Bacchetta, Philippe; van Wincoop, Eric

Working Paper
Capital flows to Emerging Markets: Liberalization, Overshooting, and Volatility

Working Paper, Study Center Gerzensee, No. 98.01

Provided in Cooperation with:
Study Center Gerzensee, Swiss National Bank

Suggested Citation: Bacchetta, Philippe; van Wincoop, Eric (1998) : Capital flows to Emerging Markets: Liberalization, Overshooting, and Volatility, Working Paper, Study Center Gerzensee, No. 98.01

This Version is available at:
http://hdl.handle.net/10419/127978
CAPITAL FLOWS TO EMERGING MARKETS:
LIBERALIZATION, OVERSHOOTING,
AND VOLATILITY

Philippe Bacchetta
Eric van Wincoop

Working Paper 6530
CAPITAL FLOWS TO EMERGING MARKETS:
LIBERALIZATION, OVERSHOOTING,
AND VOLATILITY

Philippe Bacchetta
Eric van Wincoop

Working Paper 6530
http://www.nber.org/papers/w6530

Prepared for the NBER conference on capital flows to emerging markets. Part of this paper was written while the first author was visiting the NBER in Cambridge. We wish to thank Sebastian Edwards, Stijn Claessens, Holger Wolf and John Clark for discussions at an early stage, and Laura Brookins for research assistance. The views expressed in the paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York, the Federal Reserve System, or the National Bureau of Economic Research.

© 1998 by Philippe Bacchetta and Eric van Wincoop. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Capital Flows to Emerging Markets: Liberalization, Overshooting, and Volatility
Philippe Bacchetta and Eric van Wincoop
NBER Working Paper No. 6530
April 1998
JEL Nos. F21, F32

ABSTRACT

The paper analyzes the impact of financial liberalizations and reforms in emerging markets on the dynamics of capital flows to these markets, using a simple model of international investors’ behavior. We first show that the gradual nature of liberalizations, combined with the cost of absorbing large inflows in emerging economies, leads to rich dynamics of capital flows and often implies an initial period of overshooting as portfolios adjust. Asset prices will overshoot as well. Second, we show that if investors have incomplete information about new emerging markets, and learn over time, there can be high volatility of capital flows as well as contagion. Finally, we provide numerical estimates of long run capital inflows to emerging market economies and compare them to actual inflows. This gives a good indicator of upcoming crisis situations.

Philippe Bacchetta
Studienzentrum Gerzensee
Postfach 21
3115 Gerzensee
SWITZERLAND
phbacchetta@szgerzensee.ch

Eric van Wincoop
Federal Reserve Bank of New York
33 Liberty Street
New York, NY 10045
eric.vanwincoop@ny.frb.org
1 Introduction

1.1 Capital Flows in the 1990s

The surge in capital flows towards a group of developing countries in the 1990s is remarkable more by the nature of these flows than their quantities. Total lending to developing countries has indeed increased compared to the mid 1980s, but is not higher than in the early 1980s. Figures 1a and b show the current account and net capital flows for the sum of 17 emerging market countries, both as a fraction of GDP.\(^1\) Net errors and omissions have been included in the capital account. These figures describe the broad trend seen over the last two decades: large current account deficits during the late seventies and early eighties, followed by a sharp decline in net capital flows to approximately zero in the mid 1980s, and subsequently another net foreign lending boom.

During the previous foreign lending boom of the late 1970s, commercial bank lending to developing country governments, firms and banks was most important. The recent lending boom of the 1990s was quite different in nature. Instead of direct lending to developing countries, portfolio flows and foreign direct investment (FDI) became the dominant source of capital inflows. Developing country governments have also come to rely more on issuing debt securities than on foreign commercial bank loans. Most commercial bank lending to developing countries now goes directly to the private sector, often channeled through banks and other financial institutions. Moreover, syndicated bank loans have become far less important.\(^2\)

These stylized facts are illustrated in Figures 2a-d. They break down capital flows into four components. The first is FDI, which has been by far the smoothest of all components. It rose from about 0.5\% of GDP in the early 1980s to almost 1\% of GDP today. The second, portfolio flows, is associated with trade in equity and debt securities. Net portfolio flows rose from practically zero in the mid 1980s to almost 4\% of GDP in 1993. These

\(^1\)This group of countries is determined by data availability and is used throughout the paper. They include most major recipients of recent capital flows, except for China. The 17 countries are: Argentina, Brazil, Chile, Columbia, India, Jordan, Korea, Malaysia, Mexico, Pakistan, Peru, Philippines, South Africa, Sri Lanka, Thailand, Turkey, and Venezuela. The data for these Figures, as well as others in the paper involving capital flows, are from the IMF Balance of Payments Statistics.

flows have been very volatile as well, dropping to less than 1% of GDP in 1995 as a result of the Mexican crisis, and rising again to 3% of GDP in 1996.

The remaining components are classified under "other investment" by the IMF: loans, currency and deposits, and trade credits. For illustrative purposes we have broken "other investment" up into two components. The first, "non-portfolio net private flows" are net flows to the private sector other than portfolio and FDI flows. The debt crisis of the early 1980s was marked by a sharp drop in net "non-portfolio net private flows" from 3% of GDP in 1981 to -2% of GDP in 1983. Since the mid 1980s these flows have slowly increased again as confidence was restored and the old debt restructured. The second component, "non-portfolio net government flows" are net flows to the government sector other than portfolio flows, including official loans. These have clearly declined since the early 1980s. During the 1990s total net non-portfolio flows, while volatile, have been close to zero on average.

The remainder of the paper will focus on capital inflows rather than net flows. As illustrated by Figure 3, almost all the action is associated with inflows. Outflows have been relatively steady at a level fluctuating between zero and 1%. Their recent increase may even be overestimated since capital flight seems to have declined. The story of net capital flows is therefore almost entirely a story of capital inflows.

1.2 Liberalization, Overshooting and Volatility

What are the factors behind the increase in lending to emerging economies? This question is crucial as its answer will determine whether the flows pouring into emerging economies can be sustained, and thus be used for their long-term development. It will also help in adopting the right policies in the shorter run. Should these flows be only temporary, they would be of little use for these countries and only create short run policy management problems. The first empirical studies attempting to uncover the factors causing the increase in flows found that low real interest rates in developed countries plays a substantial role. This evidence led some analysts to conclude that the increase in inflows to emerging market countries was temporary and would

\[3\text{See Schineller (1997).}\]

\[4\text{See Calvo et al. (1996) and Frankel and Okongwu (1996) for surveys of these earlier studies.}\]
decline with the subsequent increase in world interest rates. Developments in more recent years have shown this prediction to be incorrect.

