

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Cororaton, Caesar B.

## Working Paper Research and Development and Technology in the Philippines

PIDS Discussion Paper Series, No. 2002-23

**Provided in Cooperation with:** Philippine Institute for Development Studies (PIDS), Philippines

*Suggested Citation:* Cororaton, Caesar B. (2002) : Research and Development and Technology in the Philippines, PIDS Discussion Paper Series, No. 2002-23, Philippine Institute for Development Studies (PIDS), Makati City

This Version is available at: https://hdl.handle.net/10419/127803

#### Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

#### Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.



# WWW.ECONSTOR.EU



Philippine Institute for Development Studies Surian sa mga Pag-aaral Pangkaunlaran ng Pilipinas

## Research and Development and Technology in the Philippines

## Caesar B. Cororaton

## **DISCUSSION PAPER SERIES NO. 2002-23**

Service through policy research

The *PIDS Discussion Paper Series* constitutes studies that are preliminary and subject to further revisions. They are being circulated in a limited number of copies only for purposes of soliciting comments and suggestions for further refinements. The studies under the *Series* are unedited and unreviewed.

The views and opinions expressed are those of the author(s) and do not necessarily reflect those of the Institute.

Not for quotation without permission from the author(s) and the Institute.



## December 2002

For comments, suggestions or further inquiries please contact:

The Research Information Staff, Philippine Institute for Development Studies

3rd Floor, NEDA sa Makati Building, 106 Amorsolo Street, Legaspi Village, Makati City, Philippines Tel Nos: 8924059 and 8935705; Fax No: 8939589; E-mail: publications@pidsnet.pids.gov.ph

Or visit our website at http://www.pids.gov.ph

# **Research and Development and Technology in the Philippines**

Caesar B. Cororaton

Senior Research Fellow Philippine Institute for Development

Paper presented at the PIDS Symposium Series on Perspective Papers Makati City, 5 September 2002

#### **Research and Development and Technology in the Philippines**

**Caesar B. Cororaton** Philippine Institute for Development Studies 2002

#### Abstract

Research and development (R&D) and technology are analyzed from the perspective of Philippine economic growth in the paper. It examines the productivity performance of the economy and analyzes how it has been affected by developments in R&D and technology. General R&D and technology policies and institutional structure and arrangements are examined. National, as well as specific sectoral gaps are identified, while weaknesses in institutional arrangements are highlighted. Insights for policy are derived from the analysis.

Keywords: Research and development, technology

| TABLE OF CONTENTS |
|-------------------|
|-------------------|

| Abst | Abstract                                                                                                                                                                                                                                                           |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I.   | Introduction                                                                                                                                                                                                                                                       |  |
| II.  | Framework of Analysis                                                                                                                                                                                                                                              |  |
| III. | Historical Development in R&D and Technology in the Philippines                                                                                                                                                                                                    |  |
| IV.  | <ul> <li>Philippine Growth Performance</li> <li>A. Philippine and Structural Change</li> <li>B. Total Factor Productivity</li> <li>a) TFP Estimate and Sources of Growth</li> <li>b) Decomposition of TFP Growth</li> <li>c) Determining Factors of TFP</li> </ul> |  |
| V.   | Gaps in Philippine R&D and Technology<br>A. Philippine vs. International<br>B. Gap at the National Level<br>C. Sectoral Gaps and Problems<br>1) Agriculture                                                                                                        |  |
|      | a. Underfunded Research in Agriculture                                                                                                                                                                                                                             |  |
|      | b. Misallocation of Research Resources                                                                                                                                                                                                                             |  |
|      | A) Overly High Share for Personal Salaries                                                                                                                                                                                                                         |  |
|      | C) No Clear Network Among SUCs                                                                                                                                                                                                                                     |  |
|      | D) No Clear Network Between DA and Attached Agencies                                                                                                                                                                                                               |  |
|      | E) No Clear Link with the Private Sector                                                                                                                                                                                                                           |  |
|      | F) Other Institutional Gaps                                                                                                                                                                                                                                        |  |
|      | G) Manpower Gaps                                                                                                                                                                                                                                                   |  |
|      | 2) Fisheries Sector                                                                                                                                                                                                                                                |  |
|      | A) Institutional Gap and Issues                                                                                                                                                                                                                                    |  |
|      | B) Capabilities Issues                                                                                                                                                                                                                                             |  |
|      | i. Low Public Investment                                                                                                                                                                                                                                           |  |
|      | Low Private Investment                                                                                                                                                                                                                                             |  |
|      | Low Foreign Investment                                                                                                                                                                                                                                             |  |
|      | ii. Untimely releases of Funds                                                                                                                                                                                                                                     |  |
|      | iii. Shortage of Manpower                                                                                                                                                                                                                                          |  |
|      | IV. Low Level and Poor Maintenance of Capital Assets                                                                                                                                                                                                               |  |
|      | 5) Manufacturing         4) Education                                                                                                                                                                                                                              |  |
|      | 4) Education                                                                                                                                                                                                                                                       |  |
|      | 5) Пtallil<br>6) Other Important Gans                                                                                                                                                                                                                              |  |
|      | o) Oner important Gaps                                                                                                                                                                                                                                             |  |

## TABLE OF CONTENTS (Cont'd)

| VI.  | Policy Insights                                             | 28      |
|------|-------------------------------------------------------------|---------|
|      | A. R&D Investments                                          | 28      |
|      | B. R&D Manpower                                             | 29      |
|      | C. Incentive System                                         | 30      |
|      | D. Institutional Arrangement and S&T Coordination Mechanism | 32      |
|      | E. R&D Delivery System                                      | 33      |
|      | F. Industrial Strategy                                      | 33      |
|      | G. Statistical Information and Accounting System            | 34      |
| VII. | Tables and Figures                                          | 36 - 63 |
| REFE | ERENCES                                                     | 64 - 66 |

## **LIST OF FIGURES**

| Figure<br>No. | Title                                                                                       | Page<br>No. |
|---------------|---------------------------------------------------------------------------------------------|-------------|
| 1             | Production Function                                                                         | 36          |
| 2             | Technological Innovation Process                                                            | 37          |
| 3             | Three-Year Moving Average Business Fluctuation Adjusted Total<br>Factor Productivity Growth | 42          |
| 4             | Decomposition of Output Growth                                                              | 43          |
| 5             | Types of Labor                                                                              | 44          |
| 6             | Contribution of Labor Quality to TFP Growth                                                 | 45          |
| 7             | Contribution of Sectoral Labor Movement to TFP Growth                                       | 46          |

### LIST OF TABLES

| Table<br>No. | Title                                                        | Page<br>No. |
|--------------|--------------------------------------------------------------|-------------|
| 1            | Department of Science and Technology (DOST) Councils         | 38          |
| 2            | Summary of Science and Technology (S&T) Policies by Strategy | 38          |
| 3            | Summary of S&T Policy Programs in the Philippines            | 39          |
| 4            | The Philippine Economy                                       | 40          |
| 5            | Production Structure                                         | 40          |
| 6            | Estimated Philippine Total Factor Productivity (TFP)         | 41          |
| 7            | Effects of Labor Quality on TFP                              | 45          |
| 8            | Effects of Sectoral Labor Movement on TFP                    | 46          |
| 9            | Determinants of Total Factor Productivity                    | 47          |

## LIST OF TABLES (Cont'd)

| Table<br>No. | Title                                                                                                                                                                                                  | Page<br>No. |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 10           | Per Capita GNP (PCGNP), Scientist/Engineers per million population (SE/MP) and Gross Expenditure R&D/Gross National Product                                                                            | 48          |
| 11           | Agricultural Research Intensity Ratios (RIR) of Selected Countries                                                                                                                                     | 50          |
| 12           | Distribution of public expenditures for agricultural and natural resources by policy instruments, 1987-1994 (%)                                                                                        | 51          |
| 13           | Public expenditures for research and development in agriculture and natural resources, gross value added in agriculture including fishery and forestry, and research intensity ratios (RIR), 1972-1996 | 52          |
| 14           | Public expenditures for research and development in agriculture, natural resources and related environmental issues                                                                                    | 53          |
| 15           | Agency-Funded Fisheries R&D Projects of NARRDS Institutions                                                                                                                                            | 54          |
| 16           | Agency-Funded Fisheries R&D Projects of NARRDS Institutions, 1996                                                                                                                                      | 55          |
| 17           | R&D expenditures for fisheries by sector and source of funds, 1988-1994                                                                                                                                | 56          |
| 18           | R&D expenditures for fisheries of selected NARRDS institutions, by source of external grants, 1992-1996                                                                                                | 57          |
| 19           | Distribution of Manpower for Fishery R&D                                                                                                                                                               | 58          |
| 20           | Distribution of the NARRDS R&D Program Budget                                                                                                                                                          | 59          |
| 21           | Manpower for Fisheries R&D of selected NARRDS institutions, 1998                                                                                                                                       | 60          |
| 22           | Comparison of the number of R&D personnel in selected NARRDS and NARRDN institutions, 1995-1996                                                                                                        | 61          |
| 23           | R&D Expenditure for Fisheries                                                                                                                                                                          | 62          |
| 24           | Tertiary Education Across Selected Pacific Rim Countries                                                                                                                                               | 63          |

#### **Research and Development and Technology in the Philippines**

Caesar B. Cororaton<sup>1</sup>

#### I. <u>Introduction</u>

Research and development (R&D) and technology are analyzed from the perspective of Philippine economic growth in the paper. It examines the productivity performance of the economy and analyzes how it has been affected by developments in R&D and technology. General R&D and technology policies and institutional structure and arrangements are examined. National, as well as specific sectoral gaps are identified, while weaknesses in institutional arrangements are highlighted. Insights for policy are derived from the analysis.

The paper has 6 sections. The next section focuses on the framework of analysis. The third section gives a brief discussion of some of the major historical developments in Philippine R&D and technology. The fourth section analyzes Philippine growth performance in terms of changes in structure and productivity. The fifth section identifies major gaps in R&D and technology in the country. Lastly, the sixth section derives insights for policy.

#### II. Framework of Analysis

Economic growth is determined by how well a country mobilizes its resources to improve productivity in order to increase production of goods and services. Generally, resources include labor and human skills, capital, land and natural resources, while major factors affecting productivity are technology, research and development. The latter is the focus of the paper.

Generally, there are two approaches to economic growth. One approach is to increase the utilization or the amount of factor inputs or resources for production. For example, increasing the utilization of available arable land, that had been previously considered idle, for farming, can expand output from agriculture. One drawback in this approach is that if one keeps on increasing the amount of the same factor inputs into the production process, the increase in the level of output that can be generated will eventually be subject to diminishing returns. Stated graphically in a production function, output increases rapidly at the initial stage (around point a in Figure 1). However, if one keeps on adding the amount of the same

<sup>&</sup>lt;sup>1</sup>Senior Research Fellow, PIDS (on leave) and Associate Professor and Chair, Economics Department, De La Salle University.

factor input, the increase in output may not be as much as in the initial stage (movement towards point b along production function 1).

Krugman (1994) in a highly controversial paper that appeared in the Foreign Affairs on "The Myths of Asia's Miracle" argues that Singapore's rapid growth was due to capital accumulation, and certainly not a "miracle". Its growth path is similar to the capital accumulation type of growth of the Soviet Union that first experienced rapid growth during the 1950s and then suffered a significant economic slowdown later because limits have been reached. "Economic growth that is based on expansion of inputs, rather than on the growth of output per unit of input, is inevitably subject to diminishing returns."

The second approach that deals with improved productivity through more efficient utilization of the same amount of inputs. Stated graphically, this means an outward shift in the production function (from 1 to 2 in **Figure 1**). Thus in this shifted production function, for every level of factor input, there is a corresponding higher level of output, indicating a higher productivity of output per unit of input (from point a to point c, and from point b to d). The productivity improvement could largely be due to the introduction of the process of technological innovation in production. The process of technological innovation could involve a range of activities. For example, it could involve the utilization of better machineries, better production management and methods, the application of best practices, etc. It could take place in factories or in offices.

Technological innovation and economic growth are mutually reinforcing (Hirono, 1985). That is, higher rate of growth would tend to generate productivity improvement through technology innovation through research and development, and vice versa. This is especially true when there is increasing returns to scale. In such cases the outward shift of the production function would have no boundaries, implying that there would be no limits to growth.

Historically, the whole idea of technology affecting economic growth dates back to the 18<sup>th</sup> and 19<sup>th</sup> centuries when scientific principles, which were accumulated since the start of modern science in 16<sup>th</sup> and 17<sup>th</sup> centuries, were turned into technologies and applied to the process of production during the industrial revolution in western Europe. The steam engine, for example, which triggered the start of industrial revolution, was the result of the accumulation of knowledge through scientific discoveries and the application to the process of production.

However, the relationships between technological innovation and economic growth were made evident by the remarkable experience of Japan after the World War II and South Korea after the Korea War in 1960s. Through technological development policies that started to turn the wheel of technological innovation process, these countries were able to achieve rapid economic growth in a sustained manner. In a significantly shorter period of time compared to the development in Western Europe, these countries were able to transform their economies from almost completely devastated right after the war to highly advanced industrial economies at present.

The process of technological innovation that is being referred to is shown in **Figure 2.** This was conceptualized by Yamada (1964) and later cited in Choi (1983). It is shown here to emphasize the point that it is a dynamic process of progressive technological advances and economic growth, each one reinforcing the other. The process continues in a sustained manner, and in each round growth improves.

Generally, technological innovation would involve two major parts, the research part and the innovation part. The innovation part would two have two phases. In the first part, the introduction of new technology would lead to new products and would reduce the cost of production. These new products would have better quality than before. Because of the reduction in cost per unit, for the same total cost of production, the quantity of output that could be produced would increase. Better quality products and greater volume of production would result in mass production that could attract entrepreneurs to increase their marketing effort and could further reduce cost because of economies of scale. Mass production and lower cost could result in mass consumption. These whole set of activities could lead to improved income for the general public. Increased income of the people could lead to changes in taste, which in turn could result in higher demand for more quality products. This impulse could trigger pressure to improve the existing technology. Thus, the entire process repeats itself. It goes on repeating in circle towards economic prosperity.

The performance of Japan and South Korea is indeed outstanding. They have been able to close their technological gap with highly advanced industrial countries in so short a period of time. From the perspective of developing countries the question to ask is: Can this fast catching up process generally hold for the rest of technologically backward developing countries? There are two schools of thought on this issue that ought to be reviewed briefly because of their implications to the Philippines case.

The first school<sup>2</sup>, which started with Gerschenkron's (1962) discussion of the advantageous of backwardness, deals with the issue of convergence (Barro and Sala-i-Martin, 1995). The convergence school states that technologically backward countries benefit from the technology created by advanced countries. One of the strongest postulates of this school categorically states that the "...catch up growth is proportional to the difference in technological capabilities between a follower and the leaders. This predicts an inverse relationship between technological capabilities at any point in time and subsequent productivity (as well as economic) growth" (Evenson and Westphal, 1995).

Through technology transfer, backward countries can catch up with advanced nations. With appropriate policies and investments on education, physical capital, general management capability, research and development (R&D), backward countries can learn the technology developed in advanced nations. Along with these developments there will be convergence of income and productivity levels.

<sup>&</sup>lt;sup>2</sup>The paper of Evenson and Westphal (1995) provides a good survey of literature on this issue.

However, the other school argues that the process may not be that easy and straightforward. Although newly industrialized countries (NICs)<sup>3</sup> have grown rapidly in recent times and have in fact converged to the leading countries in terms of income and productivity, most developing countries are not on a similar path of convergence towards advanced nations. In fact there is a divergence (Easterly, 1981 and Williamson, 1991). A whole range of factors may be responsible for the divergence and the widening gap between most developing countries and advanced nations. These factors can include adverse institutions and deficient policy regimes. Choi (1983) would include a number of factors like the vicious circle of poverty in which most developing countries are trapped. Other factors cited by Choi are:

- Developing countries are weak in policy formulation for scientific and technological development. In these countries, public interest on science and development is low. Their traditional cultures are hostile and can pose hindrances to the creation of viable science policy.

- There is lack of a viable institutional setups and inadequate R&D systems in these countries. Often, research equipment is inadequate, research budgets are nil, and research budget allocation is extremely inefficient.

- There is very limited scientific manpower in these countries.

- Most of these countries rely heavily on imported technology. However, there are no clear-cut policies and programs to develop domestic capability to be able to modify and improve these imported technologies for domestic applications. There are no policies to address technology dependence.

- There is lack of participation of relevant sectors in these economies in the development of science and technology, particularly in the industrial sector to which most of the applied research and development efforts are directed.

#### III. <u>Historical Development in R&D and Technology in the Philippines<sup>4</sup></u>

Philippine science and technology (S&T) has a long history. It can be traced back to the early American colonial period with the creation of the Bureau of Science. The American government, through this Bureau, formed the Philippine S&T. However, the coverage was very limited. It mainly focused on agriculture, health and food processing. Thus, because of the colonial economic policy, the development of industrial technology was largely neglected.

Moreover, the public school system was created at about the same period. Through the creation of the University of the Philippines (UP) system and the various S&T-related

<sup>&</sup>lt;sup>3</sup> Generally known to include South Korea, Hongkong, Singapore, and Taiwan.

<sup>&</sup>lt;sup>4</sup>Partly based on Eclar (1991) and Ki-Soo (1996).

agencies and laboratories, the Bureau became effectively the training ground for Filipino scientists.

Major shifts in the direction of Philippine S&T took place right after the proclamation of independence in 1946. It was reorganized into an Institute of Science and was put under the Office of the President of the Philippines. Despite these changes the real effects in terms of its impact on the economy were marginal. The Institute suffered from lack of support, planning, and coordination. In fact, in the Bell Mission's Recommendation, it was mentioned that the Institute had no capability to support S&T development because of the lack of basic information, neglect of experimentation and small budget for R&D activities.

There were also major shifts in the 1950s and 1960s that focused on S&T institutional capacity building. This was done through the establishment of infrastructure-support facilities like new research agencies and manpower development. Again, the effects were not significant. The usual problems of lack of coordination and planning, especially technology planning, prevented the system from performing effectively its functions. This was manifested in the unplanned activities of the researchers within the agencies. Most areas of research were left to the researchers for them to define under the presumption that they were attuned to the interests of the country. They were expected to look for technologies and scientific breakthroughs with good commercialization potential. Without clear research directions, researches were done for their own sake, leaving to chance the commercialization of the output.

