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Abstract

Standard models of tax evasion implicitly assume that evasion is either fully detected,
or not detected at all. Empirically, this is not the case, casting into doubt the traditional
rationales for interior evasion choices. I propose two alternative, dynamic explanations for
interior tax evasion rates: Fines depending on the duration of an evasion spell, and different
vintages of income sources subject to aggregate risk and fixed costs when switched between
evasion states. The dynamic approach yields a transparent representation of revenue losses
and social costs due to tax evasion, novel findings on the effect of policy on tax evasion, and
a tractable framework for the analysis of tax evasion dynamics.

Keywords: Dynamic tax evasion; detection risk; duration dependent fine; inaction range;
optimal taxation.
JEL Code: E6, H2.

1 Introduction

Illegal, intentional underreporting of income reduces the income tax revenue for the U.S. De-
partment of the Treasury by about 15 to 20 percent. In other developed economies, the revenue
loss due to tax fraud appears to be of the same order of magnitude, if not larger.1 Not only is
the volume of tax evasion and semi-legal tax avoidance quantitatively important, the elasticity
of evasion and avoidance is also high. In fact, evasion and avoidance may be at least as relevant
for tax policy as the labor supply or savings responses on which traditional public finance has
its focus.2

Existing theories of tax evasion emphasize risk aversion or endogenous detection probability
in order to rationalize the observation that households evade some, but typically not all, taxes.3

∗I have benefited from comments by Emmanuel Saez, three anonymous referees, Per Krusell, Claes Trygger, and
participants at seminars and the 2002 SED conference. Editorial assistance by Christina Lönnblad is gratefully
acknowledged.

†106 91 Stockholm, Sweden. E-mail: dirk.niepelt@iies.su.se; ph: +46 8 162527; fax: +46 8 161443.
1For estimates of the tax gap in the U.S. and other countries, see Andreoni, Erard and Feinstein (1998) or

Slemrod and Yitzhaki (2002) and the sources cited therein. These estimates abstract from hypothetical tax
revenues from illegal sources of income; see also Cowell (1990).

2See, for example, MaCurdy (1992), Slemrod (1992), Feldstein (1995), Agell, Englund and Södersten (1996),
and Auerbach and Slemrod (1997).

3The seminal papers are Allingham and Sandmo (1972) and Yitzhaki (1974), building on Becker’s (1968) work.
Andreoni et al. (1998) and Slemrod and Yitzhaki (2002) review the literature.
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None of these factors is sufficient, however. In fact, the finding of an interior evasion rate in the
standard model crucially depends on the implicit assumption that evasion is either fully detected,
triggering fines proportional to the total amount of taxes evaded, or not detected at all. While
central for existing theories of tax evasion, this “all-or-nothing” assumption is often implausible
(for example in the context of internationally diversified financial investments) and at odds with
the data (see below). But relaxing the assumption and replacing it with the opposite extreme
of uncorrelated detection risk, results in a corner solution because risk aversion or endogenous
detection probability no longer give rise to convex costs of evasion.

This paper argues that there are other forces at work that push towards an interior evasion
rate, and that these forces arise from dynamic considerations. I explore two mechanisms: The
first relies on fines upon detection of evasion that depend on the duration of an evasion spell.
Such fines, for example as a function of the cumulative evaded tax, imply that privately optimal
evasion choices are characterized by a stopping time: Income is first evaded, and later reported,
in order to maximize the expected return net of taxes, fines and other costs. The second
mechanism relies on a cross-section of vintages of otherwise identical income sources that are
subject to aggregate return risk and fixed costs when switched between evasion states (i.e.,
between being declared or not declared to the tax authority). These fixed costs imply that old
sources of income are only sluggishly switched between evasion states, while the status of new
sources immediately responds to shocks. In equilibrium, the evasion rate is typically interior,
displays hysteresis, and strongly responds to changes in various institutional parameters.

The potential importance of dynamic considerations for a household’s tax evasion strategy
has been noted before. Allingham and Sandmo (1972, section 5) discuss an extension of their
static argument, with detection of evasion triggering investigations on prior reporting by the
tax authority. Engel and Hines (1999) document the empirical relevance of such a link between
detection and investigations on prior reporting. They propose a model where this link operates
over one period. The settings of both Allingham and Sandmo (1972) and Engel and Hines (1999)
combine dynamic and static sources of convex evasion costs. This makes it difficult to identify
the exact role played by the different assumptions, and it precludes closed form solutions. The
model considered here carefully distinguishes between the various aspects rendering the cost of
tax evasion convex. The focus on dynamic considerations generates a transparent representation
of revenue losses and social costs due to tax evasion; it yields closed form solutions; and it allows
us to analyze an extension with aggregate risk, and with households rationally accounting for
that risk.

The remainder of the paper is structured as follows: Section 2 clarifies the central role played
by the “all-or-nothing” assumption in the standard model, motivates the dynamic approach
adopted in the paper, and relates it to the traditional setup. Section 3 analyzes the effect of
duration dependent fines. Section 4 turns to the environment with aggregate risk, and Section
5 concludes.

2 Detection Risk

Consider the tax evasion program of a household at a given point in time. The household owns
many sources of income, indexed by i = 1, . . . , I, that pay a constant return, normalized to r/I.
One way of considering the sources of income is in terms of dollars deposited to (potentially
many different) savings accounts paying a uniform pre-tax yield, another is in terms of hours
allocated to (potentially different) jobs paying a uniform pre-tax wage.
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For each i, the household chooses whether to declare the source of income to the tax authority.
Choice of the former option is denoted by ei = 1, choice of the latter by ei = 0; e denotes the
vector of evasion decisions. Declaring i to the tax authority implies that a tax, amounting to
the fraction τ of the income generated by i, must be paid. Not declaring i to the tax authority
implies that a fine, amounting to the fraction π of the income generated by i, must be paid to
the tax authority if evasion is detected. To make the problem interesting, I assume that π > τ .
Detection occurs randomly. Denote by δi = 1 the event that the tax authority scrutinizes income
source i (triggering payment of a fine if i was evaded) and by δi = 0 the event of no scrutiny.
Further, let δ denote the vector of detection events. The realization of δ does not only depend
on exogenous sources of uncertainty but also, potentially, on the household’s evasion decision,
e; f(δ|e) denotes the probability of a particular realization δ, conditional on the evasion choice
e.

The household’s objective is to maximize expected utility of consumption, where consump-
tion equals income after taxes and fines. Letting u(·) denote the utility function, this program
can be stated as

max
e

∑

δ

u

(

I
∑

i=1

[1 − τ + ei(τ − δiπ)]r/I

)

f(δ|e).

In the models of Allingham and Sandmo (1972) and Yitzhaki (1974), tax evasion is either
not detected at all, or fully detected. Under this “all-or-nothing” assumption (which imposes a
restriction on the conditional probabilities f(·|e)4), expected utility of the household equals

(1 − p(e))u

(

I
∑

i=1

[1 − τ + eiτ ]r/I

)

+ p(e)u

(

I
∑

i=1

[1 − τ + ei(τ − π)]r/I

)

,

with p(e) denoting the probability of full detection. The cost of tax evasion is convex, and
the evasion rate is thus interior (ei 6= ej for some i, j), if either the household is risk averse
or p increases in ei, i = 1, . . . , I.5 If the household is risk averse, the increased volatility of
consumption due to a higher evasion rate renders evasion increasingly costly. If p increases in e,
a higher evasion rate raises the marginal expected fine, once more rendering evasion increasingly
costly.6 If neither the first nor the second condition is satisfied, the tax evasion program yields a
corner solution, since the expected net benefit of an increase in the evasion rate is independent
of that rate.

