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Abstract
Ever since the emergence of economics as a distinct scientific discipline, policy makers have
turned to economic models to guide policy interventions. If policy makers seek to enhance
growth of an open capitalist economy, they have to take into account, firstly, the uncertainties,
inefficiencies, and market failures faced by the agents in the economy, and, secondly,
the activities, network structure, and interactions in the innovation and production system.
The authors discuss ins-and-outs of developing and using (encompassing and empirically
calibrated) agent-based models for (i) abductive theorizing about causes for empirical realities,
and (ii) evaluating effects of policy interventions. To ensure that derived policies are suitable
to intervene in the real world and not just the stylization of it, they discuss validity and
operationalization of agent-based models as well as interpretation of simulation results.
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1 Introduction 

Ever since the emergence of economics as a distinct scientific discipline, policy 
makers have turned to economic models to guide policy interventions. If policy 
makers seek to enhance sustainable economic growth, the economic system (in our 
case, an open but regulated capitalist economy) and the behavior of economic 
agents populating it need to be taken into account. As technological change is the 
primary driver of economic growth (Fabricant, 1954; Solow, 1957), the dynamic 
efficiency of the neo-Schumpeterian process of technological competition of firms 
should be of particular concern to policy makers. Dynamic efficiency of the 
economy as a whole coincides with opportune balancing of exploitation of the 
current product range and exploration, absorption, and development of radically 
new products (Cyert and March, 1963; Tushman and O’Reilly, 1996; Pyka, 2015). 
In this paper, we associate exploitation and exploration by firms with, respectively, 
(i) microeconomic management of their daily production and sales & procurement 
operations in creating immediate value with existing products, and (ii) 
management of research & development activities in creating new products to 
generate value in the future. The managerial decisions in both daily operations as 
well as innovation activities are characterized by different sorts of uncertainty 
(largely due to bounded rationality) and by inefficiencies, non-optimal allocations, 
and market failures that are (partly) caused by those uncertainties. Particularly in 
situations characterized by (non-stochastic) uncertainty, the classical benchmark of 
optimal efficiency is inadequate and one cannot rely on traditional optimization 
techniques (see Pyka, 2015). A natural starting point for policy makers then is to 
seek to reduce uncertainties, repair market failures, improve timing and 
technological focus decisions, and increase efficiencies through innovation and 
production system design. Ironically, policy makers too suffer of bounded 
rationality and their interventions enhance the economy non-optimally (if 
enhanced, in the first place) and, moreover, by doing so, government thereby 
becomes an integral part of the economic system, distorting the very functioning 
of Schumpeterian mechanisms in place. 

Now then, there is the formidable challenge for the policy maker to, firstly, 
fathom the complexity of the economic system (including its own role) and, 
secondly, devise and deploy instruments that enhance the system in desired ways. 
Despite the existence of advanced system dynamics models and formal, equation-
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based models, we can actually only think of one proper research model casu quo 
policy evaluation tool, namely: agent-based modeling (ABMing). In our own 
research, we use agent-based models (ABMs) in two ways. Firstly, we use ABMs 
for abductive inquiries of possible mechanisms or behavior responsible for a 
particular (simulation) outcome. Concretely, we use an ABM as a research 
instrument to discover and formulate hypotheses on the behavior of real-world 
agents that render particular empirical realities (cf. Axelrod, 2007; Brenner and 
Werker, 2007). As such, ABMs can be used for economic theorizing. Secondly, 
we use conceptually encompassing and empirically calibrated AMBs for policy 
experimentation and evaluation. Although ABMs may be classified on the degree 
of abstraction applied, the trump card of ABM is that, unlike the other approaches 
mentioned, that (many conceptualizations of) the real world can be modeled 
largely unabridged and, potentially, calibrated to empirically data (cf. Boero and 
Squazzoni, 2005). With that, such an in silico virtual world offers unprecedented 
liberties for policy evaluation and experimentation. However, apart from touting 
the merits, benefits, and promises of using ABMs for economic theorizing and/or 
policy making, this paper will also elaborate on the pitfalls, disadvantages, and 
challenges. Given the big impact of policies that may come out of policy 
evaluation exercises, we particularly focus on ensuring validity of ABMs such that 
the policies found are suited to intervene in the complex real world and not just the 
ABM stylization of it.  

The structure of the paper is as follows. In Section 2, we provide an exposition 
of decision making in microeconomics (or, rather, how it was modeled, 
historically, and which normative recommendation came out of those models) and 
how firms struggle with elementary uncertainties therein. In Section 3, we 
elaborate on innovation activities and how firms struggle with uncertainties 
inherent to technology search, neo-Schumpeterian competition, and the present 
day organization in innovation systems. We also discuss how policy makers may 
repair market failures, reduce the uncertainties, and enhance the efficiencies of the 
economy at hand. In Section 4, we present agent-based modeling as a policy 
making tool and discuss how it meets both the requirements of the policy maker, 
while, at the same time, the features of the economic system at hand (notably the 
inherent uncertainties in operations and innovation decisions).  In Section 5, we 
discuss the challenges of using agent-based models for policy making purposes. In 
Section 6, we reflect on the value of agent-based modeling as a tool in policy 
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making in (innovation) economics under uncertainty and whether it is suitable for 
theorizing. 

2 Decision making in microeconomics under uncertainty 

In the third quarter of last century, a lofty cohort of young researchers (among 
them several future Nobel laureates) sought to rationalize decision making, in 
general. Operational methods for management sciences and operations research 
were soon developed and applied in a wide range of activities. With the fanning 
out of operational decision methods in the late 1950s and 1960s into a variety of 
other fields, repeated intellectual endeavors revealed that application in fields like 
microeconomics and industrial organization required strong assumptions. 
Sequential decision making in an economic system of real-world complexity 
showed to be cumbersome because, firstly, there are various sources of uncertainty 
impossible to take into account quantitatively, and, secondly, agents cannot 
anticipate the decisions of other economic agents because these decisions become 
non-optimal and more or less risky due to these uncertainties. To appreciate the 
dimensions of decisions under uncertainty for the type of economic systems we 
study, we provide a brief overview. 

2.1 Sequential decision method 

Arguably urged by the operational challenges of full-scale warfare during WW II, 
governmental and military initiatives spurred the development of operational 
decision methods in the fields of management science and operations research. 
This led to inclusion of sequentiality in decision methods, with the sequential 
statistical tests of Abraham Wald (1945, 1950) and recursive adjustment rules of 
Holt et al. (see e.g. their work in 1955) as precursors. Richard Bellman together 
with several of his colleagues consolidated sequential decision making in the 
general dynamic programming method (e.g. Bellman, 1952, 1954, 1957). Dynamic 
programming is based on the elegant principle of optimality: an optimal policy has 
the property that whatever the initial state and initial decision are, the remaining 
decisions must constitute an optimal policy with regard to the state resulting from 
the first decisions (Bellman, 1957, p.83). Note that, while the commonly used 
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dynamic programming method requires discrete periods and a numerable state 
space, the discreteness is not required for the principle of optimality to hold; Lev 
Pontryagin showed that maximization problems in continuous time and with 
continuous state variables can be broken down into multiple, consecutive problems 
of lower dimension, much like the principle of optimality. 

The ideas behind sequential decision making fanned out into fields like 
microeconomics and industrial organization, in which multiple economic agents 
face repeated allocation and pricing decisions. 

2.2 Stochastic uncertainty 

Dynamic programming can cope with uncertainty in the state variables (and so 
does control theory, its continuous counterpart), at least, in as far as that 
uncertainty is of a narrow, stochastic nature. For one, Jacob Marschak sought ways 
to quantify uncertainty in utility and how to cope with uncertainty in sequential 
decision problems (cf. Arrow et al., 1951). However, even stochasticity of 
uncertainty may already inhibit optimal sequential decisions. After all, if a 
particular decision limits (viable) subsequent options (as e.g. with purchasing 
assets used to fulfill demand in multiple periods), the decision taken may then be 
optimal given the probability distribution over states when these are still all 
possible to occur, but is generally non-optimal once a transition to one particular 
state has occurred (cf. Arrow, 1959).  