In response to these problems and to the need for S&T to generate products and processes that are supposed to have greater beneficial impact on the country, focus was redirected towards applied research in the 1970s. Furthermore, in the 1980s, research utilization was given stronger emphasis. This led to a reorganization and creation of the National Science and Technology Authority (NSTA) in 1982. One rationale for reorganization was the need for an effective and efficient utilization of the results of R&D activities through greater commercialization of outputs. A significant innovation under the reorganization was the creation of the S&T Council System, where an S&T council became responsible for the sectoral formulation of policy and strategies for its specific field and allocation of funds. There were 4 councils under the system: PCHRD, PCIERD, PCARRD and NRCP (Table 1) for the exact names of the councils and institutes of the DOST). Later NRCP was replaced by PCAMRD and PCASTRD. Furthermore, the NSTA had 8 research and development institutes and support agencies under it. In the mid-1980s, regional offices for S&T promotion and extension were established to further hasten the development of S&T. There was also a conscious effort to assist and encourage creative local inventors through institution building and support measures. A national center for excellence for the basic sciences was established in the UP campus and the scientific career system was created to attract scientists to a career path that would professionalize and upgrade the status of scientists. Furthermore, linkage between the academe and the private sector were strengthened with the creation of institutional networks.

Thus, the creation of the councils and research institutes under the NSTA showed a clear shift in science policy from being a technology push to demand pull strategy. In the

demand pull strategy, user and market demand serve as the basis for conducting R&D/S&T programs. Thus, scientists and researchers were placed in R&D programs whose results were supposed to have high demand potentials.

After the EDSA revolution in 1986 the NSTA was reorganized into what is now called the Department of Science and Technology (DOST) under Executive Order 128. The DOST, being headed by a Cabinet Secretary, was mandated to continue providing central direction, leadership and coordination of S&T efforts and formulating and implementing policies, plans, programs and projects for S&T development.

For a more effective delivery of certain functions, the DOST was further restructured which resulted in the establishment of the Technology Application and Promotion Institute (TAPI). This particular institute was created to serve as the implementing arm of the DOST in pushing for the commercialization of technologies and marketing the technology services of other operating agencies of the Department. In addition, the Science Education Institute (SEI) was created and mandated to undertake and formulate plans for the development of S&T education and training. Moreover, the Science and Technology Information Institute (STII) was established to serve as the information arm of the Department through the development and maintenance of an S&T data bank and information networks.

The National Institute of Science and Technology was reorganized into the present Industrial Technology Development Institute in order to undertake applied R&D and to transfer R&D results to end-users and to provide technical, advisory and consultancy services in the fields of industrial manufacturing, mineral processing and energy. Entry into the advanced technology areas was formalized with the creation of the Advanced Science and Technology Institute (ASTI). In line with this, additional S&T Councils, namely the PCASTRD and the PCAMRD, were created to further strengthen the Council system.

Furthermore, the leadership of DOST added emphasis on massive technology transfer activities. Specific interventions were initiated through various programs such as the Comprehensive Technology Transfer and Commercialization (CTTC) Program. The CTTC was intended to serve as a mechanism for identifying and pushing concrete results of R&D towards productive application and utilization. The initial phase of the program that covered the period 1989-1992 included a number of technologies whose utilization was envisioned to create substantial impact on the national socio-economic development process and on the lives of many Filipinos, in general. The program covered areas such as financing, technology packages and training centers.

In most R&D institutes technology transfer units were established in order to carry out the added responsibility of transferring completed researches. Provincial S&T Centers were established to help ensure the efficient and effective transfer of technologies in the provinces.

S&T services were also provided in order to supplement R&D and technology transfer. S&T services included the upgrading of testing, standardization and quality control services and various forms of technical assistance and consulting services. Assistance to investors was also provided. This consisted of patenting assistance for inventions with commercial potentials; assistance in the availment of financing for commercially viable inventions; marketing assistance; support to pilot plant operations for selected top priority technologies for commercialization; and lastly, support to the upgrading of inventions, expertise and capabilities.

R&D institutes undertook contract researches to foster the collaboration among the institutes, the private sector and the academe. Furthermore, funding assistance to technology developers and acceptors through the tie-ups with some financing institutions such as Development Bank of the Philippines, Technology Livelihood Resource Center, Land Bank and Private Development Corporation of the Philippines were also initiated.

Incentives were provided under the Omnibus Investment Law for the conduct of certain R&D and S&T activities in the private sector. Some of the major incentives included were: income tax holiday, duty free importation of capital equipment, deduction from taxable income for the necessary and major infrastructure and facilities in less developed areas, access to bonded manufacturing/trading warehouse system and employment of foreign nationals.

To facilitate the transfer of foreign technology, science parks were set up. These parks were also intended to serve as the vehicles for university interaction with private industry; to develop new knowledge-based industries and strengthen existing ones; and to provide a propitious environment for innovation and contract research. Moreover, technology business incubators were initiated in certain areas to assist the transfer and commercialization of technologies by helping ensure the survival and successful growth of new technology firms by providing them with appropriate marketing, financial technical and management assistance.

A Presidential Task Force on S&T was formed, in 1988, specifically to deal with the overall problems confronting R&D and S&T development in the country, and to formulate an S&T Development Plan which supports the national development goal of attaining a newly-industrializing-country status by the year 2000. The task force was composed of DOST, DOA, DTI, DOTC<sup>5</sup>, as well as the Presidential Adviser on Public Resources and three academic institutions directly involved in S&T. The task force submitted a report to the President on March 1989, embodying the development of 15 leading edges to steer the country to industrial development. These 15 leading edges were: aquaculture and marine fisheries, forestry and natural resources, process industry, food and feed industry, energy, transportation, construction industry, information technology, electronics, instrumentation and control, emerging technologies, and pharmaceuticals.

To attain the objectives set in the S&T Master Plan (STMP), the following strategies were pursued: modernize the production sectors through massive technology transfer from domestic and foreign sources; upgrade the R&D capability through intensified activities in

<sup>&</sup>lt;sup>5</sup>DOA–Department of Agriculture; DTI – Department of Trade and industry; DOTC–Department of Transport and Communication.

high priority sector and S&T infrastructure development such as manpower development; and develop information networks, institutional building and S&T culture development (**Tables 2 to 3**).

During the Ramos administration, the DOST initiated a Science and Technology Agenda for National Development (STAND Philippines 2000) which embodied the country's technology development plan in the medium-term, in particular, for the period 1993-1998. The STAND identified seven export winners, eleven domestic needs, three other supporting industries, and coconut industry as priority investment areas. The seven identified export winners are: computer software; fashion accessories; gifts, toys, and houseware; marine products; metals fabrications; furniture; and dried fruits. The domestic needs include: food, housing, health, clothing, transportation, communication, disaster mitigation, defense, environment, manpower development and energy. Because of their linkages with the above sectors, three additional support industries were included in the list of priority sectors, namely: packaging, chemicals and metals. Lastly, because of its strategic importance, special focus was given to the coconut industry, and therefore was included in the list.

The very recent S&T framework plan is entitled "Competence, Competitiveness, Conscience: The Medium Term Plan of the Department of Science and Technology (1999-2004)". Although this plan has not yet been fully analyzed because it has not been subjected to any critical discussion, it is worth mentioning the its six flagship programs include: comprehensive program to enhance technology enterprises: integrated program on clean technologies; establishment of a packaging R&D center; expansion of regional metrology centers; S&T intervention program for poor, vulnerable and disabled; and comprehensive S&T program for Mindanao. Although the vision and direction of the plan is novel, there are no specific implementation rules and guidelines.

#### IV. <u>Philippine Growth Performance</u>

#### IV.A. Philippine Growth and Structural Change

The last 35 years saw a "roller coaster" Philippine economic growth performance. Growth was highest during the 1973-82 period, averaging 5.5 percent per year (**Table 4**). This was the peak period of the Marcos regime. This was not sustained, however, as dissatisfaction among Filipinos on the military regime mounted which eventually led to a political uprising in the following period, 1983-85. The political crisis triggered economic crisis that resulted in an economic collapse. The economy contracted by -4.1 percent per year during this period. The Marcos administration was finally forced out in the early 1986, which gave way to Aquino government. Thus, in the following period, 1986-90, the euphoria brought about economic recovery under the new government. Growth was averaging 4.5 percent per annum during this period. However, towards the end of the Aquino administration political tug-of-war led to a series of military coup attempts. Although the attempts failed, they created political uncertainties and instability. This, together with the series of natural calamities and energy crisis, brought the economy to a halt in the 1991-93 period. The economy contracted again by -0.1 percent per year during the period.

The leadership of the Ramos administration revived the economy with a growth averaging 4.9 percent per year from 1994 to 1997. However, the Asian financial crisis, the El Nino effects on agriculture production in 1998, and the political scandals that wreaked havoc on the Estrada administration took a heavy toll on the economy. Growth slid to 3.5 percent per year in the 1998-2000 period. Indeed, the last 35 years was a period of boom and bust growth cycle. Economic growth could not be sustained. Political and well as weak economic fundamentals were believed to be the major forces behind such performance.

As regards to employment performance, it was not as generally disappointing. Employment growth was averaging more than 3 percent per year over the years, except for the last period, 1998-2000, when it contracted by -0.3 percent per year.

Major economic policy shifts occurred when the Aquino government took over in 1986. Structural reforms like trade liberalization, foreign exchange liberalization, investment reforms, banking reforms, privatization, among others were implemented. These reforms intensified in the 1990s. The reforms are still being pursued at present.

One of the major results of these reforms is the increasing share of foreign trade in the Philippine economy. From 13.6 percent export-to-GDP ratio in the 1967-72 period, the share increased to 45.8 percent in 1998-2000. Similarly, import-to-GDP ratio increased from 17.4 percent to 43.2 percent over the same period. The rise in the trade sector is mainly attributed to the recent surge in the demand for semi-conductor in the world market. To date, almost 60 percent of the country's export is the highly raw-material-import- dependent semi-conductor.

However, in spite of the reforms and the dramatic rise in foreign trade, apparent signs of structural weaknesses prevail in the local economy. These are seen in the stagnating share of industry in general and of manufacturing in particular in the last 35 years (**Table 5**). The share of industry picked up from 31.7 percent in the 1967-72 period to 37.4 percent in 1983-85. It declined since then and continued its decent to 30.9 percent share in 1998-2000. Similar dismal record for the manufacturing sector is observed over the same period. The drop in the share of agriculture showed up in the increasing share of the service sector.

The disappointing and stagnating share of industry and manufacturing sectors is also observed in the structure of employment. Employment share in industry is about 15 percent, while in manufacturing 10 percent. These shares have practically stagnated as compared to the rising employment share in the service sector.

The contrasting performance of the foreign trade sector and the industrial sector in general and the manufacturing sub-sector in particular in terms of output and employment generation in the midst of policy reforms indicate the absence of trickle down effects. Considering that these policy reforms have been pursued for quite sometime, the lack of concrete trickle down effects would strongly imply a high degree of duality existing between the local and foreign sectors.

#### IV.B. Total Factor Productivity

Productivity indicators that are available in Philippine literature show poor performance. In fact, estimates suggest negative  $TFP^6$  growth, indicating that it has not been a source of economic growth.

Cororaton and Cuenca (2001) updated the TFP estimates of Cororaton and Caparas (1998) from 1980-1996 to 1980-1998, using growth accounting method in translog form at the level of the economy and major sectors of the economy. Some insights were drawn from the estimates. At the sectoral level, the results are mixed. Some sectors showed improving TFP in the 1990s, while others have declining TFP, especially the non-tradable service sectors, like real estate. Because of this the economy as a whole saw a decline in TFP in 1990s. The decline may be due to movement of capital towards the non-tradable sectors during the period when foreign capital inflow surged, which in turn was aggravated by the prolonged real appreciation of the local currency.

Silva (2001) also applied growth accounting method to estimate TFP. Her estimation period was much longer, from 1971 to 1998. The major finding of the work indicates, "From 1990 to 1997, the average TFP growth is estimated at –0.8 percent, only a slight improvement from the average rate estimated for the 1980s". On the whole the paper implied that "The movements of total factor productivity (TFP) indicate that it did not drive the growth of real output during the past 25 years."

Austria (1998), using a macrodynamic model with output and inflation interaction, showed that the TFP for an extended period of time, 1967 to 1997 declined by -0.47 percent. Lim (1998), using a Cobb-Douglas production function showed negative TFP for industry and services, sectors that account for 75 percent of GDP.

However, Cororaton and Abdula (1997) showed slightly positive TFP for the manufacturing sector. However, in the TFP study conducted on specific industries within the manufacturing sector by Cororaton et al. (1996) it was observed that number of manufacturing industries with negative TFP increased from 1956 to 1992, while the above average TFP for the entire manufacturing sector was slightly above zero.

In a very recent TFP research Cororaton (2002) attempted to: extend the estimation period from 1967 to 2000; decompose the contribution of labor types; decompose the effects of sectoral movement of labor; and analyze factors determining TFP. The major findings of the paper are:

(a) <u>TFP Estimate and Sources of Growth</u>. Annual TFP estimates from 1967 to 2000 are presented in **Table 6**, while the three-year moving average of the business-fluctuationadjusted TFP is shown in **Figure 3**. In most of the years in the last thirty-five years, TFP fell below zero. Positive estimates are seen in the second half of the 1980s and towards 2000.

Interesting results may be observed in the analysis of the decomposition of output growth in **Figure 4** in which TFP is considered as one of the contributing factors during the different critical sub-periods over the past thirty-five years. While it may be true that the

<sup>&</sup>lt;sup>6</sup>Total factor productivity (TFP) growth takes into account labor and capital inputs together in productivity computation.

contribution of TFP to the overall economic growth has been negative, in terms of trend in an extended period it has improved. For example, from -4.26 percentage points in GDP growth in the sub-period 1983-85, it improved through the years to reach a contribution of +0.93 in the last sub-period, 1998-2000. This may be due to the effects of various economic policy reforms pursed in the last decade.

Through the years, the largest contributor to growth has been capital.

(b) <u>Decomposition of TFP Growth</u>. There have been sizeable changes in the structure of labor quality over the years. The share of skilled workers, loosely defined as those who have at least finished high school, increased from 19 percent in 1967-72 to 45 percent in 1998-2000 (Figure 5).

There are however noticeable movements of labor across sectors. Agriculture, which used to employ 56 percent of labor in 1967-72, has declining employment share. In 1998-2000, its employment share dropped to 38 percent. Labor moved to the service sector and not to the industry sector. The share of service sector employment increased from 29 percent in 1967-72 to 45 percent in 1998-2000. Employment share in industry hovers around 16 percent.

What are the effects of these factor changes on TFP? **Table 7** presents the results of decomposing the effects of labor quality on TFP. The results are presented per sub-period. The second column is the unadjusted TFP, which are period averages of the same estimates that appeared in **Table 6**. The third column presents the results for TFP growth adjusted for quality of labor. The last two columns compare the estimates by taking the difference and the ratio. A higher difference will imply a bigger the contribution of labor quality to TFP growth. In terms of ratio, the further it deviates from 1 the bigger its TFP contribution.

In spite of the increasing share of skilled labor to total employment its contribution to TFP has declined. The drop is quite evident in **Figure 6**. From 2.11 percentage points contribution to TFP growth, it declined to 0.16 in 1991-93. It started to recover however in the succeeding sub periods, still way below the contribution in the earlier periods.

This decline may imply a number of things. First, it may be true that skilled labor, as loosely defined in terms of level of schooling, may not have captured the actual skill development of labor. Second, the quality of education that could have produced the necessary skills to improve productivity may have declined through time. There are available facts that may support this. Cororaton (1999) has observed that while the Philippines is one of the countries that has produced one of the highest number of college graduates in the region, it has produced one of the lowest number of graduates specializing in science and technology and engineering<sup>7</sup>. Third, the results may imply that the marginal productivity of workers with higher education, as well as the efficiency of education itself, has deteriorated. Fourth, the increasing number (in fact, massive) of Filipinos working abroad may have resulted in brain drain, resulting in loses in productivity in the local economy.

The results imply a number of things, among the crucial ones are: (1) that the drive to improve education in the country should somehow get reflected in productivity improvement, otherwise the whole exercise could become frustrating if it will only result in a situation

<sup>&</sup>lt;sup>7</sup>Discussed further in the next section.

wherein trained Filipinos will end up seeking employment elsewhere; and (2) that the structure incentives, particularly labor incentives, would have to be examined quite closely. The structure of incentives could include the structure of relative factor wages to address the problems related to the graduates specializing in science and technology. The efficiency of the educational system, including the curriculum, books and manuals, training of teachers and professors, has to be looked into closely.

The effects of movement of labor across sectors on TFP have improved through the years, indicating efficiency effects, however small, from labor movement out of agriculture **(Table 8)**. Except for the sub-period 1991-93, the effect on TFP has increased through time as shown in **Figure 7**. One wonders whether labor movement to industry, or to the manufacturing sector in particular, instead of the service sector could have contributed to higher TFP growth or not.

(C). Determining Factors of TFP. A number of regression experiments were conducted on the computed TFP and the various determining factors listed earlier. Of the experiments only two regression specifications resulted in better test results. These are presented in **Table 9**. Trade indicators, exports and imports lumped together, are positive determinants of TFP growth. This is because the country's exports are highly import-dependent. The coefficient of the combined trade indicator is statistically significant. The positive effect of exports on TFP implies that exports can bring about economies of scale with larger export market. It can also expose local producers to international best practice in production. Furthermore, foreign competition in the export market can translate into improved efficiency in the production operations of local producers. On the other hand, the positive effect of imports is one major vehicle for moving in appropriate foreign technology. Therefore a higher volume of imports necessarily decreases the technological gap between local and foreign technology in terms of modern equipment, production processes, and management.

Foreign direct investments (FDI) lagged one year is not only positively affecting TFP growth but also highly statistically significant. FDI is another major vehicle for transferring foreign technology.

Price changes, an indicator of economic stability and fundamentals, is negatively related to TFP growth. This means high and unstable prices create a lot of economic uncertainties that discourage investors from investing in productivity-improving projects.