Both traditional rationales for an interior evasion rate crucially depend on the “all-or-
nothing” assumption. To see this more clearly, consider the opposite case with i.i.d. detection
risk across all sources of income. Formally, the restriction on f(·|e) which is implicit in the
models of Allingham and Sandmo (1972) and Yitzhaki (1974) is replaced by the assumption
that each δi, i = 1, . . . , I, is independent of e, as well as i.i.d. according to g(·) say, the marginal
distribution of every individual detection event. Letting z denote the fraction of non-reported
sources of income, z ≡∑i ei/I, expected consumption equals

r(1 − πzg(1) − τ(1 − z)),

4The restriction is the following: For any i, j, if ei = ej = 1 then f(δ|e) = 0 for all δ featuring δi 6= δj . This
condition is satisfied, for example, if the tax authority either scrutinizes all sources of income, or none.

5The second condition is satisfied, for example, if the tax authority adopts a two-step procedure to investigate
tax evasion. In the first step, it randomly picks one source of income and checks whether income from that
particular source was declared. If this was not the case, then the authority scrutinizes all other sources of income
in a second step.

6A small increase in the evasion rate only triggers a small increase in the detection risk, but detection triggers
increasingly large fines since these are proportional to total evaded income.
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and the variance of consumption converges to zero for I → ∞, due to statistical independence.
Uncorrelated detection risk across many sources of income thus implies that the household is
perfectly insured—higher evasion does not increase the volatility of consumption. It also implies
that expected consumption is linear in z—higher evasion does not increase the marginal expected
fine. As a consequence, the optimal evasion rate in the static model is not interior, even if the
household is risk averse, and although the probability of evasion being detected is increasing in
the evasion rate.

The crucial role of the “all-or-nothing” assumption in the static model is disturbing. For once,
the assumption appears inconsistent with empirical evidence, according to which tax evasion is
typically not fully detected, even conditional on a taxpayer being audited (Andreoni et al.,
1998).7 Moreover, it often is not very plausible. After all, many situations are characterized by
weakly rather than fully correlated detection risk. This is particularly true in situations where
households diversify their sources of income, as for example financial investments. Arguably,
tax authorities push for more wide-ranging international information-sharing, exactly because
uncorrelated detection risk removes the threat of consumption volatility, and thereby fosters tax
evasion.8

This paper offers two dynamic explanations that are able to reconcile uncorrelated detection
risk with interior evasion choices (for individual types of income). First, fines that are increas-
ing in the duration of a tax evasion spell because detection triggers fines proportional to the
cumulative evaded tax; in the above equation, this amounts to π increasing over time. Second, a
cross-section of vintages of otherwise identical income sources that are subject to aggregate risk
and fixed costs when switched between evasion states. These dynamic factors result in convex
evasion costs when detection risk is uncorrelated, but they can also generate interior evasion
rates under much more general conditions, and in combination with other sources of convexity.
To keep the analysis transparent, however, I focus on the benchmark case where the results are
exclusively driven by these dynamic aspects. In other words, I exclude all sources of convexity
present in the static model. As discussed earlier, this is consistent with three alternative sets of
assumptions:

i. Risk neutrality, detection “all-or-nothing” and independent of e; or

ii. risk neutrality and uncorrelated detection risk across many sources of income; or

iii. risk aversion and uncorrelated detection risk across many sources of income.

In the setting without aggregate risk considered in Section 3, the results hold under any of these
three sets of assumptions. In the setting with aggregate risk considered in Section 4, however,
the assumption of risk aversion would introduce substantial complications. Therefore, I impose
risk neutrality in that section, consistent with either i. or ii.

7Andreoni et al. (1998, p. 850) report that conditional on an audit by the U.S. Internal Revenue Service,
approximately one half of the concealed income typically remains undetected.

8See, for example, recent proposals by the European Commission (2001, Proposal 400, http://europa.eu.int/
comm/ taxation customs/ proposals/ taxation/ tax prop.htm#COM2001400) that EU member states should
provide each other with information on interest income accrued to their residents (instead of just taxing at the
source), or the OECD (1998) proposal on information measures to counteract “harmful tax competition”.
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3 Duration Dependent Fines

3.1 The Model

I analyze the household’s dynamic tax evasion program in continuous time. Households discount
the future at rate ρ. They face a time invariant tax system, a constant pre-tax yield r (0 < r < ρ)
on their sources of income, or “capital”, and a constant detection rate λ on any unit of capital not
declared to the tax authorities. Uncorrelated detection risk reduces the tax evasion strategy to
one of maximizing the expected return after taxes and fines; as discussed earlier, risk neutrality
(i. or ii.) has the same implication. The fundamental unit of analysis is therefore the unit of
capital, not the individual household.9

A unit of capital is characterized by two properties: First, whether income from the unit is
reported to the tax authority, for brevity referred to as “in state w”, or not, referred to as “in
state v”; second, by the time t that has passed since the unit was last switched between states
v and w. There is a fixed cost k per unit of capital for voluntarily switching between state w
and state v, capturing the cost of disguising the sudden appearance or disappearance of income
sources in the tax declaration.10 Such a cost might arise, for example, because an advisor has
to be hired who knows how to convincingly make a case vis-à-vis the tax authority. Or it may
arise because hiding capital and letting it reappear involves some transactions that temporarily
reduce the return. The statutory tax rate is τ > 0. The dividend yield thus equals r for units
of capital neither declared nor detected, and r(1 − τ) for truthfully reported ones.

A unit of capital switched to state w remains in that state for a minimum duration of T .
This assumption cuts short on a micro founded argument according to which paying taxes has
some private benefit of reducing potential future fines, for example by creating a reputation
of “honesty” discouraging investigations by the tax authority in case of detection during a
successive evasion spell (see Appendix A.1 for an exposition).

Units of capital in state v are detected at the rate λ. Upon detection, two actions are
triggered. First, the tax authority starts an audit and investigates for how long income from
that particular source has been evaded. The fine π(t), assumed to be a smooth function, accounts
for (some of the) prior evaded tax payments, such that π′(t) > 0. Second, the unit must be
switched from state v to state w.

Denote the value of one unit of capital in state (v, t) by V (t) and the value of one unit of
capital in state (w, t) by W (t). Upon detection, the continuation value of one unit of capital in
state (v, t) is given by −π(t) +W (0). Moreover,

W (t) =

∫ T

t

e−ρ(x−t)r(1 − τ) dx+ e−ρ(T−t)W (T ) =

= e−ρ(T−t)

(

W (T ) − r(1 − τ)

ρ

)

+
r(1 − τ)

ρ
, (1)

W (T ) = max
y≥0

∫ y

0
e−ρxr(1 − τ) dx+ e−ρy[V (0) − k]. (2)

The first condition defines the value of a unit of capital in state (w, t) as the present discounted
value of payoffs from the unit. The second condition defines the value of a unit of capital in
state (w, T ): If tax evasion is profitable, households will switch from state w to state v as soon
as they can, implying y = 0 and W (T ) = V (0) − k. If households choose not to immediately

9This excludes, for example, progressive taxation or household-specific investigations by the tax authority.
10The assumption that the switching cost is the same in both directions can easily be relaxed.
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switch from state w to state v after duration T , they will never switch, y = ∞. In this case,
W (T ) = W (0) = W (t) = r(1 − τ)/ρ.