In a microeconomic setting, complete certainty would allow firms to oversee 
future events and allocate resources perfectly at marginal rates, which would 
render no surplus at all. So, uncertainty is required for profit to exist (Hicks, 1931) 
and the cause for the existence of liquidity (Radner, 1968). In microeconomics, 
uncertainty is taken to be the inability to predict demand and for the competitive 
firm to predict price. Richard Nelson (1961) aptly argues: “For there to be price 
uncertainty, demand must vary, and in addition the firm's ability to explain and 
predict the variation must be less than perfect”. As such, through reductio ad 
absurdum, we see that the perfect rationality axiom in the general equilibrium 
theory is irreconcilable with stochastic uncertainty in price or demand.  
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2.3 Information uncertainty 

A more general notion of uncertainty in sequential decision making is the lack of 
information on the options (now or in the future) or on the probability distributions 
of outcomes of actions. Uncertainty in this sense resembles the notions of Knight 
(1921) and may be popularly phrased as ‘unknown unknowns’. Information on 
options or the probability distribution on effects of actions may possibly become 
available only over time. Decision makers are then faced with the problem that an 
action taken now may later appear to be a poor choice because it limits the options 
or causes undesired, irreversible effects. Under such information uncertainty, 
“good current actions may be those which permit good later responses” 
(Marschak and Nelson, 1962), i.e. a certain degree of flexibility in actions later 
may be preferred to be able to act upon new information when it becomes 
available. The aforementioned sequential decision methods cannot readily cope 
with action and state sets that are only partially known or expanding or shrinking 
over time, nor with only partially known or evolving transition probabilities. Off 
the shelf, dynamic programming does work, unabridged, with a transient, non-
ergodic transition matrix and hence (a narrow form of) dynamics, yet it does 
require the state space and transition matrix to be constant. 

We note, moreover, that the sort of information mentioned above may become 
available only after specific, deliberate actions. Ying (1967) extends the dynamic 
programming framework with agents that can chose actions to update a possibly 
imperfect outcome probability matrix. However, actual optimization of activities 
requires the agent to know or be able to compute the value of that update. We 
stress that, generally, the economic value of such additional information can only 
be determined after making expenses on (meta-level) actions to acquire that 
information. 

2.4 Behavioral uncertainty, risk tolerances and heterogeneity 

Only whenever an economic agent has unlimited computational capacity, has 
perfect information, and is perfectly rational, it can rationally weigh all factors, 
devise a perfect contract spanning all future decisions, and thus arrive at an 
optimal choice (cf. Radner, 1968). However, “[..] rational behavior is a set of 
propositions that can be regarded either as idealized approximations to the actual 
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behavior of men or as recommendations to be followed” (Marschak, 1950). It is a 
“normative model of an idealized decision maker, not a description of the behavior 
of real people” (Tversky and Kahneman, 1986). Simon (1955) stresses that 
humans cannot decide optimally because they are -what was later coined- 
boundedly rational: they may perceive only part of the options, may have either 
flawed information on which outcomes will actually occur (and with which 
probabilities), and may not have a strict preference for outcomes (so, struggle with 
picking one of the options). Indeed, individuals do not maximize expected utility 
(Machina, 1989). These “deviations of actual behavior from the normative model 
are too widespread to be ignored, too systematic to be dismissed as random error, 
and too fundamental to be accommodated by relaxing the normative system” 
(Tversky and Kahneman, 1986). 

Under (stochastic) uncertainty and limited predictive abilities, behavior of 
individuals may differ, since they have (different) tolerances for risks (cf. Knight, 
1921; Arrow, 1959). In microeconomics, the risk preference of a firm affects both 
the quantity produced and price demanded (Baron, 1970), such that the 
heterogeneity of economic agents inhibits aggregation of decisions into those of a 
“representative” agent.  

Agent-based models do allow implementing heuristics that take into account a 
private world-model and own reasoning on (possible) actions and behavior of 
other agents. Crucially, these heuristics need not be perfectly optimizing, can well 
cope with imperfect or missing information, and may even consider (perceptions 
of) interests of other agents. As such, agent-based modeling allows for a variety of 
rationalities not just a 'perfect, self-interested rationality' (cf. Gintis, 2009) and is a 
supplement to behavioral economic experiments (Pyka and Müller, 2016). 
Moreover, policy makers can experimentally derive interventions that either 
implicitly account for or even explicitly exploit such behavioral economic 
heuristics, e.g. by providing a 'nudge' (cf. Shafir, 2013). 

2.5 Interaction and problem structure uncertainty 

The implications of bounded rationality are particularly substantial when it comes 
to making decisions in a system featuring multiple agents. Whenever economic 
agents are perfectly rational and possess complete information, agents cope with 
(stochastic) uncertainty due to interaction of their decisions (e.g. through the 
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prices) by following the stochastic game theory model (Shapley, 1953). In this, 
agents know which strategy to follow (i.e. which actions to take) to maximize the 
expected payoff given the strategies of other agents. Given the heterogeneity in 
information, computational capabilities, and risk preferences of agents, there is 
uncertainty on the decision behavior of other agents. This inhibits rational 
sequential decision making; the decisions of agents may change the underlying 
structure of the decision problem (viability of certain options, the probability of 
certain transitions, etc.) and the decisions of other agents cannot be anticipated.  

2.6 In sum: Uncertainty in operational decisions    

We thus find that decision making in operational microeconomics is plagued by 
four inevitable sources of uncertainty, each with different consequences. Firstly, 
stochasticity (having a known probability distribution), due to which past 
decisions may still well prove to be non-optimal in future states. Secondly, a lack 
of information, calling for postponement of decisions or picking options that leave 
a degree of flexibility in later decisions. Thirdly, a limited understanding and 
limited computing capacity, due to which – even if all relevant information is 
present- agents may make non-optimal decisions. Fourthly, given that economic 
agents are heterogeneous (not only in their risk preferences, but also in the 
information available), their computational power, their objective function, etc., 
agents can anticipate behavior of other agents only to a limited extent, and their 
decisions may structurally alter the decision problem for other economic agents. 

In the next section, we show that not only does the economic system under 
study feature these sources of uncertainty, but also that the very presence of that 
uncertainty triggers perpetual structural change, further exacerbating the problems 
of managing (partaking in) the system. 

3 Decision making in innovation economics 

In the 50s of last century, economists became keenly aware of the significance of 
technological change for economic growth. Fabricant (1954) observed that about 
90 percent of the increase in output per capita over the years 1871–1951 is to be 
attributed to technical progress. Solow (1957) observed that just under 90 percent 
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of the doubling in the gross output per man-hour over the years 1909–1949 is to be 
attributed to technical change, and only the remainder to an increase of capital. 
However, despite the significance of and the piqued interest in, there is yet a 
limited understanding of how technological change comes about, how 
entrepreneurs could or should direct research and development activities, and 
which role the public sector could or should play. Here, we elaborate on making 
decisions in research and development activities over time and the role of (i) 
existential and technological uncertainty, and (ii) networking and dynamic 
inefficiencies. We do not provide an exhaustive list of types and sources of 
uncertainty in innovation processes (for an extensive literature survey, see Jalonen, 
2011). We end with a discussion of the various ways in which policy makers could 
improve the efficiencies in innovation processes, ‘repair’ the market for 
technological research, and take away somewhat of the uncertainties. 

3.1 Existential uncertainty 

In the neo-Schumpeterian perspective, a capitalist economy is engaged in a self-
propelled dynamics due to three mechanisms: (i) if (potential) profit margins in a 
particular (non-existing or insufficiently competitive) market are sufficiently high 
and entry costs can be recouped, entrepreneurs enter to reap profit opportunities, 
(ii) unfettered price competition among entrepreneurs erodes profit margins of 
existing products and increases the efficiency of production processes, and (iii) 
entrepreneurs seek to develop (breakthrough) inventions to restore mono-
/oligopolistic profit margins or serve niche markets in which customers have a 
higher willingness-to-pay. 

Firms in a capitalist economy seek to technologically outrace one another, yet 
due to bounded rationality, they are (i) technologically uncertain of how and when 
to make better products, and (ii) uncertain of what products are (going to be) in 
demand. Firms are therefore forced to proactively decide on what to make and face 
the consequences later (cf. Knight, 1921). As we have seen in the previous section, 
firms have different characteristics (thereby different goals), do not know all 
options or are unable to perform certain actions, and may moreover not know how 
to realize such options with certainty. Given different probabilities of survival on 
the market, there is a natural selection of different types of firms (Alchian, 1950) 
and (thereby) particular routines of firms (Nelson and Winter, 1982).  
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3.2 Technological uncertainty 

Due to the unfamiliarity of inventors with particular technological knowledge and 
the high rate of failure of combinations of such knowledge, the course of 
technology search is highly uncertain (Fleming, 2001). In operational models of 
technology search, a firm constructs an innovation by combining technological 
‘elements’, thereby searching for new combinations that exceed the utility/ fitness 
of the yet best known combination (see e.g. Frenken, 2006; Gilbert et al., 2001). In 
these models, firms have no a priori information on whether particular 
combinations of elements have higher utility/ fitness than other combinations or 
not. This reflects how firms act uninformed, are not able to determine the outcome 
ex ante, and how the outcome of particular actions is uncertain (cf. Dosi, 1988; 
Metcalfe, 1994). Due to this high technological uncertainty, there are inherently 
uncertain returns on investment in R&D. 

However, the outcome of research and development activities is not 
completely haphazard. Arrow (1962) argues that the initial a priori probability 
distribution of the true “state of nature” (e.g. the firm’s understanding of the 
technological principles or the feasibility of combinations of capabilities) is 
relatively flat. With each successive research step, the a posteriori distribution 
becomes more defined. So, researchers make the best possible choice, given the 
capabilities and action options at their disposal, and given the information about 
the future and the consequences of possible actions. 