The share of gross value added of manufacturing to total gross domestic product was included to capture externalities and spill over effects of production technology to the rest of the economy. The share of agriculture and service sectors were experimented but turned out to be statistically insignificant. The positive and highly statistically significant coefficient of the share of manufacturing indicates that this sector has far greater spill over effects to the rest of the economy than other sectors. Its development therefore is an important factor affecting TFP growth.

Expenditure on research and development lagged two years is positive and statistically significant, indicating that it is also another important factor determining TFP growth.

In sum, the major conclusions of the paper are:

- Although the last thirty-five years saw mostly negative TFP growth in the Philippines, there is an underlying trend that is encouraging: the contribution of TFP growth to the overall economic growth consistently improved from -4.26 percentage points in the middle of 1980s to +0.93 in 1998-2000. It is important to note that during this period major economic policy reforms were pursued.

- In spite of the increasing share of skilled labor to the total, loosely defined as those who have at least finished high school, its contribution to TFP growth is observed to have declined through time. This could imply a number of things, among the critical ones include: (1) deterioration in the quality of education necessary for productivity improvement, (2) deterioration in the marginal productivity of workers with higher education and in the efficiency of education itself, and (3) brain drain due to the surge in the number of Filipinos working abroad. These are critical issues in the Philippines that need to be looked into quite closely.

- Efficiency improvements seem to have been gained from the movement of labor out of agriculture.

- Sound macroeconomic fundamentals, price stability, and opening up of the economy to foreign trade and investments are critical factors affecting TFP growth. Spill over effects on TFP from manufacturing seem to be far significant than from service and agriculture sectors. Expenditure on research and development is also another important factor affecting TFP.

#### V. <u>Gaps in Philippine R&D and Technology</u>

The poor productivity performance in the Philippines can largely be due to the gaps in R&D. There are national as well as sectoral gaps in terms of expenditure, budget, manpower, and inefficiency in institutional arrangement.

#### V.A <u>Philippines vs International</u>

Cororaton (1999) surveyed a UNESCO-based data on R&D indicators for 91 countries and found that the Philippines ranks very low in terms of R&D effort. **Table 10** shows that out of 91 countries the Philippines is at the  $73^{rd}$  place in terms of the number of scientists and engineers per million population. It has only 152 scientists and engineers per million population. This is far below the maximum of 6,736 scientists and engineers per million populations. In terms of R&D expenditure to GNP ratio, the Philippines is at the  $60^{th}$  place with a ratio of 0.2 percent in 1992. This is far below the maximum of 3 percent.

#### V.B Gap at the National Level

Based on an econometric study, Cororaton (1999) provides some estimates of the magnitude of the gaps in R&D at the national level. R&D gaps are defined as those factors that have prevented the economy from operating at its full potential in terms of productivity. These factors could be either in the form of (i) low R&D investments and inadequate R&D

manpower, (ii) institutional weaknesses as a result of poor system, management and leadership, (iii) policy lapses and failures, or all three combined. But in the estimation only the first two have been considered because of data availability.

The results indicate that the resulting R&D expenditure gap is 0.5778. This means that R&D expenditure-GNP ratio would have to increase by 0.5778 for the Philippine TFP to reach the TFP frontier. The average R&D expenditure-GNP ratio during the 1980s was 0.1667 percent. Thus the total R&D expenditure-GNP ratio needed to reach the frontier is 0.1667 + 0.5778 = 0.7445. This is a sizeable increase from the current level, but lower than what has been proposed in S&T Bill (House Bill no. 2214) of 1 percent of GNP.

Applying this ratio to the 1997 GNP of P2,527 billion will result in a total R&D expenditure of roughly P18.8 billion. This R&D investment gap is substantial considering that the present level of R&D spending is approximately P3 billion. While this is a significant gap, for all intents and purposes, this could not feasibly be financed by the national government because it will result in significant budgetary impact. The government has other equally important and pressing needs, especially in the area of basic infrastructure like market roads, bridges and port, and of social sector like education and health. Furthermore, it may be totally ineffective and inefficient to re-allocate existing limited government resources in favor of R&D activities because of the institutional inefficiencies in the R&D system, as well as in the S&T structure. David (1999), for example, argues that while agricultural research continues to be underfunded, "efficiency of public sector research funding has been significantly lowered by the misallocation of limited budgetary resources, as well as by institutional weaknesses of the agricultural research system". Thus, unless these institutional weaknesses are addressed, additional government funding into R&D will only go to waste and will not result in productivity gains.

In other progressive countries, the bulk of R&D investment comes from the private sector. The challenge therefore is how to encourage the private sector to participate in R&D activities. It is also important to identify the necessary infrastructure, incentive system and investment safeguards needed so as the said sector can do its own R&D.

In terms of manpower, it was observed that the gap is around 197 scientists and engineers per million population. The average ratio for the decades of the 1980s was only 108. For the Philippine TFP to bridge the gap it should need R&D manpower of 108 + 197 = 305 per million population.

#### V.C. Sectoral Gaps and Problems

Technology-related issues and problems are generally similar across sectors. They largely focus on four major problems: (i) underinvestment in R&D, (ii) lack of adequate and technically capable R&D manpower, (iii) institutional weaknesses, and (iv) policy failures. Below is a brief discussion on the following sectors: agriculture, fishery, manufacturing, education, and health.

## V.C.1. Agriculture<sup>8</sup>

<u>Underfunded Research in Agriculture</u>. The agricultural sector performed poorly since the 1980s. David et al (1999) attribute this poor performance to a number of factors, and one of them is the inadequate public support service particularly in agricultural research and development. "The agricultural research system has been severely underfunded with public expenditures in the early 1980s representing only 0.3 percent of agriculture gross value added, in contrast to an average of 1 percent among developing countries and 2-3 percent among developed countries (**Table 11**). In fact, only 5 percent of the total public expenditure for agriculture has been allocated for agriculture research; whereas the ratio of budgetary outlay for price stabilization programs alone was in the range of 10 percent over the past decade (**Table 12**)."

Apart from the problem of inadequate funding for research, there are other equally important gaps, if not more important ones, in agricultural research. David et al (1998) identified them as: (i) inefficiencies caused by the misallocation of research resources within the sector (e.g., across research program areas and ecological regions) and (ii) weaknesses in the institutional framework of the research system including the organizational structure, lack of accountability, fragmentation of research, incentive problems, instability in leadership and weak linkage between research and extension.

Misallocation of Research Resources. Using the congruence rule, which defines the optimal research resource allocation across commodity program areas as proportional to the respective commodity value added or value of production shares, in other words, given a total budget for agricultural research, the research intensity ratio, i.e., research expenditure as a ratio of the value added should be equal across commodity research program areas, David et al (1998) found that the "allocation of research expenditures across commodities and regions have been highly incongruent to their relative economic importance measures in terms of gross value added contribution of the commodity. In particular, relatively greater research budgets are provided to minor commodities such as cotton, silk or carabao, and too little to major ones such as corn, coconut, and fisheries and others. Furthermore, Mindanao regions are relatively neglected in terms of research budgets of the DA and SUCs compared to regions in Luzon and to a lesser extent to those in the Visayas." They further added that "while congruency does not strictly coincide with optimal research resources allocation, the differences in research intensity ratios observed among commodities and across regions cannot be explained by possible differences in cost research (probability of research success, etc.), future market potential nor equity considerations".

Other indications of misallocation of resources and institutional weaknesses in agricultural research are also discussed in David et al (1999) and Ponce (1998). Some of these are:

(A) <u>Overly High Share for Personal Salaries</u>. The expenditure for personal salaries (PS) on the average tends to be disproportionately high at 58 percent, while maintenance and

<sup>&</sup>lt;sup>8</sup> Largely based on the paper of David et al 1998.

operating expenses (MOE) is about 36 percent and capital outlays (CO) only 6 percent. In agricultural research systems in more developed countries where salary rates are much higher, the distribution of expenditures is 40 percent for PS, 40 percent for MOE, and 20 percent for CO.

Generally, in almost all research agencies, the shares of PS are high; at least 50 percent. In a number of commodity research agencies and SUCs, the shares can be as high as 70 to 80 percent. PhilRice, however, is an exception. The structure of expenditure is 40 percent for PS, 50 percent for MOE, and 10 percent for CO. This allows for a more efficient utilization of its manpower and physical facilities, as well as promotes more systematic and long-term research planning.

UPLB, which undertakes the bulk of research activities related to agriculture, has also the same expenditure structure with PS share as high as 70 percent. Moreover, research projects under the different institutes, centers and research units of the university are primarily driven by priorities of external donors, which contribute about half of the research funding. As such, the effectiveness of research is constrained by uncertain and short-term nature of funding, even though the university may have the most able scientists in the country in different fields in agriculture.

The implication of the expenditure pattern in the different research agencies in agriculture in the Philippines is that, the overly high share of PS may reflect overstaffing, bureaucratic rigidities and poor planning.

(B) <u>Unfocused Projects</u>. An analysis of the work and financial plans and projects completed indicate that research projects are highly fragmented and short-term in nature. Research findings and outputs are not carried to future researches nor used for extension to benefit the clientele. This is because there is no adequate system or clear mechanism whereby research findings are fully transferred to the targeted end-users. Also, there are no systems where researches are continued in a long-term and continuous basis. Thus, the analysis of the profile of the researches indicates that, generally, research projects do not reflect a sense of problem orientation.

(C) <u>No Clear Network Among SUCs</u>. Ponce (1998) argues that SUCs are basically "independent from each other despite their hierarchical designations as national multicommodity research centers, regional research stations and cooperating stations. The national multi-commodity research center's (UPLB, CLSU, VISCA, and USM) linkage to the regional and cooperating stations are ad hoc in character and project related. There exists no institutionalized linkage resulting from clearly defined complementary functions."

(D) <u>No Clear Network Between DA and Attached Agencies</u>. In addition, Ponce (1998) also argues that the DA research system consists of national experiment stations operated by (i) various bureaus such as BPI, BAI, BFAR, and BSWM; (ii) attached agencies such as Phil Rice, PCC, PCA, SRA and FIDA; (iii) Regional Integrated Centers under the regional offices of the DA; and (iv) Regional Outreach Stations. Similar to the network among the SUCs, "there exists no clear functional delineation between the national stations

and the regional experiment stations and between the region and the provisional stations. Each station exists independently of each other in terms of programs even within the DA proper. Thus, national centers do not exactly orchestrate the national research and development programs of their assigned commodities.

(E) <u>No Clear Link with the Private Sector</u>. Furthermore, Ponce (1998) also cites the weak link between the private sector and the larger community of research stations. Most private research centers exist principally to meet the needs of the companies that established them. As such, they do not interact with the rest of the research community dominated essentially by the government sector, except for a few privately operated research centers that perform public services such as the Twin Rivers Research Center. There is also a mechanism whereby this link could be fostered and developed.

(F) <u>Other Institutional Gaps</u>. Other institutional weaknesses cited by Ponce (1998) are (i) the lack of well-defined and institutionalized mechanism for collaboration among R&D subsystems and (ii) the inefficient funding system and lack of accountability. The present funding system is still very much like the old project-approach one where the research outputs are essentially in the forms of research reports. This weakens the system of program approach and leads to distortion of national priorities. Furthermore, the present funding approach gives rise to a much-diffused structure of research implementation where it becomes difficult to pinpoint responsibility.

(G) <u>Manpower Gaps</u>. In terms of R&D manpower profile in agriculture, the authors found that the problem is not in terms of the number, but in the relatively low level of scientific qualification of the agriculture research system. This is particularly true in both the DA and DENR research agencies. The very low ratios of technical manpower resources with advanced degrees at the DA and DENR compare quite *unfavorably* with similar institutions of some of the Asian countries like Malaysia, Indonesia, and even Bangladesh.

On the other hand, the qualities of research manpower in Sacs are not uniformly nor always significantly better. Although share of manpower in SUCs may be higher than in agencies, there is a big and worsening problem of in-breeding. Furthermore, local scientists who were trained and educated abroad are not generally attuned to recent developments or frontier international knowledge. Also, there is a big gap in the quality of faculties and researchers in UPLB and other SUCs.

### V.C.2. Fisheries Sector<sup>9</sup>

One of the sectors included in the R&D study is the fisheries sector. This sector is important not only because it has direct impact on national health and nutrition (fish is the source of about 75 percent of the total animal protein requirement of the country, in fact more than poultry and livestock combined) but also because its structure, particularly supply side, is directly affected by what has been happening in the environment. To a certain extent, the fisheries sector can be one output indicator of what has been happening in the environment.

<sup>&</sup>lt;sup>9</sup>Based on the paper of Israel (1999).

Israel (1999) has pointed out that the weak performance of the fisheries sector has been the result of several interrelated problems which include the top three important ones: (i) resource depletion in coastal waters due to over fishing and destructive fishing, as manifested by the deterioration of important fish stocks and species and the degradation ecosystems; (ii) large-scale environmental damage, as evidenced by the destruction of coral reefs and mangroves in marine areas and pollution of major river lakes; and (iii) proliferation of industrial, agricultural, commercial and domestic activities which discharge pollutants into marine waters, contributing to the deterioration of ecosystems and rendering marine food potentially harmful for consumption.

R&D is important to the development of the fisheries sector, particularly to its longterm survival. Primarily, R&D is crucial to generating new information and technologies that can increase output above the current low and dwindling levels.

The responsibility of managing and coordinating fisheries R&D in the Philippines has been the task of the Philippine Council for Aquatic and Marine Research and Development (PCAMRD). The Council, which is under the DOST, is tasked to plan, monitor, as well evaluate fisheries R&D. The paper of Israel (1999) discusses the R&D structure of the fisheries sector.

Furthermore, PCAMRD interacts with two government agencies whose R&D scope covers the fisheries sector. These agencies are the Bureau of Agricultural Research (BAR) of the Department of Agriculture (DA) and the Ecosystem Research and Development Bureau (ERDB) of the Department of Environment and Natural Resources (DENR). These agencies are mandated to coordinate all researches of the regional offices and line agencies within their respective departments. The BAR covers fisheries research because fisheries are administratively classified under the agricultural sector. The ERDB does so since aquatic resources form part of the natural resource base and therefore, falls under DENR.

Institutional Gap and Issues. Israel (1999) found that one of the biggest gaps which results from the present institutional arrangement is the weak coordination and poor collaboration among government agencies. PCAMRD is the agency tasked to manage and coordinate overall fisheries R&D while the BAR and the ERDB coordinate fisheries research of the regional offices and line agencies of their respective departments. Because of the similarity in functions and constituency, potential overlapping existed among the three agencies. To address this problem, they delineated their functions through existing Memoranda of Agreements (MOAs). Implementation of these agreements, however, has been hampered by poor collaboration. In particular, in violation of the MOAs, the agencies do not actually jointly review all research proposals submitted for funding. Furthermore, collaboration is weak or does not exist in several activities and strong only in one aspect.

Aside from poor collaboration, another crucial institutional problem deals with a possible duplication problem between PCAMRD and the Bureau of Fisheries and Aquatic Resources (BFAR) arising from the existing Fisheries Code. The Code reconstituted the BFAR from a staff to a line bureau under the DA and assigned it the function of formulating

and implementing a Comprehensive Fishery Research and Development Program. To effect this program, the law created a new agency within BFAR, the National Fisheries Research and Development Institute (NFDRI), which becomes its main research arm. Among the functions of this agency are the establishment of a national infrastructure that will facilitate, monitor and implement various research needs and activities of the fisheries sector and the establishment, strengthening and expansion of a network of fisheries-related communities through effective communication linkages nationwide. These functions of the BFAR and the NFRDI may duplicate those of the PCAMRD. For one, the responsibilities of formulating and implementing an overall plan for fisheries R&D and coordinating its implementing are mandates of the Council. Likewise, the Council has already established a network of research institutions, the NARRDS, to serve as implementing arm for fisheries R&D. At a larger scale, the Agricultural Commission has noted the duplication of functions in the R&D programs in the fishery and agriculture sectors.

Under which agency and department should the task of managing, coordinating and implementing R&D fall is a long running issue that has a life of its own in fisheries circles. At present, this question is far from settled and creates a lot of bureaucratic and institution inefficiencies.

<u>Capability Issues</u>. Capability issues surrounding R&D in fisheries include low investment (including public, private, as well as foreign investments); funding problems; manpower shortage; and poor maintenance of existing capital.

(i) <u>Low Public Investment</u>. The most glaring resource-related problem in R&D is historically low government funding that agriculture as a whole receives (**Tables 13** and **14**). In developed countries, average public spending on investment in agriculture R&D is about 2 percent of their agricultural GVA. In contrast, only about 0.019 percent of GVA is allocated locally. Regionally, the Philippines has the lowest R&D allocation for agriculture in Asia.

For fisheries, in particular, allocation averages only about 0.102 percent of fisheries value added which is close to what agriculture is getting. However, the fisheries R&D budget is only about 3.6 percent of the total expenditure for agriculture and natural resources R&D combined. Thus, compared to agriculture and natural resources, the fishery sector is getting the worse end of the deal in the sharing of government funds.

A look at disaggregate data indicates not only the low government funding for fisheries R&D but also the uneven government allocation among institutions. In 1996, among the NARRDS members, the budget in total magnitude and as ratios to number of researchers and projects differed widely (**Tables 15** and **16**). It can be seen also that the ratios of budget to number of researchers and projects were low for many institutions, including some zonal centers.

To address the problem of low budget for agriculture and fisheries R&D, the AFMA stipulated that allocations be increased to at least one percent of GVA by year 2001. For its part, the Fisheries Code legislated the creation of a special fund for fisheries R&D in the initial amount of P100 million. The AFMA is mute regarding the sharing of funds between

agriculture and fisheries. Assuming that allocation will be proportionate to output contribution, the budget for fisheries should jump substantially from its current levels. There is already doubt that the planned increases in allocations will fully materialize soon given the mounting fiscal deficits.

- <u>Low Private Investment</u>. Data on private investment in fisheries R&D are scarce. This is understandable given the natural aversion of the private sector to divulge information. This notwithstanding, it is known that private entities have been involved in one way or another in R&D, especially in applied research and technology verification activities where the likelihood of generating new technologies for immediate commercial application is high.

A lot of the private sector involvement in fisheries R&D is in aquaculture. During the rapid development of this industry in the last twenty years, private firms have been collaborating with national institutions and locally based international research agencies in the conduct of applied research covering many commodities including prawn, tilapia, milkfish, crab and other commercially profitable species.

