 = µ̂k2 during expansions) with εi,t = 0 for all t. In panel B we
show inference for a thought experiment in which we recompute the counterfactual from panel A but under the assumption that the
idiosyncratic shocks are those observed since 1990, εit = ε̂it. The aggregate versions of these estimated shocks across occupations
within each cluster are illustrated in panels C and D of Figure 3.

most of the sample period, while the counterfactual prediction for cluster 2 only starts to diverge

after 2000.15

15In fact, this reveals an interesting insight, and a possible direction for future work. Visual inspection of Figure 1
suggests that the two factors may in fact have experienced structural breaks at different points in time. Factor 1 around
1990 and factor 2 around 2000. This would explain why our counterfactual prediction in panel B of Figure 7 tracks the
data perfectly until 2000 and starts to deviate thereafter. While we consider this an interesting possibility to improve
the model fit, this does not invalidate our thought experiment, especially after we control for the variation absorbed in
the idiosyncratic shocks. Therefore, we leave this modification for future research.
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This suggests that, in the absence idiosyncratic shocks, employment growth in both routine

and non-routine jobs would have likely been significantly stronger than observed in the data, at

least until the onset of the great recession in 2008. However, as the red line in all panels indi-

cates, controlling for idiosyncratic variation (ε̂it) substantially changes the median predictions for

employment in both clusters. In particular, the recessions starting in 2001 and in 2008 were signif-

icantly more severe than predicted by pre-1990 common factor dynamics. In contrast, controlling

for idiosyncratic variation in non-routine jobs reveals that positive idiosyncratic shocks partially

offset the negative common growth effect until 2000.15

Panel B shows the posterior coverage regions for cluster-specific implied levels when we con-

trol for idiosyncratic shocks (based on ySit with εit = ε̂it). Despite the substantial downward cor-

rection of the median employment level for routine jobs, the data still lie outside the 68% posterior

coverage region. Since idiosyncratic shocks were mostly favorable for non-routine occupations,

the data now lie outside the 95% coverage region almost throughout the entire prediction horizon

in panel B.2.

These alternative thought experiments reveal that it is important to both account for struc-

tural changes in factor dynamics and to control for idiosyncratic shocks. Ignoring the structural

change employment dynamics of non-routine occupations biases the aggregate effects of the struc-

tural change downward. Failing to control for idiosyncratic variation biases the estimated effect

on routine jobs upward and the effect on non-routine jobs downward. Thus, depending on the

relative magnitude of these two distortions, the aggregate bias may be positive or negative.

While these decompositions uncover the cluster-specific effects, we ultimately care about the

aggregate effect on employment growth in the aftermath of the last three recessions. Therefore,

Figure 8 investigates the aggregate employment effects of the structural changes in the cluster-

specific factor dynamics. While panel A is the aggregate version of the underlying effects illus-

trated in Figure 7, panels B and C alternatively start the simulations at the trough of the 2001 and

the 2008/2009 recessions, respectively. These alternative thought experiments are initialized with

the observed level for the employment/population ratio at the troughs of each recession. Without

controlling for idiosyncratic shocks (panels A.1, B.1, and C.1) the data lie outside the 68% posterior

27



Figure 8: Counterfactual Experiment: Aggregate

A. Trough of the 1990/91 Recession (1991m3)
(A.1) No Shocks (A.2) Idiosyncratic Shocks
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B. Trough of the 2001 Recession (2001m11)
(B.1) No Shocks (B.2) Idiosyncratic Shocks
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C. Trough of the 2008/09 Recession (2009m6)
(C.1) No Shocks (C.2) Idiosyncratic Shocks
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Notes: Panesl A.1, B.1, and C.1 illustrate counterfactual experiments, in which the factors fkt are governed by the system-
atic component of the the pre-break dynamics but with εi,t = 0 for all t. In panels A.2, B.2, and C.2 we recompute these
counterfactuals but assuming that the idiosyncratic residuals, εit, are those observed in the post-break period.
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coverage region during all three recoveries and are outside the 95% coverage region after both

the 2001 and the 2008/2009 recessions. After controlling for idiosyncratic shocks (panels A.2, B.2,

and C.2) the data still lie outside at least the 90% coverage region for all three simulations. In our

view, these thought experiments provide formal evidence for the relevance of structural change

in explaining the unusually slow job growth during the “jobless recoveries” since 1990.