In line with this, we argue that researchers enhance their understanding of the 
operational rationales of the technology studied, construct a functional and 
operational decomposition of a product to be developed, and use this to further 
guide research efforts. Of course, the risk of this adaptive, path-dependent search 
is that researchers may become locked-in in researching a particular (infeasible or 
subpar) operational model. 

Due to the technological uncertainty, there is a market failure for research and 
development. Arrow (1962) observed that inventing new products relies on the 
production and use of (new) technological knowledge, but firms are bound to 
underinvest in the production of that technological knowledge for various reasons. 
Firstly, technology search is risky and there are uncertain returns on investment in 
R&D. Secondly, firms struggle to recoup R&D expenses due to the limited 
appropriability. After all, competitors can freely access the technological 
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knowledge once produced, particularly so when this knowledge is embodied in the 
product. Any legal system (e.g. patent protection) falls short to protect how the 
knowledge is used in circumvention or extension. 

This is particularly true for basic research, as entrepreneurs in a wide variety 
of industries can and do actually use the scientific knowledge in their inventions. 
As particularly basic research thus generates a future stream of benefits that 
accrues to society, the stepping in of government to repair this market failure is 
justified (Nelson, 1959; Arrow, 1962). That said, although a market failure for 
publicly available basic research is plausible, firms may still invest in specific, 
applied research as reaping spillovers requires specific absorptive capacities that 
competitor may not have. 

3.3 Networking efficiency 

The present-day understanding of innovation processes is that research & 
development as well as commercialization of new products, processes, services, 
business models, etc. do take place in systems of innovation (for an early 
proponent, see Metcalfe, 1994). Regardless of whether an innovation system is 
national, regional, or sectoral, it features networks of firms exchanging and 
creating knowledge, possibly facilitated by governmental institutes like an 
exchange platform or competence center. Given the vertical specialization of firms 
on knowledge in their domain of application, it is crucial for any firm to seek (i) 
access to and synergistic cross-fertilize with complementary knowledge possessed 
by other economic agents (Grant and Baden-Fuller, 2004), and (ii) cooperate in 
redesign of products beyond the current technological interfaces (cf. Frenken, 
2006). As such, arguably, networking capabilities are indispensable for individual 
firms. Note that, since researchers, follow their limited understanding and 
(imperfect/ partial) functional and operational decomposition of a product to be 
developed, innovation networks (and even innovation systems) can be organized 
around infeasible or inferior product technology.  

The distribution of technologically related knowledge over multiple agents, 
possibly spread out geographically (e.g. in another country) or organizationally 
(e.g. a high shortest path length), etc. substantially hampers innovative 
capabilities. Although evolutionary forces may enhance the organizational 
properties of innovation systems that survive, there may very well be both static as 
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well as dynamic inefficiencies and inadequacies in existing innovation systems in 
the form of (i) the absence of firms with particular capabilities/ knowledge, (ii) the 
lack of ties between particular firms or poor communication across existing ties, or 
rather (iii) the existence of too strong ties or asymmetries in power causing a lock-
in in existing designs (cf. Boschma, 2009; Tödtling and Trippl, 2005; Pyka, 2015). 
On top of these three sources of innovation system failures, firms may have a lack 
of information on whether particular knowledge is present somewhere or not, 
causing these firms to search for this information (possibly in vain) or duplicate 
research that has already been done by another firm. 

3.4 Dynamic inefficiencies 

From a technological perspective, firms cycle between a stage of inventive 
activities to open up a new market or to leapfrog existing products in an existing 
market, and a stage of incremental product innovation and enhancing production 
efficiency, where stage transitions are punctuated by breakthrough inventions and 
concentration and followed by a swarm-in and a shake-out of entrepreneurs and 
production houses respectively (cf. Utterback and Abernathy, 1975; Anderson and 
Tushman, 1990; Malerba, 2006). 

If firms are to survive the entries into and shake-outs over multiple product 
life-cycles, they have to strike a balance between exploiting (and incrementally 
innovating) the current product range, as well as exploring, absorbing, and 
developing radically new products (Cyert and March, 1963; Tushman and 
O’Reilly, 1996).  

Due to imperfect assessment of the a priori distribution of technological 
opportunities and profit prospects, firms risk inopportune changes in research 
focus. Indeed, firms need to strike a balance when to explore (through networking 
and technology search) and when to exploit (through incremental improvements 
and plain microeconomic everyday business). Evolutionary inefficiencies arise due 
to bounded rationality in deciding when and how much to widen or narrow the 
technological focus. If there is a bias to application and the focus narrows too soon 
or widens up too late, firms may be exploiting technology with poor profit 
prospects (explorative inefficiency). If the focus narrows too late or widens too 
soon, research funds are squandered on infeasible technologies (exploitative 
inefficiency) (Pyka, 2015). 
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3.5 Opportunities for policy makers  

While the means to overcome the operational uncertainties and market failures 
described before are arguably limited, there are various ways for a policy maker to 
enhance dynamic efficiency of the innovation system at hand. Policy intervention 
is to resolve the above mentioned market failures, improve explorative and 
exploitative efficiency, and reduce uncertainties. We propose the following 
interventions: 

Firstly, repairing the market failure for fundamental research and improving 
appropriability of applied research. Given the importance for a wide variety of 
fields, government should financially support fundamental scientific research and 
research into general purpose technologies. Government should protect intellectual 
property in applications and ensure redistribution of economic value of unintended 
knowledge flows. 

Secondly, facilitating the access to, recombination and diffusion of, as well as 
the application of knowledge. In the early phase of the research process, the 
efficiency of exploration is to be enhanced by stimulating a broad range of projects 
or decentralized search by a range of firms. To update the common understanding 
of the “state of nature” and the a priori probability distribution, firms and research 
institutes should be stimulated to share information on technological feasibilities. 
Related to this is that government should stimulate valorization of research in 
applications when technologically opportune.  

Thirdly, regulating research directions and applications. Arguably, policy 
makers should, in general, refrain from convoluting the probability distribution of 
opportunities, because they too suffer a limited understanding of technology (or 
even more than technology experts working in industry). That said, given their 
involvement in research activities of multiple firms, (public) knowledge platforms 
and competence centers may well have a sharper a priori distribution (or obtain 
one by delegating mutually exclusive research directions to a range of firms). 

Fourthly, managing the population dynamics. Given the importance of 
decentralized exploration, government should stimulate startups and entry of 
entrepreneurs. Moreover, government should combat anticompetitive behavior and 
lower entry barriers. 

Fifthly, building networks. Governmental or industry institutions may (i) 
establish links between firms, (ii) become a research agent seeking to tackle 



 

www.economics-ejournal.org  14 

particular technological issues, (iii) become a knowledge sharing hub, (iv) 
stimulate entry of particular (types of) economic agents (at particular places) in the 
network, and (v) stimulate exploration of new product architectures with other 
than current network partners. 

Finally, safeguarding societal interests and curbing adverse effects of 
capitalism. Fierce price competition in a free market invites externalization of 
environmental costs, causes concentration of capital & social inequalities, features 
tragedies of the commons (e.g. overproduction, overexploitation), inefficiencies in 
R&D (e.g. due to duplication) and production, etc. Particularly the inefficiencies 
and tragedies can be address by information sharing, while internalization of costs 
can be ensured through regulation, laws and regulations, certificates, etc.  

We see that policies thus target the design and inner workings of the 
innovation & production system (e.g. network and population management, 
establishing institutes), as well as explicitly giving direction to research and 
production activities both re- and proactively (e.g. financing particular research, 
stimulating startups in certain sectors, regulating waste streams, certification 
marks), etc. In general, present-day policy makers employ a policy mix with a 
handpicked selection of existing or ex novo created instruments tailored to the 
context in which they are applied (cf. Borras and Edquist, 2013). The policies and 
thereby instruments required depend strongly on the particularities of and the 
development patterns in the regional innovation system (Tödtling and Trippl, 
2005; Camagni and Capello, 2013). For a framework to classify different 
innovation policy instruments and a range of examples, see Borras and Edquist 
(2013). 

4 Policy evaluation with agent-based models 

Even up to today, it is not uncommon that policies are ad hoc, based on individual 
case studies, and/or without unambiguous scientific support. That said, policy 
makers rather do not experiment with interventions in the real world if there may 
be substantial irreversible adverse effects. Economic models (of various sorts) 
allow policy makers to evaluate the effects of their policy interventions before 
actually implementing them in the real world. Over the last couple of decades, not 
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only have the business models, modes of organization of production and 
innovation activities, and –accordingly- policies changed drastically, so have the 
economic models to determine the policy interventions. In his 1957 paper, Solow 
writes: “As long as we insist on practicing macro-economics we shall need 
aggregate relationships”. After the burial of the representative agent and the birth 
of heterogeneous agents, such undue aggregation is no longer desirable.  
Moreover, with the advent of computational means to simulate large populations 
of heterogeneous, interacting agents, aggregation is also no longer required. 