Our contention is that there is one fundamental factor behind the increase in capital inflows to some developing countries: the wave of financial liberalization and structural reforms undertaken in recent years in emerging as well as industrialized countries. The changes in emerging market countries include the removal of capital controls, the liberalization of the domestic financial system, trade liberalization, macroeconomic stabilization, and privatization. Obviously, the dates, the extent and the pace of liberalization largely differ across countries. Typically, liberalization measures were adopted progressively over several years. Moreover, most countries only liberalized partially. For example, Korea kept many restrictions in financial markets. Its partial liberalization measures, however, led to a surge in borrowing by domestic banks and, to a lesser extent, in some categories of portfolio flows.

Nevertheless, there is a clear trend towards liberalization in the 1990s. For example, an indication of capital account liberalization can be found by using the capital controls index computed by Bartolini and Drazen (1997) and based on the IMF Exchange Arrangements and Exchange Restrictions. Figure 4 shows the average of this index for the 17 emerging economies we consider. The degree of capital controls increased in the early 1980s to dramatically decline in the 1990s. The profile of the capital controls index is strikingly similar to net lending depicted in Figure 1.

It is also useful to put developments in emerging markets into perspective against the background of increased integration of industrialized countries. During the 1980s and 1990s we have seen a substantial increase in equity and bond flows among industrialized countries. This process, known as securitization, is a result of domestic and international financial deregulation, financial innovation and technological advances in communication and computing. Nonetheless portfolio flows to emerging markets have grown even much faster. Of total FDI plus portfolio outflows from the sum of 21 industrialized countries, we find that 2% was allocated towards our 17 emerging markets in 1986 and 1987. This increased to an average of 16% during the 1990s.

5 We would like to thank Leonardo Bartolini for providing the data. See Bartolini and Drazen (1997) for more details on this index.

6 For further discussion on these developments, see World Bank (1997), Ch. 2.
Although the impact of the various reforms is not yet well understood, several studies have focused on equity markets and financial liberalization. In particular, Henry (1997b) analyzes a group of 11 countries (a subset of our 17 countries) and shows empirically that stock market liberalization has a significant positive impact on private investment. In a related paper, Henry (1997a) shows that equity prices significantly increase after a stock market liberalization. However, he also finds that other economic reforms have an impact of the same order of magnitude. More specifically he constructs indexes of four types of reforms: macroeconomic stabilization, trade liberalization, privatization, and easing of exchange controls. This evidence shows that it is necessary to consider the set of all liberalizations and reforms to understand the recent developments (see also Bekaert and Harvey, 1997). In this paper we will not attempt to disentangle the various liberalizations or reforms and simply assume that they jointly increase returns and give easier access to financial markets of these countries.

The increased attractiveness of emerging markets to foreign investors obviously preconditions the potential impact of other factors. For example, external developments such as movements in world interest rates, are likely to have a larger impact on these economies. Domestic economic events will also have wider consequences. Thus, capital flows potentially become more sensitive to other variables and more volatile. Moreover, since the liberalizations represent in principle a permanent change, the increase in inflows should be seen as ultimately permanent. This should allow for an easier financing of emerging countries’ development.

If one adopts the view that domestic liberalizations and reforms play a central role in the recent lending boom, it is important to understand their impact both in the short and the long run. One can easily think of a series of highly relevant questions: How much foreign capital can developing countries expect to receive in the long run? When are capital inflows ‘too large’? Is there a risk of sharp reversal in flows? Will volatility decline over time?

Before attempting to address these questions, it is useful to consider Figures 5 to 7 as they provide some interesting insights to the discussion. Figure 5 compares the cumulative inflows from 1989 to 1996 of individual countries. For each country it shows its fraction of total cumulative inflows to all the

17 emerging market countries, and compares it to the country’s share in the 1992 capital stock of all 17 countries. When we look at total inflows, the countries that have experienced large inflows in comparison to the relative size of their capital stock are Argentina, Thailand, Korea and Mexico. These countries have all experienced serious recent crises associated with a sharp drop in inflows. At the other extreme of the spectrum is India, whose capital stock is about 20% of the total emerging market capital stock, but whose inflows are only slightly over 5% of total inflows as a result of capital controls. When we only consider FDI plus portfolio flows, Korea and Thailand have experienced “normal” inflows. These two countries received relatively large inflows to the banking sector, and faced reversals of these flows in 1997. It seems indeed that countries with large inflows tend to experience sharp corrections.

Figure 6 shows the share of capital outflows from the sum of 21 industrialized countries that goes to the 17 emerging economies. The straight line represents our estimate of the steady state inflows based on a model that we develop in Section 4. It corresponds to a scenario whereby the emerging markets are equally well integrated into world capital markets as the industrialized countries. In the 1990s emerging market countries have received somewhat less than 20 percent of total capital outflows from industrialized countries, which is similar to the peak during the previous lending boom. FDI+portfolio flows peaked at 26% of industrial country outflows during 1994, which is even slightly above our long run steady state estimate, and far above the peak during the previous lending boom. On average though, both portfolio and total flows during the 1990s remain below their long run steady state level.

Figure 7 presents the evidence of Figure 6 on a country by country basis. For a particular country \(i\) it shows the fraction of capital outflows from all other countries that is allocated to country \(i\). Several conclusions can be drawn from these pictures. First, inflows are highly volatile at the country level. Second, in many countries inflows overshoot our estimate of steady

8The capital stock data is computed by updating the estimates of King and Levine (1994). See section 4 for more details.
9Since most of FDI consist of equity claims above 10% of a firm’s value, we add them to portfolio flows.
10See Milesi-Ferretti and Razin (1997) for an econometric analysis of the determinants of net lending reversals.
state flows in some years. Third, in most cases the end of the overshooting period coincided with a crisis. This is in particular the case for Chile and Mexico in the early 1980s and for Mexico, Thailand and Korea in the 1990s. Finally, we observe the overshooting for all different types of capital flows. Argentina, Brazil and Mexico experienced sharp reversals of portfolio flows. Peru experienced a sharp reduction in FDI flows in 1995. Thailand and Korea faced a large drop in loans and deposits to banks and other financial institutions during 1997.

The countries that have experienced overshooting of capital inflows are also the ones where we have seen substantial capital account and financial liberalization. Argentina is an example of a country that liberalized capital flows at an early stage. Since 1989 foreigners may invest in Argentina without prior approval, on the same terms as investors who are resident in Argentina.11 Capital flows to Argentina have been substantially above the long run steady state since 1990. In Thailand major capital account liberalization measures were undertaken over the period 1990 to 1992.12 Direct investment was encouraged, new closed end mutual funds were established, tax incentives were granted to foreign mutual funds for investment in the stock market, and authorities approved the establishment of the Bangkok International Banking Facility, which expanded short-term inflows. It is indeed during this period that we see a sharp increase in capital flows to Thailand, reaching above the long run steady state. Korea has maintained significant capital account controls throughout the sample. The liberalizations have been very gradual and selective. In 1992 non-residents were permitted limited access to the stock market and the limit on foreign direct investment was increased. In 1996 non-residents were permitted to invest in domestic bonds through country funds. It has also become easier to attract short term bank deposits from foreigners. Because the liberalizations were more limited and gradual, we see smaller overshooting of capital inflows than in countries that have more aggressively liberalized the capital account. Finally, there are countries such as India, Malaysia, South Africa and Sri Lanka whose capital markets remain largely closed to foreigners and where capital flows in the 1990s stayed significantly below the long run steady state.