To derive V (t), consider the value of a unit of capital in state (v, t) that may not be switched
to state w before the infinitesimally small time span dt has passed. Denote this value by Ṽ (t),
and denote by s the time span after which switching from state v to state w is optimal. Clearly,
Ṽ (t) = V (t) for t < s. As long as t < s, the value of a non-reported unit of capital with
spell duration t therefore equals the flow payoff, r dt, plus the probability weighted discounted
continuation values in case of detection and no detection, respectively. We thus have

V (t) = lim
dt→0

r dt+ e−ρ dt[(1 − λ dt)V (t+ dt) + λ dt(W (0) − π(t+ dt))], t < s,

implying that a unit in state (v, t) must satisfy the following standard no-arbitrage relationship:

(ρ+ λ)V (t) = r + V ′(t) + λ(−π(t) +W (0)), t < s. (3)

Equation (3) is derived in Appendix A.2. It states that, for t < s, a unit of capital in state (v, t)
must pay the risk adjusted required return, ρ+ λ, in the form of either flow payoffs or expected
capital gains. If the optimal stopping time s is finite, the household must be indifferent between
keeping a unit of capital in state (v, s) and switching it to state (w, 0):

V (s) = W (0) − k if s <∞. (4)

The fundamental, bubble free solution of (3) is therefore given by

V (t) =

∫ s

t

e−(ρ+λ)(x−t)(r + λ(−π(x) +W (0))) dx+ e−(ρ+λ)(s−t)(W (0) − k), t < s. (5)

Either T or k must be strictly positive for the dynamic tax evasion problem to be well
defined. If both parameters were equal to zero, households could switch capital from state v to
state w after an infinitesimally short duration (to “reset” the fine to π(0)) and then immediately
back to state v. A strictly positive value for k induces households to keep the capital in state
v for some time before switching it to state w. However, it does not induce them to keep it
in state w for some time.11 In contrast, a strictly positive value for T enforces a minimum
duration in state w. It also induces households to keep capital in state v for some time before
switching it to state w, even if k is zero. Throughout this section, I assume T > 0, k ≥ 0,
implying that the optimal duration s is bounded away from zero, provided that tax evasion
is profitable at all. An interior solution for s results if taxes are evaded and if (from (5))
∫∞

t
e−(ρ+λ)(x−t)(r + λ(−π(x) +W (0))) dx < W (0) − k for some t > 0, such that s <∞.
The optimal stopping time s can be obtained by combining conditions (1), (2), and (5) with

the smooth pasting condition V ′(s) = 0 (see Dixit and Pindyck, 1994).12 Alternatively, one
may maximize the function V0(s), defined as V (0) subject to conditions (1), (2), and (5). This
function is given by13

V0(s) =

{

−λ
∫ s

0
e−(ρ+λ)xπ(x) dx+ q(s)

(

r + λ
r(1 − τ)

ρ
(1 − e−ρT )

)

+

(

r(1 − τ)

ρ
(1 − e−ρT ) − k

)

e−(ρ+λ)s − k(λe−ρT q(s) + e−ρT−(ρ+λ)s)

}

/

(

1 − λe−ρT q(s) − e−ρT−(ρ+λ)s
)

,

11If it is optimal to switch capital to state v at some point, then it is optimal to do so as soon as possible.
12Combined with (4), the smooth pasting condition implies (ρ + λ)(W (0) − k) = r + λ(−π(s) + W (0)).
13See Appendix A.3.
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with q(s) ≡
∫ s

0 e−(ρ+λ)xdx = 1−e−(ρ+λ)s

ρ+λ
. The optimal duration of a tax evasion spell is then

characterized by the condition V ′
0(s) = 0.14 In the remainder of this section, I assume that

limt→∞ π′(t)/π(t) < ρ + λ, implying the integral term in V0(s) to be bounded. Since all other
terms in V0(s) are also bounded and the denominator is strictly positive, V0(s) is bounded.15

The difference between r/ρ, the social value of one unit of capital in the absence of tax
evasion, and V0(s) reflects the present discounted value of taxes and fines as well as switching
costs. These two present discounted values are recursively defined by, respectively,

PDVτ,π(s) =

∫ s

0
e−ρxf(x)

[

π(x) +

∫ T

0
e−ρyrτdy + e−ρT PDVτ,π(s)

]

dx

+ (1 − F (s))e−ρs

[
∫ T

0
e−ρyrτdy + e−ρT PDVτ,π(s)

]

,

PDVk(s) =

∫ s

0
e−ρxf(x)

[

e−ρT (k + PDVk(s))
]

dx+ (1 − F (s))e−ρs
[

k + e−ρT (k + PDVk(s))
]

.

Here, f(x) and F (x) denote the p.d.f. and c.d.f. of an exponential(λ) distribution, respectively.
Straightforward manipulations yield

PDVτ,π(s) =
λ
∫ s

0 e−(ρ+λ)xπ(x)dx+
(

λq(s) + e−(ρ+λ)s
)

rτ
ρ

(1 − e−ρT )

1 − λe−ρT q(s) − e−ρT−(ρ+λ)s
, (6)

PDVk(s) = k
λe−ρT q(s) + e−(ρ+λ)s(1 + e−ρT )

1 − λe−ρT q(s) − e−ρT−(ρ+λ)s
. (7)

Based on (6) and (7), the effective tax-plus-fine rate, θ(s) ≡ PDVτ,π(s)ρ/r, and the switching-
cost rate, κ(s) ≡ PDVk(s)ρ/r, can be defined.16 We then have

V0(s) =
r(1 − θ(s) − κ(s))

ρ
,

which yields yet another representation of the tax evasion program, conditional on tax evasion
being more profitable than full compliance: mins θ(s) + κ(s).

Proposition 1. Let π(0) = 0, π′(t) ≥ 0, π′′(t) ≥ 0 ∀t ≥ 0; moreover π′(0) > 0 or π′′(0) > 0
(strict convexity implies these conditions). Under the maintained assumptions

i. there exists a unique, finite s⋆ > 0 that minimizes θ(s) + κ(s);

ii. there exists a unique, finite s⋄ > 0 that minimizes θ(s);

iii. if k > 0, then s⋄ < s⋆ and θ(s⋆) > θ(s⋄);

iv. households evade taxes if θ(s⋆) + κ(s⋆) < τ .

Proof. See Appendix A.4.

14Combined with (4), this latter condition reduces to the smooth pasting condition.
15Note that 0 ≤ q(s) < 1/(ρ + λ) and the denominator of V0(s) equals 1 − e−ρT (ρe−(ρ+λ)s + λ)/(ρ + λ).
16Equivalently, κ(s) can be derived as −k ∂V0(s)/∂k

r/ρ
.
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If there exist stopping times s such that θ(s) + κ(s) < τ , then households evade taxes.
Once the marginal benefit from continued evasion in the form of tax savings and lower average
switching costs is outweighed by the expected fine, households switch capital back to state w.
Under the assumptions of Proposition 1, this is generally the case after a finite duration, s⋆.17

Since households minimize the expected sum of taxes, fines, and switching costs, the privately
optimal tax evasion strategy does not minimize the government’s tax and fine collections, as
long as k is strictly positive.

Figures 1 and 2 display a numerical example under the assumption that the fine is given by
π(t) = α(ert − er(1−τ)t), α > 1.18 Such a fine is natural to consider; it requires, upon detection,
repayment of α times the exact accumulated amount gained by tax evasion. It also satisfies the
assumptions of the Proposition. In this example, s⋆ turns out to be approximately 8.58. Since
V0(s

⋆) ≈ 0.64 exceeds r(1−τ)/ρ = 0.56 (or τ exceeds θ(s⋆)+κ(s⋆)), households optimally evade
taxes until duration s⋆, or until the evasion is detected.

5 10 15 20
t;s

0.55

0.575

0.625

0.65

0.675

0.7

Figure 1: V (t)[s⋆] (downward sloping section of line only), V0(s), W (0)[s] − k (in order of
decreasing length of line segments).

3.2 Comparative Statics and Optimal Policy

An increase in the statutory tax rate τ increases s⋆ and thus, the average duration of tax evasion
because

∂θ′(s)

∂τ
< 0,

∂κ′(s)

∂τ
= 0.