In the commercial fisheries, private sector participation in R&D is limited since research in capture technologies usually requires larger investments and results are difficult to patent. Also, a lot of the research activities, such as stock and resource assessments, have social externalities that go beyond the private interests of private operators and, thus, are better left to government and international research agencies to conduct. The common practice in the commercial fisheries has been to use imported technologies outright or modify to some extent said technologies to suit local requirements and needs.

In the municipal fisheries, private investment in money terms is low because the poor economic position of the municipal fishermen practically prevents them from doing such investment. However, manpower involvement in R&D is substantial among fishermen and their families by way of participation in the conduct of numerous coastal resource management and similar projects undertaken by government and international agencies.

Available data show that the share of private investment in fisheries R&D is low (**Table 17**). To promote this type of investment, the AFMA encourages government research agencies to go into co-financing agreements with the private sector provided that the terms and conditions of the agreements are beneficial to the country. For reasons already cited, the possibility of these agreements actually happening will be higher in aquaculture than in the commercial and fisheries subsectors.

- <u>Low Foreign Investment</u>. Figures show that the contribution of foreign funding for fisheries R&D was more than half of total funding (**Table 17**). In recent years, however, this share has gone down (**Tables 18 and 19**). By 1996, only 7 percent of the total funds of NARRDS institutions came from foreign sources (**Table 20**). Furthermore, funding was concentrated only in a few concerns, mostly the environment and OPAs.

Foreign funding is important because it is essentially a signaling mechanism. Low outside investment for domestic R&D could mean that local research institutions and their

programs are not internationally competitive and vice versa. Furthermore, in this time of economic crisis, foreign money may be the only viable way of increasing allocations. The AFMA and Fisheries Code did not address the issue of international funding for R&D.

(ii) <u>Untimely Release of Funds</u>. Aside from the low allocations, a commonly cited fund-related problem in fisheries R&D is the untimely release of government funds to institutions, programs and projects. In fact, this constraint is true not only for R&D but also for other activities depending on government support. In fisheries, it is acute because of the importance that time and season play in the conduct of activities. Although there are no data that can be used to validate this, research activities are reported to be cancelled or haphazardly conducted because of the delay in the release of funds. The review of the FSP pointed out other problems related to the management of government funds (PRIMEX and ANZDEC 1996). These include the excessive control by the Department of Budget and Management (DBM) over a large proportion of program funds; the diversion of some funds to other activities not necessarily directly related to the program; the lack of coordination between the DBM and program administrators regarding fund utilization; and the lack of a financial monitoring system for the funds.

(iii) <u>Shortage of Manpower</u>. Earlier figures show that the NARRDS institutions relatively have limited R&D manpower at all levels (**Table 18**). They also indicate that personnel capability varies greatly between regions and programs and those senior personnel, especially those with doctorate degrees, are concentrated only in a few institutions (**Table 21**). Masteral degree holders have offset the limited number of doctorate degree holders, in limited cases. While this is so, it cannot be denied that more doctorate degree holders are required in NARRDS institutions to provide the organizational and research leadership.

A comparison of selected NARRDS and NARRDN institutions suggests that the manpower in fisheries R&D is no more than 10 percent of that in agriculture although the percentage of Ph.D. holders is a bit higher (**Table 22**). This proportion is highly uneven and not reflective of the higher ratio of fisheries output to total agricultural production (**Table 23**). The graduate to undergraduate ratio of fisheries R&D staff appears to be significantly lower compared to that of agriculture also.

The problem of limited manpower in fisheries R&D, especially in institutions located in the provinces, deserves attention because of the rural nature of many fisheries activities. Researchers working in the countryside are more exposed to the actual problems in fisheries and are in a better position to correctly identify priority research areas for implementation. More of them should be recruited then to enhance the capability of the sector to conduct hands-on and meaningful, instead of "ivory tower", research.

The Fisheries Code did not address the problem of limited R&D manpower in fisheries. The AFMA, on the other hand, stipulated the creation of a science fund to sustain career development. Since, the manpower problem is directly related to funding, the planned increases in the total R&D allotment, should they materialize, will go a long way towards addressing it.

(iv) <u>Low Level and Poor Maintenance of Capital Assets</u>. While the data presented here concentrate only on funding and personnel resources, capital resources, in particular, buildings, facilities and equipment also help determine the success or failure of R&D. In fisheries, the capital resources for R&D have been wanting, more so in provincial institutions which receive smaller shares of the research budget. The problem of inadequate capital assets is worsened further by poor maintenance. There have been reports that proper maintenance is sometimes sacrificed by institutions to meet more immediate expenses, such as salaries and wages. In sites close to the sea, the faster deterioration of capital assets brought about by salt makes the problem of poor maintenance very serious.

Like the manpower problem, the inadequate and poor maintenance of capital assets is function of funding. If the NARRDS institutions get a raise in their allocations, they could purchase enough capital assets and spare money for maintenance. Again, the solution rests a lot on the materialization of the increased allocations promised by the AFMA and Fisheries Code.

#### V.C.3. Manufacturing

Macapanpan (1999) conducted a survey on the private sector innovation activities in the country in five industry groups: food processing; textile and garments; metals and metal fabrication; chemicals; and electronics and electrical machineries. The major conclusions of the study are the following:

(a) Only big firms do engage themselves in innovation. These are industry leaders. Smaller firms may just be 'along for the ride', not even considered "followers".

(b) "Innovations activities are perceived by the firms to improve their competitiveness through improved quality, lower production costs and enhanced marketing performance. *Government standards and regulations and environmental concerns are not important drivers for innovation activities.* As predicted by literature and studies, firms will formulate their technology strategy to support their overall business strategy.

(c) "*The steel industry has not acquired any significant new technology*, in spite of recommendations from various studies. *The same is true for the textile industry, which has fallen behind in modernizing their equipment* to remain competitive, quality- and cost-wise."

(d) "Of the total respondent firms (more than 60), only seven firms employ Ph.D.s and only about 20 have masteral degree performing any innovation activity. *A majority employ only college graduates or lower in their innovation activities, implying a very low level of innovation activity.*"

(e) "Government research institutions rank very low as a source of innovation ideas. From interviews, the perception of the firms is that these research institutions lag even in monitoring technology developments in their respective fields. Internal R&D is not relied upon, except by the firms in the electronics and electrical industry. Ideas for innovation

activities are usually sourced from the outside in the form of consultancy services, information on competitor activity generated by monitoring, purchase of technology, tangible and intangible, and the recruitment of manpower with the required skills."

(f) "Financial constraints such as risk and rate of return, lack of financing and taxation are the major hindrances to innovation. Technical constraints such as lack of information on new technologies, deficiency in external technical services, innovation costs, and uncertainty rank next as barriers to innovations. Others mentioned include difficulty in obtaining patents, low technological standards, lack of skilled personnel, and lack of opportunities for cooperation with other companies."

(g) "Philippine firms are deficient in experience and organization to fully exploit technology as a source of competitive advantage. This situation is not helped by the lack of government assistance and support. Government has been remiss in aligning the educational system toward a globally and technologically competitive economy. The Philippine schools do not provide the requisite technical and technological skills and knowledge. Government research institutions have not diffused their findings to the private sector."

Nolasco (1999) identified further gaps and major loopholes in the system:

(i) The overall system is loose and chaotic in the sense that different government agencies do have different set of prioritized sectors. Furthermore, some of the goals are unaligned. For example, NEDA, DTI and BOI have different set of strategic sectors. DFA and NEDA have conflicting interests with the BOI industry planners, especially in terms of granting incentives. In particular, DOE is looking into the possibility of developing wind energy while DOST is eyeing the solar energy.

(ii) Government, with such limited amount of budget allotted to R&D, limits the amount of expenditure on R&D.

(iii) Support facilities like testing centers, either government-run or government subsidized, standardization institution and support industries like casing and others are lacking or non-existent. Access to recent and state-of-the-art technologies is lacking due to poor databases.

(iv) System only reaches out to a handful of firms, usually the larger ones. Small and medium scale firms have minimum access to the system.

(v) People and staff in the incentive promotion desk are not too familiar with the system of incentives. For example, some of them are not even aware of (a) the contents of the R&D incentives scheme LOPA and (b) the fact that R&D incentives existed for more than six years. Most of them would recall that R&D has been integrated into the IPP LOPA only in the past two years, when in fact, it has been there since early 1991.

(vi) Government and private sector linkages are very weak. Thus, commercialization of developed technologies has not well been promoted.

As a result of these gaps and problems, only 11 companies or a total of 13 projects were granted incentives during the period 1991-1997.

Meanwhile, the results of Halos (1999) on the survey and interview with private firms in the chemical industries, which produce chemical inputs into agriculture (such as fertilizer and pesticides), indicated that there has been a considerable reduction in R&D investments. The exceptions are in the sugar and coconut industries where research funds have been mandated by government. In fact, the intensity of research activities by the private sector, except sugarcane and coconut, appears to have declined from the level in the 1980s. Information on R&D is scarce and hard to come by, but there are clear indications of this slowdown. For example, a number of multinational pesticide companies used to maintain research groups distinct from marketing group but only two have remained to do so at present. The regional research station of a multinational agri-chemical firm has reduced not only the number (from 5 to 3) but also the rank of its research staff (from 2 senior and 2 junior level).

Another observation of Halos (1999) deals with the government policy. For sure, the government has adopted a policy of promoting local innovations and R&D activities. This is manifested in a major legislation, RA 7459, which was signed into law in April 1992. The law provides multi-incentives package to encourage the development of inventions and facilitate their commercial application. For example, "the law provides for presidential awards, tax/duty exemptions, loan assistance and invention assistance development in prototyping, piloting, training, study tours, attendance to conferences/seminars and laboratory tests and analyses. Various councils of the DOST provide counterpart R&D funds to private companies. Although respondents agreed that tax exemption for R&D equipment is conducive to their R&D initiatives, interviewees found the *procedures too cumbersome*. Similarly, they found the *availment procedures and equity requirements for technology-commercialization loans cumbersome and too steep for small entrepreneurs.*" In fact, producers of organic fertilizers bewail the data required for FPA registration.

In general, Patalinghug (1999) argues that small and medium enterprises face several problems to acquire technology or to engage in R&D. "Among these problems are: (1) lack of funds, (2) insufficient information, (3) lack of skills in evaluating alternative technologies, (4) lack of technical know-how to shift to more advanced technologies, (5) inadequate mechanism for transfer of technologies and (6) inertia of entrepreneurs because of no perceived or actual need for technology."

#### V.C.4. Education

**Table 24** shows that while the Philippine educational system produces a very high number of tertiary graduates, the post-baccalaureate science and engineering students, as a percent of post-baccalaureate students is low. In column 6 of the table, the Philippines rank the lowest in the list with a ratio of only 8.65. This is far from the second lowest of 20.76 percent, which is for New Zealand. The highest is China with a ratio of 74.26 percent.

The low number of scientists and engineers is reflective of the general tendency of the educational system in the Philippines to produce non-technical graduates. There is in fact a dilemma in the present education system because of the educational "mismatch": while there is a great demand for technical and engineering-related graduates by local industries, private tertiary schools continue to produce non-technical graduates. This is, indeed, a big policy area problem. One of the factors that would explain this is that private schools prefer not to go into these technical related courses because of their high laboratory requirement that is capital intensive. Non-technical courses are less laboratory intensive and therefore less capital intensive.

The pool of R&D manpower is dominated by people with basic college degrees and generally have very limited advanced technical training. This in itself presents a big stumbling block because new technologies available are already in advanced state and require special technical skills. Thus, the lack of adequate R&D manpower places the country in a very disadvantaged position because it does not have enough technical capability to adopt, through R&D, developed technologies in the market. In other words, with inadequate technological capability, the Philippine may find it difficult to catch-up in terms of access to and mastery of the key emerging or leading edge technologies. This, in turn, negatively affects future growth and international competitiveness.

This inadequacy of supply of R&D manpower can be traced back to the problem in basic education that is at the moment in a poor state. The bad shape in the basic education is rooted to the teacher training policy of the country and the status of teaching profession (Magpantay, 1995). "To be able to teach in high schools, teachers must have BSE with a major and minor field. This degree program is short on the content and heavy on the methodology of teaching. In the end, teachers are knowledgeable in the standard way of teaching but do not know what to teach. And worse, the students, who enter the education colleges, are generally not very creative and imaginative due to low status afforded the profession. In any family, the intelligent among the children are encouraged to take up medicine, law and if mathematically inclined, engineering while the least academically capable are asked to take up BSE or BSEE programs. It is no wonder then that the science and math educations in the primary and secondary levels are in bad shape. Students are taught by the least academically inclined people who went through a program that emphasizes more on the form than on the content".

The poor S&T educational system results in low supply of skilled manpower (Sachs, 1998). "In particular, there is a severe shortage of science teachers at the school level. The quality of science education at the college level is also poor. A substantial fraction of high school science teachers have no training in science and mathematics (but rather have degrees in education). High school math and physics curricula are badly in need of reform. A World Bank funded engineering and science education project has provided scholarship for masters and doctoral training in science and engineering but the scope of the project is limited. In general, there is a lack of capacity to do research, which will become particularly problematic in the future when forms will have greater demand for adopting and innovating existing technologies. Increasing the supply of science and technology education is probably the most crucial investment in science and technology that needs to be made *now*."

#### V.C.5. Health

The Center for Economic Policy Research (CEPR) conducted an analysis of the funds flow of health research and development in the Philippines. Among the major objectives of the analysis were to: trace the flow of health R&D resources; assess the system for setting health R&D priorities; and determine if health R&D funds match with the priorities of the research agenda.

Some of the major insights derived from the CEPR-DOH findings, which are relevant to the present R&D gaps analysis in this section, include:

(i) "Of the P394 billion government budget for 1996, health resources accounted for P75 billion or 19 percent while R&D resources had a meager share of P3 billion or less than one percent.

(ii) Resources for health R&D amounted to P421 million; this was equivalent to 17 percent of R&D resources and one percent of health resources. The latter is below two percent of the national health expenditures, the proportion recommended by the Commission for Health Research and Development for health R&D"

#### V.C.6. Other Important Gaps

Eclar (1991) discussed the long history of S&T and R&D in the Philippines. In fact, its beginnings can be traced back to the American colonial period. There were significant changes since then, including changes in the structure, system, leadership and administration. Recently, programs and plans have been launched like the Science and Technology Master Plan (STMP) in 1990 and the Science and Technology Agenda for National Development (STAND) in 1993. However, there are no successes that can be cited. There are, however, clear indications of failure (Patalinghug, 1999). For example, the S&T sector faces the following major problems: underutilization of S&T for development as reflected in the low quality and productivity of the production sector and heavy dependence on imports; under investment in S&T developments in terms of manpower training, technological services, R&D facilities and financial resources; weak linkages between technology generation, adaptation and utilization; and slow commercialization of technologies because of very weak delivery system, which in turn is the result of weak linkages especially between government research institutes and the end-users.

Patalinghug (1999) further cited that "there has been a general failure to use technology to gain competitive advantage. Resource-based exports (timber, copper) are basically in raw material or unprocessed form. Traditional agricultural exports (coconut, sugar, and banana) are also exported without infusing technology-based processing in the value-added chain. The shift from primary exports (coconut, sugar) to manufactured exports (garments, electronics) has simply reflected the changing factor composition of exports (that is, from resource-intensive to labor-intensive). The shift from labor-intensive to skill-intensive or technology-intensive manufactured exports has not yet occurred."

Furthermore, there are a number of clear institutional gaps as well. Among the crucial ones are:

(i) Failure in Execution and Implementation. Patalinghug (1999) made a comparison between the S&T system in the Philippines and in South Korea. One of his observations was that, "basically, in form and intent, the Philippine S&T development plan is comparable to that of Korea. Thus, the basic weakness of the Philippine experience is in its execution and implementation. Although there are some weaknesses in the plan-formulation process in the Philippines because the planning exercise is detached from the budgeting exercise, the more decisive factor is the weakness and organization arrangement to ensure timely and correct implementation."

There are big defects within the existing intra-government coordination system. In particular, the system of performance monitoring and evaluation is lacking or defective. "In fact, the government's Investment Coordination Committee (ICC, chaired by NEDA) has been lengthily reviewing projects intended to address the adverse effect of the financial crisis. But basing from the ICC's inefficiency in evaluating development projects, it is more likely that these projects will be approved at a time when the economic conditions they are supposed to address are no longer there. The ideal institutional arrangement is definitely to establish a coordination mechanism between S&T plan, the budget plan and the Medium Term Philippine Development Plan. Unfortunately, prospects of establishing this linkage in the Philippine bureaucracy, in the short run, are not promising".

(ii) Other Causes of Institutional Failure. Some argues that Korean leadership has the political will and the consensus among its stakeholder to give top priority to S&T development in the allocation of resources. Magpantay (1995), on the other hand, claimed that the DOST is a highly inefficient structure largely because it "*is doing too many S&T activities, charged with too many functions, operating in a bureaucracy with too many constraints and given too little support*". This is manifested in the DOST's STMP 15 leading edges and STAND 22 R&D priority areas. These areas are all-inclusive and practically cover all industries and all technologies with too little financial resources. This is a clear example of poor planning and poor budgeting. Patalinghug (1999) in fact concluded, "the most reasonable conclusion that can be made is that both STMP and STAND cannot be implemented. Their defects are the following: (1) budgeting and planning were not harmonized in the drafting of the S&T plan; (2) capabilities of implementing agencies were ignored; (3) solid support from various stakeholders was lacking; and (4) therefore resources for S&T development were insufficient. By any standards, the amount actually used for R&D in the DOST budget is absolutely too little".

(iii) Failure of Industrial Policy. There are renewed attempts to formulate industrial policy (Patalinghug, 1999). This is a reiteration of the vital role of industrial progress to sustain future economic growth in the country. "However, ad hoc or de facto industrial policies (as formulated by EDC, IDC, and SMEDC) have not stressed the need for active promotion of technology to build a strong foundation for industrialization". The STAND has identified what is called "export winners" or "industry/product winners". Patalinghug argues

that identifying these winners without technology is like a vehicle without an engine. There are at least twelve priority sectors that have been implicitly identified in the recent pole-vaulting strategy. However, the technologies in support of these "must-do" programs have yet to be identified.

