
Dominiak, Adam; Duersch, Peter

Working Paper

Benevolent and Malevolent Ellsberg Games

Discussion Paper Series, No. 592

Provided in Cooperation with:
Alfred Weber Institute, Department of Economics, University of Heidelberg

Suggested Citation: Dominiak, Adam; Duersch, Peter (2015) : Benevolent and Malevolent Ellsberg
Games, Discussion Paper Series, No. 592, University of Heidelberg, Department of Economics,
Heidelberg,
https://doi.org/10.11588/heidok.00018747

This Version is available at:
https://hdl.handle.net/10419/127409

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.11588/heidok.00018747%0A
https://hdl.handle.net/10419/127409
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U n iv e rs i t y  o f  H e i de l b er g  

Discussion Paper Series    No. 592 

482482 

Department of Economics 

Benevolent and Malevolent Ellsberg Games 

 
Adam Dominiak and Peter Duersch 

May 2015 



Benevolent and Malevolent Ellsberg Games

Adam Dominiak∗

Department of Economics
Virginia Tech

Peter Duersch†

Department of Economics
University of Heidelberg

This Version: May 11, 2015

Abstract

Traditionally, real experiments testing subjective expected utility theory take
for granted that subjects view the Ellsberg task as a one-person decision prob-
lem. We challenge this view: Instead of seeing the Ellsberg task as a one-person
decision problem, it can be perceived as a two-player game. One player chooses
among the bets. The second player determines the distribution of balls in the
Ellsberg urn. The Nash equilibrium predictions of this game depend on the
payoff of the second player, with the game ranging from a zero-sum one to a
coordination game. Meanwhile, the predictions by ambiguity aversion models
remain unchanged. Both situations are implemented experimentally and yield
different results, in line with the game-theoretic prediction. Additionally, the
standard scenario (without explicit mention of how the distribution is deter-
mined) leads to results similar to the zero-sum game, suggesting that subjects
view the standard Ellsberg experiment as a game against the experimenter.
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1 Introduction

In 1961, Daniel Ellsberg proposed a class of choice problems designed to test the

subjective expected utility (SEU) hypothesis formalized by Savage (1954). Ellsberg

conjectured that subjects might exhibit choices that are incompatible with Savage’s

theory. Later experiments implemented Ellsberg’s idea and largely reported behavior

in line with his predictions. In this paper, we challenge the prevalent interpretation of

the Ellsberg choices observed in real experiments. Under a very natural assumption

about the motivation and utility function of the experimenter, the Ellsberg behavior

is supported by the Nash equilibrium in a game between the subject and the exper-

imenter. We run an experiment testing whether subjects view the Ellsberg task as a

game versus the standard view of a one-person decision problem. The data supports

the interpretation as a game.

The key element of Ellsberg’s thought-experiments is a sealed urn filled with colored

balls. The so-called Ellsberg urn is designed to present ambiguity, a choice situation

where some states of nature do not have an obvious probability assignment. In the

3-color version, the urn is placed in front of subjects who are informed that 30 balls

are of red color and 60 balls are somehow divided between black and yellow balls

without any information on the composition. Based on that information, subjects are

confronted with two choice problems, together called the Ellsberg task. In the first

choice problem, subjects are asked to choose between the bet yielding $1 if the ball

drawn is red and $0 otherwise; and the bet yielding $1 if the ball drawn is black and

$0 otherwise. The second choice is between the bet paying $1 if the drawn ball is

not-black and $0 otherwise; and the bet that paying $1 if the drawn ball is not-red

and $0 otherwise. After choices are made, two independent draws with replacements

are conducted. Subjects are paid according to their choices and the experiment ends.1

When certain “experimental conditions” - as Ellsberg (2001, p.137) in his doctoral

thesis called them - are satisfied, the choices made can be used to verify consistency

1Ellsberg proposed two versions of his thought-experiments: one with 2 colors and 2 urns and one

with 3 colors and 1 urn. The paper focuses on the 3-color version. The theoretical results carry over

to the 2-color experiment, see Appendix 7.
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with Savage’s key axiom, the Sure-Thing Principle. Ellsberg carefully outlined the

hypothetical situation in which his experiments are to take place: “You are not told

by whom, or by what process, or for what purpose the composition of Urn II was

determined (except that it was not determined, or revealed, to the observer who is

offering you gambles). [...] In particular, you might try to imagine circumstances that

would convince you that the person offering you gambles knows no more about the

contents of Urn II, or how they are determined, than you do, so that his

offers convey to you no “information” on those contents” (Ellsberg, 2001, p.131-132,

original emphasis).