17While real world tax laws often imply an initially increasing fine, they also frequently feature a statute of
limitation that applies to offences committed more than t̄ periods in the past. With such a statute of limitation,
the fine π̃(t) becomes min[π(t), π(t̄)], thereby contradicting the assumptions of the Proposition. As a consequence,
the optimal duration s⋆ need no longer be finite.

18The parameter values in the example are: λ = 0.05; ρ = 0.05; r = 0.04; τ = 0.3; T = 5; k = 0.01; α = 1.475.
The choice of α is inspired by empirical evidence discussed in the following section.
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5 10 15 20
s

0.1

0.2

0.3

0.4

Figure 2: τ , θ(s), κ(s), θ(s) + κ(s) (in order of decreasing length of line segments).

This result contrasts with the finding in static models, where a higher statutory tax rate might
have ambiguous effects (Allingham and Sandmo, 1972; Yitzhaki, 1974). While these models
stress the income and substitution effects of changes in τ on the demand for state contingent
consumption, the dynamic perspective proposed here stresses the effect on expected returns:
A higher statutory tax rate induces households to wait longer, and face higher expected fines
before switching to reporting accrued income.

Other comparative statics results can easily be derived. The derivations become particularly
simple under the convenient assumption that T → ∞ (i.e., once a unit of capital is in state w,
income from that unit is never again evaded), which implies that W (t) is independent of s⋆,
such that the circular effect of V (0) via W (0) on V (0) disappears. We then have

lim
T→∞

V0(s) = −λ
∫ s

0
e−(ρ+λ)xπ(x) dx+ q(s)

(

r + λ
r(1 − τ)

ρ

)

+

(

r(1 − τ)

ρ
− k

)

e−(ρ+λ)s,

lim
T→∞

θ(s) =
ρ

r
λ

∫ s

0
e−(ρ+λ)xπ(x)dx+

(

λq(s) + e−(ρ+λ)s
)

τ,

lim
T→∞

κ(s) =
ρ

r
ke−(ρ+λ)s

and the optimal tax evasion strategy simplifies to

lim
T→∞

s⋆ = π−1

(

rτ + (ρ+ λ)k

λ

)

.

Increases in r, τ, ρ, or k raise s⋆, because they increase the benefit of not paying taxes (given
by rτ) and the cost of switching to state w. A decrease in λ raises s⋆, because it reduces the
expected cost of evasion, by rendering detection less likely.

Switching costs borne by households and detection efforts by the government are socially
wasteful. From an optimal taxation perspective, the former play a similar role as the deadweight
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burden associated with tax induced substitution effects. In parallel to the optimal taxation liter-
ature initiated by Ramsey (1927), the government’s problem of efficiently raising revenue subject
to the household’s optimal evasion choice may thus be considered. In the current setup, this
problem assumes a very transparent form. Following the approach pioneered by Diamond and
Mirrlees (1971), it may be analyzed in terms of the household’s indirect utility function, which is
to be maximized subject to the government’s budget constraint. Let α ≡ (λ, k, T, τ, π(·))19, let
s⋆(α) denote the arg mins θ(s, α) + κ(s, α), and let 1[s⋆(α)>0] denote the indicator function that
equals 1 if s⋆(α) > 0. Normalizing by the household’s stock of capital and r/ρ, the government
program reads

max
α

1 − θ(s⋆(α), α) − 1[s⋆(α)>0]κ(s
⋆(α), α)

s.t. θ(s⋆(α), α) = C(α) + PDV(normalized government spending).

The first line represents the household’s indirect utility function: Normalized utility equals
1 − θ(0, α) = 1 − τ in case of no evasion and 1 − θ(s⋆(α), α) − κ(s⋆(α), α) otherwise. Due to
the separability of θ and κ, the social losses of tax evasion appear in much more transparent
form than the social losses of tax avoidance in standard models. The second line represents the
normalized budget constraint where the cost function C(·) depends on the parameters of the
tax system. Letting µ denote the shadow value of government funds and confining ourselves to
an interior equilibrium with tax evasion, the first-order condition for this problem is given by

µCα = θα(µ− 1) − κα + s⋆
α(θs(µ− 1) − κs) =

= θα(µ− 1) − κα + s⋆
αθsµ,

where all derivatives are evaluated at (s⋆, α). The left-hand side of this equation represents the
cost for the government of a marginal increase in any of the tax parameters. The right-hand
side represents the net gain from the same adjustment. This gain consists of higher revenue,
evaluated at the shadow value of government funds, minus the income loss for the household due
to taxes, fines, and switching costs; these changes in government revenue and private income
occur both directly and indirectly, i.e., through an induced change in s⋆.20

Should the government employ a strictly positive switching cost k, if it can influence this
parameter?21 The government’s optimality condition suggests a negative answer to that ques-
tion, subject to qualifications. Starting from an initial value k = 0, a marginal increase in k is
detrimental. It neither delivers a direct revenue gain for the government (θk = 0 from (6)), nor
an indirect one (for k = 0, κs(s

⋆, α) = −θs(s
⋆, α) = 0 by the household’s optimality condition)

but induces first-order switching costs and administrative costs (κk > 0, Ck ≥ 0). For further
increases in k, however, this argument need no longer hold as θs is then positive.

19For notational simplicity, I assume that π(·) can be represented as a vector.
20If policy changes involved no direct resource cost (Cα = 0, as generally assumed in the optimal taxation

literature) and neither directly nor indirectly affected switching costs (κα = 0, and κs = 0 such that θs = 0 by
the household’s optimality condition), then µ would equal unity: the shadow values of public and private funds
would coincide and the government could costlessly transfer resources from the private to the public sector.

21One way for the government to affect k could be to demand more background information on units of capital
that newly appear in or disappear from the tax declaration.
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4 Aggregate Risk

4.1 Inaction and Hysteresis

To analyze the dynamic properties of tax evasion rates, it is necessary to go beyond the sta-
tionary environment discussed above. This section extends the previous model to a setting with
aggregate risk under the maintained assumptions that households optimally evade taxes and
form rational expectations. As explained earlier, I assume risk neutrality to keep the model
tractable.

Aggregate risk arises in the form of dividend yield (or productivity) risk. I assume the return
on capital to fluctuate randomly around an average value, r̄. The relative deviation of the return
from r̄, denoted by r, follows the mean reverting Ito process

dr = −ηr dt+ σ dZ, η, σ > 0,

with dZ denoting the increment of a standard Brownian motion, and t denoting calendar time.
I assume switching costs to be strictly positive. When deciding whether to declare income

to the tax authority, households trade off these costs against the benefit of switching capital
from state v to state w, or vice versa. Since these benefits depend on expected future dividend
yields (and thus on the current yield), they vary stochastically over time. Even in the absence of
duration dependent fines, the tax evasion program is therefore non-trivial. For simplicity, I thus
completely abstract from duration dependent fines and let T = 0; the duration of an evasion
spell is no longer a relevant state variable.

As in models of entry and exit under uncertainty, switching costs give rise to an inaction
range. Households do not immediately switch capital from state w to state v when the net flow
benefit from a unit in state v exceeds the flow from a unit in state w, i.e., when the dividend
yield is high, such that the tax savings due to evasion are high. Nor do they immediately switch
capital from state v to state w when the dividend yield is low, such that the net flow benefit
from a unit in state w exceeds the flow from a unit in state v. They would rather wait until
the difference between the two flows has become sufficiently large to compensate for two cost
components: First, “annualized” switching costs, and second, the cost of foregoing the possibility
of costlessly returning to the current (pre-switching) state. This second cost component reflects
the risk that the difference between the flow benefits quickly reverts, such that incurring the
switching cost becomes unprofitable ex post.22 Each cost component drives a wedge between
the upper boundary of the inaction range, rh say (associated with the dividend yield r̄(1+ rh)),
at which it is optimal to switch from state w to state v, and the lower boundary, rl, at which it
is optimal to switch from state v to state w. The presence of an inaction range, in turn, gives
rise to hysteresis: The effect of a change in r on tax evasion is not immediately reversed if r
returns to its initial value. Even if r is such that all new units of capital are reported to the tax
authority, say, old units may still not be reported if the flow benefit differential is not sufficiently
large. The fraction of taxes evaded therefore typically remains interior.

