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Abstract
Maintained Individual Data Distributed Likelihood Estimation (MIDDLE)
is a novel paradigm for research in the behavioral, social, and health sci-
ences. The MIDDLE approach is based on the seemingly-impossible idea
that data can be privately maintained by participants and never revealed
to researchers, while still enabling statistical models to be fit and scien-
tific hypotheses tested. MIDDLE rests on the assumption that participant
data should belong to, be controlled by, and remain in the possession of the
participants themselves. Distributed likelihood estimation refers to fitting
statistical models by sending an objective function and vector of parameters
to each participants’ personal device (e.g., smartphone, tablet, computer),
where the likelihood of that individual’s data is calculated locally. Only
the likelihood value is returned to the central optimizer. The optimizer
aggregates likelihood values from responding participants and chooses new
vectors of parameters until the model converges. A MIDDLE study provides
significantly greater privacy for participants, automatic management of opt-
in and opt-out consent, lower cost for the researcher and funding institute,
and faster determination of results. Furthermore, if a participant opts into
several studies simultaneously and opts into data sharing, these studies au-
tomatically have access to individual-level longitudinal data linked across all
studies.

Introduction

A revolution is in progress in the health, behavioral, and social sciences. Up until
recently, most research in these fields was investigator-driven and involved either randomized
controls in a laboratory setting or epidemiological/observational in natural settings. In the
1990s, small portable devices began to be used by investigators to bridge the gap between
these two paradigms in what was termed ecological momentary assessment (Shiffman, Stone,
& Hufford, 2008; Stone & Shiffman, 1994). This idea started slowly in part because it was
expensive to provide devices for each individual in a study. But in the 2000’s smart phones
changed the landscape. As of July, 2014, comScore reported 173 million people in the U.S.
owned smartphones, of which 51.5% were running Google’s Android and 42.4% were running
Apple’s iOS (comScore, 2014). In July 4, 2014, the United States Census Bureau reported

An earlier version of this article was presented as the presidential address to the Society for Multivariate
Experimental Psychology, Nashville, TN, October, 2014. The authors would like to thank Stephen West
and two anonymous reviewers for their cogent and extensive comments and suggestions. Funding for this
work was provided in part by NSF (BCS–1030806), the National Institute on Drug Abuse (NIH DA-018673),
the Max Planck Institute for Human Development, and a grant from The Jefferson Trust. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Institutes of Health or National Science Foundation. Cor-
respondence may be addressed to Steven M. Boker, Department of Psychology, The University of Virginia,
PO Box 400400, Charlottesville, VA 22903, USA; email sent to boker@virginia.edu; or browsers pointed to
http://people.virginia.edu/˜smb3u.
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the population of the U.S. to be 319 million (United States Census Bureau, 2014). Thus,
more than half the U.S. population owns a smartphone and these could be used as data
gathering devices for software applications running on the two most popular smartphone
operating systems.

This is an incredible opportunity for investigators interested in multivariate behavioral
research. But this revolution is moving faster than our sciences have reacted. Individuals are
interested in tracking their own data and the software industry has responded by providing a
wide array of self-monitoring applications. The 2013 Pew Foundation’s Tracking for Health
study (Fox & Duggan, 2013) reported that 69% of Americans track some form of personal
health data and 21% of Americans do so on a personal digital device. One way of thinking
about this phenomonon is as a bottom-up movement doing self-organizing person-oriented
“citizen science”. Not only do potential participants have personal devices that can act as
a data gathering and computing platform, but many are willing to spend money in order
to participate in research that can give them information about themselves.

It is possible that these individuals might not be willing to participate in organized
research directed by a scientist. However, a recent California Institute for Telecommuni-
cations and Information Technology (CALIT) study (Personal Data for the Public Good,
2014) reported that 75% of participants “probably” or ”definitely” would be willing to share
their personal health data with qualified researchers. Assuming that this result generalizes
and ignoring correlations between group memberships, a naive estimate of the potential
participant pool with smartphones and willing to consider participation in some form of
personal health research is approximately one third of the population of the U.S. — over
100 million people.

This seems as if it is a dream come true for the investigators in the health, behavioral
and social sciences. However, there is a fairly serious problem that needs to be overcome
before these self-organized citizen scientists can act as an engine of scientific discovery
in multivariate behavioral research: participant privacy. With no concern for individual
privacy, private industry has been busily gathering and mining data that is knowingly or
unknowingly provided while individuals use their smartphones. But scientists must be held
to a higher standard. We must protect the privacy of personally identifiable information.
In fact, potential participants agree with this view. In the CALIT study cited above, 67%
of respondents felt it was either “very” or “extremely” important that their data be kept
anonymous. The same study found that 54% of participants believed that they should own
all their data and another 30% believed that they should share ownership. It seems likely
that cellphone owners would be angry when they find that data that they believe they own
is being used by private industry without their knowledge, and there is some evidence of
this in reactions to recent revelations by Facebook (Goel, 2014). Some method must be
found in order address the privacy problem and give participants the ability to maintain
possession and control of their data.

In current research practice, participant’s data are centralized into a data repository.
If ownership of the data is claimed by participants, it might seem as if centralized data
are being held in trust for the participants. But legal precedent does not agree with this
view. In a 2006 court case where the original investigator, Dr. William Catalona, and
research participants both wanted data to be transferred from Washington University’s
data repository to a repository at Northwestern University, Judge Stephen Limbaugh ruled
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against Northwestern University and wrote an opinion arguing that it was undisputed that
Washington University was in “exclusive possession and control” of the data repository and
that “control of personal property is prima facie evidence of ownership and anyone else
claiming such property bears the burden of proof” (The Washington University, Plaintiff,
v. William J. Catalona, et al., Defendants, March 31, 2006). Thus, if data are out of
the participants’ possession and control the court appears to argue that they are no longer
owned by the participant. Thus, current research practice is at odds with participants’
belief that they should maintain ownership of their data.