5. Conclusions

We provide a framework to disentangle group-specific (common) employment dynamics from

occupation-specific (idiosyncratic) ones. Our approach simultaneously identifies clusters of jobs

that share common cyclical patterns and estimates an empirical model for the group-specific dy-

namic patterns. In particular, we employ a Markov switching structure with which we distinguish

expansions from recessions and allow for a potential structural break.

Using detailed occupation level data from the CPS we detect two clusters of occupations that

roughly coincide with occupation groups that Autor et al. (2003) label “routine” and “non-routine”

jobs, respectively. Moreover, we find a significant structural break in the cluster-specific dynam-

ics of both routine and non-routine occupations around the 1990/91 recession. Motivated by

Jaimovich and Siu (2012), we then assess the impact of this structural break in the common group

dynamics on employment growth in the three recoveries since 1990. We find that, in the absence

of this structural break, aggregate employment in the US would have recovered significantly more

strongly than observed in the data during these “jobless recoveries”.

While our analyses do not provide any new insight into the causes of the structural break

itself, they nevertheless highlight that the observed “jobless recoveries” are at least in part due

to structural change. The particular form of structural change that we document here is closely

related to the widely discussed phenomenon of labor market polarization (e.g. Autor and Dorn,

2013), which itself is likely caused by routine biased technological change (RBTC) or the rising

importance of offshoring and international trade (e.g. Autor et al., 2013). Therefore, our results

suggest that undirected countercyclical policy measures alone—like expansive monetary policy—

might not be sufficient to ensure a sustainable recovery in the US labor market after the great
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recession of 2008/2009.
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Appendix A. Posterior Distributions

To derive the posterior distributions, we first condense the variables in model (1)-(4) to:

Ψ(L)yt = y∗t = λft − λ� (ψ·1 ⊗ 11×k) ft−1 − · · · − λ� (ψ·q ⊗ 11×k) ft−q + εt (A.1)

εt ∼ N (0,Σε) , Σε diagonal

ft = µSt + Φ1ft−1 + · · ·+ Φpft−p + ηt, ηt ∼ N (0, Ik) (A.2)

where � and ⊗ represent the Hadamar and the Kronecker product, respectively. The row vector

11×k contains as elements k ones. Note that the matrices Φj are diagonal and that each row of λ,

λi contains only one non-zero element, i.e. λik 6= 0 if δi = k and λ = 0 otherwise. We stack the

observations to obtain the matrix representation:

Y = ΛF + ε, ε ∼ N (0, IT−q ⊗ Σε) (A.3)

ΦF = µ+ η η ∼ N (0,Ω) (A.4)

where Y =
(
y∗q+1

′, . . . , y∗T
′)′ contains all observed data, F =

(
f ′q+1−max(p,q), . . . , f

′
q+1, . . . , f

′
T

)′
stacks all unobserved factors, including initial states. The matrices Λ and Φ are respectively of

dimension (T − q)N × (T + d) k and square (T + d)k, with d = (p − q)I{p>q}. Typically, these

matrices are sparse and banded around the main diagonal:

Λ =


−λ� (ψ·q ⊗ 11×k) . . . λ 0 . . . 0

0(T−q)N×dk
. . . . . . . . .

...

0 . . . 0 −λ� (ψ·q ⊗ 11×k) . . . λ



Φ =



Ip ⊗ Ik 0 . . .

− Φp . . . −Φ1 Ik 0 . . .

. . .

. . . 0 −Φp . . . −Φ1 Ik


, Ω =


Ip ⊗ Σ0

η 0 . . .

0

... IT+d−p ⊗ Ik
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where Σ0
η represents the variance of the initial states (see below). The vector µ includes the state-

dependent intercept:

µ =



0pk×1

µSq+1

...