11See the 1990 and 1991 issues of Exchange Arrangements and Exchange Restrictions by the IMF.
12See Johnston et. al. (1997) for details.
1.3 A Simple Framework

The above evidence shows that beside the general increase in capital flows to emerging market countries, there is a complex dynamic process. The objective of this paper is to shed some light on this process. More specifically, we address three issues: i) what causes the overshooting? ii) why can high volatility be associated with a period of liberalization? iii) how large can capital flows to developing countries be in the long run?

Since the impact of the liberalizations and structural reforms on the dynamics of capital flows has not been examined carefully in previous literature, we study the implications of a simple dynamic model. We first consider a model in which the liberalization is completely deterministic. In other words, investors know when and how much emerging capital markets open up and macroeconomic reforms are adopted. This leads to portfolio adjustments and gives rise to a non-linear relationship between capital flows and liberalization, with overshooting as a central feature. The non-linear relationship between fundamentals and capital flows makes analysis of sustainability even more difficult than usually thought.\(^{13}\)

We subsequently introduce incomplete information, from the point of view of foreign investors, about the extent of liberalization and economic reforms. Since the structural changes happening in reforming countries drastically alter the economic environment and since these countries may be new to investors, information on investment opportunities is often greatly limited. We argue that this incomplete information and the subsequent process of learning may have a substantial impact on the dynamics of capital inflows and can generate high volatility, consistent with that observed in the data. We illustrate this point by incorporating learning in our dynamic model and by simulating it.

Finally, we modify our model to examine the steady state. We compute some heroic estimates of long run capital inflows in a world where emerging markets are “equally” integrated into world capital markets as industrialized countries.

Several explanations have been proposed in the literature to explain the volatility of capital flows, in particular in the context of the South East Asian crisis. These explanations rely on multiple equilibria, herd behavior, bubbles or even irrational behavior. In contrast, our analysis shows that a simple

\(^{13}\)See Milesi-Ferretti and Razin (1996) for a discussion of sustainability.
A macroeconomic model with optimal portfolio decisions can explain several important features of capital flows. Nevertheless, our focus on the impact of liberalizations is compatible with other approaches and should be seen as a complementary view.

2 A Model of Capital Flows

The impact of liberalizations and reforms is a complex issue that has been analyzed from different perspectives. McKinnon (1993) provides an interesting overview of many of the issues. In this paper, we argue that the dynamic implications of these structural changes are non-linear and can explain some of the volatility of capital flows. Our approach is somewhat related to Bacchetta (1992) who uses an overlapping generation model to look at a joint liberalization of capital flows and of the domestic financial system. The latter is represented by a reduction in margins charged by the domestic financial system that implies both an increase in return to domestic savers and a decrease in the cost of capital for firms. It is shown that a joint liberalization generally leads to an initial period of large net capital inflows. Over time, however, net inflows decline and may be replaced by net outflows. Moreover, there is an overshooting in share prices. Nevertheless, Bacchetta's analysis only considers a small open economy, does not incorporate uncertainty, and only analyzes once-and-for-all liberalizations.

In this section, we consider a world economy with an arbitrary number of developed and emerging economies. We introduce uncertainty and the explicit portfolio decisions of investors.\footnote{Calvo and Mendoza (1996, 1998) also consider explicit portfolio decisions in a model of international capital flows.} We analyze both once-and-for-all and gradual liberalizations and study the impact on the dynamics of capital inflows. We also examine the impact of liberalization occurring simultaneously in all emerging markets. On the other hand, to keep the analysis tractable, we introduce some simplifying assumptions. In particular, we abstract from intertemporal consumption decisions\footnote{Thus, we do not consider consumption booms that have been observed in some countries.} and assume that there are no capital outflows from emerging markets.\footnote{Figure 3 shows that this is not a bad approximation as most of the increase in the net}
lessly moved across countries, although we do introduce an adjustment cost reflecting bottlenecks. Most of these assumptions can be relaxed in more complex and realistic models without altering the basic insights.

2.1 Basic Setup

Assume that the world is made up of \(N \) identical developed countries and \(J \) identical emerging economies. There is one capital good, which can be invested in any country. At time 0 individuals in developed and emerging economies own respectively \(W^* \) and \(W \) capital goods. While capital goods depreciate at a constant rate \(\delta \), each year individuals receive a new endowment of capital goods equal to \(\delta W^* \) in developed countries and \(\delta W \) in emerging economies. Thus the endowment of capital goods in each country remains constant over time. The capital goods are lent to firms which produce a non-storable consumption good in the following period. Firms have a random technology and shocks are country specific. Individuals receive the consumption good in proportion to their investment and consume it. Hence, this economy does not allow intertemporal substitution and individuals simply maximize each period the risk-adjusted return from their investment. This allows us to focus on the portfolio diversification aspect of capital flows to emerging markets.

It is assumed that emerging country individuals invest only in domestic firms, while rich country investors can diversify internationally. Allowing emerging country residents to hold well diversified portfolios does not qualitatively alter the results. It is therefore a simplifying assumption that allows us to focus on capital inflows, and, as Figure 3 shows, it is also broadly consistent with the data. The return on investment in developed country \(i \) is \(\mu^*_it \sim N(\mu^*, \sigma^*\sigma^2) \). This means that with capital stock \(K^*_it \) production of the consumption good is \(\mu^*_itK^*_it \). The return \(r_it \) on investment in emerging market \(i \) is composed of three elements:

\[
r_it = \mu_it - \tau_it - c(I_it)
\]

and the expected return is \(\tau^*_it = \bar{\mu} - \tau^*_it - c(I_it) \). \(\mu_it \sim N(\bar{\mu}, \sigma^2) \) is the return from firms' production. We denote the correlation between returns in two countries by \(\rho_{EE} \) for two emerging economies, \(\rho_{DD} \) for two developed inflows are due to gross inflows.
economies, and ρ_{ED} for a developed and an emerging economy. A tax τ_t is imposed on foreign investors. This tax captures the various barriers or costs to investment faced by investors (capital controls, illiquid markets, taxation, etc.). A liberalization is simply modeled by a decrease in τ_t.