Data collection using participants’ devices such as personal computers, smartphones,
and tablets has become increasingly common over the past 20 years (see Dufau et al., 2011;
Miller, 2012, for reviews). Methods associated with this type of data collection are often
longitudinal in nature and go by names such as ecological momentary assessment (Shiffman
et al., 2008; Stone & Shiffman, 1994), experience sampling (Csikszentmihalyi & Larson,
1987; Hektner, Schmidt, & Csikszentmihalyi, 2006; Larson & Csikszentmihalyi, 1983), and
intensive longitudinal designs (Walls & Schafer, 2005). As technology has advanced, data
from these distributed experiments has been collected by email (Boker & McArdle, 1998),
web browsers (Greenwald & Nosek, 2001), social networking applications (Anderson, Fa-
gan, Woodnutt, & Chamorro-Premuzic, 2012), and most recently by smartphone, tablet,
and wearable computing applications (Benocci et al., 2010; Miller, 2012). Although the
technology for data collection has improved remarkably, the basic scientific workflow has
remained the same in that data are first collected into some central repository and only then
are they analyzed.

Why are data needed for research into human health and behavior? The answers
are, in their roots, statistical. First, data provide a foundation for statistical models to be
generalized to a selected group or population. Second, individual-level data provide bases
for statistical models of each individual’s pschological or health processes to be used in
personalized diagnosis and intervention decisions. Are the data themselves the goal? No.
In both instances, the goals are scientific discovery and/or decision support. Thus, the
problem fundamentally entails questions of statistical research methods: What information
is necessary and sufficient; and how can this information reach the scientists/decision makers
with a minimum risk of disclosure of the original data?

Let us assume that a researcher wishes to answer scientific questions and make diag-
nostic predictions, but due to privacy concerns does not desire ownership of participants’
data. This way of thinking about privacy leads to a radical notion — Individuals would not
need to reveal their data if a method could be found that provided statistical information
of equivalent or improved quality as that generated by current research practice. If such
a method could be implemented, the problems of linking at the individual level would be
moot: Each person would maintain sole possession of her or his own data and so any indi-
vidual could opt-in to multiple analyses. Data would remain under participants’ possession
and control and thus participants would maintain legal ownership. Privacy maintenance
would be similar to any other question of ownership: Each person would have responsibility
for maintaining control of her or his own possessions.
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The MIDDLE Research Paradigm

We take the position that data belong to individuals and should remain in their
possession (Mandl & Kohane, 2009; Weitzman, Adida, Kelemen, & Mandl, 2011) unless
they explicitly choose otherwise. This leads to new ways in which statistical analyses
could proceed and scientific and individualized medical hypotheses could be tested even if
individuals never divulge data. Following this approach to its logical conclusion leads to
surprising efficiencies and simplifications in research methodology.

We propose that data be retained by participants in what we call Maintained Indi-
vidual Data (MID), a software platform that would reside on a smartphone, home health
monitor, or computer in the possession and control of the participant. Data remain where
they were originally collected — on each participant’s personal smartphone, computer,
tablet, or wearable computing device — and remain private, that is to say these data are
never revealed by the participant. If an individual decides to participate in research, they
consent to allow the investigator to run a likelihood calculation on their data. The only
thing a participant reveals is the likelihood of their data conditional on the investigator’s
hypothesis.

What we call Distributed Likelihood Estimation (DLE) refers to the process by which
a central optimizer sends vectors of free parameters for each candidate statistical model to
each participant’s personal device where a DLE remote app would query the MID, calculate
the likelihood of the data returned by the query and send back to the central optimizer only
that likelihood. The central optimizer would choose new parameters and repeat the process.

When using the MIDDLE research paradigm, data can be collected at the same time
that models are optimized. This means that when sufficient data are collected to reach a
pre-selected statistical power, the study can automatically terminate or switch to a cross-
validation regime. This means that individual-level variables, repeated measurements, and
time series are automatically linked and model parameters are estimated at the individual
level first and only then does aggregation happen. Furthermore, if a participant opts into
many studies simultaneously and consents to data sharing between studies, all of the studies
automatically have real-time data sharing.

Adoption of the MIDDLE approach is likely to result in a substantial increase in
research efficiency and reduction in long-term cost of scientific progress. Some of the benefits
to science, to individual researchers, and to research participants include:

Within-Person Data Linking Longitudinal data linking in MIDDLE is automatic — all
data belonging to an individual are (with consent) accessible to the MID platform,
so multilevel and/or longitudinal models can be fit at the individual level without
resorting to the use of personally identifying information in a central repository to
link between occasions of measurement.

Data Sharing If a participant opts into data sharing, any new experiment automatically
has access to all previous data from all other experiments accessible to the participant’s
MID. This will accelerate scientific discovery since new experiments will have imme-
diate access to previously gathered individual-level data rather than waiting years for
traditional data sharing. This effect will increase exponentially as individuals’ MIDs
become more data-rich.
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Data Quality Increased trust on the part of participants is likely to result in more honest
responses to sensitive questions about critical variables such as drug use, HIV status or
other socially sensitive behaviors. In addition, the knowledge that data are not leaving
the personal device may encourage individuals to consent to use of wireless sensing
devices that gather personally embarrassing data. Participant trust will depend on the
trustworthiness of the source of the application download — If the participant trusts
that the application will actually perform as advertised, then a significant barrier to
data quality may be removed.

Optimal Power Since data collection and data analysis happen simultaneously, experi-
ments can be ended or modified when either a pre-specified confidence interval for a
parameter estimate is reached, pre-specified hypothesis threshold is reached, or when
a pre-determined power is achieved without attaining a significant result.

In the remainder of the article we first present a broad overview of traditional ex-
perimental designs and brief description of the statistical estimation technique called full
information maximum likelihood (FIML). We then present a discussion of how the MIDDLE
research paradigm could be implemented into a practical workflow using a communications
and provenance archiving hub we call the MIDDLE Host. We next present a simulation
demonstrating the feasibility of the MIDDLE optimization paradigm. A hypothetical ex-
ample MIDDLE experiment is next described in order to facilitate understanding of how
this workflow would be experienced by participants and investigators. Finally, we present
concerns and limitations that must be kept in mind as a distributed approach such as MID-
DLE is implemented. It is important to remember that not all behavioral and social science
experiments are amenable to the MIDDLE approach.