Typically, the Ellsberg decision problem is formulated in a formal framework with

a state space representing the outcomes of a random draw from the urn. The objects

of choice (i.e., the bets) are depicted as mappings from states to the monetary payoffs.

Ellsberg showed that betting on red (resp. black) in the first choice and betting

on non-red (resp. non-black) in the second choice can not be rationalized by any

subjective probability distribution. The systematic preference to bet on the known

probability colors (bet-on-K ) has been interpreted as ambiguity aversion. Conversely,

the preference to bet on the unknown probability colors (bet-on-U ) has been labeled

ambiguity loving. Betting otherwise (bet-on-C ) is compatible with probabilistic beliefs

and having a belief that one color, either black or yellow, is more likely. This behavior

has been called ambiguity neutral.

The publication of Ellsberg’s thought-experiments paved the way for experimen-

tal and theoretical literature on decision making in the presence of ambiguity. A

growing number of experimental studies, summarized by Camerer and Weber (1992),

implemented Ellsberg’s choice problems. This experimental data was interpreted as

evidence in favor of ambiguity-sensitive behavior, despite the experiments not adher-

ing to the conditions laid out by Ellsberg.2 In 1961, there was no sound theory that

could accommodate his “paradoxical” behavior. It took close to 30 years until the first

2We are not aware of any study for which the above quotation could be said to be completely

true. It is clearly violated in the standard case, when the urn is directly filled by the experimenters.
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axiomatically founded model explaining Ellsberg’s choices could be established.3

The first prominent approach to ambiguity built on the idea that subjective beliefs

are represented by a set of probability distributions (priors). In their path-breaking

contribution, Gilboa and Schmeidler (1989, p.142) suggested the following explanation

of the Ellsbergian behavior: [...] the subject has too little information to form a

prior. Hence (s)he considers a set of priors as possible. Being uncertainty averse,

(s)he takes into account the minimal expected utility (over all priors in the set) while

evaluating a bet. The resulting model, known as Maxmin Expected Utility (MEU),

is an archetype of ambiguity averse preferences. The model has been extended in

many directions leading to the general family of uncertainty averse preferences (UAP)

derived by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011) which

includes the multiple player preferences of Hansen and Sargent (2001) as well as the

variational preferences of Maccheroni, Marinacci, and Rustichini (2006).

To draw conclusions about ambiguity-sensitive behavior from real experiments,

Ellsberg’s experimental conditions need to be satisfied. However, these conditions, and

the formal framework used, translate to two implicit, but questionable, assumptions:

First, it is taken for granted that subjects facing the Ellsberg task act in “isolation”.

That is, subjects act without taking into account the potential incentives - the utility

function - of whoever created the distribution in the Ellsberg urn. The motives of

the person filling the urn are entirely neglected. Second, it is assumed that subjects

evaluate each choice problem separately (i.e., independent from each other). This

kind of “separation-principle” is implied by the fact that subjects may rationalize

their choices by distinct probability distributions; one prior for each choice problem.

Focus for the moment on the first assumption. The question arises whether sub-

jects do indeed view the Ellsberg task as a non-interactive decision problem. This is

far from being obvious (and should be tested).4 In the classic experiments used to

3For comprehensive surveys on the ambiguity literature see Gilboa and Marinacci (2013); Karni,

Maccheroni, and Marinacci (2014); Machina and Siniscalchi (2014).

4Hsu, Bhatt, Adolphs, Tranel, and Camerer (2005) conduct a fMRI study to compare neural

activations during decisions that involve risk or ambiguity. They find activity differences in the

amygdala, the orbitofrontal cortex (OFC) and the dorsomedial prefrontal cortex. In another fMRI
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verify Ellsberg’s predictions, an entity filling the urn always exists in the form of the

experimenter and his or her motivations can be considered by the subjects.5 Modeling

this situation does not require a new model; there exists an extremely powerful con-

cept that is concerned exactly with the question of how to react to the motivations,

the payoffs, of other people: the Nash equilibrium. It will be shown that including

the motives of the urn filler accounts for Ellsberg’s predictions. Moreover, taking into

account the distinct motivations impacts the predictions in a way that can be tested

experimentally.