µST



Appendix A.1. Sampling the Factors F

We adapt the sampler proposed in Chan and Jeliazkov (2009) to the present setup, which al-

lows to sample fT in one sweep. Given the representation in (A.3)-(A.4), the complete data likeli-

hood has a normal density

f (Y|F, θ) ∼ N (ΛF, IT−q ⊗ Σε) (A.5)

For the unobserved factors, from (A.4) we obtain the following prior:

F|S, θ ∼ N
(
f0, F−10

)
(A.6)

f0 = Φ−1µ, F0 = Φ′Ω−1Φ

In S, the variance of the initial states, Σ0
η, may be chosen to be diffuse. Here, we will choose Σ0

η

to be a multiple of the identity matrix, Σ0
η = κIk.

Combining the prior with the likelihood, the posterior is:

F|Y,S, δ, θ ∼ N
(
f, F−1

)
(A.7)

F = F0 + Λ′
(
IT−q ⊗ Σ−1ε

)
Λ

f = F−1
(
Λ′
(
IT−q ⊗ Σ−1ε

)
Y + F0f0

)
To avoid the full inversion of F we take the Cholesky decomposition, F = LL′, then F−1 =

L−1L−1
′. We obtain a draw F by setting F = f+L−1ν, where ν is a (T +d)k vector of independent

draws from the standard normal distribution.
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Appendix A.2. Sampling the States

To derive the sampling scheme for ST , recall that the time-varying matrix ξt, with elements

ξlk,t, l, k = 1, . . . ,K representing the transition probability from state l in t − 1 to state k in t is

subject to zero restrictions:

ξt =



ξ11,t ξ12,t 0 ξ14,t

ξ21,t ξ22,t ξ23,t 0

0 ξ33,t ξ34,t

ξ43,t ξ44,t


(A.8)

where the elements ξlk,t are given by (7).

We express the posterior π (S|f ,x, θ) as π (S|f , ξ, θ−γ) and factorize it

π (S|f , ξ, θ−γ) = π (ST |fT , ξT , θ−γ)
T−1∏
t=1

π (St|ft, ξt, θ−γ)π
(
St+1|St, ξt+1

)
The filter density π (St|ft, ξt, θ−γ) is obtained by iterating forward through t = 1, . . . , T

π (St|ft, ξt, θ−γ) ∝ f (ft|St, θ−γ)π (St|ft−1, ξt, θ−γ)

π (St|ft−1, ξt, θ−γ) = ξ′tπ
(
St−1|ft−1, ξt−1, θ−γ

)
The prior distribution of the initial state π (S0) is assumed to be uniform over the first two states:

P (S0 = k) = 1/2, k = 1, 2 and 0 for k = 3, 4.

State ST is sampled out of π (ST |fT , ξT , θ−γ). We proceed backwards t = T −1, . . . , 0 and draw

from the posterior sampling density

π (St|ft, St+1, ξt, θ−γ) ∝ π (St|ft, ξt, θ−γ) ξStSt+1,t+1

where ξStSt+1,t+1 extracts the column St+1 of the matrix ξt+1.
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Appendix A.3. Sampling the Parameters of the State Transition Distribution

The steps described in the following yield a draw from π (γ|S,x) based on the difference in

random utilities model (dRUM) representation.

Step (iii.a): Sample the (S − 1)T utility differences from π (ω|S, γ) =
∏S
s=2 π (ωs2, . . . , ωsT |S, γ)

The dRUM extension expresses the multinomial logit model as differences in the latent utilities

Sust associated to state s in period t, where

Sust = X′tγs + νst, for s = 2, . . . , S (A.9)

Su1t = ν1t, from the identification restriction γ1 = 0,

and νst follows a Type I extreme distribution. The extended vector X′t =
(
XtD

(1)
t−1, . . . , XtD

(S)
t−1

)
,

with D(s)
t = 1 if St = s and 0 otherwise, includes past state-specific information. The parameter