Traditional Experimental Design

Traditional best-practices for behavioral, social science, and physiological research
share a common sequence of events. First a hypothesis is generated. Next, an experiment
that would test the hypothesis is designed and approval from the relevant Institutional
Review Board (IRB) is obtained. Participants are then recruited and those that consent
are enrolled to participate in the experimental protocol. Data are collected and centralized
into a data repository that typically resides on a computer in a locked room in a research
laboratory. These data are considered to belong to the research group that performed
the experiment or collected the observational data. After the data collection phase, the
centralized data are analyzed in order to estimate parameters and goodness of fit of candi-
date statistical models in order to compare models and test hypotheses. Results are then
disseminated through journal articles and/or conference talks and posters. Finally, the ex-
perimental results are replicated and/or new hypotheses are generated. Figure 1 presents
a flowchart of this process.

Consider six potential problems that accompany this approach to research: i) Who
owns the data? Is it the research group who collected the data, the agency that funded the
research, or do the participants retain ownership of their own data? ii) The centralized and
private nature of the data repository tends to discourage open disclosure of the provenance
chain of statistical analyses and thus reduces the chance that mistakes in analyses will be
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Figure 1 . Traditional experimental design. In traditional designs for human subjects re-
search, steps are performed sequentially, data are stored centrally, and statistical analysis
is conducted only after the data collection portion of the experiment is concluded. This
leads to long intervals between experiment replication and/or hypothesis revision as well as
barriers to data sharing.

caught by reviewers. iii) During the process of designing a new experiment, power analyses
(when they are conducted) are encouraged to be conservative, since one does not know the
effect size in advance. iv) There can be a very long interval between the generation of a
new hypothesis and the next opportunity for the hypothesis to be revised or the experiment
replicated. v) Barriers to data sharing include protecting the confidentiality of the partic-
ipants and a potentially long lag time during which the research group has sole right of
publication using the data. vi) It is difficult, if not impossible, to perform longitudinal link-
ing between different data repositories while maintaining participant confidentiality. Thus
longitudinal studies tend to be isolated from the benefits of data sharing.

Traditional Likelihood Estimation

In order to provide a framework for the proposed methodology, let us first review in
broad strokes one commonly used statistical estimation procedure: full information maxi-
mum likelihood (FIML). A data matrix resulting from an experiment is selected for analysis.
A statistical model is built or selected which has a set of model parameters to be estimated.
Starting values for the model parameters are then selected. Given starting values for the
parameters, the model implies an expected covariance and means structure for the data.
For each row of the data matrix the likelihood of the data is calculated given the model
parameters. These individual likelihoods are logged and summed and a test is performed to
see if this summed log likelihood is at a maximum. If the summed log likelihood is not at
a maximum, a new set of parameters are chosen by the estimation software and new likeli-
hoods are calculated. If the summed log likelihood is at a maximum, the software returns
the summed log likelihood and the current parameter estimates. A simplified flowchart of
FIML estimation is shown in Figure 2–a.

Maintained Individual Data (MID)

We propose a scientific software layer that would run on participants’ personal devices
(smartphones, tablets, or personal computers) and would serve to communicate between
data acquisition applications and the research group sponsoring a study. One might think of
this software layer as something like a personal data vault with encryption and a constrained
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Figure 2 . Simplified flowcharts for traditional full information maximum likelihood (FIML)
estimation and distributed likelihood estimation (DLE). (a) In FIML, the data are central-
ized into a data matrix and the likelihood of each row of the data matrix contributes to
the summed log likelihood. Parameters are adjusted until the summed likelihood is at a
maximum. (b) In DLE, the data resides on participants’ personal devices. The personal
device receives model parameters from the central optimizer, calculates the likelihood of a
participant’s data, and passes only the likelihood back to the central optimizer. The central
optimizer calculates the summed log likelihood, and if necessary, chooses new parameters
to redistribute to the personal devices. We use FIML as an example although Bayesian or
other optimization methods for parameter estimation can be used in DLE.

set of encrypted communication protocols. We call this software layer Maintained Individual
Data (MID).

The MID software would provide several important functions. First, it would act as
an intermediary that would allow research groups to advertise for participants. The MID
owner could browse for studies in which she or he wanted to participate. Second, the MID
would manage consent forms in a standardized way so that the potential participant could
opt-in or opt-out of an experiment at any time. Third, the MID would provide a data
socket that would communicate with the computer/smartphone application that presented
the experimental stimulus, questionnaire, game, or other data acquisition method. Fourth,
the MID would encrypt and maintain all data that was acquired by a MID-compliant
application. Finally, provided appropriate participant consent, the MID would communicate
with research groups that wished to test specific statistical models on the participants’ data.
Note that the group that tests a statistical model need not be the group that originated
the experiment, testing a model would only require the MID owner’s consent.

Many computer applications have been proposed to organize and store health data
for large scale applications (Dolin et al., 2006; Vreeman, McDonald, & Huff, 2010) and
on personal devices (IndivoHealth, 2012; Microsoft, 2012). However, these applications
are designed to simply organize and protect personal health data and are not designed to
participate in statistical model fitting outside of their own individual firewalls. We next
propose a method that would allow large-scale networks of devices running MID software
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to participate in scientific experiments without revealing the data stored by MID on the
personal device.

Distributed Likelihood Estimation (DLE)

Distributed likelihood estimation (DLE) refers to a method for estimating maximum
likelihood parameters and fit statistics for statistical models that is very similar to the FIML
method described earlier. Figure 2–b presents a simplified flowchart of the DLE optimization
procedure. As in FIML, a model and starting values are selected by the researcher. The
model and parameter values imply a covariance and means structure such that the likelihood
of a single participant’s data can be calculated. The model and parameters are distributed
from a central optimization server (the DLE server) to all of the personal devices that
have consented to allow the analysis. Each participant’s personal device (e.g., smartphone,
laptop) uses its MID software to calculate the likelihood of the data stored on the device.
The MID software then sends only the likelihood value (a single number) back to the DLE
server. The DLE server then aggregates the log likelihoods from the responding MID devices
and either decides it is at a log likelihood maximum or adjusts parameters and redistributes
the new parameters to the MID devices.