Finally, there is an installation cost $c(I_t)$ that is incurred when the capital stock is increased. A major element influencing the dynamics of capital inflows is that the liberalizing economies have difficulties absorbing large flows for various reasons. There may not be an efficient structure to channel funds to the most productive uses, in particular because of a weak financial system or thin markets. Other reasons can be incomplete information, lack of infrastructure or skilled labor, and various other bottlenecks. Without an installation cost the portfolio adjustment in response to a change in the tax is immediate. This would lead to an excessive, and unrealistic, reallocation of resources between developed and emerging countries in response to a shock. We assume $c(I) = cI$, with c being a constant.18

Asset prices also fluctuate in presence of the installation cost $c(I)$. If we interpret $\mu - \tau$ as the return on installed capital, one can show that the price of installed capital in emerging market i minus the price of installed capital in industrialized countries, both at time $t - 1$, is equal to $c(I_t)$ discounted at the implicit risk-free interest rate. An investment boom in emerging markets therefore leads to a rise in the relative price of emerging markets capital. Asset price booms and busts associated with foreign capital inflows and outflows are indeed commonly seen in emerging markets, and play a particularly important role in the Asian crisis. For simplicity, however, we do not introduce asset prices explicitly.

The basic decision variable is the proportion α_{it} that an individual of a rich country invests in country i. When the investment allocations are determined, the capital stock in emerging country i is given by:

$$K_{i,t} = W + N\alpha_{it}W^*$$

17Gavin and Hausman (1996), World Bank (1997) and several others stress the role of weak domestic financial markets.

18We could also make the installation costs a function of I/K. But qualitatively this makes no difference for the results. We could have added an installation cost to the return in developed countries as well, but again omit it for the sake of simplicity. What is important is that the bottlenecks are greater for emerging markets than for industrialized countries.
while investment is given by:

\[I_t = K_t - (1 - \delta)K_{t-1} \]

(2)

A liberalization, captured by a decline in \(\tau_t \), implies a change in portfolio allocations \(\alpha_{it} \) and consequently in investment and the capital stock.

2.2 Portfolio Allocation

It is first necessary to derive the optimal portfolio allocation before determining the capital stock, investment and capital inflows. Since there is no intertemporal allocation, individuals from developed countries maximize their utility each period through the optimal investment allocation across countries. Assuming an exponential utility function \(U(C) = e^{-\theta C} \), and given that consumption is equal to portfolio return \(R_t \) times \(W^* \), rich country investors’ optimization problem is:

\[
\max_{\alpha_{it}} E(R_t) - \frac{\gamma}{2} \text{var}(R_t)
\]

(3)

where \(R_t = \sum_{j=1}^{J} \alpha_{jt} r_{jt} + \sum_{i=t+1}^{J+n} \alpha_{it} \mu_{it}, \sum \alpha_{jt} = 1, \text{ and } \gamma = \theta W^* \).

The Appendix derives the optimal investment allocations. Here we only consider the case where the correlation of returns across all countries is zero and \(\sigma = \sigma^* \). The average expected return in emerging markets is denoted \(\bar{r}_t = \sum_{j=1}^{J} \tilde{r}_{jt}/J \). Then, the investment share in emerging country \(j \) is given by:

\[
\alpha_{jt} = \frac{1}{N+J} + \frac{\bar{r}_{jt} - \left[\frac{1}{N+J} \tilde{r}_t + \frac{N}{N+J} \bar{r}_t \right]}{\gamma \sigma^2}
\]

(4)

The portfolio share depends on the expected excess return between emerging country \(j \) the world return (equally weighting all countries).

The impact of a liberalization can readily be derived from (4). If the liberalization occurs in country \(j \) only we find from (4):

\[
\frac{\partial \alpha_j}{\partial \tau_j} = -\frac{N + J - 1}{(N + J)^2 \gamma \sigma^2}
\]

If the liberalization occurs simultaneously in all emerging economies:

\[
\frac{\partial \alpha_j}{\partial \tau_j} = -\frac{N}{(N + J)^2 \gamma \sigma^2}
\]
Obviously the impact is larger when a country liberalizes alone because it has fewer competitors for the foreign capital. The difference increases with \(J \). To attract a certain amount of foreign capital, the incentive to liberalize is greater the larger the number of other emerging countries that open up their markets. A larger reduction in \(\tau \) is needed.

2.3 The Dynamics of Capital Flows

Once portfolio shares are known, capital flows can be derived. First consider the case where all countries liberalize simultaneously and have the same \(\tau_{it} = \tau_t \). In that case we can write

\[
\alpha_{jt} = x_0 + x_1(\bar{\tau}_t - \bar{\mu}^*)
\]

where \(x_0 = 1/(N + J) \) and \(x_1 = N/(N + J)\gamma\sigma^2 \). Using the definition of \(\bar{\tau}_t \), the evolution of the capital stock is given by substituting (5) into (1):

\[
K_{tt} = W + N(x_0 + x_1(\bar{\mu} - \bar{\mu}^*))W^* - N x_1 W^*(\tau_t + cI_{it})
\]

Here we used the fact that all emerging countries have the same investment rate. Combining with (2) this gives us a stable linear difference equation for the capital stock:

\[
K_{tt} = f(\tau_t) + \frac{N x_1 W^* c}{1 + N x_1 W^* c} (1 - \delta)K_{t,t-1}
\]

where

\[
f(\tau_t) = \frac{N(x_0 + x_1(\bar{\mu} - \bar{\mu}^*))W^* + W - N x_1 W^* \tau_t}{1 + N x_1 W^* c}
\]

is a negative function of \(\tau_t \). Since investment by domestic residents is a constant \(b W \), capital inflows are equal to total investment minus \(b W \). Using (2) this gives:

\[
Inflows_{it} = f(\tau_t) - (1 - \delta)\frac{1}{1 + N x_1 W^* c} K_{t,t-1} - \delta W
\]

We can use these equations to determine the impact of a joint liberalization. We will also consider the case where only one country liberalizes. The equations are qualitatively similar. Assuming that the average tax rate
across all emerging markets remains constant, it follows from aggregating
(1), (2), and (4) that the aggregate capital stock, investment, and \(\bar{\tau}_t \) remain
constant. In that case, from (4)

\[
\alpha_{jt} = x_2 + x_3(\bar{\tau}_{jt} - \bar{\mu}^*)
\]

where \(x_2 = (1/(N + J)) - (\bar{\tau}_t - \bar{\mu}_t)J/((N + J)\gamma \sigma^2) \) and \(x_3 = 1/(\gamma \sigma^2) \). Substituting (9) and (2) into (1), the differential equation for the capital
stock, and the solution (8) for capital inflows, remain unchanged, with \(x_0, x_1 \) and \(\tau_t \) replaced by \(x_2, x_3, \) and \(\tau_{jt} \).

2.4 The response to a financial liberalization

The dynamic impact of a liberalization can readily be derived. From (7) a
permanent financial liberalization, as captured by a permanent decrease in
the tax rate \(\tau_{jt} \), leads to a gradual rise in the capital stock to a higher level
since \(f(\tau_t) \) increases. From (8) it follows that there will be an immediate
rise in capital inflows, followed by a gradual decline to a higher steady state
level. Capital inflows therefore overshoot their new steady state level after
a liberalization. It can be easily verified that the overshooting is smaller,
although more persistent, when the installation cost is larger. The precise
dynamics of capital flows obviously changes with the form of installation
costs, but even with a non-linear cost function the qualitative results are the
same.