Based on the 3-color experiment, 3-color Ellsberg game refers to the two-player

game where one player fills the Ellsberg urn with balls (adhering to the fixed and non-

fixed proportions as outlaid by Ellsberg) and the other player chooses the Ellsberg

bets, as described above. Denote by D the player choosing a distribution of balls and

by E the player facing the Ellsberg task. That is, player E’s strategy set consists

of the four possible combinations of bets, while player D’s strategy set consists of

all admissible urn compositions. Player E’s utility function is given by the Ellsberg

bet rewards. Player D’s utility depends on the payoff of the Ellsberg bets as well.

Modeling different motives of player D, it can be positively or negatively correlated

with the payoff of player E, leading to games where E plays with or against D.

It is noteworthy that outside motivations feature also in the ambiguity models.

However, the motivations are inherent in the functional representing the UAP. It is

study Grèzes, Frith, and Passingham (2004) measure the neural activity when subjects evaluate being

deceived by others (relative to evaluating other’s beliefs). Among other regions, they find activation

in the OFC and the amygdala. This suggests that subjects presented with an ambigious situation

may try to judge the (possibly malevolent) intentions of another person.

5In some experiments the composition of the urn is not determined directly by the experimenter.

Instead, some external random generator is used, e.g. a mechanical device or future stock volatility

(Hey, Lotito, and Maffioletti, 2010; Abdellaoui, Baillon, Placido, and Wakker, 2011). However, as

long as subjects are paid by the experimenter, subjects may feel that the experimenter, having

chosen the random mechanism, may have superior knowledge about the outcome of the random

mechanism. Kadane (1992) points out that Ellsberg behavior can be explained if subjects suspect

that the experimenter cheats by using procedures and a random mechanism for determining the

payoffs which are different from the ones presented to the subjects.
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the min-operator that implements a negative view of the outside world; a “malevolent

Nature”. That is, Nature is viewed as being able to influence the occurrence of events

to the decision makers’ disadvantage by choosing a probability distribution with the

objective of minimizing his expected utility. For this reason, UAP are sometimes

said to admit “a game against Nature interpretation, where decision makers view

themselves as playing a zero-sum game against (a malevolent) Nature” (see Cerreia-

Vioglio at el. (2011, p. 1299). The decision maker’s strategy is choosing a bet while

Nature’s strategy is choosing a probability distribution. However, this negative view

is a primitive of the model and a feature of the decision maker’s preferences, but not

a variable of the situation. As such, the UAP models can not accommodate changes

in motivation unless the preference parameters are changed.

Consider now to the second assumption. According to the separation-principle, an

uncertainty averse decision maker may use different probabilities when evaluating the

two choice problems of the Ellsberg task. Correspondingly, in the ambiguity models,

subjects are viewed as playing two different “games against a malevolent Nature”;

a separate one referring to each choice in the 3-color Ellsberg problem. This is not

assumed in the Nash equilibrium setup where only one game is played.

While Ellsberg and the UAP models use the possible outcomes of draws from the

urn as the domain of subjective beliefs, the Nash equilibrium considers actions of the

opponent player. As such, player E’s beliefs are defined not over the possible colors of

the drawn ball, but over the content of the urn before the draw. This follows naturally

when an opponent and his strategies are considered. Imagine the thought process

of a subject in the actual experiment as it takes place in a laboratory: choices are

paid; someone pays the subjects money; everyone prefers to pay less to paying more;

changing the contents of the urn can, depending on the subjects choices, result in

paying less. This leads to the realization that the experimenter fills the urn, and can

do so in various ways. Once the strategies of the urn filler are considered, however, the

subject has already taken the step to consider the two Ellsberg choices as a part of one,

bigger, problem: how to obtain the highest payoff as a subject, given the action of the

urn filler. Therefore, the experimental setup pushes subjects to evaluate the problem
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differently from what is assumed in the UAP models: because there is interaction

with a second person, the choices are integrated into one decision problem instead

of treating them as two separate problems. The action of the urn filler becomes the

focus.

Since the payoff of any urn filler is not incorporated into the UAP functional,

changing this payoff does not affect the prediction of the models. On the other hand,

Nash equilibria can change when the payoff of one player is altered. In the experimental

treatments, payoffs of the urn fillers are varied. This creates different Nash predictions.