γs = (γ′1s, . . . , γ
′
Ss)
′ stacks all s-state relevant, state-dependent parameters, see (7). Forming the

differences wst = Sust − Su1t, given that the parameters of the reference transition are zero, γ1 = 0,

we obtain

wst = X′tγs + εst, εst ∼ Logistic, s = 2, . . . , S (A.10)

with εst = νst−ν1t. Working with this representation would be quite involving because, in contrast

to the error terms νst in (A.9), the error terms εst in (A.10) are not independent any more across

states. Therefore, Frühwirth-Schnatter and Frühwirth (2010) consider a partial representation of

the dRUM model, which relies on the observation that

St = s⇔ Sust > Su−s,t, S
u
−s,t = max

j∈S∗−s
Sujt (A.11)

i.e. that state s is observed if Sust is larger than the maximum of all other relevant utilities collected

in S∗−s. The relevant utilities are those which are related to states that are possible given the restric-

tions of the transition matrix in (7). For example, if St = 2 given state St−1 = 1, then the relevant

utilities would be the ones associated to the states 1 and 4, i.e. S∗−s = {1, 4}, because these are the
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Table A.4: Relevant states in S∗−s for St = s given St−1

St = 2 3 4
St−1= 1 2 2 3 4 1 3 4
S∗−s = {1,4} {1,3} {1,2} {4} {4} {1,2} {3} {3}

only states that could prevail in t beside state 2, see also table A.4.

For all states but the reference state we define the latent difference utilities ωst and the binary

observation D(s)
t :

ωst = Sust − Su−s,t, D
(s)
t = I{St = s}, ∀s ∈ S∗−1 (A.12)

Given the multinomial logit model for St, ωst has an explicit distributional form. Recall that

exp
(
−Su−s,t

)
∼ E

 ∑
j∈S∗−s

λjt

 (A.13)

where λjt = exp (X ′tγj) and define λ−s,t =
∑

j∈S∗−s
λjt. We then can write Su−s,t = log (λ−s,t)+ν−s,t,

where ν−s,t follows an extreme value distribution. Thus, the multinomial logit model has the

partial dRUM representation

ωst = Sust − Su−s,t = X′tγs − log (λ−s,t) + νs,t − ν−s,t

= X′tγs − log (λ−s,t) + εs,t, D
(s)
t = I{St = s} (A.14)

where νs,t and ν−s,t are i.i.d. and follow an EV distribution, and εs,t follows a logistic distribution.

The constant − log (λ−s,t) in (A.14) depends only on the parameters γ−s. Therefore, given ωTs =

(ωs1, . . . , ωsT ) and γ−s, we obtain a linear regression with parameter γs and logistic errors.

The sub-sampling steps can now be outlined explicitly. For each state s, we first sample the

latent utility differences ωTs from logistic distributions.16 Across s, we sample independently T

16ωst|ST , γs follows a logistic distribution truncated to [0, ∞) if St = s, and truncated to (−∞, 0] if St 6= s.
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values Wst from a uniform distribution Wst ∼ U [0, 1] and obtain

ωst = X′tγs − log (λ−s,t) + F−1ε

(
D

(s)
t +Wst

(
1−D(s)

t − πst
))

(A.15)

where πst = P
(
D

(s)
t = 1|γ

)
= 1 − Fε (−X′tγs + log (λ−s,t)) ∝ λst/λ−s,t; Fε (p) represents the cu-

mulative distribution function of the logistic distribution, and F−1ε (p) = log (p) − log (1− p) its

inverse.

Step (iii.b) Sample the components R(S−1)T from π
(
R(S−1)T |ω(S−1)T , γ

)
Given ω(S−1)T , the posterior of γs is derived based on (A.14), approximating the logistic distribu-

tion of the errors εst by a mixture of normal distributions with M components. The components

Rst are drawn from a multinomial distribution

P (Rst = r|ωst, γs) ∝
wr
dr

exp

{
−1

2

(
ωst + log (λ−s,t)−X′tγs

dr

)2
}

(A.16)

where r = 1, . . . , 6, and the respective component’s standard deviation dr and weightwr, are taken

from Frühwirth-Schnatter and Frühwirth (2010), Table 1.