However, examining a once-and-for-all liberalization does not appear very
realistic. First, as we argue in the Introduction, it is a combination of vari-
ous liberalizations and reforms that makes investment more attractive. They
typically do not occur simultaneously. Second, even specific reforms are of-
ten gradual. For example, consider the stock market liberalizations that have
been analyzed empirically. A useful measure of the stock market openness
to foreign investors is the investability index computed by the International
Finance Corporation (IFC). For each stock an investability index between
zero and one is computed, measuring the ease with which foreign investors
can buy and sell the stock. The aggregate investability index is a weighted
average of the index for each stock, with weights based on market capitaliza-
tion. This index has been used in particular by Bekaert (1995) and Henry
(1997) to measure liberalization. Figure 8 shows the evolution of this index
for a subset of 6 countries. While stock market liberalizations in Chile, India and Mexico can best be characterized as once-and-for-all permanent liberalizations, those in Brazil, Pakistan and Venezuela are more gradual.

Consequently it seems interesting to consider a gradual liberalization. The dynamic impact of such a liberalization obviously depends on its profile over time. In the next subsection we calibrate the model and numerically simulate a simple gradual liberalization.

2.5 Numerical Simulation

The gradual liberalization we consider is the case where the tax rate declines exponentially. We assume that τ_t decreases at a rate of 10% per year: $\tau_t = e^{-0.1t}\tau_0$. We set the model parameters as follows. First $\sigma = 0.05$ is the average standard deviation on a broad measure of capital return for the four industrialized countries in Baxter and Jermann (1996). Such a broad measure of capital return is not available for emerging markets. Harvey (1995) reports average returns on equity for industrial countries and emerging markets. The latter is on average 80% larger, so that we set $\sigma^* = 0.09$. We set $\mu = 0.07$. $\mu^* = 0.106$ is set such that investment in emerging markets by industrialized countries is zero before the liberalization. The assumed correlations are $\rho_{EE} = 0.06$, $\rho_{ED} = 0.12$ and $\rho_{DD} = 0.35$. These are based on correlations for equity returns reported by Harvey (1995). We set $W = 1$ and $W^* = 4$. This reflects the fact that per capita capital stock in industrialized countries is on average about four times that of emerging markets. We set the number of developed and emerging countries, N and J, both equal to 20. This implies that emerging markets hold 20% of global wealth. This corresponds closely to the share of emerging country capital stocks in the global capital stock. γ is set such that the rate of relative risk-aversion is 3 at the pre-liberalization average level of industrial country consumption. The adjustment cost parameter c is set at 0.05. Finally, we set $\delta = 0.07$ to be consistent with the depreciation rate assumed by King and Levine (1994) to compute the capital stock data we use.

Figure 9 shows the dynamic response of capital inflows relative to the capital stock when the tax rate decreases exponentially at a rate of 10%.

19 The other countries have either fewer observations or little change in the index.

20 This is based on the 1992 capital stock data discussed in the introduction.
per year, starting from a rate r_0 of 0.05. The figure shows both the case
where only one country liberalizes and where all emerging market countries
liberalize. We clearly see an overshooting of the inflows in both cases. The
basic economic intuition is that there is a portfolio adjustment that needs to
take place once the tax rate drops. This is a stock adjustment that requires
relatively large flow adjustments in the short run. Foreign investors buy a
lot of emerging market equity in the short run to raise exposure to that part
of the world. Once most of the portfolio adjustment has taken place, the
portfolio flows decline. If the full liberalization takes places instantaneously
(permanent drop in the tax rate), inflows overshoot immediately and then
gradually fall back to their higher steady state level. In Figure 9 portfolio
flows rise during the first five years, after which they gradually decline. The
gradual rise of portfolio flows before they peak is a result of the gradual
liberalization. As discussed above, capital flows rise more when only one
country liberalizes. The difference is larger for the new steady state than for
the short run response. In the short run there are high adjustment costs,
which prevent excessive overshooting.

The dynamics of capital flows presented in Figure 9 depend on the spe-
cific profile assumed for r_t. Other profiles obviously give different dynamics,
but an overshooting is generally present. This overshooting is consistent
with the data presented in Figure 7. This result has potentially important
implications. First, it shows that capital flows may be falling even when
fundamentals are improving. Second, it shows that periods of large inflows
and investment are likely to be followed by a downwards correction. This
implies that periods of large inflows cannot be extrapolated. This consider-
ably complicates policy decisions as they must take into account a potential
future reversal. In this same volume, Edwards (1998) analyzes in detail the
policy issues associated with overshooting. Third, the overshooting of cap-
ital flows will also give rise to an overshooting of asset prices because, as
discussed above, the price of installed capital depends positively on the rate
of investment. Asset price overshooting after a burst of capital inflows is
commonly observed in emerging markets.

21 Notice that this is also consistent with the evidence present by Milesi-Ferretti and
Razin (1997) who show empirically that high investment and large net inflows are signif-
cant in predicting reversals in net lending.
3 Incomplete Information and Learning

A crucial element in liberalization and reforms is incomplete information. Since the environment changes dramatically, investors do not have immediate full information on their new investment opportunities. The problem of incomplete information is likely to become less acute over time as investors learn about their new environment. In this section we show that the presence of incomplete information can generate considerable volatility. We also argue that it can explain contagion across countries.

Incomplete information is obviously a pervasive phenomenon, but it can be far more acute in the case of liberalizing emerging economies. Foreign investors may have less information than domestic investors as these markets are new to them. There may also be incomplete information for domestic investors and entrepreneurs. There may be a large degree of uncertainty about how firms will succeed in the new environment. Bacchetta and Dellas (1997) and Fernandez and Rodrick (1991) consider examples where entrepreneurs are uncertain about their chances to succeed after a trade liberalization. Substantial liberalization and macroeconomic reforms imply a regime change. This creates an environment of uncertainty for foreign and domestic investors alike. Particularly in the beginning there is uncertainty both about the extent of the reforms and their success. However, as time goes by investors will learn and most of the initial uncertainty will be resolved.

In general there could be incomplete information about all components of total return: the underlying distribution of μ, the level of the tax τ, and the installation cost c. Although it does not matter much which of these is the source of incomplete information, we focus on uncertainty about τ. This could come from a lack of knowledge about the extent of economic reforms and liberalization, or uncertainty about the success of macroeconomic reforms. Although the government may announce that it has adopted far reaching reforms, this may not fully convince foreign investors due to credibility problems. Given that investors only observe r_t, they cannot infer precisely the level of τ. Over time, however, investors continuously update their perception of τ by observing r_t. They find out the actual value of

22Frankel and Schmukler (1996) provide evidence of asymmetric information in the case of Mexico, while Coval (1995) and Brennan and Cao (1997) analyze its implications.