As in the previous section, optimal household behavior can be characterized by the values
of a unit of capital in state v and state w. Also as in the previous section, these values are
interdependent. The two value functions (which now depend on the new state variable, r) must
thus be solved simultaneously. Within the inaction range, these functions are characterized by

(ρ+ λ)V (r) = r̄(1 + r) − V ′(r)ηr + 1/2V ′′(r)σ2 + λ(−π(r) +W (r)) − ψ, (8)

ρW (r) = (1 − τ(r))r̄(1 + r) −W ′(r)ηr + 1/2W ′′(r)σ2. (9)

22See Dixit (1989) for a detailed exposition.
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Equations (8) and (9) represent no-arbitrage conditions, similar to (3). The required return on
one unit of capital equals ρ + λ if the unit is subject to detection risk, and ρ otherwise. The
return consists of flow dividends, pre or after tax, expected capital losses due to detection risk
in the case of V , and expected capital gains or losses due to changes in dividend yield (see
Appendix A.5 for the derivation). Equation (8) features an additional flow cost parameter, ψ,
which serves calibration purposes and is discussed below.

As noted earlier, switching costs and dividend risk imply that entry and exit into/from tax
evasion are characterized by an inaction range, [rl, rh]: Switching capital from state v to state
w (from state w to state v) is optimal once r reaches the lower (upper) boundary of that range.
To characterize rl and rh, the value matching and smooth pasting conditions need to be solved.
The former state that switching occurs when the values of both alternatives, net of switching
costs, are equal: V (rh) − kh = W (rh) and W (rl) − kl = V (rl).23 The latter specify that these
equalities extend to small variations around the optimal trigger points and thus, that there is no
gain from delaying the switching decision for an infinitesimally short duration: V ′(rh) = W ′(rh),
V ′(rl) = W ′(rl).24

Since we are not interested in the functions V (r) and W (r) per se, but only in the optimal
decision rules, we can simplify this problem. Let X(r) ≡ V (r) − W (r). The no-arbitrage
conditions and the value matching and smooth pasting conditions can then be rewritten as

(ρ+ λ)X(r) = τ(r)r̄(1 + r) − λπ(r) −X ′(r)ηr + 1/2X ′′(r)σ2 − ψ, (10)

X(rh) = kh, X(rl) = −kl, X ′(rh) = 0, X ′(rl) = 0.

Consider a linear tax rate function τ(r) = τ0+τ1r and let fines be some multiple ζ of currently
evaded taxes, π(r) = ζτ(r)r̄(1 + r). As argued below, this is a realistic assumption; note that
λζ needs to be smaller than unity for there to be an incentive to evade taxes. Appendix A.6
shows that in this case, the solution to equation (10) is of the form

X(r) = A 1F1

(

ρ+ λ

2η
,
1

2
,
r2η

σ2

)

+Br

√

2η

σ2 1F1

(

ρ+ λ+ η

2η
,
3

2
,
r2η

σ2

)

+ φ0 + φ1r

√

2η

σ2
+ φ2r

2 2η

σ2
.

(11)
A and B denote arbitrary constants; φ0, φ1, and φ2 denote functions of the parameters, specified
in Appendix A.6; and 1F1(·) denotes the confluent hyper-geometric function or Pochhammer’s
function. The four value matching and smooth pasting conditions together with (11) can be
solved for the four unknowns A,B, rh, rl.

Figure 3 displays an example. The boundaries of the inaction range are rl ≈ −22.5 percent
and rh ≈ 6.6 percent. If new units of capital are assigned to states v or w with equal cost, then
new units are assigned to state v whenever r exceeds the value at which X(r) equals zero; in
the figure, this value is ≈ 0.5 percent. Call that value rc (rl < rc < rh). Old units of capital
are not immediately switched between states v and w, once r reaches rc, however. Households
rather wait with switches of that sort until r reaches the upper or lower boundary of the inaction
range.

Figure 3 and the benchmark simulation reported below are based on the parameter values
summarized in Table 1. I assume a yearly discount rate of 5 percent. This approximately
translates into ρ = 0.0125 (in the model, time is measured in quarters). Slemrod and Yitzhaki

23In contrast to the previous section, I allow the switching costs on the upper and lower boundary of the inaction
range to differ.

24See Dixit (1993) or Dixit and Pindyck (1994).

12



-0.2 -0.15 -0.1 -0.05 0.05
r

-0.05

-0.04

-0.03

-0.02

-0.01

0.01

Figure 3: X(r), benchmark calibration.

(2002) and Andreoni et al. (1998, p. 820) report for the U.S. that 1.5 to 1.7 percent of the tax
returns are audited per year, which translates into a flow detection rate of λ = 0.00375. They
also report that fines are levied at rates between 20 and 75 percent of the evaded income tax.
The mean of these values translates into ζ = 1.475 (which satisfies the condition λζ < 1). I
take the statutory tax rate, τ0, to be 30 percent. With regard to switching costs, I assume that
it is easier to let a unit of capital “disappear” than “reappear” vis-à-vis the tax authorities; I
set kl = 0.05 and kh = 0.01. I assume the average annual yield on capital, broadly defined, to
be 20 percent, and the annual growth rate of the capital stock (introduced later in the model)
to be 3 percent. This implies r̄ = 0.05 and γ = 0.0075. To calibrate η and σ, I use standard
assumptions from the Real Business Cycle literature about the persistence and volatility of the
Solow residual. An AR(1)-regression on quarterly U.S. data of the Solow residual yields an
auto-regressive coefficient of about 0.95, and a standard deviation of the innovation term of
about 1 percent (see, for example, Hansen, 1985). These estimates imply a mean reversion and
variance rate of the diffusion process of η = 1 − 0.95 and σ2 = 0.0122η/(1 − e−2η) = 0.0102512,
respectively (Dixit and Pindyck, 1994, p. 77). Finally, I set ψ = r̄τ0(1−λζ) = 0.014917, implying
that under normal conditions, the difference between the flow benefit of a unit of capital in state
v and a unit in state w is zero. This is to account for the fact that the model obviously does
not comprise all relevant factors determining the amount of tax evasion.25 Fixing ψ at a lower
value twists the inaction range towards lower (negative) values of r, reflecting the fact that the
small risk of detection in the benchmark calibration renders tax evasion very lucrative.