#### VI. Policy Insights

#### VI.A. <u>R&D Investments</u>

There are convincing pieces of evidence showing significant underinvestment in R&D in the Philippines. This is true at the national, as well as at the various sectoral levels. For example, Cororaton (1999) estimated a gap in R&D expenditure of 0.5778 percent of GNP at the national level. David et al (1999) also observed significant underinvestment in agriculture. Israel (1999) also found the same thing in the fisheries sector. Underinvestment in R&D is also very apparent in the private, manufacturing sector as observed by Macapanpan (1999) and Halos (1999). The recently completed study on the flow of R&D funds in the health sector by CEPR-DOH (1998) also found significant underinvestment in R&D.

There are also equally convincing set of facts indicating high rates of return to R&D investments. This being the case underinvestment in R&D and high rates of return may imply high opportunity cost. While it is extremely difficult to compute this opportunity cost because of lack of information, it is manifested in other indicators like productivity. Productivity performance in the Philippines has been very poor. In fact, this has been the major factor behind its unsustainable growth path. In principle, R&D activities lead to innovation, to technological progress and finally to economic growth and prosperity. There is a huge body of literature that would support this.

The biggest issue at hand is: Who would fill in the gap? Rough calculations indicate that there is a gap of about P14 billion at current prices. For sure, the government sector cannot fill in this gap because of financial constraints. Furthermore, the government has other equally important concerns such as basic infrastructure and other social sector needs. Naturally, it has to be the private sector (either local or foreign). However, the private sector responds to proper incentives. Further discussion on this is given later in the section.

Part of the gap can be attributed to the inefficiency of allocation of resources. In fact, in agriculture, David et al (1999) argued that misallocation of public sector research funding is an equally important consideration as underinvestment. They cited specific examples. Using the congruence rule, they found that "relatively greater research budgets are provided to minor commodities such as cotton, silk, or carabao and too little on major ones such as corn, coconut, fisheries and others. Furthermore, Mindanao regions are relatively neglected in terms of research budgets of the DA and SUCs compared to regions in Luzon and to a lesser extent to those in the Visayas. While congruency does not strictly coincide with optimal research resource allocation, the differences in research intensity ratios observed among commodities and across regions cannot be explained by possible differences in cost of
research (probability of research success, etc.), future market potential nor equity considerations"

Other manifestation of misallocation of resources is in the allocation of budgetary resources by type of expenditure. David et al (1999) also observed that "too little resources are available to perform research activities and to properly maintain the physical facilities, after the salaries of personnel have been paid. Indeed, the average share of personal services to direct budgetary outlays is close to 60 percent and as high as 70 to 80 percent in many cases. Consequently, either the research manpower is underutilized or the research agenda is driven by donors' priorities".

Due to lack of information because of extremely poor databases on R&D activities, misallocation of research resources in other sectors like the manufacturing cannot be conducted. However, given the nature and the extent of problems in the R&D system in the Philippines, the issues on agriculture seem generic to all sectors of the economy.

Aside from underinvestment and misallocation of research resources, there is another big problem of untimely release of funds to institutions, programs and projects. In fact, this is true not only in R&D, but also in other activities that are dependent upon government funding and support. Israel (1999) mentioned this as one of the major concerns in the fisheries sector. "In fisheries, it is acute because of the importance that time and season play in the conduct of activities. Although there are no data which can be used to validate this, research activities are reported to be cancelled or haphazardly conducted because of the delay in the release of funds". Patalinghug (1999) has recommended that DBM must be involved with DOST in the S&T and R&D planning formulation stage so that S&T and R&D resources are made available to implement such plan without delays. This issue will also be touched upon later in the discussion on institutional arrangement.

#### VI.B. <u>R&D Manpower</u>

The issues surrounding R&D manpower are equally, if not more problematic. This is because the problems in this area can be traced back to the educational system which is not only difficult to reform, but also, its effects would take a long time to be realized if ever reforms are successfully implemented. Lag time would usually take about 15 to 20 years - the required time to properly educate and equip the children with the necessary skills and talents before they enter the workforce.

Cororaton (1999) estimated that the gap in the R&D manpower is about 197 scientists and engineers per million population. In agriculture, David et al (1999) observed that the R&D manpower is not so much in terms of the number, but in relatively low level of scientific qualification of agriculture research. They, in fact, gave a warning that there is an *urgent* need to strengthen manpower capability in DA and DENR research agencies. Israel (1999) also observed a severe shortage of qualified personnel in the fisheries sector. The same is true in the private manufacturing sector (Macapanpan, 1999 and Halos, 1999). In fact, in the recent PIDS survey (Cororaton et al, 1999), it was observed that majority of R&D personnel have only basic college degrees. A small percentage has doctoral degrees mostly in social sciences. A very tiny percentage of Ph.D. holders are in engineering and technology.

While the Philippine educational system produces one of the biggest numbers of college graduates, compared to other countries, it generates one of the smallest numbers of graduates with science and engineering skills (Cororaton, 1999). There are a host of factors behind this. At the tertiary level there is a dilemma in the present educational system because of the educational "mismatch": while there is a great demand for technical and engineering-related graduates by local industries, private tertiary schools continue to produce non-technical graduates. One of the factors that would explain this is that private schools, which dominate the tertiary level, prefer not to go into these technical related courses because of their high laboratory requirement that is capital intensive. Non-technical courses are less laboratory intensive and therefore less capital intensive.

At the secondary or high school level, a substantial fraction of high school science teachers have no formal training in science and mathematics (Magpantay, 1995 and Sachs et al 1998). Rather, they have degrees in education. There is, therefore, an urgent need to reform high school math and physics curricula. This problem also holds true at the primary level.

In almost all sectors, the lack of adequate manpower surfaces out. Thus, for the country to sustain a long term growth there is an *urgent* need to reform the science and technology education system. In fact, investment in science and technology education is the most crucial investment that needs to be made now (Sachs et al 1998). Otherwise, it would be too late since returns to this investment have usually very long gestation period or time lag.

Patalinghug (1999) offered specific recommendations: (1) Strengthen S&T education at the elementary and secondary school level. The quantity and quality of elementary and secondary teachers of science and mathematics must be addressed in the Medium-Term Philippine Development Plan: 1999-2004; (2) A strong science and engineering program is also needed to support an expansion of science and engineering enrollment at the tertiary level. Expand the facilities of science and engineering institutions. Encourage the hiring of qualified faculty from abroad; (3) Intensify the effective recruitment of Filipino scientists and engineers working abroad by designing an incentive program that matches the cost of ESEP<sup>10</sup>; and (4) Expand the Philippine Science High School system.

#### VI.C. Incentive System

People, especially the private sector, respond to incentives. Incentives that are deemed particularly important to R&D activities include: stable economy; institutional protection; access to capital and financing, especially by the SMEs; good R&D infrastructure; and fiscal incentives.

Normally, there are high risks involved in R&D activities. In particular, there are uncertainties in the outcome of an R&D undertaking. Positive and favorable results of an

<sup>&</sup>lt;sup>10</sup> South Korea did this in the early 1960s with great success.

R&D undertaking will not emerge 100 percent or with certainty. In fact, there are great possibilities of failure. Furthermore, there is high incidence of spillover or externality that is hard to appropriate. In this regard, government intervention is critically needed.

There is ample literature and empirical evidence that support the fact that a stable macroeconomy helps encourage productivity-enhancing activities like R&D, especially by the private sector. Therefore, conducive macroeconomy is one of the major incentives that can be offered to private investors. The role of the government is particularly important in being able to manage the economy so that inflation rate, interest rates, risk premiums and etc. are kept at the minimum.

There are also clear indications from the literature that institutional protection is critically needed. Institutional protection comes in the form of patents and intellectual property rights. These issues have not been addressed in detail in the present paper, but certainly there are problem areas that need to be ironed out here. To be sure, there are indications that the number of patents granted declined through time.

Macapanpan (1999), Halos (1999) and Nolasco (1999) observed through company interviews and surveys that one of the major constraints preventing some of the firms, especially the SMEs, from conducting and pursuing R&D activities and plans is the lack of access to cheap capital and financing. The cost of capital in the Philippines is traditionally high because of distortions in the financial system.

R&D and S&T infrastructure is also one crucial incentive that could attract the private sector to pursue technology-related activities. Proper infrastructure could come in the form of: a strengthened educational system which can produce a workforce with adequate R&D capabilities, good and updated data bases and information system; wide and easy-to-access network on technology developments; a mechanism whereby Filipino scientists and engineers working abroad can come back home to work; and a mechanism whereby research results and output of research institutions and universities can be delivered to the end-users, among others.

Macapanpan (1999), Halos (1999) and Nolasco (1999) also noted that fiscal incentives are important in attracting the private sector to go into R&D activities. Cororaton (1999) listed down some of the major fiscal incentives in the Philippines and noted that these are generally similar to the ones offered in other countries. However, fiscal incentives have to be handled properly, as these would have significant budgetary implications. Furthermore, although fiscal incentives are important, results would indicate that there are major inefficiencies in the granting of incentive in the BOI. For example, Nolasco (1999) noted that from 1991 to 1997, only 11 companies or a total of 13 projects were granted with incentives. Patalinghug (1999) therefore suggests that there is a need to "design an incentive package, with strict qualifying requirements on what constitutes R&D activities, to encourage private sector R&D. An external peer review committee is recommended to act as the screening mechanism". The granting of fiscal incentives may be conducted in a competitive basis through a set of performance criteria that may be defined by the government.

Other important incentive issues, which need attention, are discussed in Israel (1999). In particular, it was noted that in most cases, researchers conducting research using the funds of their own agencies are granted with minimal financial incentives. Remunerations from projects funded by other government sources have been uncompetitively low. As a result, many researchers tend to do odd jobs not related to research, or consulting work for the private and international organizations. The results of the PIDS survey on R&D manpower, particularly on R&D personnel with Ph.D. degrees, would also indicate this trend (Cororaton et al 1999).

The Magna Carta for the Government Science and Technology Personnel (R.A. 8439) was recently passed to address the problem of low incentives, but it remains to be seen whether this will solve the problem. In particular, the law allows for the provision of honoraria, share of royalties, hazard allowance and other benefits to science and technology workers.

Furthermore, Patalinghug (1999) has additional recommendations that can improve the S&T incentives. These include: (1) allocation of an annual funding for the implementation of the Scientific Career System (SCS). However, entry into SCS should be limited by giving top priority on the target groups, natural scientists and engineers; and (2) implementation of a competitive bidding, strictly based on merit, in the awarding of research projects by pooling a major portion of the country's R & D resources to be administered by an NSF-type agency.

#### VI.D. Institutional Arrangement and S&T Coordination Mechanism

From all indications, there is no doubt that the entire R&D system, as well as the general S&T system, is in a state of disarray because of lack of leadership, direction, and coordination. There are systems, as well as administrative failures, that result in wrong implementation of the plans, projects and programs. There are also policy failures due to the lack of focus in technology in the overall development strategy. To address these problems, Patalinghug (1999) recommended the following reforms: (a) DBM must be involved with DOST in the S&T plan formulation stage so that S&T resources are available to implement the plan; (b) STCC must draft a Medium-Term Science and Technology Development Plan a year before the drafting by NEDA of the next Medium Term Philippine Development Plan. An inter-agency joint committee must integrate the Medium Term Science and Technology Development Plan into the Medium Term Philippine Development Plan by decomposing them into annual budget plan, annual S & T plan, and annual economic plan, and then harmonizing its goals, projects, programs, strategies, resource requirements, and timetables; (c) DOST must establish a Project and Program Monitoring Unit staffed by at most three persons whose main job is to coordinate the selection, through competitive bidding, of external evaluators and reviewers for the different projects and programs implemented under the S & T plan; and (d) An STCC chaired by the President must meet at least once every three months to address current problems that pose obstacles to the implementation of the S&T plan. An MOT unit attached to DOST (just like PIDS is attached to NEDA) will act as the technical secretariat of STCC under the direct supervision of the DOST Secretary.

#### VI.E. <u>R&D Delivery System</u>

Eclar (1991) has noted that there is very slow commercialization of technologies in the Philippines. This is largely due to the very weak delivery system and poor linkages of S&T organizations with industry and other government agencies. To improve the linkages Patalinghug (1999) has a number of recommendations:

(1) Reorganize the government-supported R & D institutes into a new corporate structure that gives them flexibility as well as responsibility to gradually develop its fiscal autonomy.

(2) Establish funding schemes through DOST and CHED to support consortium or network of schools to maximize use of resources.

(3) Focus funding support for developing core competence in targeted regional universities. For instance, University of San Carlos can specialize in chemistry and chemical engineering; MSU-IIT in mechanical engineering, and Xavier University in biochemistry and agricultural engineering.

(4) Promotion of S&T culture by giving Presidential Awards to outstanding science and engineering projects selected through a nationwide competitive search. Encouragement of science TV and radio programs, fairs, plant tours, and apprenticeship.

(5) Install a scanning and monitoring scheme of world technological trends for dissemination to local industries, research institutes and universities.

Eclar (1991) conducted a comprehensive analysis of factors affecting commercialization of technologies. Her study identified user participation. Successful commercialization is promoted when a user with a specific need has been identified at the start of the project. The user generally maintains an interest in the progress of the research and takes on the commercialization of the results at the completion of the research project in order to meet his earlier expressed need. This is reinforced when the user's interest in the project is translated into support or cost-sharing.

Another important factor is pilot testing. Demonstration of the technical viability of the technology in a semi-commercial scale helps convince an industry user to start-off the commercialization process. Commercial success is promoted when the user himself has provided material inputs to the pilot test.

## VI.F. Industrial Strategy

The market of technology is highly imperfect and the economic environment within which these developing countries are operating is adverse to technology-based institutions.

The Philippines is undergoing market-based reforms<sup>11</sup> in line with globalization. While these are extremely important and necessary to overhaul the inefficient production structure of the economy, it lacks focus and provides no clear direction to where the process for technological innovation. The recent S&T plan of the government lists down 23 industries as priority areas. The list is simply too long since the production lines of these industries are totally unrelated. The case of Japan, and to a great extent the case of South Korea, is very clear: the technological innovation strategy was attuned, synchronized and made consistent with the overall industrial strategy. This is a very important lesson for the Philippines during this period of economic reform. The process of technological innovation cannot start and gain momentum unless some kind of an industrial strategy is adopted. Activities in technology area are simply too risky and to a great extent capital intensive. Unless clear directions are set, the private sector may be unwilling or hesitant to come in and participate no matter how attractive government incentives are. In the Philippines, incentives are being offered to R&D related activities, but there are very few takers.

One word of caution though in letting the government take an active role in industrial strategy. To prevent the policy failure of the past, the strategy has to be market friendly. That is, it should not go against the market, but instead assist in its development. If, for example, market signals indicate that it is the semi-conductor industry that is the leading sector both in the domestic and export markets<sup>12</sup>, then government effort should be directed towards supporting the industry in terms of infrastructure, manpower development, incentives, research institution, etc. The technological innovation strategy that is consistent with this is the development of a system whereby the economy is able to move up the production ladder from the present assembly-type activities to activities with higher value added. Manpower development and research institutions are key to the development of this system.

#### VI.G. Statistical Information and Accounting System

Good and accurate analysis of R&D opportunities is one of the major factors that would help encourage private, as well as public, investment into R&D and S&T-related activities. This is because, normally, there are high risks involved in R&D investments (particularly the uncertainty in the outcome of an R&D undertaking), as well as there is high incidence of spillover or externality that is hard to appropriate. These uncertainties and other market failures can be minimized if the statistical information and accounting system is well established. A good information system leads to good analysis on the structure and nature of R&D activities. If there are significant market failures, with good analysis, then appropriate and correct policy measures can easily be formulated to correct these market kinks. However, the present statistical information and accounting system is extremely poor. It generates very inaccurate information of the variables of particular interest in policy. This assessment is based on the recent R&D survey conducted by PIDS (Cororaton, et al, 1999). Thus, there is an urgent need to overhaul the statistical information and accounting system on R&D and S&T activities. The first major step involves making the survey questionnaire consistent with

<sup>&</sup>lt;sup>11</sup>Economic reforms include trade reforms, financial reforms, fiscal reforms, exchange rate reforms, investment reforms, and other market reforms through privatization and liberalization.

<sup>&</sup>lt;sup>12</sup>At present almost 60 percent of the country's export is semi-conductor.

the accounting system of the institutions so that information can flow immediately from the information system of the respective institutions into R&D database. The next major step involves reconciling the variables in the questionnaire consistent with the NSO-PSIC sectoral breakdown. The third recommendation deals with institutionalizing the data system in NSO, because of their expertise in gathering information and their extensive nationwide network, so that regular information is generated and regular monitoring and analysis are conducted.

# **Figures and Tables**



# Figure 1. Production Function





(Second Phase of Innovation) (Impact of Innovation)

(First Phase of Innovation)

Source: Quoted from Choi (1983), but orginal source is Yamada (1964)

37

## Table 1: DOST Councils

| PCARRD  | Philippine Council for Agriculture, Forestry and Natural Resources  |
|---------|---------------------------------------------------------------------|
|         | Research and Development                                            |
| PCAMRD  | Philippine Council for Aquatic and Marine Research and Development  |
| PCIERD  | Philippine Council for Industry and Energy Research and Development |
| PCHRD   | Philippine Council for Health Research and Development              |
| PCASTRD | Philippine Council for Advanced Science and Technology Research and |
|         | Development                                                         |
| NRCP    | National Research Council of the Philippines                        |

## Table 2. Summary of Science and Technology Policies by Strategy

- 1.1 Generation and active Diffusion of Employment oriented and High Value
  - added Technologies.

1.

- 1.2 Emphasis on Developmental R&D towards Commercialization.
- 1.3 Proper Selection and Acquisition of Essential and Appropriate Technologies.
- 1.4 Adaptation, Absorption and Mastery of Imported Technologies.
- 1.5 Dissemination of Appropriate.