23In a different context, but in a similar spirit, Lewis (1989) analyzes the process of learning about a shift in money demand.
in the long run. This is similar to models of monetary policy credibility, whereby credibility is gradually established based on observed inflation rates, although there the government’s policy is not always exogenous and changes with its reputation. 24

Consider the following experiment. Assume that the tax rate in the emerging market is reduced permanently from \(\tau = \tilde{\tau} \) to \(\tau = 0 \) at time 0. 25 The government announces it, but investors only give partial credibility to the announcement. Their prior is that with probability 0.5 \(\tau \) has dropped to zero and with the same probability 0.5 it remains \(\tilde{\tau} \). Based on actual returns investors continuously update these probabilities. We introduce this feature in the model described above and assuming that there is only one emerging market and one industrialized country, so \(J = N = 1 \). 26

Let \(p_t \) be the probability investors attach to \(\tau = 0 \). At time \(t \) investors observe \(x = \mu_t - \tau \). Through Bayesian learning, they update the probability that \(\tau = 0 \) as follows:

\[
 p_{t+1} = P(\tau = 0 | \mu_t - \tau = x) = \frac{P(\tau = 0, \mu_t - \tau = x)}{P(\mu_t - \tau = 0)} =
 \frac{p_t P(\mu_t - \tau = x | \tau = 0)}{p_t P(\mu_t - \tau = x | \tau = 0) + (1 - p_t) P(\mu_t - \tau = x | \tau = \tilde{\tau})} =
 \frac{p_t \psi((x - \tilde{\mu})/\sigma) + (1 - p_t) \psi((x + \tilde{\tau} - \tilde{\mu})/\sigma)}{p_t \psi((x - \tilde{\mu})/\sigma)}
\]

where \(\psi(\cdot) \) is the density function of the \(N(0, 1) \) distribution.

For a given probability \(p_t \) investors maximize their utility

\[
 - E e^{-\theta C} = - E e^{-\gamma R} =
 - E e^{-\gamma(\alpha \mu + (1-\alpha) \mu^* - \text{call})} E e^{\gamma \sigma \tau} =
 - e^{-\gamma(\alpha \bar{\mu} + (1-\alpha) \bar{\mu}^* - \text{call}) + 0.5 \gamma^2 \text{var}(R)} [p_t + (1 - p_t) e^{\gamma \sigma \tau}]
\]

24 See for example Backus and Driffl (1985a,b). Persson (1988) and Rogoff (1987, 1989) provide surveys. In the context of international capital flows, Chari and Kehoe (1997) also consider a model with imperfect government credibility to explain capital flow volatility. But they rely on heterogeneity giving rise to herding. Investors decide sequentially whether to lend or not, which can give rise to informational cascades. We assume instead a simple representative agent framework, where everyone decides simultaneously how much to lend.

25 It would be far more difficult to analyze a gradual liberalization with learning.

26 Alternatively, we could examine the case where \(\tau \) remains at \(\tilde{\tau} \) and investors give a probability of 0.5 to \(\tau = 0 \).
Here we have used the fact that uncertainty about τ is independent of uncertainty about μ and μ^*. The first order condition with respect to α is

$$
\left[-\gamma(\bar{\mu} - \bar{\mu}^* - c\bar{I}) + 0.5\gamma^2(2\alpha\sigma^2 - 2(1 - \alpha)\sigma^*2)\right](p_t + (1 - p_t)e^{\gamma\sigma^*}) + (1 - p_t)e^{\gamma\sigma^*}\gamma\bar{\tau} = 0
$$

Substituting

$$
I_t = K_t - (1 - \delta)K_{t-1} = W + \alpha W^* - (1 - \delta)K_{t-1}
$$

into (12) we have a non-linear equation in α. We solve this numerically. Equation (13) then gives us the investment rate, and therefore next period's capital stock. By substracting δW we derive capital inflows.

An interesting feature of the model is that investors tend to pull out of a market that has faced a bad return as this signals a possibly high value of τ. Without incomplete information this is not what we would expect to happen. In that case a low return today (low value of μ) does not lead to a lower expected return tomorrow. The opposite could even be the case. During the recent Asian crisis we have seen a sharp drop in asset prices. To the extent that these prices dropped more than based on expected future dividends (the bursting of a bubble), it would lead to even higher expected returns for investors, which should lead to capital inflows. But instead we have witnessed large capital outflows. Our incomplete information story may play an important role here.

We simulate by drawing randomly from the normal distributions of μ and μ^*. After each draw the probability p_t is updated according to (10). Subsequently α_t and I_t are solved from (12) and (13). We still set $\bar{\tau} = 0.05$, $c = 0.05$, $\delta = 0.07$, $\sigma = 0.05$, $\sigma^* = 0.09$, $\mu^* = 0.07$. We assume that $W = 20$ and $W^* = 80$, so that total wealth is still 100. The expected return on emerging market capital is set at $\mu = 0.083$, so that again investment in emerging market equity is zero before the liberalization.

Each random draw gives a different profile of capital flows. In Figure 10 we show two simulations. The behavior of capital flows is strikingly similar to the actual experience of various countries as shown in Figure 7. Behind this general impression, we can draw several conclusions from these results. First, incomplete information reduces the extent of overshooting. Without uncertainty about τ there should be an instantaneous increase in capital inflows followed by a gradual decline to the new steady-state value. In both
simulations the initial increase is much smaller than it would be without uncertainty about τ. The reason is that investors are not sure in the beginning that τ has actually dropped, while in steady state they know that it has dropped to zero. Second, incomplete information can generate substantial volatility. A series of negative outcomes for τ_t followed by a series of positive ones implies huge swings in the first periods. Third, volatility declines over time as investors learn. This is reassuring for liberalizing economies as more stability ahead can be expected, as long as the other sources of uncertainty are not increasing. A fourth conclusion is that a simple model with a representative rational investor can easily explain the observed volatility, so that it is not necessary to rely on more sophisticated stories or models, such as informational cascades (e.g., Chari and Kehoe, 1997) or multiple equilibria stories. Finally, the two simulations show that it is very easy to generate various profiles of capital flows. Therefore, one should not take too seriously specific simulations, including ours.

The model with incomplete information can easily be extended to generate contagion across countries. Consider the same experiment as above of a partially credible decrease in τ, but assume that several emerging countries liberalize at the same time. Moreover, assume that investors think (rightly or not) that events in one emerging country provide information about other countries. Thus, a very low return r_{it} in country i will lead to a decline in the subjective probability that $\tau_i = 0$, but it will also lead to declines in other countries. In this case we may observe a large decline in inflows to country i accompanied by declines in other countries. The extent of the declines in other countries will depend on the informational value attributed by investors to country i's return. This value will probably vary across country. For example a negative shock in Thailand may provide more informational value (in the eyes of the investors) about other South East Asian countries than a shock in Mexico.