Step (iii.c): Sample γ from π
(
γ|ω(S−1)T , R(S−1)T )

Conditional on the components RTs , model (A.14) becomes normal in γs:

ω̃st = ωst + log (λ−s,t) = X′tγs + εst, εst|Rst ∼ N
(
0, d2Rst

)
(A.17)

Assuming a normal prior for γs, π (γs) = N(g0, G0), conditional on ωTs and RTs the posterior is

normal, too:

π
(
γs|ωTs , RTs

)
= N (gs, Gs) (A.18)

Gs =

(
T∑
t=1

XtX
′
t/d

2
Rst +G−10

)−1
(A.19)

gs = Gs

(
T∑
t=1

Xtω̃st/d
2
Rst +G−10 g0

)
(A.20)
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Appendix A.4. Sampling the classification indicator and the rest of the pa-

rameters

1. To draw from π (δ|y,f ,ψ,σ) we sample independently over N from the discrete distribu-

tion in (13). The indicator δi is set equal to

k =

 K∑
l=1

I


 l∑
j=1

P (δi = j|·)

 ≤ U

+ 1

where I{·} is the indicator function, P (δi = j|·) are the normalized posterior indicator prob-

abilities obtained from (13) and U ∼ U(0, 1) is a draw from the uniform distribution.

2. The posterior distributions of the remaining parameters are standard distributions:

(a) π(λ|y,f , δ,σ, ψ) =
∏N
i=1N(li,Li), where

Li =
(
σ−2i

∑
f∗iδit

2 + L−10

)−1
, li = Li

(
σ−2i

∑
y∗itf

∗
iδit

+ L−10 l0
)

(b) π(ψ|y,f , δ,σ, λ) =
∏N
i=1N(qi, Qi)I{Z(ψi)>1}, with

Qi =
(
σ−2i ε′i,−1εi,−1 +Q−10

)−1
, qi = Qi

(
σ−2i ε′i,−1εi +Q−10 q0

)
I{Z(ψi)>1}

and where εi and εi,−1 are, respectively, the appropriately designed left- and right-hand

side matrices of the regression model:

εit = ψ1εi,t−1 + · · ·+ ψqεi,t−q + εit, εit ∼ N(0, σ2i )

(c) π(φ,µ|f ,S)
∏K
k=1N(pk, Pk)I{Z(φk)>1}I{µk1<µk2,µk3<µk4}, with

Pk =
(

[fk,−1 D]′ [fk,−1 D] + diag (P0,M0)
−1
)−1

(A.21)

pk = Pk

(
[fk,−1 D]′ fk + diag (P0,M0)

−1 vec (p0,m0)
)

(A.22)

and where fk, fk,−1, D are respectively, the appropriate matrices of the regression
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model (D(s) = 1 if St = s and 0 otherwise):

fkt = φ1fk,t−1 + · · ·+ φpfk,t−1 + µ1D
(1)
t + · · ·+ µ4D

(4)
t + νt, νt ∼ N(0, 1)

(d) π(σ|y,f , δ,ψ, λ) =
∏N
i=1 IG(ei,Ei) where

ei = e0 + 0.5(T − q), Ei = E0 + 0.5
T∑

t=q+1

ε2it

Appendix B. Sampler Convergence
Figure B.9: State Dependent Mean of Factor 1

(A) Pre-1990 Recession (B) Post-1990 Recession
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Notes: The graphs illustrate the retained sample of posterior draws for µkSt in which the median cluster assignemnt is sampled, i.e.,
when δ = δ50.
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Figure B.10: State Dependent Mean of Factor 2

(A) Pre-1990 Recession (B) Post-1990 Recession

−
1

0
1

2

M
e
a
n
: 
F

a
c
to

r 
2
, 
P

re
−

R
e
c
e
s
s
io

n

0 500 1000 1500

Posterior Draw
−

1
−

.5
0

.5
1

1
.5

M
e
a
n
: 
F

a
c
to

r 
2
, 
P

o
s
t−

R
e
c
e
s
s
io

n
0 500 1000 1500

Posterior Draw

(A) Pre-1990 Expansion (B) Post-1990 Expansion

−
1

0
1

2

M
e
a
n
: 
F

a
c
to

r 
2
, 
P

re
−

E
x
p
a
n
s
io

n

0 500 1000 1500

Posterior Draw

−
.5

0
.5

1
1
.5

M
e
a
n
: 
F

a
c
to

r 
2
, 
P

o
s
t−

E
x
p
a
n
s
io

n

0 500 1000 1500

Posterior Draw

Notes: The graphs illustrate the retained sample of posterior draws for µkSt in which the median cluster assignemnt is sampled, i.e.,
when δ = δ50.
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