We use ABMs in research to, firstly, abductively formulate hypotheses on the 
behavior of real-world agents as cause for empirical realities (cf. Axelrod, 2007; 
Brenner and Werker, 2007). Agent-based models allow studying dynamics under 
ill-defined behavioral rules (heuristics) coping with uncertainty about the future 
(cf. Lempert, 2002) and implementing elements specific for the context and 
locality. Moreover, the real economic system can be implemented largely 
disaggregated and unabridged, as well as calibrated to empirical data (cf. Boero 
and Squazzoni, 2005). Secondly, we use empirically calibrated ABMs to evaluate 
the effects of particular policy interventions. For the remainder of this section, we 
make the case that and explain how policy makers can use ABMs to their 
advantage. 

4.1 Implementing the required elements 

For an extensive discussion on what defines a neo-Schumpeterian agent-based 
model and what are the essential components and different considerations in 
designing an agent-based model, the reader is referred to Pyka and Fagiolo (2007). 
For the experienced ABM developer, it is obvious that the elements mentioned in 
the previous two sections can be implemented without much ado. In fact, the field 
of neo-Schumpeterian modeling started with Nelson and Winter (1982) 
implementing an ABM with technological competition, entry and exit, 
heterogeneity, autonomous decisions, and technology search. Others have 
implemented ABMs for the formation of supply chains and knowledge-based 
innovation networks (Gilbert et al., 2001), research conglomerates (Scholz et al., 
2010), regional innovation systems (Korber et al., 2009), as well as industry-
university research networks (Ahrweiler et al., 2011; Triulzi and Pyka, 2011) 
under operational, technological and existential uncertainties, as well as network 
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inefficiencies. For a further discussion of issues of implementation, the reader is 
referred to the subsection on challenges of operationalization. 

4.2 Disaggregated, unabridged modeling for particular cases 

One of the most obvious advantages of using ABMs for a virtual world is that the 
researcher-modeler is not forced to conceptually ‘over-abstract’ the real-world 
system that is studied. In general, the researcher-modeler breaks down the real-
world system in, on the one hand, definitions of agents’ behavioral rules1 and, on 
the other hand, definitions of the elements in the environment (e.g. resources, 
infrastructure, geographical space, communication medium). Given that the agent-
based model is thus a close representation of an actual real-world system, much 
more than equation-based aggregations thereof, policy makers can easily join in on 
defining the behavior of agents (e.g. collaboration heuristics, product-market 
strategy) as well as the economic setting in which these agents operate (e.g. the 
product market served, the patent system in place, the institutional framework). In 
the ‘translation’ from the real-world elements to the model operationalizations, the 
modeler does not need to bother about tractability of a solution, about the formal 
definition, about the dimensionality of the system as a whole, etc. Moreover, given 
the straight-forward associations of artificial to real-world elements, researchers 
and policy makers can interpret simulation outcomes straightforward and infer on 
the mechanisms at play. 

An additional reason to develop and use encompassing and realistically 
complex2 models is that policy interventions should not ignore particularities of 
the actual economic system sought to intervene in. Different innovation systems in 
the same industry may differ substantially on key dimensions and internal 
dynamics, and, evidently, policy interventions in these key dimensions are then 
likely to have different effects, so may need to be differed for these systems. On 
top of the individual differences from one economic system to the other, the 
_________________________ 
1 Arguably, these rules themselves are socio-economic interpretations of how agents have sensors to 
perceive external events, upon which heuristics translate interpretations of these events in 
combination with an internal state into actions performed by the agents’ actuators. 
2 Complex in terms of high dimensionality, conceptual richness, and/or intricate and non-linear 
interactions. 
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various economic systems are coupled through a shared market, links in value 
networks, etc., so it may be undesirable to uncouple economic systems and model 
just one, in isolation. Obviously, to properly evaluate the effects of policy 
interventions, not only should the agent-based model reflect the real-world in 
sufficient detail and complexity, so should the simulated policy instruments. 

That said, also in formulating ABMs, the modeler-researcher has to strike a 
balance between a simple and a descriptive model by assuming away details 
deemed irrelevant, insignificant, or distracting in answering particular research 
questions (cf. Deichsel and Pyka, 2009). Particularly if the system exhibits high-
dimensional and non-linear double dynamics (concepts that are discussed in detail 
below), the modeler-researcher best limits the model to the essential parts so as to 
be able to ascertain validity and interpret simulation results. Moreover, also in 
formulating an ABM it may be commendable to extend an existing model with 
established validity (cf. Pyka and Fagiolo, 2007).  

4.3  Transparency and “God mode” 

Another major advantage of using computer simulation is that the programmer can 
provide access to all the data of agents and can log each step in every procedure. 
As such, the virtual world is perfectly transparent. The modeler-researchers and 
policy makers can record and study events, flows of knowledge and resources, and 
decisions and interactions of agents in great detail. ABM simulation thus also 
allows studying in detail the connection of micro-level flows and decisions, non-
linear interactions of agents at the meso-level, the translation of micro- and meso-
activities into macro-level indicators and phenomena, and the subsequent feedback 
into micro-level behavior. As, on top of merely being able to conduct a black-box 
study of the effects of policy interventions, ABMs allow tracing structural 
interactions, collecting rich data, studying (non-linear) interaction of decisions, etc. 

Moreover, in the real world, not only are data and decision processes largely 
unobservable for policy makers, they also can – generally – not fully control the 
operational behavior of agents or the environment in which they operate. In 
contrast, in ABMs, modeler-researchers and policy makers have “God mode” 
power to change agent behavior instantaneously. In fact, modelers can even use 
the observable and controllable elements explicitly in agent behavior heuristics. 
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On top of transparency and control over behavior, policy makers can use 
ABMs to study the immediate and emerging effects of interventions, initializations 
of the virtual world, and external events on the otherwise autonomously running 
virtual world. Such interventions may be ‘ad hoc’ experiments or rather a 
predefined procedure in the code that endogenously responds to the state of the 
artificial world. The experimental variables in such an intervention may be either 
funding of particular research activities of individual agents, the presence of 
particular knowledge sharing platforms, regulations on R&D network formation, 
etc. The researcher may also experiment with the initialization of the simulation 
run, e.g. different initial social or organizational network, a different distribution of 
technological opportunities, different collaboration propensities, etc. 

ABMs can be and also are used to study the effects of external events like 
disruptions in supply (e.g. of financial means, or of raw input material), 
discontinuation of social or organizational links (e.g. due to political decisions), or 
shifts in demand (e.g. due to a natural catastrophe, or a ban), etc. 

4.4 Harnessing enthusiasm  

While these advantages of using ABMs for policy evaluation (e.g. unabridged 
modeling, heterogeneity, particularity, transparency, God mode) may get policy 
makers interested, one still needs to win them over for a particular project by 
having them accept the limitations (discussed in the next section). To harness the 
enthusiasm of policy makers, modeler-researchers need to ensure that they 
subscribe to (possibly limiting) operational definitions and support the (possibly 
limited) research questions that can thus be answered. To do so, it is of paramount 
importance that policy makers are involved in the actual design and progressive 
adorning of the ABM. Whenever policy makers provide modeling input, they can 
interpret, appreciate, and use the output. Do note that this is in fact a serious 
challenge, because the modeler-researchers should then be involved early on in the 
policy research process and should also have policy makers dedicate time and 
resources in assisting in the actual modeling.  
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5 Challenges of using agent-based models 

Occasionally, policy makers are somewhat skeptical about the value of ABM-
based policy recommendations. Firstly, since the underlying technical 
implementation of the model is largely a black-box for the policy makers, they 
contest the internal and external validity of outcomes. Secondly, simulation 
outcomes are poorly understood and misinterpreted because of the presence of 
temporal disturbances like the simulation onset behavior (due to ABM 
initialization) and learning (due to agent population evolution). Thirdly, there are 
disputes over the agent heuristics, and policy makers (may) argue that ‘in reality, 
agents do it differently’. Fourthly, it is argued that the ABM is not specific or 
generic enough for the case studied. 

Arguably, part of the skepticism of policy makers can be obviated by involving 
them already in formulating model elements. Calibration of model parameters and 
initial system conditions (e.g. firm profiles, network topology, market 
concentration) may instill yet more confidence. However, that said, a possible lack 
of validity is (and should also be) a major concern to the modeler. The challenges 
of validation and calibration of ABMs for policy evaluation are discussed first. A 
comment heard occasionally is that the validity of simulation outcomes is hard to 
gauge given conceptual model choices, the operational definitions, possible faults 
in the code, and particularly the non-linear interactions of various software 
modules. We discuss several issues with validity3 and ways to improve it. This is 
followed by a discussion on the comment that ‘real agents do it differently’. In 
this, the assumptions on and operationalizations of agent behavior ubiquitous in 
neoclassical economics and management science are pitted against the 
assumptions and operationalizations in the prevailing paradigm in the field of 
heterodox ABMs. Discussed last are the temporal disturbances in simulation 
outcomes and how to account for and prevent those. 