\footnote{See Chuhan et al. (1996), Calvo and Reinhart (1995), or Eichengreen, Rose, and Wyplosz (1996) for some evidence on contagion. See also Agénor (1997) and Agénor and Aizenman (1997) for models consistent with the observed contagion.}
4 Steady State Capital Flows

An important question is to what extent developing countries can rely on foreign capital in the long run. Another natural question is how do current capital inflows compare with their long run values. These issues have already been motivated in the Introduction, where we used our estimates of long run flows in Figures 6 and 7. In this section we derive the steady state values by considering a very simple model in the same line as the one presented in the previous sections.

By steady state we mean that emerging economies are perfectly integrated into international capital markets, or at least as much as industrialized countries are (defined below). This implies that, in contrast to the previous sections, there are also capital outflows from emerging market economies. Moreover, we assume no net capital flows and focus on gross capital inflows to emerging economies. First consider a situation where all investors, of both emerging markets and industrialized countries, hold perfectly diversified portfolios. Assuming for simplicity that there is only one good, so that the real return of an asset is the same for all investors, and that there is no non-tradable human capital, everyone holds the same portfolio. Since the demand for assets equals supply, it follows that the fraction of each investor’s portfolio allocated to a particular country is equal to the capital stock of that country relative to the world capital stock.

However, this benchmark of perfect diversification is grossly violated in the data due to the well known home bias. Figure 11 shows for four industrialized countries the fraction of their equity portfolio currently invested at home and what fraction they would have invested at home under perfect diversification. The latter is referred to as the benchmark portfolio in the picture. Based on the equilibrium under perfect diversification discussed above, the benchmark fraction invested at home is equal to the value of the domestic stock market divided by the value of the global stock market. It is clear that we are still very far from a world of perfect diversification. In 1996 US investors allocated 90% of their portfolio towards domestic shares.

\[^{28}\text{See Bottazzi, Pesenti and van Wincoop (1996) and Baxter and Jermann (1997) for an analysis of the effects of human capital on portfolio choice, and Pesenti and van Wincoop (1998) and Baxter, Jermann and King (1995) for the role of non-traded goods. Here we abstract from these complications.}\]

\[^{29}\text{The data are from Tesar and Werner (1997).}\]
This would have been only slightly over 40% under perfect diversification. British investors currently allocate 78% towards domestic assets, but would have invested 10% at home under the benchmark. The bias is even stronger for German and Canadian investors.

It is therefore necessary to take the home bias into account. Without trying to understand what drives this bias, we simply assume that a fraction \(\phi \) of each country’s capital stock is non-tradable and owned by domestic investors. The remainder of their wealth is perfectly diversified. The portfolio of the “tradable” wealth is the same for all investors, so that for a country \(i \) in equilibrium

\[
(1 - \phi)K_i = \sum_{j=1}^{J} \alpha_i(W_j - \phi K_j)
\]

(14)

Here \(J \) now refers to the total number of countries, not just emerging markets, and \(W_j \) is the wealth of country \(j \). Since \(\Sigma W_j = \Sigma K_j = K_w \) is the world capital stock, it follows that

\[
\alpha_i = \frac{K_i}{K_w}
\]

(15)

So even when we allow for home bias, for the well diversified component of portfolios we still find that the fraction invested in country \(i \) corresponds to the ratio of that country’s capital stock to the world capital stock. We will focus on this ratio instead of the actual quantity of inflows as it is independent of the home bias coefficient \(\phi \). This is somewhat less informative, but we still have little understanding on the potential long run evolution of the home bias.

Now consider a particular emerging market \(i \) and the sum of claims on the rest of the world by all countries other than \(i \). We would like to know what fraction of those claims is invested in country \(i \). Making the additional assumption that \(W_i = K_i \), which holds approximately in the data, we find that the fraction of external claims by other countries that is invested in country \(i \) equals

\[
\frac{(1 - \frac{K_i}{K})K_i}{\sum_{j\neq i}(1 - \frac{K_i}{K})K_j}
\]

(16)

We only need a measure of the capital stock of all countries in order to compute this fraction for individual countries. We obtain this measure by extending the estimates of King and Levine (1994) for all 17 emerging mar-
kets plus 21 industrialized countries. We assume our "world" is made up of the sum of these 38 countries.

It is hard to directly compare this to the data since for many countries, particularly the emerging markets, we do not have good data on the outstanding stocks of assets and liabilities. However, we can apply the same measure to flow data as well. If we assume, as we did in sections 2 and 3, that the rate of depreciation δ is the same for all countries, in steady state all flows are proportional to the corresponding stock, with proportionality factor δ. Therefore in steady state (16) should also be equal to capital inflows into country i divided by all capital outflows from countries other than i. This is shown in Figure 7, where the horizontal line in each of the graphs is the steady state measure (16). Figure 6 shows the steady state for the sum of all emerging markets.

These estimates are clearly based on a set of strong assumptions. For example, we assume that all countries grow at the same rate. It would be useful to refine the analysis and extend the basic model in various directions. In any case, two conclusions arise from Figures 6 and 7. First, at the aggregate level only FDI plus portfolio flows briefly rose above the steady state during the recent lending boom. Although the picture is perfectly consistent with the overshooting story of section 2, capital flows remain below the steady state. We can think of this as lowering r, but not to zero. Many countries still have significant restrictions on capital flows. Moreover, all the liberalizations did not take place at the same time. Alternatively, there may have been uncertainty about r as in Section 3. Second, Figure 7 shows that for many of the individual countries the inflows have reached significantly above the steady state level and then returned to close to that level. Examples are Argentina, Brazil, Mexico, Peru and Thailand.

King and Levine (1994) estimate capital stock data until 1988 based on Summers and Heston (1991) investment data and using a perpetual inventory method. We use the same methodology and the updated Summers and Heston data (Mark 5.6) to extend the capital stock data until 1992. In a couple of countries we needed to use estimates of the 1991 or 1992 investment data as it was not available.
5 Conclusions

The recent increase in capital flows to emerging markets and its associated volatility generates difficulties for policymakers and academics alike. In this paper we hope to have contributed to a better understanding of the issues. We take a global view of capital flows, considering the whole set of industrialized and emerging countries, rather than focusing on a specific set of countries. We take the view that there has been a wave of financial liberalizations and other reforms making it much more attractive to invest in emerging markets. We show that by using a simple and rather standard model, we can easily reproduce the main features of capital inflows to emerging markets: overshooting, volatility, and contagion. The model can also account for the overshooting of asset prices. Our results show that it is not necessary to rely on irrational or herding behavior of investors to explain these features. Moreover, we provide estimates of long run capital inflows and compare them with actual flows. We show that this comparison provides useful information about crisis situations.