The similarity between FIML and DLE is striking, but the two algorithms are not
identical. There are two major differences: i) traditional FIML requires that all participants
reveal their data to the researcher whereas DLE only requires that participants reveal the
likelihood of their data given a model and a vector of parameters; ii) traditional FIML
performs all of its calculations and data manipulations centrally whereas DLE performs the
greatest part of its calculations in parallel on the participants’ personal devices.

Several other differences may not be immediately apparent, but are nevertheless im-
portant. DLE does not require that data collection be finalized prior to the initiation of
model estimation. That is to say, statistical models can begin to be tested as soon as a
few participants have consented and begun the experiment. Of course, model parameters
will be unreliable with only a few participants. However, as more individuals consent and
participate in the experiment, the sample size contributing to each likelihood calculation
will grow, and the model parameters will begin to become more and more stable. This
means that a researcher can preselect a required statistical power or parameter precision
for the analysis and the DLE analysis can automatically terminate or initiate a replication
when the experiment reaches that criterion.

Another important difference between traditional FIML and DLE is that FIML always
analyzes a static, centrally-stored data matrix while a DLE analysis is performed on an ever-
changing subsample of the data. This is because at any particular time, some percentage of
the personal devices participating in the experiment may be powered down or be off-network
and unreachable, or participants may have added or withdrawn consent in the interval
since the last sample was polled. Thus, a DLE analysis is akin to a naturally occurring
bootstrap (Efron, 1979) analysis. As long as holdout (device is unreachable) is uncorrelated
with the model results, bootstrapped standard errors will automatically result from a DLE
analysis. A holdout likelihood calculation can be included in the DLE calculation and
central aggregation of likelihoods in order to correct for sampling bias induced by holdout
likelihood covarying with data likelihood.
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Finally, it should be noted that since traditional FIML requires centralized data,
longitudinal studies must link variables over time by some sort of identifying information
so that data belonging to a single individual can be grouped. On the other hand, in a DLE
analysis, all data belonging to a participant and only data that belongs to that participant
is available within the MID software. As long as the participant consents to longitudinal
linking of her or his data, the likelihood of the longitudinal data can be automatically
calculated, even if some data resulted from a previous study. Thus, data sharing between
experiments is up to the individual participant. If the participant consents to data sharing,
data are automatically available and linked by participant without the researcher needing
to become involved in complex data sharing agreements. This is a consequence of the data
being owned by the participant, controlled by the participant, and in the possession of the
participant. One possible scenario for research participant compensation when using the
MIDDLE approach is by micropayments to the participant based on how informative the
participants’ likelihood was during model estimation. Thus, participants with better quality
data would be compensated more than those whose data had low reliability. This would
provide an incentive to participants to complete questionnaires and adhere to protocols
during data collection.

The MIDDLE Host

Combining the Maintained Individual Data software platform with the Distributed
Likelihood Estimation approach (MIDDLE) enables a novel form of experimental design for
behavioral, social science, and health research. One possible parallel workflow for MIDDLE
experiments is illustrated in Figure 3 where an agency (e.g., National Institutes of Health or
National Science Foundation), scientific society (e.g., Association for Psychological Science,
American Psychological Association, Society of Multivariate Experimental Psychology) or
other organization (e.g., Institute for Social Research, or The Center for Open Science)
sponsors a computing platform where MIDDLE experiments can be hosted, advertised,
downloaded, and organized. While this MIDDLE Host is not necessary for performing an
experiment using a MIDDLE approach, this central host approach offers many advantages.

From the participant’s perspective, the MIDDLE Host would act as something like
an “App Store for Science”, where experiments could be browsed and downloaded. The
MIDDLE Host would act as an intermediary between research labs and participants, so
that participants could go to a single source to find experiments in which they might like
to participate. Downloading an experiment and consenting to participation would initiate
a communication protocol between the research lab and the participant.

From the research lab’s perspective, the MIDDLE Host would fulfill a variety of tasks
and services useful to rapid design and execution of behavioral and health science research.
First, as a hypothesis is formulated and an experiment is designed, the MIDDLE Host
would provide prototype MID software designs that could be modified to collect data that
could test the hypothesis. Second, as many research labs begin to use the MIDDLE Host, a
provenance trail of data that have been previously collected and models that have been pre-
viously tested would help new research cross-validate previous results and extend research
into new directions while taking advantage of data available for sharing from previous par-
ticipants. Third, the MIDDLE Host would act as an advertising agent for recruitment so
that new participants could be quickly enrolled. Fourth, the MIDDLE Host would provide
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Figure 3 . Flowchart of a MIDDLE experiment including a MIDDLE Host for disseminating
Maintained Individual Data (MID) experiments and managing requests for Distributed
Likelihood Evaluation (DLE). Participants and research labs communicate through the
MIDDLE Host, which acts as something of an App Store for Science.

consent management services so that only consenting participants are connected to research
labs. Fifth, the MIDDLE Host would manage privacy certificates and network communica-
tion protocols in order to help maintain data security in the participants’ devices. Finally,
the MIDDLE Host would provide provenance management of analyses and linkage to a
publication archive (e.g., PUBMED), so that the provenance of data and analyses from
articles published in PUBMED would be available to readers, increasing the reliability and
reproducibility of behavioral and health science results.

The MIDDLE approach to research will accelerate the pace of discovery in the be-
havioral, social, and health sciences due to several efficiencies introduced by the workflow
shown in Figure 3. When participants consent to data sharing, their previously collected
data are automatically linked and immediately available to the new experiment. This
parallel approach with automatic within-individual longitudinal data linking and sharing
provides the potential for substantially reducing the time between hypothesis generation
and dissemination of results while simultaneously reducing participant burden.

Efficiency of scale is available once a MIDDLE Host is up and running and many
research labs are participating, but how can the process begin? Suppose one or more large
scale longitudinal studies (e.g., the National Longitudinal Study of Youth, the Panel Study
of Income Dynamics, or the German Socio-Economic Panel) were to implement MIDDLE
data collection. This would jump-start the MIDDLE approach since data sharing and lon-
gitudinal linking would be available for new studies and thus convey immediate benefits
and competitive advantage to any behavioral research that were to adopt the same MID-
DLE Host as the large scale studies. Within-individual linking to large-scale studies has
traditionally been impossible due to privacy risks unless the large-scale study incorporates
a smaller study into the large-scale protocol. The MIDDLE approach would thus magnify
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the impact of these large studies as well as opening up new within-individual data collection
and analytic possibilities. Both large studies and small studies are winners in this scenario.