_________________________ 
3 For a discussion on validity for simulation models in general, the reader is referred to Sargent 
(2005). 
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5.1 Validation and calibration 

To bolster external validity of the model and provide tailored, possibly quantitative 
policy advice, it is commendable to use empirical data to calibrate the ABMs. Not 
only can macro-level parameters be estimated from data, but so can the 
composition of the agent population, the properties of the individual agents and 
their relationships, as well as particularities of the environment (e.g. resources, 
infrastructure, geography). 

5.1.1 Pitfalls of face validity, storytelling, curse of double dynamics, 
artifacts 

Customarily, ABMs produce graphs or tables of some key variables over time. The 
ABM simulation is said to have face validity if a (panel of) theme expert(s) 
qualifies these simulation outcomes to be in check with the real-world phenomena 
studied. During ABM development, however, the modeler itself assesses face 
validity for ‘reasonable’ values for all parameters and experimental variables. Not 
uncommonly, trial simulation runs produce surprising results, e.g. a counter-
intuitive or weak or rather strong effect of a particular parameter or experimental 
variable. It is then left to the developer-modeler to assure that the outcomes are not 
caused by faulty code or inadequate operational definitions of concepts.  

In assessing face validity, an obvious pitfall is that of ‘storytelling’, i.e. 
fabricating a conceptual story that confirms the outcomes but does not properly 
reflect the operational chain of events in the model. Such a story may have the 
researcher erroneously certify face validity. 

While face validity and correctness of underlying code may be easily 
established for simple, linear systems, validity of simulation outcomes may 
become hard to gauge whenever there are non-linearly interacting components and 
double dynamics. Operationally and structurally simple models with interacting 
components may already give rise to intricate dynamic behavior of which it is hard 
to establish (face) validity, think e.g. of a double pendulum system. Given that 
actual causes of simulation output is sometimes hard to trace in the overwhelming 
complexity of non-linear interactions in ABMs, the danger of storytelling is 
lurking.  

Similarly, interesting results may be ‘artifacts’, i.e. outcomes of a 
programmatically correct, unsuspected error in the operationalization. Clearly, if 
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the researcher-modeler engages in ‘storytelling’, artificial outcomes are less likely 
to be detected.  

5.1.2 Internal validity 

Unsurprisingly, face validity of simulation output is the first but also one of the 
weakest tests that ABMs should pass. A stronger validity concept is that of internal 
validity. In the context of ABM development, internal validity is taken here to be 
that there is no intellectual ambiguity of the causal chain through which input 
parameter settings cause the simulated output. Even if the outcomes are in line 
with expectations, the developer-modeler has the (scientific) responsibility to 
ensure correctness of the code and operational soundness of the model. We discuss 
three practices to assist in developing internally valid models. 

Firstly, to ensure sufficient intellectual scrutiny of the causal chain, developer-
modelers are encouraged to provide functional design specifications (FDS) and a 
program technical description (PTD), just as professionals in the software industry 
are required to do. In the FDS, the developer lays down the sequences and 
interdependencies of operations, here, in the model of the economic system. Note 
that the software design and actual real-world system can and may differ. In fact, 
part of the design decisions may stem from what is considered ‘good code 
practices’ rather than conceptual model considerations. Moreover, developer-
modelers should provide a PTD in the form of pseudo-code or flow-charts, to 
communicate the operations internal to procedures. Ideally, both the FDS and PTD 
should be contained in reports presenting ABM results, or be available upon 
request. Creation and maintenance of these documents does not only force the 
developers themselves to think over interactions and effects of certain operations. 
It also convinces other researchers and policy makers of the causal chain and 
internal validity, and allows other developer-modelers to implement the model in a 
language of their choice, reproduce the research findings, and extend the model for 
different purposes. 

Secondly, the developer-modeler should assert bug-free code, which –as most 
developers in economics are not trained computer scientists- generally boils down 
to testing code to great lengths to make sure code does what it is supposed to do. 
In systems with a few variables, the developer can easily step through the code or 
study debugging logs. In case of complex systems with non-linearly interacting 
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components, this task is daunting, although not impossible. We recommend to – at 
least initially – study the non-linear interactions in a controlled setting, e.g. a 
system with a limited number of agents, a system with agents that have some 
(interacting) heuristics disabled. 

Thirdly, when internal functioning of individual procedures/ modules has been 
approved, developer-modelers should ascertain that there are no unintended 
temporal interferences across procedures/ modules. Many economic ABMs are 
discrete time simulations in which each agent gets to conduct its activities each 
period. Given that agent heuristics respond to and operate upon the same macro-
level variables (e.g. the product market, product prices) and upon the states and 
activities of each other, there is feedforward of actions of agents into actions of 
agents executed later (e.g. a product launch by the first agent may affect the 
decision to launch products of other agents). An example of flawed intra-periodic 
interaction is discussed in Vermeulen (2015). 

5.1.3 External validity 

In the context of ABM development, external validity requires the ABM to 
reproduce a wide range of general features of the real-world system being 
modeled. Where face validity is a weak test that a model generates ‘reasonable’ 
outcomes for ‘regular’ parameter settings, external validity requires the software to 
produce outcomes that meet expert expectations, (stylized) facts, etc. under wildly 
varying settings. Ideally, the researcher can conduct cross-validation tests between 
different models, test similarity of an empirical dataset and the generated dataset, 
etc. 

Conveniently, external validity tests can also be conducted at the level of ABM 
modules. As these modules generally have one-to-one associations with real-world 
systems, modelers can conduct unit tests of separate modules. Concretely, 
developer-modelers can devise tests to assure that a module reproduces particular 
economic ‘stylized facts’. For instance, consider an ABM in which firms sell 
substitutable products to consumers and adjust prices to increase profits. A unit 
test would be to make demand inelastic and see whether there is product price 
explosion when the number of firms is kept equal to one (i.e. it is a monopoly) or 
whether there is profit margin erosion when the number of firms is set and kept 
high (i.e. there is unfettered competition). Arguably, whenever thorough unit tests 
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of a module indicate external validity, this is also an indication of the internal 
validity. 

5.2 Iterative model development 

The ultimate target for the programmer is to develop an ABM with ‘hotspots’ in 
the parameter landscape (for controlled variables) for which experimental 
variables produce simulation output that is (i) in check with (stylized) facts and is 
(ii) scientifically interesting or policy relevant (depending on the application). 
However, sometimes to the dismay of developer-modelers, a typical ABM 
development process is iterative. Even despite a proper design and technical 
specification stage, the first simulation runs may produce unexpected output. It is 
not uncommon that plots of certain key variables deviate from expectations, that 
the system responds in surprising ways to certain parameter changes, or that 
dynamics are extreme (e.g. exponential or rather zero growth, or featuring a lot of 
noise).  

In the exploratory runs of a simulation model, the researchers should look for 
such ‘hotspots’ in the parameter landscape for those parameters that are not 
calibrated or do not have clearly ‘reasonable’ values. Generally, this requires doing 
a coarse grained Monte Carlo study and then zooming in on possible hotspots to 
conduct a fine grained study to test the ABM simulation. If such hotspots cannot 
be found or simulation outcomes defy the stylized facts, it is then up to the 
developer to ascertain that the code is bug free. As explain before, this is done by 
analyzing the code, scrutinizing extensive event logs, and conducting unit tests. If 
code is bug free, the next step is to reconsider operationalizations in the ABM. It is 
not uncommon that limitations in the operationalization of real-world elements 
cause unexpected simulation outcomes (see the discussion on ‘artifacts’ above). 
Finally, if even the ABM’s operationalization withstood scrutiny, the conceptual 
design forming the basis for the ABM may need revision. After each ABM 
redefinition and redevelopment, new parameter landscape searches and test rounds 
are needed, possibly leading to new redefinitions and redevelopments. Our 
experience is that, indeed, there are occasionally more iterations needed to adjust 
heuristics. In case of a high-dimensional ABM with double dynamics and second-
order emergence, it may take an experienced modeler quite a number of working 
days to get acceptable and valid output. 
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5.3 Operationalization 

Here, we discuss only those operationalization issues that directly relate to the 
uncertainty dimensions mentioned in this paper. For an in-depth discussion of all 
the building blocks of neo-Schumpeterian models, the reader is referred to Pyka 
and Fagiolo (2007). 