Modernization of Production Sectors

- 1.6 Technologies Increasing Accessibility to S&T information and Services.
- 1.7 Reducing Environmental Degradation and Mitigating Adverse Impacts of Natural Hazards.
- 2. Upgrading of R&D Activities
  - 2.1 Establishing R&D Priorities.
  - 2.2 Development of Local Materials and Indigenous Technologies.
  - 2.3 Stimulation of Private Sector Participation.
  - 2.4 Reducing Environmental Degradation and Mitigating Adverse Impacts of Natural Hazards.
- **3**. Development of S&T Infrastructure
  - 3.1 Development of High Quality S&T Manpower in Growth Areas.
  - 3.2 Expansion of S&T Education and Training.
  - 3.3 Development of S&T Institutions.
  - 3.4 Development of an S&T Culture

Source: Eclar (1991)

|   |             | Policy and Program                                                             | Brief Description                                                                                                                                                             |
|---|-------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 |             | Modernization of the Production Sectors                                        |                                                                                                                                                                               |
|   | A           | Comprehensive Technology Transfer and<br>Commercialization Program (CTTC)      | The CTTC serves as a mechanism to link<br>technology generators and users. It aims<br>to hasten the process of industrialization<br>through commercialization of technologies |
|   |             |                                                                                | whose utilization is envisioned.                                                                                                                                              |
|   | В           | Support programs to the CTTC                                                   |                                                                                                                                                                               |
|   | B-1         | Production of technology packages                                              | Provision of info and economic feasibility studies                                                                                                                            |
|   | B-2         | Investors Fora                                                                 | Venues for technology generators                                                                                                                                              |
|   | В-3         | National and Regional Technology Fairs                                         | Organized to showcase new technologies for transfer                                                                                                                           |
|   | B-4         | Technology Financing Programs                                                  | Funding assistance to technology                                                                                                                                              |
|   | B-5         | Information Services                                                           | Info packages on mature technologies                                                                                                                                          |
|   | B-6         | DOST Training Centers                                                          | Conducts technology training                                                                                                                                                  |
|   | <b>B-</b> 7 | Regional and provincial S&T Centers                                            | Ensure the transfer of technologies                                                                                                                                           |
|   | B-8         | DOST Academy Technology Business<br>Entrepreneurship Development Program       | Link between DOST and the Academe for technology commercialization                                                                                                            |
|   | C           | Technology Business Incubators                                                 | Assists new technology firms through<br>technical, financial and marketing<br>assistance                                                                                      |
|   | D           | Science and Technology Parks                                                   | Facilitates the transfer of university-<br>industry inter-action in advanced<br>technology                                                                                    |
|   | Е           | Global Search for Technology                                                   | Search and acquisition of commerciable technologies abroad                                                                                                                    |
|   | F           | Program of Assistance to investors                                             | Assistance to patenting, financing and marketing                                                                                                                              |
| 2 |             | Upgrading of R&D Activities                                                    |                                                                                                                                                                               |
|   | А           | R&D Priority Plan (Export winners, basic domestic needs, and coconut industry) | Indication of preferred areas of R&D                                                                                                                                          |
|   | В           | Grant-in Aids program                                                          | Support of R&D activities                                                                                                                                                     |
|   | С           | Contract Research Program                                                      | Sponsored research with other agencies                                                                                                                                        |
|   | D           | R&D Incentive Programs                                                         | Incentives for the conduct of R&D activities                                                                                                                                  |
| 3 |             | Development of R&D Infrastructure                                              |                                                                                                                                                                               |
|   | A           | Manpower Development Program in Science<br>and Engineering                     | Graduate and undergrad scholarship<br>program in priority areas                                                                                                               |
|   | В           | Grade school and secondary school level                                        | Dev't of the grade school network serving<br>as feeder schools for HS and technical<br>schools                                                                                |
|   | С           | Vocational and Technical Education                                             | Dev't of vocational and technical schools<br>in the industrializing areas                                                                                                     |
|   | D           | Scientific Career System (SCS)                                                 | Career path for scientists that will develop their technical expertise                                                                                                        |
|   | E           | Utilization of Filipino Exports                                                | Employment of Filipino expatriates                                                                                                                                            |
|   | F           | Recognition of S&T Efforts                                                     | Conferment of the rank and title of National Scientists                                                                                                                       |
|   | G           | Balik Scientists Program                                                       | Taking advantage of trained Filipino<br>scientists and engineers thru information<br>exchange                                                                                 |
|   | Н           | Development of S&T Culture                                                     | Promotion of science consciousness and innovativeness                                                                                                                         |
|   | Ι           | Organizing and Strengthening of S&T Network<br>and Institutions                | Strengthening of S&T sectoral network<br>and establishment of new S&T institutions<br>and mechanisms                                                                          |

Table 3. Summary of S&T Policy Programs in the Philippines

|           | GDP    | Employment | Export/ | Import/ |
|-----------|--------|------------|---------|---------|
|           | Growth | Growth     | GDP     | GDP     |
| 1967-72   | 4.8%   | 3.3%       | 13.6%   | 17.4%   |
| 1973-82   | 5.5%   | 3.1%       | 16.0%   | 22.8%   |
| 1983-85   | -4.1%  | 3.2%       | 15.4%   | 20.4%   |
| 1986-90   | 4.5%   | 2.1%       | 17.4%   | 23.0%   |
| 1991-93   | -0.1%  | 3.7%       | 19.5%   | 30.2%   |
| 1994-97   | 4.9%   | 3.3%       | 24.5%   | 39.3%   |
| 1998-2000 | 3.5%   | -0.3%      | 45.8%   | 43.2%   |

# **Table 4: The Philippine Economy**

Sources: National Income Accounts, Philippine Statistical Yearbook, and Selected Philippine Economic Indicators

# **Table 5: Production Structure**

|           | Gross value added shares |          |               |          |
|-----------|--------------------------|----------|---------------|----------|
|           | Agriculture              | Industry | Manufacturing | Services |
| 1967-72   | 29.3%                    | 31.7%    | 24.7%         | 39.0%    |
| 1973-82   | 27.9%                    | 36.8%    | 25.6%         | 35.3%    |
| 1983-85   | 23.9%                    | 37.4%    | 24.7%         | 38.7%    |
| 1986-90   | 23.1%                    | 34.7%    | 25.0%         | 42.2%    |
| 1991-93   | 21.5%                    | 33.2%    | 24.4%         | 45.4%    |
| 1994-97   | 20.7%                    | 32.2%    | 22.8%         | 47.0%    |
| 1998-2000 | 17.2%                    | 30.9%    | 21.9%         | 52.0%    |

Sources: National Income Accounts, Philippine Statistical Yearbook

|      |            | Business    | Business    | 3-yr Mov Ave |
|------|------------|-------------|-------------|--------------|
| Year | Unadjusted | Fluctuation | Fluctuation | Adjusted     |
|      | TFP        | Adjustment  | Adjusted    | TFP          |
|      |            | Factor      | ŤFP         |              |
| 1967 | -5.11      | -3.8206     | -1.293      |              |
| 1968 | 1.13       | 1.1588      | -0.032      | 0.280        |
| 1969 | 6.79       | 4.6197      | 2.166       | 0.670        |
| 1970 | 0.67       | 0.7964      | -0.125      | 0.033        |
| 1971 | -4.71      | -2.7647     | -1.943      | -0.976       |
| 1972 | -0.15      | 0.7088      | -0.859      | -0.884       |
| 1973 | 5.53       | 5.3769      | 0.151       | -0.217       |
| 1974 | -1.95      | -2.0102     | 0.056       | -0.021       |
| 1975 | -4.32      | -4.0452     | -0.272      | 0.535        |
| 1976 | 7.07       | 5.2500      | 1.822       | 0.859        |
| 1977 | 1.01       | -0.0134     | 1.027       | 0.331        |
| 1978 | -7.45      | -5.5928     | -1.855      | -0.170       |
| 1979 | 0.98       | 0.6572      | 0.318       | -0.485       |
| 1980 | 3.72       | 3.6401      | 0.083       | -0.146       |
| 1981 | -1.69      | -0.8533     | -0.840      | -0.373       |
| 1982 | -0.76      | -0.3997     | -0.360      | -0.701       |
| 1983 | -4.20      | -3.3004     | -0.902      | -0.875       |
| 1984 | -8.77      | -7.4009     | -1.364      | -5.901       |
| 1985 | -8.36      | 7.0756      | -15.438     | -6.014       |
| 1986 | 1.78       | 3.0208      | -1.239      | -5.938       |
| 1987 | 1.23       | 2.3696      | -1.136      | 3.410        |
| 1988 | 6.28       | -6.3261     | 12.606      | 3.444        |
| 1989 | 1.51       | 2.6487      | -1.138      | 3.517        |
| 1990 | 0.69       | 1.6101      | -0.916      | -1.104       |
| 1991 | -4.92      | -3.6642     | -1.258      | -3.103       |
| 1992 | -3.50      | 3.6341      | -7.134      | -3.160       |
| 1993 | -1.22      | -0.1330     | -1.089      | -1.147       |
| 1994 | 0.56       | -4.2166     | 4.781       | 0.869        |
| 1995 | 1.35       | 2.4392      | -1.086      | 0.827        |
| 1996 | 1.60       | 2.8100      | -1.214      | -1.085       |
| 1997 | 1.06       | 2.0206      | -0.956      | -1.041       |
| 1998 | -1.36      | -0.4103     | -0.954      | -0.954       |
| 1999 | 2.50       | 3.4493      | -0.951      | 2.818        |
| 2000 | 4.74       | -5.6227     | 10.360      |              |

**Table 6 : Estimated Philippine Total Factor Productivity** 







#### 

|           |            | TFP               | Difference:   | Ratio:       |
|-----------|------------|-------------------|---------------|--------------|
|           | Unadjusted | Adjusted          | (Unadjusted - | (Unadjusted/ |
| Period    | TFP        | for Labor Quality | Adjusted)     | Adjusted)    |
| 1967-72   | (0.23)     | (2.34)            | 2.11          | 0.10         |
| 1973-82   | 0.21       | (0.89)            | 1.10          | (0.24)       |
| 1983-85   | (7.11)     | (7.57)            | 0.46          | 0.94         |
| 1986-90   | 2.30       | 1.66              | 0.64          | 1.39         |
| 1991-93   | (3.21)     | (3.38)            | 0.16          | 0.95         |
| 1994-97   | 1.14       | 0.71              | 0.44          | 1.61         |
| 1998-2000 | 1.96       | 1.44              | 0.52          | 1.36         |

Table 7: Effects of Labor Quality on TFP



|           |            | TFP Adjusted   | Difference:   | Ratio:       |
|-----------|------------|----------------|---------------|--------------|
|           | Unadjusted | for Sectoral   | (Unadjusted - | (Unadjusted/ |
| Period    | TFP        | Labor Movement | Adjusted)     | Adjusted)    |
| 1967-72   | (0.23)     | (0.48)         | 0.25          | 0.48         |
| 1973-82   | 0.21       | 0.16           | 0.05          | 1.31         |
| 1983-85   | (7.11)     | (7.51)         | 0.40          | 0.95         |
| 1986-90   | 2.30       | 1.85           | 0.45          | 1.25         |
| 1991-93   | (3.21)     | (3.04)         | (0.18)        | 1.06         |
| 1994-97   | 1.14       | 0.57           | 0.58          | 2.02         |
| 1998-2000 | 1.96       | 1.40           | 0.55          | 1.40         |

Table 8: Effects of Sectoral Labor Movement on TFP



46

| Regression No.                 | Regression No. 1 |                |             |             | Regression No. 2 | 2           |
|--------------------------------|------------------|----------------|-------------|-------------|------------------|-------------|
| Method                         |                  | OLS            |             |             | OLS              |             |
| Sample                         |                  | 1975-1999      |             |             | 1976-1999        |             |
|                                | Coefficient      | Standard Error | t-Statistic | Coefficient | Standard Error   | t-Statistic |
| Variables:                     |                  |                |             |             |                  |             |
| Constant                       | -89.4            | 17.1           | -5.2        | -86.3       | 16.6             | -5.2        |
| Exports                        |                  |                |             | 26.2        | 6.9              | 3.8         |
| Imports(-1)                    |                  |                |             | 8.7         | 8.1              | 1.1         |
| Exports+Imports                | 18.7             | 4.9            | 3.8         |             |                  |             |
| Foreign Direct Investment (-1) | 304.8            | 54.3           | 5.6         | 325.0       | 53.8             | 6.0         |
| Research and Development(-2)   | 1943.2           | 766.4          | 2.5         | 2193.8      | 754.5            | 2.9         |
| Price Changes                  | -6.7             | 3.1            | -2.2        | -7.8        | 3.0              | -2.6        |
| Share of Manufacturing         | 300.0            | 61.0           | 4.9         | 289.9       | 58.9             | 4.9         |
| D83                            | 9.0              | 2.2            | 4.1         | 8.9         | 2.1              | 4.3         |
| D87                            | 7.1              | 1.4            | 5.0         | 6.8         | 1.4              | 5.0         |
| D91                            | -4.7             | 1.4            | -3.3        | -4.5        | 1.4              | -3.2        |
| R-squared                      | 0.849            |                |             | 0.870       |                  |             |
| Adjusted R-squared             | 0.769            |                |             | 0.787       |                  |             |
| DW                             | 2.122            |                |             | 2.226       |                  |             |
| F-Statistics                   | 10.576           |                |             | 10.447      |                  |             |

## **Table 9: Determinants of Total Factor Productivity**

### Dependent Variable: 3-year moving average of TFP

#### **Definition of variables**

Exports Imports(-1)

ExportsImports

Price Changes

: exports/GDP

: one year lag of imports/GDP

: (exports+imports)/GDP

: one year lag of foreign direct investment/GDP

: manufacturing GVA/GDP

: two year lag of Research and Development Expenditure/GDP

: annual change in GDP deflator

D83, D87, D91

Share of Manufacturing

Foreign Direct Investment (-1)

Research and Development(-2)

: dummy variables

| No   | Country            | Don comital    | Caiontists/   | Cross synan diture on | Voor         |
|------|--------------------|----------------|---------------|-----------------------|--------------|
| INO. | Country            | CNID (USC)     | Scientists/   | Gross expenditure on  | rear         |
|      |                    | GNP (US\$)     | engineers per | K&D/GNP (%)           |              |
|      |                    |                | million       |                       |              |
|      |                    |                | population    |                       |              |
| 1    | Switzerland        | 37,930         | 2,409         | 1.8                   | 1989         |
| 2    | Japan              | 34,630         | 5,677         | 3                     | 1992         |
| 3    | Denmark            | 27,970         | 2,341         | 1.8                   | 1991         |
| 4    | Norway             | 26,390         | 3,159         | 1.9                   | 1991         |
| 5    | United States      | 25,880         | 3,873         | 2.9                   | 1989         |
| 6    | Germany (Federal)  | 25,580         | 2,882         | 2.8                   | 1989         |
| 7    | Iceland            | 24,630         | 3,067         | 1.1                   | 1991         |
| 8    | Austria            | 24,630         | 1,146         | 1.4                   | 1989         |
| 9    | Sweden             | 23,530         | 3,081         | 2.9                   | 1991         |
| 10   | France             | 23,420         | 2,267         | 2.4                   | 1991         |
| 11   | Belgium            | 22,870         | 1,856         | 1.7                   | 1990         |
| 12   | Singapore          | 22,500         | 1,284         | 0.9                   | 1984         |
| 13   | Netherlands        | 22,010         | 2,656         | 1.9                   | 1991         |
| 14   | Canada             | 19,510         | 2.322         | 1.6                   | 1991         |
| 15   | Kuwait             | 19.420         | 924           | 0.9                   | 1984         |
| 16   | Italy              | 19,300         | 1.366         | 1.3                   | 1990         |
| 17   | Finland            | 18 850         | 2 282         | 21                    | 1991         |
| 18   | United Kingdom     | 18 350         | 2 334         | 21                    | 1991         |
| 10   | Australia          | 18,000         | 2,001         | 1.1                   | 1990         |
| 20   | Israel             | 14,530         | 4 836         | 21                    | 1984         |
| 20   | Brunei Darusalam   | 14,240         | 91            | 0.1                   | 1984         |
| 21   | Iroland            | 13 530         | 1 801         | 0.9                   | 1088         |
| 22   | Spain              | 13,000         | 956           | 0.9                   | 1990         |
| 23   | New Zealand        | 12,440         | 1 555         | 0.9                   | 1990         |
| 24   | Ostor              | 13,350         | 1,000<br>E02  | 0.9                   | 1990         |
| 25   | Caramas            | 12,820         | 393<br>205    | 0                     | 1000         |
| 20   | Portugal           | 0.220          | 203           | 0.2                   | 1992         |
| 27   | Varaa Daruhlia     | 9,320          | 1 000         | 0.0                   | 1990         |
| 20   | A mentine          | 0,200<br>8,110 | 1,990         | 2.1                   | 1992         |
| 29   | Argentina          | 8,110<br>7,700 | 530           | 0.3                   | 1900         |
| 30   | Classic            | 7,700          | 2 009         | 0.5                   | 1900         |
| 31   |                    | 7,040          | 2,990         | 1.5                   | 1992         |
| 32   | Seychenes          | 6,660          | 201           | 1.5                   | 1965         |
| 33   | Oruguay            | 4,660          | 000           | -                     | 1004         |
| 34   | Mexico<br>Caban    | 4,180          | 220           | 0.2                   | 1984         |
| 35   | Gabon              | 3,880          | 189           | 0                     | 1987         |
| 36   | nungary            | 3,840          | 1,200         | 1.1                   | 1992         |
| 37   | Chile              | 3,740          | 240<br>364    | 0.8                   | 1984<br>1988 |
| 39   | Malaysia           | 3,480          | 326           | 0.1                   | 1992         |
|      |                    |                |               |                       |              |
| 40   | Czechoslovakia     | 3,200          | 3,247         | 1.8                   |              |
|      | a. Former          |                | 4,190         | 3.3                   | 1989         |
|      | b. Czech Republic  |                | 3,248         | 1.8                   | 1992         |
| 41   | Mauritius          | 3,150          | 361           | 0.4                   | 1992         |
| 42   | South Africa       | 3,040          | 319           | 1                     | 1991         |
| 43   | Brazil             | 2,970          | 391           | 0.4                   | 1985         |
| 44   | Venezuela          | 2,760          | 208           | 0.5                   | 1992         |
| 45   | Russian Federation | 2,650          | 5,930         | 1.8                   | 1991         |
| 46   | Croatia            | 2,560          | 1,977         | -                     | 1992         |
| 47   | Turkey             | 2,500          | 209           | 0.8                   | 1991         |
| 48   | Thailand           | 2,410          | 173           | 0.2                   | 1991         |
|      |                    |                |               |                       |              |