Preliminary Simulation Results

Given the novelty of the MIDDLE paradigm it is reasonable to question whether a
DLE algorithm can achieve convergence without a centralized and fixed data set. A signifi-
cant problem is whether the constantly changing sample during estimation will prevent the
optimizer from converging. To answer this question, pilot simulation data were generated
and two ways that DLE could be implemented were prototyped and the computational and
statistical effectiveness of each were evaluated and compared. First, a population of 2000
individuals were simulated each of whom had 200 simulated observations that conformed to
a latent growth curve model. This model is widely used in structural equation modeling esti-
mation of individual-level data in the behavioral sciences. Each individual’s parameters for
the latent growth curve were drawn from a normal distribution with means and variances
(μintercept = 1.5, μslope = 0.6, σ2

intercept = 1.2, σ2
slope = 0.9, Cov(intercept, slope) = 0.3)

shown as the horizontal lines in Figures 4-a and 4-d.
Next, sampling schemes were simulated to represent potential ways that participants

might engage with the MIDDLE optimizer. Figure 4 shows results of a single run of the sim-
ulation for one choice of participant engagement parameters. A time step was defined as the
interval between occasions when the MIDDLE optimizer sends out requests for likelihoods.
Participant engagement was simulated as follows: At each time step: All individuals in the
population who had not already opted in have a probability (p = .03) of opting into the ex-
periment; All individuals who had opted into the experiment had a probability (p = 0.005)
of opting out; All individuals in the experiment had a probability (p = .5) of having entered
new data since the previous time step; And all individuals in the experiment had a proba-
bility (p = 0.3) that their device was on, able to be contacted, and had a DLE calculator
running. Note that these probabilities of participant engagement make it unlikely that the
same sample is used twice at any two time steps. Thus, in this sampling scheme we have
ensured that the convergence can be tested when there is no “complete” data set.

In order to understand the difference between convergence using a fixed data set
and convergence when the data are in continuous flux, we ran two separate optimizers on
the data. At each time step, the first optimizer asked all available MID devices to return
the likelihood of their data for a target set of parameters and for the associated minor
steps that would allow the optimizer to calculate the gradient and Hessian of the likelihood
surface and choose a new set of model parameters. Thus the first optimizer asked each MID
device to perform the minimum likelihood calculations needed to generate improved model
parameter estimates at the next time step. The model parameter point estimates for the
first optimizer are plotted in Figure 4-a along with the number of individuals contributing
likelihoods (Figure 4-b) and minus two log likelihood value divided by number of individuals
(Figure 4-c) at each time step.

The second optimizer asked all available MID devices to return the likelihood of
their data and repeated that request until convergence prior to moving to the next time
step. Thus, the second optimizer asked each MID device to perform a maximum number
of likelihood calculations at each time step. The second optimizer performed calculations
akin to a traditional bootstrap where each time step represented a new sample drawn from
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Figure 4 . Results of one simulated MIDDLE experiment estimated using two different
optimization criteria. For panels (a), (b), and (c), each query of the distributed devices
was paired with one major iteration of the optimizer occurred. For panels (d), (e), and
(f), each time the distributed devices were queried, the optimizer was allowed to come to
complete maximum likelihood convergence. Note: mean(I), mean(S), var(I), var(S), and
cov(I,S) refer to the simulated Latent Growth Curve mean, variance, and covariance of the
latent intercept and slope.

the population. The results for the second optimizer running a single experiment are shown
in Figure 4-d, 4-e, and 4-f. While these plots are only one simulated experiment out of the
more than 500 we ran in the pilot, the results are representative of the full simulation.

Figure 5 plots the means and standard deviations of 100 runs of the simulation de-
scribed above. Here it becomes quite obvious that while the ever-changing sample due to
the participant engagement probabilities poses a significant challenge for the standard like-
lihood estimation procedure. On the other hand, the single-step optimizer appears resistant
to that challenge and produces smaller standard deviations of estimates for every parameter
except the lowest line, the covariance between intercept and slope.

At first we were surprised that the single-step optimizer outperformed the full-
convergence optimizer. Upon further consideration we hypothesized that the full-
convergence process was overfitting each “bootstrap” sample whereas the single-step op-
timizer incorporated the bootstrap sampling into the likelihood convergence process and
thus became more resistant to overfitting. While much more needs to be accomplished
before DLE becomes a well-known statistical technique with a comprehensive list of advan-
tages and disadvantages, the results of this pilot simulation provide evidence that DLE is
likely to be an efficient and unbiased estimator when used in the context of a MIDDLE
experment.
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Figure 5 . Means and standard deviations of 100 simulated MIDDLE experiments. Each
query of the distributed devices was accompanied by (a) one major iteration of the optimizer
or (b) the optimizer was allowed to reach maximum likelihood convergence. Note: mean(I),
mean(S), var(I), var(S), and cov(I,S) refer to the simulated Latent Growth Curve mean,
variance, and covariance of the latent intercept and slope.

Example Use Case of the MIDDLE Approach

The MIDDLE approach reorganizes how experimental and epidemiological research is
conducted. In order to give a better idea of how this reorganization might work in practice,
we present a hypothetical large scale epidemiological study. We then present a design
that includes random assignment of treatment and control conditions to form a planned
experiment where participants must visit a laboratory for part of the study. The second
study takes advantage of data sharing from the first epidemiological study. These two
studies demonstrate the reasoning behind the reorganization as well as illustrating many of
the challenges that will need to be addressed.

Epidemiological Study of Diet and Exercise

As in Figure 3, a research group generates a hypothesis about diet and exercise, a
self-report questionnaire instrument, a tie-in to accelerometer sensor data from a smart
phone, and uses statistical models to test the hypothesis. The research group uses a set
of software tools to create an experiment that will run on a MIDDLE-enabled device.
The group submits the MIDDLE experiment and IRB-approved consent instrument to the
MIDDLE Host. The MIDDLE Host loads the experiment, model likelihood calculator, and
consent documents into a web-accessible central repository — its “app store for science”.
The MIDDLE Host then advertises the experiment to potential participants, manages opt-in
(and opt-out) consent documents, generates a secure network certificate for the experiment,
and allows participants to download the MIDDLE experiment app and model likelihood
calculator.