5.3.1 Agent heuristics 

As we have seen, real-world agents are boundedly rational and have to make 
decisions under various uncertainties, generally following rules-of-thumb that 
imperfectly processes limited information. In ABMs, agents follow ‘heuristics’, 
i.e. a set of if-then rules on state variables that specify the actions for an agent to 
take. In the operationalization of these heuristics, the researcher-modeler should 
distinguish the operational sophistication of heuristics as well as the extent to 
which the decision domain is understood and incorporated in these heuristics. 
Depending on the topic studied, heuristics may have different levels of 
sophistication and domain knowledge. In between the two extremes of rational 
processing of perfect information and completely random behavior, there are agent 
heuristics that cope in a more or less sophisticated way with a limited 
understanding of or limited information on the decision domain. Arguably, the 
researcher-modeler should include only those heuristics that are the main 
operations in the economic process under study. The researcher-modeler and the 
policy maker should discuss early on which actions to include and how to abstract 
rules-of-thumb into heuristics. 

5.3.2 Technology search 

Technology competition is central in neo-Schumpeterian models. Depending on 
the purpose of the model, technology exploration and exploitation are also 
operationalized. Exploration is generally modeled as ‘search on a landscape’, 
where the search heuristics reflect the limited information on and understanding of 
the ‘state of nature’. Ideally, agents use past search findings to update the a priori 
probability of new search directions, but it is however common to simply take 
technology search to be a hill-climb or a random walk. Regretfully, despite the 
importance in neo-Schumpeterian models (particularly if they are used in policy 



 

www.economics-ejournal.org  25 

evaluation), there is no definite landscape search model. Exploitation is modeled 
by having agents compete with the ‘product’ of their search activities on a 
consumer market. 

‘Fundamental’ models used for scientific inquiry commonly do not feature 
distinct operationalizations for knowledge on the one hand and products that are 
created with this knowledge on the other. In models on innovation networks, such 
as our own (cf. Gilbert et al., 2001; Vermeulen and Pyka, 2014a, 2014b), 
knowledge is exchanged between and (jointly) created by firm agents in one 
process, while this knowledge is used to create products for consumers in another 
process. Across the various innovation network models, though, the 
operationalization of ‘knowledge’, ‘knowledge search’, ‘product, and ‘production’ 
differs, based on the application of the model, the researcher’s conceptualizations, 
data available for calibration, etc. 

Given that, for computer implementations, knowledge needs to be encoded (in 
bytes), knowledge may well be treated as indivisible units that can be stored in a 
repository and transferred to other agents as if perfectly codified. In case the 
researcher-modeler focuses on industrial innovation, knowledge units may be 
technical concepts used in products, technological fields in which an agent is 
active, etc. In case of a focus on scientific discoveries, knowledge units may be 
papers, proved/ disproved hypotheses contained in it, etc. 

Knowledge search may be operationalized as a random walk or hill-climb from 
an existing unit of knowledge to another or as a procedure that takes a collection of 
knowledge units readily owned and returns a (possibly new) knowledge unit 
according to some probability distribution (cf. Gilbert et al., 2001) or fixed graph 
(cf. Morone and Taylor, 2010; Vermeulen and Pyka, 2014a, 2014b). Actual 
calibration of this knowledge graph can be done using patent data or historical 
invention trees, either creating hard-wired graphs or probability matrices. 

Researcher-modelers face a similar challenge when operationally defining and 
empirically calibrating the translation of ‘knowledge’ into ‘products’ and 
determining the features or qualities of the products. In case the researcher’s focus 
is on industrial innovation, then empirical calibration may be done by historical 
analysis of inventions, underlying knowledge flows, and market value. In case the 
researcher’s focus is on scientific discovery, the product could be papers and the 
knowledge units could be hypotheses/concepts. 
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5.4 Emerging dynamics: temporal patterns, simulation onset, 
learning 

Both in designing an ABM as well as interpreting simulation outcomes, the 
researcher-modeler and policy maker should bear in mind that the emerging 
temporal pattern generally takes only one of several possible forms, that there is 
onset dynamics, that evolutionary training of heuristics affects dynamics, and that 
these dynamic phenomena interact and thereby possibly render artifacts both in 
dynamics as well as emerging strategies. 

Firstly, researchers use ABMs to simulate a wide variety of processes, but in 
general the key output variables either converge to particular ‘steady state’ values, 
form temporal patterns (e.g. staircasing S-shapes, multi-dimensional cycles), or 
display continuous growth or decline. It may be challenging to find, tune and 
justify the model elements to reproduce or test the formation of temporal patterns, 
particularly in case of high-dimensional double dynamics. 

Secondly, there may be an onset phase in the simulation output that should not 
be mistaken for conceptually meaningful results. With the ‘onset phase’, we refer 
to the first periods during which the system dynamics is largely determined by the 
initial conditions (e.g. values of variables) rather than conditions that are common 
to or could emerge within the real-world system. An example is that right after the 
start, the consumer agents have yet to do their first purchase, firm agents have yet 
to find knowledge and produce products, differences in firm strategies have yet to 
reflect in products on the market and capital stock, network relationships have yet 
to form, (macro-level) exponentially smoothened variables driving agent behavior 
have yet to lose initial variability, etc. Ordinarily, the rule-of-thumb is to discard 
results before a certain period. When the initial ABM simulation state (in terms of 
capital stocks, knowledge bases, social relationships, etc.) can be calibrated to 
empirical data, there is no/ much less onset dynamics. 

Thirdly, there is population-level learning in the agents’ strategies. With 
population-level learning, we refer to the evolutionary process driving 
improvement in the strategies and/or features of agents in the population. This 
evolutionary process is driven by (i) imitation (with slight involuntary mutations) 
by entrants of the strategies of successful agents, (ii) deselection of agents with 
strategies that are ‘unsuccessful’, e.g. in the form of bankruptcy. 
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Fourthly, there are various interactions of these processes. First of all, 
researcher-modelers should be aware that the population of agent strategies needs 
time to converge. In the onset phase, there may be an abnormal diversity of 
strategies or there may still be ‘inviable’ strategies present, such that dynamics 
may be extraordinarily erratic. Second of all, there may be (coincidental) 
emergence of strategies that are merely artificial. A strategy that emerges in the 
onset phase as superior, may be ‘nonsensical’ in the post-onset phase but 
nonetheless persist, e.g. because variation is too limited to escape the basin of 
attraction of that strategy.  

In deliberating with policy makers on modeling choices, researcher-modelers 
need to explain which ingredients are required for the ABM to reproduce 
particular dynamics (e.g. successive product life-cycles, societal transitions). 
Moreover, in contrast to the common understanding that forecasts become less 
reliable the more into the future, simulation results may become more reliable (or 
rather, stable) over time with the vanishing of variation caused by the onset 
dynamics and learning effects. It is important to be aware of and also explain to a 
policy maker exactly these intricacies in the interpretation of simulation results. 
On top of that, it should be taken as a warning to researcher-modelers that one 
should favor empirical calibration, should be reluctant to introduce learning in a 
great number of strategy variables, and should strive for simple models with 
limited temporal patterns to reproduce. 

6 Reflection 

In this paper, we have discussed the type of challenges that policy makers face 
when they seek to enhance growth in a capitalist economy. We have seen that 
firms suffer uncertainties, inefficiencies and market failures, both in everyday 
operations management generating immediate value from the current products as 
well as in innovation management to generate new products for future value. We 
have made a case for agent-based modeling as a policy evaluation tool because it 
(i) allows modeling the (necessary) real-world complexity with agent heuristics 
reflecting the bounded rationality of firms and inherent uncertainties they seek to 
deal with, and (ii) allows experimentation with and ex ante evaluation of effects of 
(a mix of) policy instruments that closely match(es) those sought to use in reality. 
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On top of the practical value of using ABMs in policy making, ABMs are 
particularly suited for abductive studies of possible mechanisms rendering 
empirical realities and thereby for economic theorizing. 

Given the potentially big impact of policies derived from policy evaluation 
exercises, we have given the challenges of validation and operationalization due 
attention. On top of that, we have highlighted intricacies in interpreting simulation 
outcomes (e.g. due to onset behavior, learning, and predefined temporal patterns). 
Reflecting on the qualities of present-day ABMs and the intended use, we stress 
that modeling of technology (and the search for knowledge and translating that 
knowledge into product) needs more attention. That said, if technology is treated 
as just another factor kept equal (‘ceteris paribus’), we may very well still study 
the effect on economic growth of policy interventions in population dynamics 
network topology, institutional support, etc. 

Finally, we remark that the historical outlook on sequential decision making 
revealed that neoclassical scholars concur with neo-Schumpeterian scholars in that 
economic agents suffer from stochastic, information, and technological 
uncertainties, thus have to resort to (probabilistic) heuristics, and generally act 
non-optimally in the light of these uncertainties. These two schools may very well 
be considered complements due to the type of models sought to apply 
(neoclassical economics better suited to study operational, microeconomic 
decision problems and neo-Schumpeterian economics better suited to study 
complexity and dynamics in innovation processes) rather than head-on substitutes. 
If anything, assumptions seem to be matched to the method sought to apply and 
type of (normative) recommendations sought to give rather than to reflect a 
heartfelt perception of human capabilities. 