Note that the information about the urn that decision makers in all treatments receive

is identical. In each case there is the same number of known and unknown balls in the

urn which is physically constructed in the same way. Consequently, the predictions

based on the UAP models remain unchanged across treatments.

To vary the urn fillers’ payoff, in two of our treatments the urn is not filled by

the experimenter, but by one group of subjects. In one treatment (malevolent), these

subjects have monetary incentives which are opposite to those of the second group of

subjects making the Ellsberg decisions. In this treatment, each pair of urn filler and

decision maker face a zero-sum game in terms of payoffs. As is shown in Section 2, the

pure Nash equilibrium of this malevolent 3-color Ellsberg game predicts that decision

makers bet-on-K.6 In a second treatment (benevolent), the monetary incentives of the

urn filler are perfectly aligned with the decision maker: they play a coordination game.

This changes the Nash prediction by introducing two additional coordination equilibria

in pure strategies: one for betting on black and one for betting on yellow.

As the main result, the measured betting behavior of decision makers differs be-

tween malevolent and benevolent, in line with the Nash prediction. About half of the

subjects in the malevolent treatment choose bet-on-K. When facing the benevolent urn

filler, less than a quarter of subjects decides to bet-on-K. Instead, most choose bet-on-

C strategies. These are the coordination Nash equilibria strategies of the benevolent

6Interestingly, the Nash equilibrium strategies of the decision maker depend on the risk attitude

of the urn filler. While playing bet-on-K is a Nash equilibrium strategy under any risk attitude of

the urn filler, one additional Nash equilibrium exists only when the urn filler is risk neutral. In this

equilibrium, the decision maker chooses bet-on-U.
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3-color Ellsberg game: when the payoffs make coordination with the filler of the urn

possible, subjects attempt coordination. When the payoffs of urn filler and decision

maker are opposed, the coordination Nash equilibria disappear and the associated

strategies are observed less often. This suggests that at least a part of subjects con-

sider their task to be an interactive and integrated one, instead of the non-interactive,

separated tasks assumed in the UAP framework. It is important to note that, in

the integrated view of the Ellsberg task, subjects need not violate SEU by choosing

bet-on-K.

A third treatment (standard) is used to relate the findings to the typical implemen-

tation of the Ellsberg urn in experiments. Here, the urn is filled by the experimenter

and all subjects are decision makers. Betting behavior differs significantly between the

standard and the benevolent treatment, but not between the standard and the malev-

olent treatment. That is, the betting behavior of subjects explicitly playing a game

against another subject filling the urn is similar to that of subjects in the standard

Ellsberg experiment.

This paper is organized as follows: in Section 2, the 3-color Ellsberg experiment

is described and analyzed as a game between decision maker and urn filler. Nash

equilibria are derived for the malevolent and benevolent treatment. In Section, 3 the

alternative prediction by uncertainty averse preference models is presented. Section

4 compares the two approaches theoretically. Section 5 describes the experimental

design and results. Section 6 concludes the paper.

2 Ellsberg Task and Nash Behavior.

In this section, the classical 3-color experiment of Ellsberg (1961) is interpreted as

an interactive decision problem. We introduce the notion of a 3-color Ellsberg game

between a subject and an urn filler and examine Nash equilibrium behavior.

The 3-color Ellsberg game consists of two players, indexed by D and E. Both

players’ decisions involve an urn containing 30 balls, 10 of which are known to be red
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(R) and 20 of which are somehow divided between black (B) and yellow (Y ).7 Player

E represents the decision maker (subject) who faces the 3-color Ellsberg task. The

task is to make two choices, each between two bets. The bets are presented in Table

1. Each bet pays off $1 or $0, depending on the color of a random and independent

draw from the urn.

Table 1: Bets in the 3-Color Ellsberg Experiment.

Red Black Y ellow

Choice I
f1 $1 $0 $0

f2 $0 $1 $0

Choice II
f3 $1 $0 $1

f4 $0 $1 $1

The two choices made in the 3-color Ellsberg experiment - taken together - can

be seen as a (pure) strategy for player E. Four possible choice combinations exist.