As participants consent into the experiment, the MIDDLE Host sends certificate in-
formation to the researcher’s MIDDLE optimizer software, which then begins to optimize
the pre-specified statistical models. The optimization process proceeds as follows: (1) The
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optimizer chooses starting values for all parameters and sends these to all current partici-
pants; (2) Each participants’ personal device calculates the likelihood of the participants’
data collected so far and sends that likelihood number back to the MIDDLE optimizer; (3)
The optimizer chooses new parameters and repeats the process until convergence criteria
are reached; (4) Either the experiment is finished (after collecting just-sufficient data) or
the model or experiment is modified and the process is repeated. IRB approved experi-
mental modifications are uploaded to the NIH MIDDLE Host and are re-disseminated for
participant consent and download.

Note that when participants give consent for the use of previously-collected data,
each new experiment starts optimization with a large set of data automatically shared from
previously-run MIDDLE experiments. Longitudinal data collection is thus automatically
enabled and linked at the individual level at zero cost to the newly funded project. Par-
ticipants may choose to collect personal data in their MIDDLE enabled device without
previously opting into a study (e.g., using wearable activity monitors, health monitors,
GPS tracking, or MIDDLE experiment questionnaires) and then track their own personal
trends. If these participants then opt into an experimental analysis, they can choose to
allow access of these previously collected data in the new experiment.

Once the MIDDLE experiment is complete, articles are written and submitted to
PUBMED. These articles are linked to the MIDDLE experiment application and its statis-
tical analysis provenance trail in the MIDDLE Host. Future researchers can (a) learn the
exact methods and analyses that led to a published result, and (b) re-use parts of MIDDLE
experiments and models in order to maximally take advantage of the built-in data sharing
enabled by the MIDDLE network of participants.

Followup In-Lab and In-Home Study with Treatment and Control

A second research group investigates running a study on a related hypothesis to the
first study. They look up the first study’s results in PUBMED and follow the link to the
associated models and instruments in the MIDDLE Host archive. The group downloads the
MIDDLE experiment module and its statistical models, which include some of the necessary
variables. However, this new hypothesis requires an experiment with an in-lab component as
well as a self-report questionnaire and in-home sensor data. The second research group mod-
ifies the first group’s instrument and statistical models and advertises their IRB-approved
study on the MIDDLE Host, offering additional compensation for participants from the first
study. Participants opt-in and most of those from the first study opt to allow data sharing.
The study quickly has a relatively large data sample. Some participants completing the
in-home questionnaire and consenting to in-lab followup are randomly selected through the
MIDDLE Host for inclusion in an in-lab section and are assigned by the MIDDLE Host to
a treatment or control condition.

For participants who opt-in, the MIDDLE Host transmits contact information to the
research group, which arranges appointments for the in-lab study. Participants bring their
personal device to the lab and the in-lab data are uploaded into the personal device for the
participants to take home. Participants can choose whether or not the lab will be allowed
to archive a copy of their data. The analysis and write up proceed in the same manner as
in the epidemiological experiment. Note that the in-lab data are always uploaded to the
participants’ devices. Thus, these data are available for sharing and longitudinal linking
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in other experiments. As more data are accumulated into participants’ personal devices,
their data become more and more valuable to future researchers, and thus of greater market
value to the participant.

Benefits of the MIDDLE Approach

Accelerated Pace of Discovery

First, as the MIDDLE approach is adopted, previously collected data will become
available to new experiments. Second, data collection in any single experiment can be
stopped when minimally sufficient power or statistical precision is achieved. Third, analysis
happens simultaneously with data collection. These three conditions mean that the data
collection and analysis phases of a funded project will take less time, and therefore a smaller
proportion of a given project’s budget. A primary rate-limiting factor for discovery is total
grant funding available. If each project costs less, more proposals can be funded. And since
each project takes less time, the total rate of discovery is improved. The rate of discovery
will continue to improve since each year more data will be preexisting on participants’
devices.

Reduced Burden and Mitigated Risk for Participants

Since fewer new data are required, either within-individual or in terms of sample
size, participant burden per experiment is decreased. The accelerated pace of research may
absorb this reduction in burden as an individual may choose to participate in more studies.
Risk of data exposure is reduced since data are always within the participant’s control and
not stored in a centralized location. Reduced risk of data disclosure is likely to improve the
chance that participants will answer sensitive questions such as drug use, sexual history,
and/or HIV status. Any participant can opt out of an experiment at any time and their
data do not need to be found and deleted in the central database.

Accelerated Translation of Research into Practice

As hospitals and clinicians install MIDDLE-compatible optimizers, a radically new
approach to research translation becomes possible (see Figure 6). If a patient opts to allow a
clinician secure access to her or his data, the clinician can have automatic online access to up-
to-date longitudinal biomarkers and physiological measurements, thereby saving clinicians’
time. The clinician could run an outlier detection model, giving real-time alerts to important
changes in a patient’s medical status, allowing the clinician to recommend a clinic visit early
rather than risk an emergency room visit later. As research studies use the MIDDLE system
to develop predictive statistical models, hospitals and clinicians connected to the MIDDLE
Host can have direct access to these predictive models. These models can be downloaded
and used by the health care provider to assist in diagnosis or to assess complex etiological
risks in patients using MIDDLE-compatible home health care monitors, thereby reducing
time and effort required to translate research into clinical practice.
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Figure 6 . Clinicians and hospitals could use the MIDDLE approach to calculate likeli-
hood of patient health problems from daily observations recorded by home health monitors.
These predictive models could be directly accessed from a MIDDLE Host accelerating the
translation of research into clinical practice.