While our analysis identifies some basic mechanisms related to capital flows, it abstracts from many other important factors. First, we need to better understand the problems associated with the absorption of the capital inflows. In this context the role of the financial sector, ignored in our model, is particularly important. Several of the issues mentioned in the debate about the South East Asian crisis could be incorporated in our analysis. For example, capital flow volatility may be exacerbated in presence of mechanisms leading to 'overlending' by financial institutions, as in McKinnon and Pill (1997) or Dooley (1997). Another source of exacerbation would come from the role of maturity transformation of financial intermediaries as in Diamond and Dybvig (1983) (see Goldfajn and Valdes, 1997, for such an approach).

Second, the capital inflows and outflows themselves generate significant turbulence in emerging market economies, affecting, among other things, asset prices, economic activity, and the exchange rate. This turbulence in turn affects capital flows. We have ignored such feedback channels in our model. For example, Aghion, Bacchetta, and Banerjee (1998) show that the interaction of capital flows and real exchange rate movements can generate considerable volatility in presence of capital markets imperfections. Finally, it would be useful to distinguish between the various types of liberalization and reform and more explicitly model the behavior of the government in this
Combining some of the above elements with our analysis may help elucidate why capital flow reversals are most often associated with a crisis. For example, is it due to policies that are inconsistent with a decline in inflows, such as a fixed exchange rate? Or is it due to some other fundamental characteristics linked for example to financial intermediation and lending to emerging markets firms? Finding an answer to these questions is obviously of high policy relevance. However, our understanding on these issues is still limited and much further work should be done.
Appendix

This Appendix derives the optimal investment in an emerging market based on problem (3). For convenience we omit the time subscript. With α_j the proportion of the portfolio invested in emerging market j, the total proportion invested in emerging markets is $\alpha = \sum_{j=1}^{J} \alpha_j$. Define the vectors $\alpha' = (\alpha_1, \alpha_2, ..., \alpha_J)$ and $r = (r_1, r_2, ..., r_J)$. Then total return R can be written as:

$$R = \alpha' r + (1 - \alpha)\mu^*$$

and its expectation is

$$E(R) = \alpha' \bar{r} + (1 - \alpha)\bar{\mu}^*$$

where $\bar{r} = E(r)$. Define the following $J \times J$ variance-covariance matrix:

$$\Sigma = \begin{pmatrix}
\sigma^2 & \rho_{EE}\sigma^2 & \rho_{EE}\sigma^2 & \ldots \\
\rho_{EE}\sigma^2 & \sigma^2 & \rho_{EE}\sigma^2 & \ldots \\
\rho_{EE}\sigma^2 & \rho_{EE}\sigma^2 & \sigma^2 & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{pmatrix}$$

The portfolio variance is then given by:

$$\text{var}(R) = \alpha' \Sigma \alpha + (1 - \alpha)^2 \sigma_D^2 + 2\alpha(1 - \alpha)\rho_{ED}\sigma\sigma^*$$

where $\sigma_D^2 = \frac{1}{N}\sigma^*^2 + (1 - \frac{1}{N})\rho_{DD}\sigma^*^2$.

Using

$$\frac{\partial \alpha' \Sigma \alpha}{\partial \alpha_i} = 2\{\alpha_i(1 - \rho_{EE}) + \rho_{EE}\alpha\} \sigma^2$$

the first order conditions to (3) for all i are:

$$\bar{r}_i - \bar{\mu}^* - \gamma \{\alpha_i(1 - \rho_{EE})\sigma^2 + \rho_{EE}\alpha\sigma^2 - (1 - \alpha)\sigma_D^2 + (1 - 2\alpha)\rho_{ED}\sigma\sigma^*\} = 0$$

Hence:

$$\alpha_i = \beta_0 + \beta_1 (\bar{r}_i - \bar{\mu}^*) + \beta_2 \alpha$$

where

$$\beta_0 = \frac{1}{\gamma\sigma^2(1 - \rho_{EE})}$$

$$\beta_1 = \frac{\sigma_D^2 - \rho_{ED}\sigma\sigma^*}{\sigma^2(1 - \rho_{EE})}$$

$$\beta_2 = \frac{-\sigma_D^2 + 2\rho_{ED}\sigma\sigma^* - \rho_{EE}\sigma^2}{\sigma^2(1 - \rho_{EE})}$$
Aggregating (18), we have

$$\alpha J = x_0 + x_1 (\bar{r} - \bar{\mu}^*)$$

(19)

where $$x_0 = \beta_1/(1 - J\beta_2)$$ and $$x_1 = \beta_0/(1 - J\beta_2)$$. Substituting back into (18),

$$\alpha_t = x_2 + x_3 (\bar{r}_t - \bar{\mu}^*)$$

(20)

where $$x_2 = \beta_1 + \beta_2 \alpha$$ and $$x_3 = \beta_0$$. When the tax rate is the same across emerging markets, the differential equation for the capital stock (7) and the solution (8) for capital inflows are still the same, now using the more general expressions for $$x_0$$ and $$x_1$$. As before, when one emerging country changes its tax rate, holding the average tax rate constant, $$x_0$$, $$x_1$$ and $$\tau_t$$ replaced by $$x_2$$, $$x_3$$ and $$\tau_t^*$$.
References

30

Figures 1a and 1b

a. Net Current Account/GDP for sum of 17 emerging markets

b. Net Capital Account/GDP for sum of 17 emerging markets
Figure 2a Net Foreign Direct Investment/GDP of 17 emerging markets

Figure 2b Net Portfolio Flows/GDP of 17 emerging markets

Figure 2c Non-Portfolio Net Private Flows/GDP of 17 emerging markets

Figure 2d Non-Portfolio Net Government Flows/GDP of 17 emerging markets
Figure 3: Total Capital Inflows & Outflows/GDP of 17 Emerging Markets
Figure 4 Average Capital Controls Index for 17 Emerging Markets
Figure 5 Cumulative Capital Inflows versus Capital Stock

* The share of 1992 capital stock (vertical axis) is the 1992 capital stock of a country, divided by the total 1992 capital stock over all 17 emerging markets. Similarly, the share of total capital inflows over 1989-1996 is equal to total capital inflows during that period in a country, divided by the sum of all those inflows over all 17 emerging markets.
The figure shows the share of capital outflows from 21 industrialized countries going to the sum of 17 emerging markets.
Figure 7 Capital Inflows/(Capital Outflows Rest of the World)
Figure 7 --continued--

For a particular country the figure shows the share of capital outflows from the rest of the world invested in this country.
Figure 8 IFC Investability Index

BRAZIL

CHILE

INDIA

MEXICO

PAKISTAN

VENEZUELA

Figure 10: Dynamic Response to Once and For All Liberalization with Learning (2 Simulations)
Figure 11: Equity Portfolio Share Invested at Home
(benchmark = value domestic stock market/value global stock market)

1996

US | Canada | Germany | UK

Percent Invested at Home

benchmarks