## Table 10: PCGNP, SE/MP, and GERD/GNP (in 91 countries of the world)

| No. | Country              | Per Capital | Scientists/ | Gross expenditure on | Year |
|-----|----------------------|-------------|-------------|----------------------|------|
|     |                      | GNF (055)   | million     | K&D/GINF (70)        |      |
|     |                      |             | nonvision   |                      |      |
| 49  | Poland               | 2 410       | 1.083       | 0.9                  | 1992 |
| 50  | Costa Rica           | 2,410       | 539         | 0.3                  | 1992 |
| 51  | Latvia               | 2,400       | 3 387       | 0.3                  | 1992 |
| 52  | Fiii                 | 2,320       | 5,507       | 0.3                  | 1986 |
| 53  | Belarus              | 2,250       | 3 300       | 0.9                  | 1992 |
| 54  | Peru                 | 2,100       | 273         | 0.2                  | 1981 |
| 55  | Ukraine              | 1.910       | 6.761       | -                    | 1989 |
| 56  | Tunisia              | 1,790       | 388         | 0.3                  | 1992 |
| 57  | Colombia             | 1.670       | 39          | 0.1                  | 1982 |
| 58  | Paraguay             | 1,580       | 248         | 0.03                 |      |
| 59  | Iamaica              | 1,540       | 8           | 0                    | 1986 |
| 60  | Iordan               | 1.440       | 106         | 0.3                  | 1989 |
| 61  | El Salvador          | 1,360       | 19          | 0                    | 1992 |
| 62  | Lithuania            | 1,350       | 1,278       | -                    | 1992 |
| 63  | Ecuador              | 1,280       | 169         | 0.1                  | 1990 |
| 64  | Romania              | 1,270       | 1,220       | 0.7                  | 1992 |
| 65  | Bulgaria             | 1,250       | 4,240       | 0.7                  | 1992 |
| 66  | Guatemala            | 1,200       | 99          | 0.2                  | 1988 |
| 67  | Uzbekistan           | 960         | 1,760       | -                    | 1992 |
| 68  | Philippines*         | 950         | 152         | 0.2                  | 1992 |
| 69  | Indonesia            | 880         | 181         | 0.2                  | 1988 |
| 70  | Macedonia(FYR)       | 820         | 1,258       | -                    | 1991 |
| 71  | Bolivia              | 770         | 250         | 1.7                  | 1991 |
| 72  | Egypt                | 720         | 458         | 1                    | 1991 |
| 73  | Sri Lanka            | 640         | 173         | 0.2                  | 1991 |
| 74  | Congo                | 620         | 461         | 0                    | 1984 |
| 75  | Senegal              | 600         | 342         | -                    | 1981 |
| 76  | Honduras             | 600         | 138         | -                    |      |
| 77  | China                | 530         | 1,128       | 0.5                  | 1991 |
| 78  | Guyana               | 530         | 115         | 0.2                  | 1982 |
| 79  | Guinea               | 520         | 264         | -                    | 1984 |
| 80  | Pakistan             | 430         | 54          | 0.9                  | 1990 |
| 81  | Central African Rep. | 370         | 55          | 0.2                  | 1990 |
| 82  | Benin                | 370         | 177         | 0.7                  | 1989 |
| 83  | Nicaragua            | 340         | 214         | -                    | 1987 |
| 84  | India                | 320         | 151         | 0.8                  | 1990 |
| 85  | Nigeria              | 280         | 15          | 0.1                  | 1987 |
| 86  | Guinea-Bissau        | 240         | 263         | -                    |      |
| 87  | Vietnam              | 200         | 334         | 0.4                  | 1985 |
| 88  | Nepal                | 200         | 22          | -                    | 1980 |
| 89  | Madagascar           | 200         | 22          | 0.5                  | 1988 |
| 90  | Burundi              | 160         | 32          | 0.3                  | 1989 |
| 91  | Rwanda               | 80          | 12          | 0.5                  | 1985 |

# Table 10: PCGNP, SE/MP, and GERD/GNP (in 91 countries of the world) (cont'd)

\*1992 Figures computed by DOST. Basic source of data: UNESCO, Statistical Yearbook, 1995; UNESCO, World Science Report, 1996; World Bank, World Development Report, 1996

| Country              | RIR  | Reference |
|----------------------|------|-----------|
|                      | (%)  | Year      |
| Philippines          | 0.33 | 1992      |
| Thailand             | 1.40 | 1992      |
| Indonesia            | 0.27 | 1990      |
| Malaysia             | 1.06 | 1992      |
| China                | 0.43 | 1993      |
| Taiwan               | 4.65 | 1992      |
| Australia            | 3.54 | 1992      |
| India                | 0.52 | 1990      |
| Pakistan             | 0.47 | 1992      |
| Bangladesh           | 0.25 | 1992      |
| Sri Lanka            | 0.36 | 1993      |
| South Korea          | 0.56 | 1993      |
| Japan                | 3.36 | 1992      |
| Developing countries | 1.00 |           |
| Developed countries  | 2-3  |           |

Table 11: Agricultural Research Intensity Ratios (RIR) of Selected Countries

Source: David, 1998

|                                   | 1987-94 | 1994 |
|-----------------------------------|---------|------|
| Agrarian Reform                   | 26      | 24   |
| Natural Resources and Environment | 23      | 23   |
| Agriculture                       | 51      | 53   |
| Irrigation (NIA)                  | 12      | 8    |
| Price stabilization (NFA)         | 9       | 13   |
| Research                          | 4       | 5    |
| Extension                         | 7       | 9    |
| Coconut development               | 2       | 2    |
| Livestock                         | 1       | 2    |
| Other                             | 17      | 15   |
|                                   |         |      |

# Table 12: Distribution of public expenditures for agricultures andNatural resources by policy instruments, 1987-1994 (%)

Source: David (1998)

|                                                               | 1992    | 1993    | 1994    | 1995    | 1996    |
|---------------------------------------------------------------|---------|---------|---------|---------|---------|
| 1. Research expenditures ( <del>P</del> million) <sup>a</sup> |         |         |         |         |         |
|                                                               |         | 0.50    | 1.065   | 1.000   | 1.554   |
| a. w/out SEAFDEC                                              | 800     | 853     | 1,065   | 1,290   | 1,554   |
|                                                               | (1,027) | (1,121) | (1,400) | (1,638) | (1,919) |
| b. with SEAFDEC                                               | 881     | 958     | 1,184   | 1,434   | 1,707   |
|                                                               | (1,228) | (1,248) | (1,540) | (1,815) | (2,114) |
| 2. Gross value added (P million)                              | 281,748 | 303,415 | 355,612 | 392,954 | 449,080 |
| 3. Research Intensity Ratio (%)                               |         |         |         |         |         |
| 1 a/2                                                         | 0.28    | 0.28    | 0.3     | 0.33    | 0.35    |
|                                                               | (0.36)  | (0.37)  | (0.39)  | (0.42)  | (0.43)  |
|                                                               |         |         |         |         |         |
| 1b/2                                                          | 0.31    | 0.32    | 0.33    | 0.36    | 0.38    |
|                                                               | (0.40)  | (0.41)  | (0.43)  | (0.46)  | (0.47)  |
|                                                               |         |         |         |         |         |

Table 13: Public expenditures for research and development in agriculture and natural resources, gross valueadded in agriculture including fishery and forestry, and research intensity ratios (RIR), 1992-1996

Note:

Refers to direct budgetary outlay. Figures in parenthesis refer to total research expenditure, including external grants from local and foreign sources

Source: Israel (1998)

|                     | 1992   | 1993   | 1994     | 1995     | 1996     | 1997   |
|---------------------|--------|--------|----------|----------|----------|--------|
| DA                  | 459.74 | 464.27 | 651.59   | 758.84   | 913.9    | na     |
|                     | (501)  | (524)  | (696)    | (842)    | (1030)   | (na)   |
| DENR                | 68.98  | 78.6   | 109.69   | 120.8    | 149.33   | 213.97 |
|                     | (85)   | (93)   | (123)    | (133)    | (161)    | (218)  |
| ERDB                | 23.03  | 21.04  | 15.65    | 15.58    | 21.78    | 64.16  |
|                     | (32)   | (30)   | (24)     | (23)     | (32)     | (66)   |
| ERDS                | 43.35  | 55.08  | 92.12    | 99.65    | 122.21   | 149.81 |
|                     | (50)   | (60)   | (97)     | (104)    | (123)    | (152)  |
| PAWB                | 2.6    | 2.48   | 1.92     | 5.57     | 5.34     | 10.69  |
|                     | (3)    | (2)    | (2)      | (6)      | (5)      | (11)   |
| DOST                | 81.25  | 100.52 | 103.01   | 153.08   | 180.13   | 228.42 |
|                     | (150)  | (160)  | (188)    | (217)    | (277)    | (378)  |
| PCARRD              | 42.82  | 56.24  | 56.88    | 88.66    | 105      | 127.1  |
|                     | (62)   | (84)   | (99)     | (123)    | (168)    | (180)  |
| PCAMRD              | 9.6    | 11.01  | 10.96    | 9.09     | 18.61    | 19.4   |
|                     | (50)   | (26)   | (40)     | (32)     | (46)     | (89)   |
| FPRDI               | 28.83  | 33.27  | 35.16    | 55.33    | 56.53    | 81.93  |
|                     | (38)   | (50)   | (49)     | (62)     | (62)     | (110)  |
| SCUs                | 189.57 | 209.42 | 200.88   | 257.72   | 309.68   | 331.71 |
|                     | (292)  | (344)  | (393)    | (446)    | (452)    | (496)  |
| UP System           | 91.71  | 94.54  | 80.61    | 113.66   | 130.52   | 128.05 |
|                     | (183)  | (203)  | (239)    | (261)    | (235)    | (237)  |
| UPLB                | 87.32  | 90.69  | 76.73    | 108.88   | 123.69   | 120.36 |
|                     | (162)  | (196)  | (219)    | (251)    | (223)    | (224)  |
| UPMSI               | 3.7    | 3.7    | 3.15     | 3.97     | 5.67     | 5.79   |
|                     | (na)   | (na)   | (na)     | (na)     | (na)     | (na)   |
| UPVISAYAS           | 0.69   | 0.15   | 0.73     | 0.82     | 1.17     | 1.9    |
|                     | (18)   | (3)    | (17)     | (7)      | (6)      | (7)    |
| Other major univ    | 81.98  | 95.88  | 95.53    | 112.57   | 142.97   | 165.84 |
|                     | (92)   | (122)  | (129)    | (153)    | (181)    | (221)  |
| Other universities  | 15.88  | 18.99  | 24.74    | 31.49    | 36.19    | 37.82  |
|                     | (na)   | (na)   | (na)     | (na)     | (na)     | (na)   |
| SEAFDEC             | 81.25  | 104.72 | 118.75   | 143.25   | 153.48   | 185.27 |
|                     | (101)  | (127)  | (140)    | (177)    | (195)    | (213)  |
| Total w/out SEAFDEC | 799.54 | 852.81 | 1,065.17 | 1,290.44 | 1,553.04 | na     |
|                     | (986)  | (1060) | (1356)   | (1555)   | (1919)   | (na)   |
| Total with SEAFDEC  | 880.79 | 957.53 | 1,183.92 | 1,433.69 | 1,706.52 | na     |
|                     | (1087) | (1188) | (1496)   | (1732)   | (2114)   | (na)   |

Table 14: Public expenditures for research and development in agriculture, natural resources, and related environmental issues (In million pesos)

Source: David (1998)

Numbers in ( ) include external grants

| INSTITUTION    | No. of      | Budget (P) | <b>Budget: Researcher Ratio</b> |
|----------------|-------------|------------|---------------------------------|
|                | Researchers |            |                                 |
| DA-BFAR        | 61          | 3,754,000  | 61,541                          |
| DMMMSU         | 13          | 1,072,903  | 82,531                          |
| UPLB           | 9           | 3,373,580  | 374,842                         |
| UPV            | 44          | 2,193,075  | 49,843                          |
| MSU-Naawan     | 25          | 1,257,125  | 50,285                          |
| ZSCMST         | 15          | 790,000    | 52,667                          |
| DA-CAR         | -           | 230,100    | -                               |
| DA-Region1     | 2           | 1,007,000  | 503,500                         |
| DA-Region 2    | 10          | 889,000    | 88,900                          |
| DA-Region 4    | -           | 4,572,000  | -                               |
| DA-Region 5    | -           | 2,180,046  | -                               |
| DA-Region 6    | -           | 785,000    | -                               |
| DA-Region 8    | -           | 415,000    | -                               |
| DA-Region 11   | -           | 902,044    | -                               |
| DA-Region 13   | -           | 310,000    | -                               |
| DA-ARMM        | -           | 87,000     | -                               |
| DENR-Region 10 | -           | 4,165,000  | -                               |
| BU             | -           | 543,000    | -                               |
| CMU            | 2           | 11,000     | 5,500                           |
| CSC            | -           | 341,000    | -                               |
| CSU            | 18          | 548,040    | 30,447                          |
| CCSPC          | -           | 1,461,033  | -                               |
| CVPC           | -           | 244,000    | -                               |
| DOSCST         | -           | 972,500    | -                               |
| ISCOF          | 19          | 2,425,000  | 127,632                         |
| MMSU           | 17          | 100,000    | 5,882                           |
| MSU-SULU       | -           | 590,488    | -                               |
| MSU-TCTO       | 21          | 1,330,000  | 63,333                          |
| NIPSC          | 3           | 5,450,248  | 1,816,749                       |
| NMP            | -           | 64,564     | -                               |
| NVSIT          | 5           | 136,000    | 27,200                          |
| PALSU          | -           | 1,110,000  | -                               |
| PIT            | -           | 308,000    | -                               |
| PSPC           | 12          | 25,000     | 2,083                           |
| PSU            | 8           | 321,000    | 40,125                          |
| TONC           | -           | 60,000     | -                               |
| UEP            | -           | 496,370    | -                               |
| UPMSI          | 25          | 3,579,400  | 143,176                         |
| Average        | 17          | 1,265,777  | 195,902                         |

| T | able | 15: | Agency | -Funde | d Fish | eries I | R&D | <b>Projects</b> | of NA | RRDS | Institutions |
|---|------|-----|--------|--------|--------|---------|-----|-----------------|-------|------|--------------|
| _ |      |     |        |        |        |         |     |                 |       |      |              |

- means no data

Source: Israel (1998)

| INSTITUTION  | No. of Projects | Budget (P) | <b>Budget: Project ratio</b> |
|--------------|-----------------|------------|------------------------------|
| DA-BFAR      | 11              | 3,754,000  | 341,273                      |
| DMMMSU       | 30              | 1,072,903  | 35,763                       |
| UPLB         | 9               | 3,373,580  | 374,842                      |
| UPV          | 8               | 2,193,075  | 274,134                      |
| MSU-Naawan   | 7               | 1,257,125  | 179,589                      |
| ZSCMST       | 7               | 790,000    | 112,857                      |
| DA-CAR       | 4               | 230,100    | 57,525                       |
| DA-Region1   | 10              | 1,007,000  | 100,700                      |
| DA-Region 2  | 8               | 889,000    | 111,125                      |
| DA-Region 3  | 41              | 4,572,000  | 111,512                      |
| DA-Region 4  | 12              | 2,180,046  | 181,671                      |
| DA-Region 5  | 12              | 785,000    | 65,417                       |
| DA-Region 6  | 8               | 415,000    | 51,875                       |
| DA-Region 8  | 8               | 902,044    | 112,756                      |
| DA-Region 11 | 10              | 310,000    | 31,000                       |
| DA-Region 13 | 3               | 87,000     | 29,000                       |
| DA-ARMM      | 1               | 4,165,000  | 4,165,000                    |
| BU           | 3               | 543,000    | 181,000                      |
| CMU          | 1               | 11,000     | 11,000                       |
| CSC          | 4               | 341,000    | 85,250                       |
| CSU          | 6               | 548,040    | 91,340                       |
| CCSPC        | 4               | 1,461,033  | 365,258                      |
| CVPC         | 2               | 244,000    | 122,000                      |
| DOSCST       | 3               | 972,500    | 324,167                      |
| ISCOF        | 9               | 2,425,000  | 269,444                      |
| MMSU         | 12              | 100,000    | 8,333                        |
| MSU-SULU     | 1               | 590,488    | 590,488                      |
| MSU-TCTO     | 8               | 1,330,000  | 166,250                      |
| NIPSC        | 13              | 5,450,248  | 419,250                      |
| NMP          | 3               | 64,564     | 21,521                       |
| NVSIT        | 2               | 136,000    | 68,000                       |
| PALSU        | 4               | 1,110,000  | 277,500                      |
| PIT          | 3               | 308,000    | 102,667                      |
| PSPC         | 1               | 25,000     | 25,000                       |
| PSU          | 6               | 321,000    | 53,500                       |
| TONC         | 1               | 60,000     | 60,000                       |
| UEP          | 3               | 496,370    | 165,457                      |
| UPMSI        | 31              | 3,579,400  | 115,465                      |
| Total        | 309             | 48,099,516 | 155,662                      |

Table 16: Agency-Funded Fisheries R&D Projects of NARRDS, 1996

Source: Israel, 1998

| Sector                   | Foreign | %     | Government | %     | Private | %    | Grand  |
|--------------------------|---------|-------|------------|-------|---------|------|--------|
|                          |         |       |            |       | Sector  |      | Total  |
| Marine Fisheries         | 218.45  | 73.48 | 75.78      | 25.49 | 3.08    | 1.04 | 297.31 |
| Inland Aquatic Resources | 60.73   | 37.96 | 98.08      | 61.31 | 1.17    | 0.73 | 159.98 |
| Socioeconomics           | 4.67    | 18.65 | 20.35      | 81.35 | -       | -    | 25.02  |
| Total                    | 283.85  | 58.85 | 194.21     | 40.37 | 4.25    | 0.88 | 482.31 |

| Table 17: R&D ex | penditures for fis   | heries by sector | and source of funds. | 1988-1994 ( | In million <b>i</b> | oesos) |
|------------------|----------------------|------------------|----------------------|-------------|---------------------|--------|
|                  | penalital co loi lio | neries by sector | and source or runus, | 1700 1771   | In minion p         | JUBUBJ |