Automatic Data Sharing

Data sharing often requires a multi-year wait period. In the MIDDLE approach, data
sharing with automatic longitudinal linking can occur for on-going studies. Since data are
analyzed as they are being collected, an original study automatically has first access to new
data. However, the authors of the original study are under time pressure to publish their
results quickly, since other research studies may recruit participants from the same pool
as the original study, triggering data sharing. While this is an additional pressure for the
original study authors, the effect on science as a whole is positive, since there is an additional
incentive to keep the time between data collection and publication short. Data belong to
participants, and so participants can decide to allow data sharing for as many studies as
they wish. However, this means that the MIDDLE Host must be able to detect and estimate
the effect of influential observations, i.e., individuals who participate in many studies and
who might also be unduly weighted by a representativeness model. This problem currently
exists in published results, but until now there has been no way to estimate influence
across multiple studies since within-individual linkage across studies is currently difficult or
impossible to implement. Current approaches to inter-study statistics are primarily meta-
analysis based, but aggregation of aggregates obscures individual etiologies. The MIDDLE
approach provides immediate and automatic mega-analysis: the raw individual-level data
from many studies contribute to statistical analyses.
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Improved Longitudinal Data for Person-Specific Medicine

Personalized medicine requires person-specific data and models. Data within a par-
ticipant’s MIDDLE-compatible device are automatically longitudinally linked for any study
to which the participant consents. Predictive models can be quickly translated from the
MIDDLE Host and used by hospitals and primary care physicians to improve diagnoses and
prescribe personalized treatment, not only for NIH participants but also for any patient with
a MIDDLE-compatible home health monitor.

Inter-Site Linking for Data inside Firewalls

Statistical models can be fit when data come from two or more facilities that each
require that sensitive data not leave their respective facility. Each facility running a MID-
DLE objective function calculator can participate in fitting a statistical model in the same
manner that individual personal devices participate. When individual-level data are linked
between institutions and participant consent is given, individual-level models can be run
using data from personal devices and multiple institutions. For instance, one facility might
house individual genome data, while another facility has phenotypic clinical test results,
while an individual’s device might contain experience-sampling, accelerometer, heart rate,
and blood pressure time series. Statistical models could then be fitted that link all of these
variables and time series to study gene by environment interaction.

More Reliable Methods, Instruments, and Statistical Tests

Methods, instruments and the provenance of the statistical tests will be archived
for articles in PUBMED using the MIDDLE system. This will improve quality control of
instruments, methods and statistical modeling. Open source sharing of the MIDDLE Host
archive contents will maximize researchers’ access to these tools and methods. As more
researchers use the MIDDLE Host, these improvements will further accelerate.

Expanded Participant Pool with Better Generalizability Estimates

Linkage to US Census and other very large scale data allows estimation of represen-
tativeness of any particular sample. All samples are non-representative to some degree.
State-of-the-art multivariate weighting models can then be developed that could be applied
to any study run with the MIDDLE system, thereby improving generalizability for any
given sample size.

More Consistent Standards for Data Access and Analysis

Implementing the MIDDLE approach will require defining an Applications Program-
mer Interface (API) standard for use with MIDDLE-compatible devices. It is widely recog-
nized by manufacturers and researchers that personal health monitors with wireless sensors
are one of the main growth markets in small devices (Almedar & Ersoy, 2010; Mottola &
Picco, 2011). By defining an open source API standard early, an agency e.g., NIH or soci-
ety e.g., APS could have an influence on the intercompatibility of these devices. There are
many reasons why device manufacturers may find it profitable to advertise their products



MIDDLE 18

as “NIH Compatible” or “APS Compatible”, encouraging a coalescence in data access and
analysis standards.

Concerns, Limitations, and Opportunities

A number of problems must be solved in order to implement a MIDDLE system.
While some of these are complicated, there is no reason that a MIDDLE system could not
be implemented using currently available technologies. We next present a number of issues
that should be kept in mind if one were to develop a successful MIDDLE system. While
the following list is not exhaustive, it provides highlights of areas where more research is
needed. The MIDDLE paradigm provides a very different way of thinking about statistical
methods and as such poses a wide range of questions that we believe will become an active
new area of methodological inquiry.

Security

Security and privacy of the network must be excellent. It should be noted that encryp-
tion is not the same as privacy. Of course, data on the personal device and transmissions
among personal devices and MIDDLE servers will need to be encrypted. But, no encryption
is totally secure, it is merely expensive and difficult to break. The MIDDLE approach fo-
cuses on privacy, which reduces the payoff to a potential attacker who manages to intercept
and decrypt transmissions on the MIDDLE network, or from malicious actors within the
MIDDLE system. This is due to the fact that MIDDLE communications are information-
impoverished; only models are sent upstream and only likelihood values are returned. While
the data on a given personal device would still be susceptible to a determined decryption
attack, our approach to data ownership improves data privacy by decentralizing participant
data. The potential reward for decrypting a single personal device is much lower than the
reward for a successful attack on a current centralized repository. Any given personal device
is therefore a much less attractive target for identity thieves. While no system will ever be
entirely secure or private, risks to privacy will be substantially mitigated by implementing
the MIDDLE system.

Estimation

Estimation of statistical models from a dynamically changing sample requires new
algorithms and convergence criteria. Since the data are in flux during DLE optimiza-
tion, standard calculations for parameter stability and power estimation will need revision.
These problems bear resemblance to those posed by resampling or permutation testing.
However, the MIDDLE approach brings novel information into the estimation problem,
whereas resampling and permutation testing use explicit randomization applied to existing
information. Bayesian methods may provide insight into how to address this problem of
expanding information resampling. For instance, it may be possible to capitalize on the
information generated when participants opt in and opt out to provide a better estimate
of generalizability. A naive solution to the estimation problem would be to collect data
and optimize until iteration-to-iteration fluctuations in classically calculated standard er-
rors fall below some chosen epsilon for some chosen number of iterations. Thus, there is at
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least one solution to this problem. However, it is very likely that other solutions exist that
outperform the naive solution, thus reducing the required sample size for a chosen power.