 



 

www.economics-ejournal.org  29 

Acknowledgements  This work was realized with financial support of the Dutch science 
foundation NWO, grant 458-03-112, and the DACH research program Innovation 
Networks for Regional Development funded by the German science foundation DFG, grant 
PY 70/8-1. Parts of Sections 4 and 5 are based on Vermeulen, B. (2015), “An essay on 
agent-based models for policy making”, in: P. Ahrweiler, A. Pyka, and N. Gilbert (Eds.), 
“Joining Complexity Science and Social Simulation for Innovation Policy: Agent-based 
modelling using the SKIN platform”, Cambridge Scholars Publishing, Cambridge UK (in 
press). 

References 
Ahrweiler, P., A. Pyka, and N. Gilbert (2011). A new model for university-industry links 

in knowledge-based economies. Journal of Product Innovation Management 28(2): 
218–235. http://onlinelibrary.wiley.com/doi/10.1111/j.1540-5885.2010.00793.x/full  

Alchian, A. (1950). Uncertainty, evolution and economic theory. Journal of Political 
Economy 58(3): 211–221. 
http://wolfweb.unr.edu/homepage/pingle/Teaching/BADM%20791/Week%206%20D
ecision%20Making%20Under%20Uncertainty/Alchian-Uncertainty.pdf  

Anderson, P., and M.L. Tushman (1990). Technological discontinuities and dominant 
designs: A cyclical model of technological change. Administrative Science Quarterly 
35(4): 604–633. http://www.jstor.org/stable/2393511?seq=1#page_scan_tab_contents   

Arrow, K.J. (1959). Functions of a theory of behavior under uncertainty. Metroeconomica 
11(1–2): 12–20. 
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-999X.1959.tb00258.x/abstract  

Arrow, K.J. (1962). Economic welfare and the allocation of resources for invention. In The 
rate and direction of inventive activity: Economic and social factors. Princeton 
University Press. 

Arrow, K.J., T.E. Harris, and J. Marschak (1951). Optimal inventory policy. Econometrica 
19(3): 250–272. https://www2.bc.edu/samson-alva/ec720f11/inventory.pdf  

Axelrod, R. (2007). Simulation in the social sciences. In J.-P. Reynard (Ed.), Handbook of 
research on nature inspired computing for economy and management. Hershey, CA: 
Idea Group. 

  

http://onlinelibrary.wiley.com/doi/10.1111/j.1540-5885.2010.00793.x/full
http://wolfweb.unr.edu/homepage/pingle/Teaching/BADM%20791/Week%206%20Decision%20Making%20Under%20Uncertainty/Alchian-Uncertainty.pdf
http://wolfweb.unr.edu/homepage/pingle/Teaching/BADM%20791/Week%206%20Decision%20Making%20Under%20Uncertainty/Alchian-Uncertainty.pdf
http://www.jstor.org/stable/2393511?seq=1#page_scan_tab_contents
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-999X.1959.tb00258.x/abstract
https://www2.bc.edu/samson-alva/ec720f11/inventory.pdf


 

www.economics-ejournal.org  30 

Baron, D.P. (1970). Price uncertainty, utility, and industry equilibrium in pure competition. 
International Economic Review 11(3): 463–480. 
https://ideas.repec.org/a/ier/iecrev/v11y1970i3p463-80.html  

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National 
Academy of Sciences of the United States of America 38(8): 716–719. 

Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American 
Mathematical Society 60(6): 503–515. 

Bellman, R. (1957). Dynamic programming. Princeton University Press. 

Boero, R., and F. Squazzoni (2005). Does empirical embeddedness matter? Meth-
odological issues on agent-based models for analytical social science. Journal of 
Artificial Societies and Social Simulation 8(4). http://jasss.soc.surrey.ac.uk/8/4/6.html  

Borras, S., and C. Edquist (2013). The choice of innovation policy instruments. 
Technological Forecasting and Social Change 80(8): 1513–1522. 
http://www.sciencedirect.com/science/article/pii/S0040162513000504  

Boschma, R. (2009). Evolutionary economic geography and its implications for regional 
innovation policy. Papers in Evolutionary Economic Geography No. 0912, Utrecht 
University. https://ideas.repec.org/p/egu/wpaper/0912.html  

Brenner, T., and C. Werker (2007). A taxonomy of inference in simulation models. 
Computational Economics 37(3): 227–244. 
https://ideas.repec.org/a/kap/compec/v30y2007i3p227-244.html  

Camagni, R., and R. Capello (2013). Regional innovation patterns and the EU regional 
policy reform: Toward smart innovation policies. Growth and Change 44(2): 355–
389. http://onlinelibrary.wiley.com/doi/10.1111/grow.12012/abstract  

Cyert, R., and J. March (1963). A behavioural theory of the firm. Englewood Cliffs, NJ: 
Prentice-Hall. 

Deichsel, S., and A. Pyka (2009). A pragmatic reading of Friedman's methodological essay 
and what it tells us for the discussion of ABMs. Journal of Artificial Societies and 
Social Simulation 12(4). http://jasss.soc.surrey.ac.uk/12/4/6.html   

Dosi, G. (1988). The nature of the innovative process. In G. Dosi, C. Freeman, R. Nelson, 
G. Silverberg, and L. Soete (Eds.), Technical Change and Economic Theory. London 
and New York: Pinter Publishers.  

Fabricant, S. (1954). Economic progress and economic change. 34th Annual Report of the 
NBER. National Bureau of Economic Research, Cambridge, MA. 

Fleming, L. (2001). Recombinant uncertainty in technological search. Management 
Science 47(1): 117–132. http://www.people.hbs.edu/lfleming/techsearch.pdf  

https://ideas.repec.org/a/ier/iecrev/v11y1970i3p463-80.html
http://jasss.soc.surrey.ac.uk/8/4/6.html
http://www.sciencedirect.com/science/article/pii/S0040162513000504
https://ideas.repec.org/p/egu/wpaper/0912.html
https://ideas.repec.org/a/kap/compec/v30y2007i3p227-244.html
http://onlinelibrary.wiley.com/doi/10.1111/grow.12012/abstract
http://jasss.soc.surrey.ac.uk/12/4/6.html
http://www.people.hbs.edu/lfleming/techsearch.pdf


 

www.economics-ejournal.org  31 

Frenken, K. (2006). Technological innovation and complexity theory. Economics of 
Innovation and New Technology 15(2): 137–155. 
https://ideas.repec.org/a/taf/ecinnt/v15y2006i2p137-155.html  

Gilbert, N., A. Pyka, and P. Ahrweiler (2001). Innovation networks – A simulation 
approach. Journal of Artificial Societies and Social Simulation 4(3). 
http://jasss.soc.surrey.ac.uk/4/3/8.html  

Gintis, H. (2009). The bounds of reason: Game theory and the unification of the 
behavioral sciences. Princeton University Press.  

Grant, R.M., and C. Baden-Fuller (2004). A knowledge accessing theory of strategic 
alliances. Journal of Management Studies 41(1): 61–84. 
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6486.2004.00421.x/abstract  

Hicks, J.R. (1931). The theory of uncertainty and profit. Economica 32: 170–189. 

Holt, C.C., F. Modigliani, and H.A. Simon (1955). A linear decision rule for production 
and employment scheduling. Management Science 2(2): 159–177.  
http://www.jstor.org/stable/2627493?seq=1#page_scan_tab_contents  

Jalonen, H. (2011). The uncertainty of innovation: A systematic review of the literature. 
Journal of Management Research 4(1). 

Knight, F. H. (1921). Risk, uncertainty, and profit. Boston, MA: Hart, Schaffner & Marx; 
Houghton Mifflin Company. 

Korber, M., M. Paier, and M.M. Fischer (2009). An agent-based view of the biotech 
innovation system. Reg Direct Int Sci J 2(2): 33–55. 

Lempert, R. (2002). Agent-based modeling as organizational and public policy simulators. 
Proceedings of the National Academy of Sciences 99(3): 7195–7196. 
http://www.pnas.org/content/99/suppl_3/7195.abstract  

Machina, M.J. (1989). Dynamic consistency and non-expected utility models of choice 
under uncertainty. Journal of Economic Literature 27(4): 1622–1668. 
https://ideas.repec.org/a/aea/jeclit/v27y1989i4p1622-68.html  

Malerba, F. (2006). Innovation and the evolution of industries. Journal of Evolutionary 
Economics 16(1-2): 3–23. 