Variations in the parameter values shift the inaction range in Figure 3 or change its width.
An increase in σ widens the inaction range. A more volatile dividend yield increases the option
value of waiting and thus, induces households to wait “longer” before incurring the switching
costs. A rise in η also increases the width of the inaction range (almost exclusively by reducing
rl). Stronger mean reversion reduces the likelihood of persistent deviations of the fundamental

25Beyond the factors analyzed in static models or in the previous section of this paper, tax evasion might depend
on mental costs and many other aspects, see Cowell (1990).
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Table 1: Benchmark Calibration

Model Parameter Benchmark Value

ρ 0.0125
λ 0.00375
ζ 1.475
τ0 0.3
τ1 0.00
kl 0.05
kh 0.01
r̄ 0.05
γ 0.0075
η 0.05
σ 0.010251
ψ 0.014917

from its mean, which makes it less worthwhile to incur the switching costs and induces more
cautious behavior by households. The cyclicality of tax rates also influences the width of the
inaction range. Pro-cyclical tax rates render the flow benefit of tax evasion (the difference
between the flow benefits of units in states v and w) larger (smaller) for positive (negative)
values of r. A positive value for τ1 thus pushes the boundaries of the inaction range inwards,
while a negative value pushes them outwards. Since the inaction range is not initially symmetric
around the origin, however, the changes in rh are less pronounced than the changes in rl (see
Figure 4). Variations in kl and kh practically only affect the corresponding boundary of the
inaction range. A reduction in kl, for example, shifts rl inwards without a sizeable effect on rh.
Finally, changes in ζ and τ0 (and ψ) shift the inaction range more than they affect its width. A
higher fine or a lower average tax rate shifts rl, rc, and rh to the right.

4.2 Aggregate Implications

I embed the household’s problem in a stylized macroeconomic framework. Households inhabit
an economy à la Lucas (1978) with a stock of capital growing at rate γ and yielding stochastic
dividends. The law of motion for dividends, tax rates and fines are as specified above. Divi-
dends after taxes and fines are either consumed or saved in the form of government debt. The
instantaneous interest rate on government debt is ρ, because households are risk neutral. At
any point in time, new capital is either assigned state v or state w, depending on whether r
exceeds rc. Moreover, old capital is shifted from state w to state v (from state v to state w) if
r exceeds rh (rl exceeds r).

In the discrete (∆t = one quarter) approximation to the continuous time economy, the
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Figure 4: Effect of cyclicality of tax rates on X(r): τ1 = −0.75, 0, 0.75 (in order of increasing
length of line segments).

following laws of motion hold:

rt = e−ηrt−1 + ht, ht = ±σ with equal probability,

τt = τ0 + τ1rt,

Tt = r̄(1 + rt)τtwt,

Πt = r̄(1 + rt)τtζλvt,

gt = gT (Tt + Πt) + gddt,

δt = ρdt − Tt − Πt + gt,

dt+1 = dt + δt,

ct = r̄(1 + rt)(wt + vt) + ρdt − Tt − Πt − δt = r̄(1 + rt)(wt + vt) − gt,

wt+1 − wt = +λvt + 1[r<rl]vt(1 − λ)(1 − kl) − 1[r>rh]wt + (1 − 1[r>rc])Γ0(1 + γ)t,

vt+1 − vt = −λvt − 1[r<rl]vt(1 − λ) + 1[r>rh]wt(1 − kh) + 1[r>rc]Γ0(1 + γ)t.

Here, vt and wt denote the time t stock of non-reported and reported capital, respectively; Tt,
Πt, gt, δt, dt, and ct denote tax collections, fines, government spending, deficit, debt, and pri-
vate consumption, respectively; and 1[q] represents the indicator function for event q. The first
equation of the dynamic system discretely approximates the diffusion process for r (see Dixit
and Pindyck, 1994, pp. 69, 76). The following three equations define the statutory tax rate,
tax collections, and fines, respectively. Government spending is assumed to linearly depend
on revenue and the stock of debt. In the simulations, I set gT = 1.1 and gd = −0.03.26 The

26On a balanced growth path, this spending rule and the definitions of dt and δt imply

(γ − ρ − gd)dt = (gT − 1)(Tt + Πt).

The values for gT and gd satisfy this equation for quarterly debt and tax-and-fine quotas of 160 percent and 40
percent, respectively.
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next three equations define the government’s deficit, debt accumulation, and household con-
sumption.27 The last two equations link the household’s optimality conditions (the boundaries
of the inaction range as well as rc) to the accumulation of reported and non-reported capital,
respectively. With a total stock of capital in period t = 0 equal to 1 and Γ0 ≡ γ/(1 + γ), the
inflow of new capital in period t equals Γ0(1 + γ)t. I also set d0 = 0.
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Figure 5: Tax evasion dynamics.

Figure 5 illustrates the aggregate consequences of a sequence of 2000 realizations of the
dividend yield. The upper left panel displays the dividend yield realizations, together with the
household’s optimal trigger points (rl, rc, rh), subject to the stochastic properties of the process r
and the tax system. If r exceeds rc, households allocate new capital to state v, which is reflected
in a decrease in wt/(vt + wt). If the dividend yield also exceeds r̄(1 + rh), all capital is shifted
to state v and wt drops to zero. The corresponding fall in tax revenue strongly outweighs the
increase in fines and leads to a sharp drop in government spending, and a significant reduction
in the debt quota. On the other hand, the increase in households’ disposable income together
with the fall in the government’s borrowing requirement increases consumption. Note that we
never observe sharp increases in the fraction of reported wealth in this sample because rl is
sufficiently low to never induce households to fully report their wealth.

When evaluating the simulation, in particular the high volatility of key macroeconomic vari-
ables, it should be kept in mind that the model abstracts from various elements that would
reduce this volatility. One such element is risk aversion, another relates to the fact that large
fractions of income cannot be evaded in practice, because the tax authorities are directly no-

27Interest income from government bonds is assumed to be untaxed.
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tified about them (for instance, by the employer).28 Nevertheless, several conclusions can be
drawn from this benchmark simulation. First, the macroeconomic responses to changes in r
are highly non-linear, due to different behavioral responses within the inaction range and at its
boundaries. Second, the macroeconomic time series display asymmetry, due to the fact that
only the upper boundary of the inaction range is “tested”. Finally, relatively small variations
in r can have a large impact. This finding sharply contrasts with the prediction of the standard
tax evasion model, where tax evasion is governed by a succession of static evasion decisions. In
that framework, small changes in the conditional expectation of future income flows will only
indirectly and mildly affect the evasion decision.

Table 2 and Figures 6–9 summarize the effects of changes in tax policy on macroeconomic
performance. Throughout these scenarios, the sequence of dividend yields driving the aggregate
dynamics is the same as in the benchmark scenario.

Table 2: Effects of Different Tax Policies

Variable Effects of Change in . . . a

τ1 to . . . kl to . . . ζ to . . . τ0 to . . .

-0.75 0.75 0.3 0.1 5.475 9.475 0.295 0.305

mean(vt + wt) 1.0003 0.9999 1.0000 0.9973 1.0026 1.0026 1.0026 0.9990
mean(wt/(vt + wt)) 1.0699 0.9182 1.0000 1.0519 1.8176 1.8405 1.8273 0.2551
mean(Tt) 0.9998 1.0204 1.0000 1.2923 1.8091 1.8265 1.7873 0.3313
mean(Πt) 1.0061 0.9697 1.0000 0.6385 0.0788 0.0000 0.0106 1.8482
mean(gt) 0.9996 1.0201 1.0000 1.3071 1.8172 1.8348 1.7953 0.3451
mean(ct) 1.0005 0.9960 1.0000 0.9381 0.8467 0.8434 0.8509 1.1240
d2000 0.9933 1.0189 1.0000 1.7014 2.1716 2.2014 2.1498 0.4986

a Relative to the outcome in the benchmark scenario. See the explanations in the text.