Power

Power estimated from a fixed data set can be misleading and can lead to surprising
uncertainty in estimating proportions of studies that fail to replicate (Maxwell, Lau, &
Howard, in press). Current practice assumes that the data are known and fixed, but the
MIDDLE paradigm requires one to consider statistical estimation in the context of uncer-
tainty in the data. While this poses problems for estimation as discussed in the previous
paragraph, it also provides an opportunity to rethink what is meant by “replication” and/or
“cross-validation”. Every time a MIDDLE optimizer requests the likelihood of a new set
of parameter point estimates it is querying a data set that may have changed in some un-
known way. This forces us to confront the possibility that using a fixed data set typically
leads to overfitting: current practice may lead us to be more confident in our results than
we should be. Since the MIDDLE paradigm combines the data gathering and estimation
processes, there may be a way to improve confidence estimates if we consider a something
like “confidence in incremental replication” as part of the estimation stopping rule. At the
very least, the relationship between power, confidence, and replication in the context of
MIDDLE estimation require further study.

Inference

One of the primary goals of psychological and medical research is to improve the
ability to predict the effects of some intervention. In current practice, this is taken to mean
that random assignment of treatment and control are used in a controlled setting to provide
an estimation of confidence in a statement of causal inference. Random assignment of treat-
ment and laboratory controlled experimental settings in a MIDDLE experiment need not
differ from a typical protocol. However, there is a weakness in the logic of the randomized
control paradigm: if only a proportion of the population is susceptible to the treatment,
the estimated effect size generalized to the population at large is attenuated. The MID-
DLE paradigm provides the possibility of experiments that are dynamically modified on
a person-specific basis based on changing parameter estimates. It may be that mixture
distribution models could be fit while simultaneously altering individual treatment condi-
tions according to Bayesian posteriors. This could lead to inference at both population-level
and person-specific effects of the treatment. Possible applications could include adaptive
training programs, cognitive behavior therapies, or pharmaceutical dosages.

Group Membership

Some analyses require group membership information. For instance, an analysis of
social networks or family relationships will require individual participants to be identified
with a group. This group membership information is data and as such should be treated
as belonging to the individual. A method must be implemented where an individual can
opt-into membership in a group. One solution would be for group members to choose a
common pass phrase and give that to the MIDDLE Host consent controller when they opt-
in. Multigroup model membership could then be incorporated into the MIDDLE experiment
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software uploaded to each group member’s personal device. Once the group membership
data are stored in the personal device, it is straightforward to calculate objective functions
conditional on group membership. However, optimization will require aggregating objective
function values conditional on group membership. In order for group membership to not
be revealed to the central optimizer, one solution would allow peer-to-peer aggregation of
objective functions prior to being transmitted to the MIDDLE optimizer. Again, this is an
issue that requires substantial study.

Informed Consent and Institutional Review Boards

A modification of current best practices in informed consent will need to be developed.
The user interface for obtaining consent from a MIDDLE participant will need to include
a variety of options that are not contained in standard consent documents. For instance,
longitudinal linking and sharing across experiments can be separate consent items. Risk
management options can be included in consent documents. One participant might be
willing to donate his/her data to a research laboratory and their primary care physician
while another participant may wish to not reveal any data. Some individuals may be willing
to allow plots of selected raw data to be generated locally and transmitted to the research
study. Others may wish to only reveal function values, in which case their data could be
used by models that calculate the necessary information to create aggregated plots showing
group means and confidence intervals. Others might be willing to reveal historical data but
not be willing to participate in new data collection paradigms.

The changes in informed consent described above will need to be codified and incor-
porated into Institution Review Board (IRB) training. This process will require extensive
discussion in the research ethics community in order to provide clear guidance to IRBs.
One possible benefit of this discussion is that since consent can be isolated to instances of
analysis (rather than solely at the time of data gathering), the MIDDLE paradigm may
provide a way to resolve the current impasse between NIH guidelines requiring data sharing
and IRB guidelines on data privacy that can preclude data sharing.

Backup and Archiving

Data privacy requires that data not be disclosed. But also, data must not be lost.
Mechanisms for secure data backup must be available for individual personal devices. In-
dividuals must be given a choice of backup mechanisms. One reasonable choice would be
encrypted backup onto a cloud facility (Bhadauria, Chaki, Chaki, & Sanyal, 2013; Jansen &
Grance, 2011). Some participants may wish to only maintain a private MID backup in their
homes, although this is vulnerable to permanent loss from fire or theft. Hospitals and/or
primary care physicians may choose to offer access to encrypted cloud-based MID backup
as part of their health care services. While it is clear that backup to cloud storage does
expose the individual’s data to a risk of disclosure, in the MIDDLE paradigm, the choice of
how much risk is acceptable remains with the individual whereas in the current paradigm
that choice is made by the research lab.

Since data are maintained by individual participants, what happens in cases of par-
ticipant mortality? One solution to this problem is inherent in the fact that an individual’s
data are private property. Thus, a participant’s data could be part of an estate. Data could
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be willed to science, in which case an archive repository for data of deceased participants
would need to be maintained.

Conclusions

This article only covers a few of the major discussion points that have been raised as
we consider the implications of the paradigm shift in data collection and analysis implied by
the MIDDLE approach. Suffice it to say that while there are complex problems remaining
to be solved, the benefits of the MIDDLE approach are so great that we foresee a system
akin to MIDDLE being an inevitable component of the future of behavioral, social, and
health science research.

The basic premise of the MIDDLE approach is that data remain in participants’
possession and control and thus remain the personal property of each participant. This
will transform the economic model of large-scale research both public and private. We
believe that this philosophic shift is as revolutionary as when ownership of private property
becomes allowed in a formerly command-driven economic system. We predict that a market-
driven personal data economy will arise as individuals realize that personal data are personal
property, must be kept in their possession and control, and have accumulating worth directly
related to the data’s quality and scarcity. Unforeseen innovations will surely arise from this
new market-driven personal data economy. We are confident that as the MIDDLE research
paradigm becomes widespread, the pace of innovation and discovery in the behavioral,
social and health sciences will be vastly accelerated while risks to individual privacy will be
considerably mitigated relative to current research practice.

The authors intend to actively pursue inquiry into problems that need to be solved
prior to implementing the MIDDLE paradigm. However, the number of open questions
raised in the current article are larger than we can reasonably address. We firmly believe
that something akin to what is described here will be part of the future of psychological and
medical science. If the reader has considered this new research paradigm and in the process
formed new questions or solutions, then the authors’ intentions will have been fullfilled.
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