Marschak, J. (1950). Rational behavior, uncertain prospects, and measurable utility. 
Econometrica 18(2): 111–141. 
http://www.jstor.org/stable/1907264?seq=1#page_scan_tab_contents  

Marschak, T., and R. Nelson (1962). Flexibility, uncertainty, and economic theory. 
Metroeconomica 14(1–2–3): 42–58. 
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-999X.1962.tb00293.x/abstract  

https://ideas.repec.org/a/taf/ecinnt/v15y2006i2p137-155.html
http://jasss.soc.surrey.ac.uk/4/3/8.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-6486.2004.00421.x/abstract
http://www.jstor.org/stable/2627493?seq=1#page_scan_tab_contents
http://www.pnas.org/content/99/suppl_3/7195.abstract
https://ideas.repec.org/a/aea/jeclit/v27y1989i4p1622-68.html
http://www.jstor.org/stable/1907264?seq=1#page_scan_tab_contents
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-999X.1962.tb00293.x/abstract


 

www.economics-ejournal.org  32 

Metcalfe, J.S. (1994). Evolutionary economics and technology policy. The Economic 
Journal 104(425): 931–944.  
https://ideas.repec.org/a/ecj/econjl/v104y1994i425p931-44.html  

Morone, P., and R. Taylor (2010). Knowledge diffusion and innovation modelling complex 
entrepreneurial behaviours. Edward Elgar Publishing. 

Nelson, R.R. (1959). The simple economics of basic scientific research. The Journal of 
Political Economy 67(3): 297–306. 
https://ideas.repec.org/a/ucp/jpolec/v67y1959p297.html  

Nelson, R.R. (1961). Uncertainty, prediction, and competitive equilibrium. The Quarterly 
Journal of Economics 75(1): 41–62. 
http://qje.oxfordjournals.org/content/75/1/41.abstract  

Nelson, R.R., and S.G. Winter (1982). An evolutionary theory of economic change. 
Harvard University Press. 

Pyka, A. (2015). Avoiding evolutionary inefficiencies in innovation networks. 
Prometheus: Critical Studies in Innovation 32(3): 265-279.  
http://www.tandfonline.com/doi/abs/10.1080/08109028.2015.1011877  

Pyka, A. and G. Fagiolo (2007). Agent-based modelling: A methodology for neo-
Schumpeterian economics. In H. Hanusch and A. Pyka (Eds.), The Elgar companion 
to neo-Schumpeterian economics. Cheltenham, Edward Elgar. 

Pyka, A., and M. Müller (2016). Agent based modelling and behavioural economics. In 
Frantz, R. (Ed.), Handbook of behavioural economics. Routledge, forthcoming. 

Radner, R. (1968). Competitive equilibrium under uncertainty. Econometrica 36(1): 31–58. 
http://pages.stern.nyu.edu/~rradner/publishedpapers/20CompetitiveEquilibrium.pdf 

Sargent, R.G. (2005). Verification and validation of simulation models. Proceedings of the 
37th conference on winter simulation, pp. 130–143. 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4419595  

Scholz, R., T. Nokkala, P. Ahrweiler, A. Pyka, and N. Gilbert (2010). The agent-based 
Nemo Model (SKEIN) – Simulating European framework programmes. In P. 
Ahrweiler (Ed.), Innovation in complex social systems. London: Routledge. 

Schumpeter, J.A. (1942). Capitalism, socialism and democracy. New York: Harper & Row. 

Shafir, E. (Ed.). (2013). The behavioral foundations of public policy. Princeton University 
Press. 

Shapley, L.S. (1953). Stochastic games. Proceedings of the National Academy of Sciences 
of the United States of America  39(10): 1095–1100. 
http://www.pnas.org/content/39/10/1095.full.pdf  

https://ideas.repec.org/a/ecj/econjl/v104y1994i425p931-44.html
https://ideas.repec.org/a/ucp/jpolec/v67y1959p297.html
http://qje.oxfordjournals.org/content/75/1/41.abstract
http://www.tandfonline.com/doi/abs/10.1080/08109028.2015.1011877
http://pages.stern.nyu.edu/~rradner/publishedpapers/20CompetitiveEquilibrium.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4419595
http://www.pnas.org/content/39/10/1095.full.pdf


 

www.economics-ejournal.org  33 

Simon, H.A. (1955). A behavioral model of rational choice. The Quarterly Journal of 
Economics 69(1): 99–118. http://qje.oxfordjournals.org/content/69/1/99.abstract  

Solow, R.M. (1957). Technical change and the aggregate production function. The Review 
of Economics and Statistics 39(3): 312–320. 

Tödtling, F., and M. Trippl (2005). One size fits all? Towards a differentiated regional 
innovation policy approach. Research Policy 34(8): 1203–1219. 
https://ideas.repec.org/a/eee/respol/v34y2005i8p1203-1219.html  

Triulzi, G., and A. Pyka (2011). Learning-by-modeling: Insights from an agent-based 
model of university–industry relationships. Cybernetics and Systems 42(7): 484-501. 
http://www.tandfonline.com/doi/abs/10.1080/01969722.2011.610266?journalCode=u
cbs20  

Tushman, M.L., and C.A. O’Reilly (1996). Ambidextrous organizations: Managing 
evolutionary and revolutionary change. California Management Review 38: 8–30. 

Tversky, A., and D. Kahneman (1986). Rational choice and the framing of decisions. The 
Journal of Business 59(4): S251-78.     

Utterback, J., and W. Abernathy (1975). A dynamic model of process and product 
innovation. Omega 3(6): 639–656. 
http://www.sciencedirect.com/science/article/pii/0305048375900687  

Vermeulen, B., and A. Pyka (2014a). Technological progress and effects of (supra) 
regional innovation and production collaboration. An agent-based model simulation 
study. Proceedings of the IEEE International Conference on Computational 
Intelligence for Financial Engineering & Economics (CIFEr), pp. 357–364. 

Vermeulen, B., and A. Pyka (2014b). The effects of supraregional innovation and 
production collaboration on technology development in a multiregional world: A 
spatial agent-based model study. Cellular Automata, pp. 698–707. 

Vermeulen, B. (2015). An essay on agent-based models for policy making. In P. 
Ahrweiler, A. Pyka, and N. Gilbert (Eds.), Joining complexity science and social 
simulation for innovation policy: Agent-based modelling using the SKIN platform. 
Cambridge UK: Cambridge Scholars Publishing (in press). 

Wald, A. (1950). Statistical decision functions. New York: John Wiley & Sons. 

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical 
Statistics 16(2): 117–186. 

Ying, C.C. (1967). Learning by doing – An adaptive approach to multiperiod decisions. 
Operations Research 15(5): 797–812. 
http://pubsonline.informs.org/doi/abs/10.1287/opre.15.5.797  

http://qje.oxfordjournals.org/content/69/1/99.abstract
https://ideas.repec.org/a/eee/respol/v34y2005i8p1203-1219.html
http://www.tandfonline.com/doi/abs/10.1080/01969722.2011.610266?journalCode=ucbs20
http://www.tandfonline.com/doi/abs/10.1080/01969722.2011.610266?journalCode=ucbs20
http://www.sciencedirect.com/science/article/pii/0305048375900687
http://pubsonline.informs.org/doi/abs/10.1287/opre.15.5.797


 

 

 

 
 
 

Please note:  

You are most sincerely encouraged to participate in the open assessment of this article. You 
can do so by either recommending the article or by posting your comments.  

Please go to:  

http://dx.doi.org/10.5018/economics-ejournal.ja.2016-6 
 
 
 

The Editor  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Author(s) 2016. Licensed under the Creative Commons Attribution 3.0. 

 

 
  
 

http://dx.doi.org/10.5018/economics-ejournal.ja.2016-6
http://creativecommons.org/licenses/by/3.0/

	1 Introduction
	2 Decision making in microeconomics under uncertainty
	2.1 Sequential decision method
	2.2 Stochastic uncertainty
	2.3 Information uncertainty
	2.4 Behavioral uncertainty, risk tolerances and heterogeneity
	2.5 Interaction and problem structure uncertainty
	2.6 In sum: Uncertainty in operational decisions

	3 Decision making in innovation economics
	3.1 Existential uncertainty
	3.2 Technological uncertainty
	3.3 Networking efficiency
	3.4 Dynamic inefficiencies
	3.5 Opportunities for policy makers

	4 Policy evaluation with agent-based models
	4.1 Implementing the required elements
	4.2 Disaggregated, unabridged modeling for particular cases
	4.3  Transparency and “God mode”
	4.4 Harnessing enthusiasm

	5 Challenges of using agent-based models
	5.1 Validation and calibration
	5.1.1 Pitfalls of face validity, storytelling, curse of double dynamics, artifacts
	5.1.2 Internal validity
	5.1.3 External validity

	5.2 Iterative model development
	5.3 Operationalization
	5.3.1 Agent heuristics
	5.3.2 Technology search

	5.4 Emerging dynamics: temporal patterns, simulation onset, learning

	6 Reflection
	Acknowledgements  This work was realized with financial support of the Dutch science foundation NWO, grant 458-03-112, and the DACH research program Innovation Networks for Regional Development funded by the German science foundation DFG, grant PY 70/...
	References
	last page article.pdf
	The Editor