Consider first the effect of changes in the cyclicality of the tax rate (Figure 6). We saw
earlier (cf. Figure 4) that a counter-cyclical tax rate pushes the boundaries of the inaction range
outwards. Households thus less often switch their capital from state w to state v, which increases
the capital stock due to lower total switching costs. In addition to reducing the frequency of
switches, a negative τ1 also reduces the trigger value rc. This implies that households become
more aggressive in terms of allocating new funds to state v. In “normal times” (with r around
rc), the inflow into the reported capital stock is thus lower. The combination of (a) less frequent
switching into state v but (b) larger direct flows into state v implies that the effect of the
cyclicality of τ on both tax revenue and fines is ambiguous. Channel (a) increases the capital
stock and the fraction of reported income, and thus tends to raise tax revenue and reduce fines.
Channel (b) reduces the fraction of reported income and thus tends to reduce tax revenue and
raise fines. Which of the two effects is predominant is history dependent and varies with the
circumstances. The growth rate of the economy, for example, is of importance because it affects
the strength of channel (b). In the particular simulation example considered here, effect (b)
outweighs effect (a) on average, but not in all sub-periods. Effect (b) becomes decisive towards

28Andreoni et al. (1998, p. 821) report for the U.S. that the Internal Revenue Service receives direct notification
about approximately 75 percent of all income.
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Figure 6: Aggregate implications of variations in τ1: τ1 = −0.75, 0, 0.75 (left to right).

the end of the simulation period, where switches occur equally often under a negative and a
positive τ1, such that effect (a) does not differ across policies.

Figure 7 compares the outcomes under different assumptions about the switching costs.
Reducing kl to 0.03 has no effect on the equilibrium outcome at all: Both rh and rc remain
practically unchanged, and the lower value of rl is irrelevant in so far as the dividend yield never
drops to as low a level as to induce households to switch from state v to state w. This changes
with a further decrease in kl to 0.01. Now, r̄(1 + rl) lies in the range of realized dividend yields,
and we do not only observe downward jumps of wt/(vt +wt) to zero (whenever r exceeds rh) but
also upward jumps of the same variable to one (whenever r falls below rl). The ratio of reported
to total capital becomes more erratic but increases on average, thereby reducing the evasion
rate and thus increasing the tax base. The additional switching from state v to state w raises
the total switching costs which, in turn, reduces the capital stock, and thus the tax base. These
two opposing effects imply ambiguous consequences for revenue, spending, and consumption;
tax revenue increases over the whole time period, but not in all sub-periods.29

Figure 8 compares the effect of different fines. An increases in ζ raises the capital stock
by increasing the threshold at which shifting funds from state w to state v is optimal (higher
rh). An even further increase of ζ also raises r̄(1 + rc) beyond the range of realized dividend
yields, and altogether eliminates tax evasion. Further increases in ζ would also shift the lower
trigger point into the relevant range. This would have no effect, however, since there would be

29The increase in final period government debt is due to the fact that towards the end of the simulation period,
the ratio of reported to total capital and thus also tax revenue and government spending increase more sharply
when rl is lower.
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Figure 7: Aggregate implications of variations in kl: kl = 0.05, 0.03, 0.01 (left to right).

no non-reported capital to be shifted from state v to state w to start with. By discouraging
switches from state w to state v, the first increase in ζ raises the capital stock. Moreover, the
reduction, and finally the elimination of tax evasion, strongly amplifies the positive effect on
tax revenue, raises government spending and debt, and reduces private consumption. It also
significantly reduces the volatility of these variables.

Finally, Figure 9 shows that the economy is located on the declining portion of the Laffer
curve. A small increase in the average tax rate from 29.5 percent to 30.5 percent shifts the
inaction range downward by about fifty basis points. This, in turn, induces a near collapse of
government activity. Tax revenue falls by more than eighty percent. Payments of fines skyrocket
but total government revenue collapses and government spending is contracted.

In conclusion, the simulations suggest that tax evasion dynamics severely complicate the
government’s task. The high sensitivity of tax evasion and its history dependence require sure
instinct by the government, and some luck. Once tax evasion starts to occur, tax policy becomes
difficult, and once it starts to spread, the sustainability of government activity is quickly at risk.

5 Conclusions

While risk aversion and endogenous detection probability do not guarantee interior solutions to
a household’s tax evasion program, dynamic aspects tend to induce interior tax evasion rates.
Two dynamic lines of argument have been explored in the paper: The first is based on duration
dependent fines, the second on a cross-section of vintages subject to dividend risk and switching
costs. Both arguments imply behavioral responses different from those predicted by standard
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Figure 8: Aggregate implications of variations in ζ: ζ = 1.475, 5.475, 9.475 (left to right).

theory. Static models stress the income and substitution effects of changes in the statutory tax
rate on the demand for state-contingent consumption. The dynamic perspective proposed in
this paper stresses the maximization of expected returns—a higher statutory tax rate encourages
households to wait longer before they report their accrued income. This prediction is testable.
While beyond the scope of this paper, a careful empirical analysis controlling for the various
other aspects affecting households’ evasion decisions thus seems a promising avenue for future
research.

Throughout the analysis, I have abstracted from risk aversion. This was unimportant in the
model without dividend risk where households are fully insured. In the model with dividend
risk, however, the assumption was substantive. Introducing risk aversion here would complicate
the household’s portfolio choice problem, and change the riskfree rate on government debt.30

Other potential extensions include heterogeneous costs or benefits of tax evasion across the
population, or multiple sources of aggregate risk.31 Introducing such considerations is likely to
dampen the volatility observed in the simulations without changing the flavor of the arguments.
Finally, an interesting extension would generalize the government’s spending rule, allowing for
the possibility of default. Interest on government debt would then include a risk premium, which
varies with the level of debt and the anticipated extent of tax evasion. Such a model could, I
suspect, enhance our understanding of fiscally driven crises.

30For related work in the finance literature, see Constantinides (1986), Grossman and Laroque (1990), and
Vayanos (1998).

31An example for the latter extension that immediately comes to mind is the combination of nominal interest
rate risk and inflation rate risk.
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Figure 9: Aggregate implications of variations in τ0: τ0 = 0.295, 0.3, 0.305 (left to right).

A Appendix

A.1 Micro Foundations for T > 0

To rationalize the assumption that T > 0, a duration dependent benefit of paying taxes must
be introduced. One way is the following. Assume as in the main model that tax evasion pays
a flow return of r and exposes the unit of capital to a risk of detection, which triggers duration
dependent fines and a switch to w. In addition, assume that the duration at the start of a new
evasion spell is not necessarily zero as in the main model; it rather depends on the duration of
the previous spell of tax payments. Paying taxes thus constitutes an investment in good-will or
reputation, reducing expected fines in the successive tax evasion spell.

To avoid the introduction of an additional state variable, posit that the duration of a tax
paying spell reduces the “effective duration” in the successive tax evasion spell by one-to-one.
The accumulation of reputation thus reduces t, while evasion increases t; both V (t) and W (t)
are decreasing in their argument. It is then optimal to keep a unit of capital in v until the
effective duration has increased to some value, t say, and keep it in w until the effective duration
has decreased to some other value, t say. Between these trigger points, the value of a unit of
capital in v and w, respectively, is characterized by

(ρ+ λ)V (t) = r + V ′(t) + λ(−π(t) +W (t0)), t ≤ t ≤ t,

ρW (t) = r(1 − τ) −W ′(t), t ≤ t ≤ t,

as well as the value matching and smooth pasting conditions V (t) = W (t) − k, V ′(t) = W ′(t),
V (t) = W (t) + k, V ′(t) = W ′(t).
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For π(t) = 0, and T = t− t, the setup of the main model is replicated.