Source: Israel (1998)

| INSTITUTION               | Funds     | 1992    | 1993   | 1994    | 1995    | 1996    | Average | %     |
|---------------------------|-----------|---------|--------|---------|---------|---------|---------|-------|
| DA-BFAR                   | Local     | 0       | 0      | 200     | 144     | 1,087   | 286     | 100   |
|                           | Foreign   | 0       | 0      | 0       | 0       | 0       | 0       | 0     |
|                           | Sub-total | 0       | 0      | 200     | 144     | 1,087   | 286     | 100   |
| DOST-PCAMRD               | Local     | 12,310  | 8,140  | 18,780  | 19,060  | 23,200  | 16,298  | 60.25 |
|                           | Foreign   | 28,060  | 6,760  | 10,660  | 3,670   | 4,610   | 10,752  | 39.75 |
|                           | Sub-total | 40,370  | 14,900 | 29,440  | 22,730  | 27,810  | 27,050  | 100   |
| UPV                       | Local     | 15,553  | 2,409  | 13,531  | 2,804   | 3,472   | 7,554   | 64.86 |
|                           | Foreign   | 0       | 0      | 17,356  | 2,873   | 237     | 4,093   | 35.14 |
|                           | Sub-total | 15,553  | 2,409  | 30,887  | 5,677   | 3,709   | 11,647  | 100   |
| Total without SEAFDEC AQD | Local     | 27,863  | 10,549 | 32,511  | 22,008  | 27,759  | 24,138  | 61.92 |
|                           | Foreign   | 28,060  | 6,760  | 28,016  | 6,543   | 4,847   | 14,845  | 38.08 |
|                           | Total     | 55,923  | 17,309 | 60,527  | 28,551  | 32,606  | 38,983  | 100   |
| SEAFDEC AQD               | Local     | 0       | 0      | 0       | 0       | 0       | 0       | 0     |
|                           | Foreign   | 3,150   | 3,550  | 3,770   | 8,490   | 8,040   | 5,400   | 100   |
|                           | Sub-total | 130,009 | 54,269 | 143,484 | 79,357  | 93,639  | 5,400   | 100   |
| Total with SEAFDEC AQD    | Local     | 27,863  | 10,549 | 32,511  | 22,008  | 27,759  | 24,138  | 54.39 |
|                           | Foreign   | 31,210  | 10,310 | 31,786  | 15,033  | 12,887  | 20,245  | 45.61 |
|                           | Total     | 185,932 | 71,578 | 204,011 | 107,908 | 126,245 | 44,383  | 100   |

## Table 18: R&D expenditures for fisheries of selected NARRDS institutions, by source of external grants, 1992-1996 (in thousand pesos)

Source: PIDS survey, 1998.

| AGENCY                           | PhD  | MS    | BS    | ASSOC | Total | %     |
|----------------------------------|------|-------|-------|-------|-------|-------|
| Zonal Area for Northern Luzon    |      |       |       |       |       |       |
| (Region I, II. III. And CAR)     | 11   | 57    | 25    | -     | 93    | 12.33 |
| Zonal Area for Southern Luzon    |      |       |       |       |       |       |
| (Region NCR, IV and V)           | 20   | 45    | 131   | 12    | 208   | 27.59 |
| Zonal Area for Visayas           |      |       |       |       |       |       |
| (Regions VI, VII and VIII)       | 31   | 117   | 166   | 6     | 320   | 42.44 |
| Zonal Area for Northern Mindanao |      |       |       |       |       |       |
| (Region X,XI,and Caraga)         | 2    | 19    | 53    | -     | 74    | 9.81  |
| Zonal Area for Southern Mindanao |      |       |       |       |       |       |
| (Regions IX and XII)             | 3    | 21    | 35    | -     | 59    | 7.82  |
| ΤΟΤΑΙ                            | 67   | 259   | 410   | 18    | 754   | 100   |
|                                  | 07   | 209   | 110   | 10    | /51   | 100   |
| %                                | 8.89 | 34.35 | 54.38 | 2.39  | 100   |       |

# Table 19: Distribution of Manpower for Fishery R&D

Source Israel (1998)

| COMMODITY            | Source o   | e of Funds Total |            |  |  |
|----------------------|------------|------------------|------------|--|--|
| Export Winners       | Local (P)  | Foreign (P)      | Budget     |  |  |
| 1                    |            |                  |            |  |  |
| Seaweed              | 7,236,997  | 0                | 7,236,997  |  |  |
| Crab                 | 2,613,727  | 842,677          | 3,456,404  |  |  |
| Tuna                 | 225,000    | 0                | 225,000    |  |  |
| Shrimp               | 1,605,739  | 0                | 1,605,739  |  |  |
| Basic Domestic Needs |            |                  |            |  |  |
| Tilapia              | 2,664,975  | 0                | 2,664,975  |  |  |
| Milkfish             | 80,903     | 0                | 80,903     |  |  |
| Small Pelagics       | 2,257,428  | 0                | 2,257,428  |  |  |
| Environment          | 29,000,173 | 2,262,513        | 31,262,686 |  |  |
| Other Proirity Areas | 14,837,104 | 1,500,000        | 16,337,104 |  |  |
| Total                | 60,522,046 | 4,605,190        | 65,127,236 |  |  |

# Table 20: Distribution of the NARRDS R&D Program Budget

Source: Israel (1998)

| INSTITUTION                 | PhD | MS | BS | NI | Total |
|-----------------------------|-----|----|----|----|-------|
|                             | 2   | 21 | 12 | 1  |       |
| DA-BFAK                     | 2   | 21 | 42 | I  | 66    |
| DOST-PCAMRD                 | 4   | 11 | 10 | 0  | 25    |
| DMMMSU                      | 1   | 6  | 15 | 0  | 22    |
| UPLB                        | 1   | 1  | 0  | 0  | 2     |
| UPV                         | 0   | 12 | 13 | 1  | 26    |
| MSU-Naawan                  | 4   | 19 | 13 | 0  | 36    |
| MSU-Marawi                  | 1   | 15 | 10 | 1  | 27    |
| CLSU                        | 1   | 7  | 2  | 0  | 10    |
| UPMSI                       | 3   | 2  | 20 | 0  | 25    |
| BU                          | 4   | 9  | 2  | 0  | 15    |
| MMSU                        | 1   | 2  | 4  | 0  | 7     |
| PSU                         | 0   | 3  | 1  | 0  | 4     |
| Average without SEAFDEC AQD | 2   | 10 | 13 | 0  | 25    |
| SEAFDEC                     | 21  | 43 | 1  | 0  | 65    |
| Average with SEAFDEC AQD    | 1   | 7  | 7  | 0  | 15    |

# Table 21: Manpower for Fisheries R&D of selected NARRDS institutions, 1998

Note: NI means not indicated

Source: PIDS Survey, 1998.

| INSTITUTION | PhD | MS  | BS  | Total | Graduate:Undergraduate |
|-------------|-----|-----|-----|-------|------------------------|
| NARRDS      |     |     |     |       |                        |
| UPLB        | 4   | 3   | 2   | 9     | 3.5                    |
| DMMMSU      | 1   | 9   | 3   | 13    | 3.33                   |
| UPV         | 15  | 13  | 16  | 44    | 1.75                   |
| MSU-NAAWAN  | 2   | 14  | 9   | 25    | 1.78                   |
| CLSU        | 1   | 10  | 0   | 11    | 0                      |
| UPMSI       | 15  | 6   | 4   | 25    | 5.25                   |
| ZSCMST      | 3   | 7   | 5   | 15    | 2                      |
| Average     | 5   | 9   | 6   | 18    | 2.52                   |
| NARRDN      |     |     |     |       |                        |
| UPLB        | 53  | 206 | 225 | 484   | 1.15                   |
| USM         | 37  | 72  | 8   | 117   | 13.63                  |
| ViSCA       | 39  | 69  | 24  | 132   | 4.5                    |
| BSU         | 15  | 36  | 36  | 87    | 1.42                   |
| CMU         | 43  | 135 | 139 | 317   | 1.28                   |
| ISU         | 17  | 61  | 13  | 91    | 6                      |
| CSSAC       | 19  | 40  | 30  | 89    | 1.97                   |
| Average     | 32  | 88  | 68  | 188   | 4.28                   |

Table 22. Comparison of the number of R & D personnel in selected NARRDS and NARRDN institutions, 1995-1996

Note: NARRDN stands for National Agriculture and Natural Resources Research and Development Network, the counterpart of NARRDS. NARRDS data are for 1996 while NARRDN data are for 1995. NARRDS data are specifically for fisheries R&D manpower only. Sources: Israel (1998)

| Year    | <b>R&amp;D</b> in Fisheries | GNP (Pm)  | <b>GVA Forestry</b> | estry GVA      |         |         |         |
|---------|-----------------------------|-----------|---------------------|----------------|---------|---------|---------|
|         | (Pm)                        |           | and Fisheries (Pm)  | Fisheries (Pm) | (1)/(2) | (1)/(3) | (1)/(4) |
|         | (1)                         | (2)       | (3)                 | (4)            |         |         |         |
| 1982    | 14.52                       | 313,544   | 74,055              | 14,084         | 0.005   | 0.02    | 0.103   |
| 1983    | 14.67                       | 363,268   | 82,545              | 17,580         | 0.004   | 0.018   | 0.083   |
| 1984    | 10.14                       | 508,485   | 129,824             | 22,666         | 0.002   | 0.008   | 0.045   |
| 1985    | 15.82                       | 556,074   | 140,554             | 27,058         | 0.003   | 0.011   | 0.058   |
| 1986    | 22.02                       | 596,276   | 145,807             | 32,019         | 0.004   | 0.015   | 0.069   |
| 1987    | 18.07                       | 673,130   | 163,927             | 31,256         | 0.003   | 0.011   | 0.058   |
| 1988    | 33.4                        | 792,012   | 183,515             | 34,708         | 0.004   | 0.018   | 0.096   |
| 1989    | 37.03                       | 912,027   | 210,009             | 36,460         | 0.004   | 0.018   | 0.102   |
| 1990    | 76.33                       | 1,082,557 | 235,956             | 40,833         | 0.007   | 0.032   | 0.187   |
| 1991    | 67.74                       | 1,266,070 | 261,868             | 47,276         | 0.005   | 0.026   | 0.143   |
| 1992    | 109.98                      | 1,385,562 | 294,922             | 51,633         | 0.008   | 0.037   | 0.213   |
| 1993    | 119.49                      | 1,500,287 | 318,546             | 57,533         | 0.008   | 0.038   | 0.208   |
| 1994    | 38.34                       | 1,737,315 | 372,853             | 65,860         | 0.002   | 0.01    | 0.058   |
| 1995    | 63.89                       | 1,970,519 | 412,965             | 70,206         | 0.003   | 0.015   | 0.091   |
| Average | 45.82                       | 975,509   | 216,239             | 39,227         | 0.004   | 0.019   | 0.102   |

 Table 23: R&D Expenditure for Fisheries

Source: Israel, 1998

| Country              | (1)       | (2)  | (3)    | (4)   | (5)    | (6)   |
|----------------------|-----------|------|--------|-------|--------|-------|
| China (1991)         | 2,124,121 | 0.17 | 80,459 | 3.79  | 59,748 | 74.26 |
| Janan (1989)         | 2,683,035 | 2.13 | 85,263 | 3.18  | 54,167 | 63.53 |
| South Korea (1991)   | 1,723,886 | 3.83 | 92,599 | 5.37  | 28,479 | 30.76 |
| Australia (1991)     | 534,538   | 2.92 | 92,903 | 17.38 | 26,876 | 28.93 |
| Singapore (1983)     | 35,192    | 1.13 | 1,869  | 5.31  | 532    | 28.46 |
| Malaysia (1990)      | 121,412   | 0.58 | 4,981  | 4.1   | 1,251  | 25.12 |
| Thailand (1989)      | 765,395   | 1.24 | 21,044 | 2.75  | 4,928  | 23.42 |
| New Zealand $(1991)$ | 136,332   | 3.78 | 13,792 | 10.12 | 2,863  | 20.76 |
| Philippines (1991)   | 1,656,815 | 2.39 | 63,794 | 3.85  | 5,520  | 8.65  |

**Table 24: Tertiary Education Across Selected Pacific Rim Countries** 

## Column Definition:

- $\overline{(1)}$  Number of students at tertiary level
- (2) Number tertiary students as percent of population
- (3) Number of post-baccalaureate students
- (4) Post-baccalaureate as percent of tertiary students
- (5) Number of post-baccalaureate science and engineering students
- (6) Post-baccalaureate science and engineering students as percent of post-baccalaureate students

Basic source of data: UNESCO World Science Report, 1996
## REFERENCES

Austria, M. 1998. "Productivity Growth in the Philippines After the Industrial Reforms." PIDS Discussion Paper Series No. 98-26. Philippine Institute for Development Studies, Makati City, Philippines.

Barro, R. and X. Sala-i-Martin, 1995. Economic Growth. New York: MacGraw-Hill Co.

Choi, H.S. 1983. *Bases for Science and Technology Promotion in Developing Countries*. Asian Productivity Organization, Tokyo.

CEPR-DOH. 1998.

Cororaton, C. 2002. 'Total Factor Productivity in the Philippines." PIDS Discussion Paper Series No. 2000-01. Philippine Institute for Development Studies, Makati City, Philippines.

1999. "Study on Public and Private Expenditures on Research and Development: An Integrative Report." PIDS Discussion Paper Series No. 99-15. Philippine Institute for Development Studies, Makati City, Philippines.

and J. Cuenca. 2001. "Estimates of Total Factor Productivity in the Philippines." PIDS Discussion Paper Series No. 2001-02. Philippine Institute for Development Studies, Makati City, Philippines.

. 1999. "Rates of Return to R&D Investment." PIDS Discussion Paper Series No. 99-24. Philippine Institute for Development Studies, Makati City, Philippines.

. 1999. "Research and Development: A Review of Literature." PIDS Discussion Paper Series No. 99-25. Philippine Institute for Development Studies, Makati City, Philippines.

B. Endraga, D. Orneda and C. Chua. 1995. "Estimation of Total Factor Productivity of Philippine Manufacturing Industries: The Estimates." PIDS Discussion Paper Series No. 95-32. Philippine Institute for Development Studies, Makati City, Philippines.

\_\_\_\_\_\_, M. T. Dueñas, R. Yacat, J. Cuenca, R. Casas and M. Galvan. 2000. "Survey of Activities in Research and Development." Unpublished. Philippine Institute for Development Studies, Makati City, Philippines.

and M.T. Caparas. 1998. "Total Factor Productivity Estimates for the Philippine Economy." Philippine Institute for Development Studies, Makati City, Philippines.

and R. Abdula. 1997. "Productivity of Philippine Manufacturing." Philippine Institute for Development Studies, Makati City, Philippines. . 1999. "R&D Gaps in the Philippines." PIDS Discussion Paper No. 99-16. Philippine Institute for Development Studies, Makati City, Philippines.

- David, C., E. Ponce, S. Halos and C. Lamug. 1999. "Philippine National Agriculture and Natural Resources Research System: Resource Allocation Issues and Directions for Reforms." PIDS Discussion Paper No. 99-33. Philippine Institute for Development Studies, Makati City, Philippines.
- Department of Science and Technology. Competence, Competitiveness, Conscience: The Medium Term Plan of the Department of Science and Technology (1999-20004). DOST, Manila.

Easterly, 1981.

- Eclar, V. 1991. "Analysis of Policies and Factors Affecting Successful Commercialization of Technologies." Ph.D. Dissertation, College of Public Administration, University of the Philippines.
- Evenson, R. and L. Westphal. 1995. "Technological Change and Technology Strategy." *Handbook of Development Economics*, edited by J. Berhman and T. Srinivasan

Gerschenkron, 1962.

- Halos, S. 1999. "Agricultural Technology Acquisition, Development and Dissemination in the Private Sector." PIDS Discussion Paper No. 99-18. Philippine Institute for Development Studies, Makati City, Philippines.
- Hirono, R. 1985. "Macro-Micro Linkages for Productivity Improvement through Technological Innovations: Case of Japan." Chapter 12; *Improving Productivity Through Macro-Micro Linkage*. Asian Productivity Organization, Tokyo.
- Israel, D.C. 1999. "Research and Development in the Philippine Fisheries Sector." PIDS Discussion Paper No. 99-17. Philippine Institute for Development Studies, Makati City, Philippines.
- Krugman, P. 1994. "The Myth of Asia's Miracle." Foreign Affairs 73(6). November/ December.
- Lim, Joseph. 1998. Annual Macroeconometric Model with Social Sector Block. National Economic and Development Authority.
- Macapanpan, T. 1999. "Private Sector Activities on Research and Development." PIDS Discussion Paper No. 99-19. Philippine Institute for Development Studies, Makati City, Philippines.
- Magpantay, J. 1995. "Streamlining the Science and Technology Sector for the Country's Development Goals." Unpublished. Philippine Institute for Development Studies, Makati City, Philippines.

- Nolasco, L. 1999. "Identifying Areas of Support in Research and Development for the Manufacturing Sectors." PIDS Discussion Paper No. 99-27. Philippine Institute for Development Studies, Makati City, Philippines.
- Pack, H. and L. Westphal. 1986. "Industrial Strategy and Technological Change: Theory vs. Reality." In *Journal of Development Economics* 22:87-128.
- Patalinghug, E. 1999. "An Institutional Analysis of R&D Expenditures in the Public and Private Sectors." PIDS Discussion Paper No. 99-26. Philippine Institute for Development Studies, Makati City, Philippines,
  - \_\_\_\_\_. 1984. "Labor Quality and Growth Accounting: the Philippines." *Philippine Review of Economics and Business* 21(3-4):201-217.
- Ponce, E. 1998. "Research Extension Linkage and the Philippine Agriculture and Fishery Research and Extension Systems." Unpublished.
- Sachs, J., R. Goldman and N. Gokgur. 1998. "Science and Technology Policy: Linking Industrial Strategy with Educational and Technological Development." *Promotion of Broad-Based Economic Growth in the Philippines*. National Economic and Development Authority, Pasig City, Philippines.
- Yamada, K. 1964. Modern Technology. Tokyo: Asakura Shoten.
- Williamson, J. 1991. "Productivity and American Leadership." Journal of Economic Literature 19:51-68.