A.2 Derivation of Equation (3)

Let U(t+ dt) ≡ (1− λ dt)V (t+ dt) + λ dt(W (0)− π(t+ dt)). Using the differentiability of V (t),
we then have

V (t) = lim
dt→0

r dt+ e−ρ dtU(t+ dt), t < s,

V (t) = lim
dt→0

r dt+ (1 + ρ dt)−1U(t+ dt), t < s, (using ρ dt ≈ ln(1 + ρ dt))

lim
dt→0

(1 + ρ dt)V (t) = lim
dt→0

r dt(1 + ρ dt) + U(t+ dt), t < s,

lim
dt→0

(λ+ ρ) dtV (t) = lim
dt→0

r dt(1 + ρ dt) + [U(t+ dt) − (1 − λ dt)V (t)], t < s,

lim
dt→0

(λ+ ρ) dtV (t) = lim
dt→0

r dt(1 + ρ dt) + [(1 − λ dt)V ′(t) dt+ λ dt(W (0) − π(t+ dt))], t < s,

(λ+ ρ)V (t) = lim
dt→0

r(1 + ρ dt) + [(1 − λ dt)V ′(t) + λ(W (0) − π(t+ dt))], t < s,

(ρ+ λ)V (t) = r + V ′(t) + λ(−π(t) +W (0)), t < s.

A.3 Derivation of V0(s)

Under the assumption s > 0: From (5), we have

V (0) =

∫ s

0
e−(ρ+λ)x(r + λ(−π(x) +W (0))) dx+ e−(ρ+λ)s(W (0) − k).

From (1), (2) this implies

V0(s) =

∫ s

0
e−(ρ+λ)x

[

r + λ

(

−π(x) +

[

e−ρT

(

W (T ) − r(1 − τ)

ρ

)

+
r(1 − τ)

ρ

])]

dx+

e−(ρ+λ)s(W (0) − k) =

=

∫ s

0
e−(ρ+λ)x

[

r + λ

(

−π(x) +

[

e−ρT

(

V0(s) − k − r(1 − τ)

ρ

)

+
r(1 − τ)

ρ

])]

dx+

e−(ρ+λ)s

[

e−ρT

(

V0(s) − k − r(1 − τ)

ρ

)

+
r(1 − τ)

ρ
− k

]

=

=

∫ s

0
e−(ρ+λ)x(r − λπ(x)) dx+ λ

r(1 − τ)

ρ
(1 − e−ρT )q(s) +

λ(V0(s) − k)e−ρT q(s) +

(

r(1 − τ)

ρ
(1 − e−ρT ) − k

)

e−(ρ+λ)s + (V0(s) − k)e−ρT−(ρ+λ)s,

V0(s) =

{

−λ
∫ s

0
e−(ρ+λ)xπ(x) dx+ q(s)

(

r + λ
r(1 − τ)

ρ
(1 − e−ρT )

)

+

(

r(1 − τ)

ρ
(1 − e−ρT ) − k

)

e−(ρ+λ)s − k(λe−ρT q(s) + e−ρT−(ρ+λ)s)

}

/

(

1 − λe−ρT q(s) − e−ρT−(ρ+λ)s
)

.
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A.4 Proof of Proposition 1

I assume throughout that ρ, λ, T > 0 and k, s ≥ 0. Denote the denominator of (6) or (7) by
D(s). We have that D(s) > 0, D′(s) > 0. The derivatives of θ(s) and κ(s) are given by

θ′(s) =
e−(ρ+λ)s

D(s)2
ρ

r

[

D(s)λπ(s) − rτ(1 − e−ρT ) − λρe−ρT

∫ s

0
e−(ρ+λ)xπ(x)dx

]

,

κ′(s) =
e−(ρ+λ)s

D(s)2
kρ

r

[

λ(e−ρT − 1) − ρ(1 + e−ρT )
]

< 0,

such that

θ′(s) + κ′(s) =
e−(ρ+λ)s

D(s)2
ρ

r

[

D(s)λπ(s) − λρe−ρT

∫ s

0
e−(ρ+λ)xπ(x)dx− Ψ(k)

]

,

with Ψ(k) > 0,Ψ′(k) > 0, and Ψ(k) independent of s. Denote the term in square brackets in
the last expression by S(s).

i. S(0) < 0. S′(s) = λ(D′(s)π(s) +D(s)π′(s)) − λρe−ρT e−(ρ+λ)sπ(s) = λD(s)π′(s) ≥ 0, (>
0 for s > 0). Moreover, lims→∞ S′(s) is bounded away from zero because lims→∞D(s) >
D(0) > 0. By continuity, there exists a unique, finite s⋆ > 0 such that S(s⋆) = 0. Since
e−(ρ+λ)s

D(s)2
ρ
r
> 0, s⋆ minimizes θ(s) + κ(s).

ii. The above argument holds for any k ≥ 0. For k = 0, κ(s) = 0 ∀s.

iii. By the above argument, s⋆ increases in Ψ(k) and thus, in k. Since s⋆ = s⋄ for k = 0,
s⋆ > s⋄ and θ′(s⋆) > θ′(s⋄) for k > 0.

iv. Households evade taxes if the minimal tax-plus-fine and switching-cost rates sum to less
than the statutory tax rate.

A.5 Derivation of Equations (8), (9)

Derivation for a value function M(r) with a flow payoff φ(r) and a flow probability ν of switching
to the other state with the associated value function N(r). Within the inaction range, we have

M(r) = lim
dt→0

φ(r) dt+ (1 + ρ dt)−1E[(1 − ν dt)M(r + dr) + ν dtN(r + dr)]

or, equivalently,

lim
dt→0

(ρ+ ν) dtM(r) = lim
dt→0

φ(r)(1 + ρdt) dt+ E[(1 − ν dt)dM(r) + ν dt(N(r) + dN(r))].

By Ito’s lemma and dr = −ηr dt+ σ dZ,

EdM(r) = −M ′(r)ηr dt+ 1/2M ′′(r)σ2 dt,

and parallel for EdN(r). Dividing by dt and taking the limit, we find that

(ρ+ ν)M(r) = φ(r) −M ′(r)ηr + 1/2M ′′(r)σ2 + νN(r).

Equations (8) and (9) follow by direct substitution for M(r), N(r), φ(r), and ν.
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A.6 Solution of the ODE (10)

Let a ≡ 2η/σ2 > 0; b ≡ 2(ρ + λ)/σ2 > 0; and c ≡ b/a. To solve the homogeneous part of (10),
we must find a function x(r) solving

x′′(r) − arx′(r) − bx(r) = 0.

Let z ≡ r
√
a and y(z) ≡ x(r). An equivalent representation of the homogeneous equation is

y′′(z) − zy′(z) − cy(z) = 0;

see Kamke (1956, 2.54). The solution to this equation is

yh(z) = A 1F1

(

c

2
,
1

2
,
z2

2

)

+Bz 1F1

(

1 + c

2
,
3

2
,
z2

2

)

,

for A,B arbitrary constants and 1F1(·) the confluent hyper-geometric function or Pochhammer’s
function; see Kamke (1956, 2.44).

A particular solution to the original ODE in the modified representation,

y′′(z)η − ηzy′(z) − (ρ+ λ)y(z) = −(1 − λζ)r̄

(

τ0 +
τ0 + τ1√

a
z +

τ1
a
z2

)

+ ψ,

is given by yp(z) = φ0 + φ1z + φ2z
2 with

φ0 =
(1 − λζ)r̄τ0 − ψ + σ2r̄τ1(1−λζ)

2η+λ+ρ

λ+ ρ
,

φ1 =
(1 − λζ)r̄(τ0 + τ1)√

a(η + λ+ ρ)
,

φ2 =
(1 − λζ)r̄σ2τ1
2η(2η + λ+ ρ)

.

The solution to the original ODE in the modified representation is thus y(z) = yh(z) + yp(z),
subject to the value matching and smooth pasting conditions y(zh) = kh, y′(zh) = 0, y(zl) =
−kl, y′(zl) = 0. Solutions for the four unknowns A,B, zh, zl can be numerically obtained.
Solutions for rh, rl follow directly. Alternatively, one derives X(r) from y(z) and solves X(r)
and the value matching and smooth pasting conditions numerically for A,B, rh, rl.

References
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