Therefore, the strategy set of player E is SE = {(f1, f3); (f1, f4); (f2, f3); (f2, f4)}. The

strategy of choosing f1 in problem I and f4 in problem II is labeled bet-on-K, where

K stands for the known probability events R and B ∪ Y . Conversely, the strategy

choosing f2 in problem I and f3 in II is called bet-on-U where U denotes the unknown

probability events B and R∪Y . The choices of (f1, f3) are called bet-on-Y and (f2, f4)

bet-on-B with Y and B denoting the yellow and black colors, respectively. Betting

on one of the two colors - yellow or black - by using either bet-on-Y or bet-on-B, is

summarized as bet-on-C.

The task of player D is to determine the composition of the Ellsberg urn by filling

the urn with black and yellow balls. Altogether, there are twenty-one possible distri-

butions. For n = 0, . . . , 20, denote by bn the number of black balls. If player D decides

for bn black balls, the urn contains 30 red, bn black and 20− bn yellow balls. The set

7For ease of exposition, throughout the paper, the traditional Ellsberg colors, red, black and yellow,

and the terms “urn” and “balls” are used. The actual experiment and instructions used yellow, blue

and green marbles in cotton bags instead.
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of all the possible distributions is denoted by SD = {b0, b1, . . . , b20} and represents the

set of (pure) strategies of player D.

Our approach distinguishes two different types of the 3-color Ellsberg game, de-

pending upon the correlation of payoffs of player D with the payoffs of player E. The

game where player D’s payoffs are perfectly negatively correlated is referred to as

the malevolent game. The game is called benevolent when D’s and E’s payoffs are

perfectly positively correlated.

The malevolent 3-color Ellsberg game is zero-sum in payoffs. That is, whenever

the color on which player E decides to bet matches the color of a randomly drawn

ball, player E wins $1 while player D loses $1. Throughout the analysis, the utility

function over monetary payoffs is assumed to be strictly increasing and normalized

to 0 for the payoff of $0 and 1 for the payoff of $1.8 Since two independent random

draws are carried out, each strategy of Player D induces a lottery over payoffs of $2, $1

and $0. For the analysis of Nash behavior, it is assumed that players’ preferences are

standard expected utility among (risky) lotteries. The expected payoffs are calculated

in the following way. Suppose that player E chooses (f1, f4) (i.e., bet-on-K ) and player

D decides for the uniform distribution b10. Given this strategy combination, Player E

gets $2 with a probability of 2
9
, which is the likelihood of drawing red in the first draw

times the probability of drawing black or yellow in the second draw, and $1 with a

probability of 5
9
, which is the probability of drawing red in the first and second draws

plus the probability of drawing not-red in both draws. Given the uniform distribution

of player D, player E’s expected payoff from playing (f1, f4) amounts to u(2)2
9

+u(1)5
9
.

Given E’s strategy, player D loses in expectation u(−2)2
9

+ u(−1)5
9

by choosing the

uniform distribution. The expected utilities for player E’s strategies, given that player

D fills the urn with bn black balls, are

EU
[
(f1, f3) | bn

]
= u(2)30−bn

90
+ u(1)60−bn

90
,

EU
[
(f1, f4) | bn

]
= u(2)20

90
+ u(1)50

90
,

EU
[
(f2, f3) | bn

]
= u(2) bn(30−bn)

900
+ u(1) (bn)2+(30−bn)2

900
,

EU
[
(f2, f4) | bn

]
= u(2)2bn

90
+ u(1)60−bn

90
,

(1)

8In the actual experiment, the payoffs are 0 EUR and 4 EUR instead of $0 and $1.
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where n = 0, . . . , 20.

Let us first assume that both players are risk neutral. In this case, the malev-

olent 3-color Ellsberg game is a zero-sum-game. Table 2 represents the expected

payoffs associated with each strategy combination. In the malevolent Ellsberg game,

Table 2: Expected payoffs in the malevolent 3-color Ellsberg game.

bet-on-Y bet-on-K bet-on-U bet-on-B

b20 −20
30
, 20

30
−1, 1 −1, 1 −40

30
, 40

30
...

...
...

...
...

b15 −25
30
, 25

30
−1, 1 −1, 1 −35

30
, 35

30
...

...
...

...
...

b10 −30
30
, 30

30
−1, 1 −1, 1 −30

30
, 30

30
...

...
...

...
...

b5 −35
30
, 35

30
−1, 1 −1, 1 −25

30
, 25

30
...

...
...

...
...

b0 −40
30
, 40

30
−1, 1 −1, 1 −20

30
, 20

30

there are two Nash equilibria in pure strategies: NE1 =
{

bet-on-K ; b10

}
and NE2 ={

bet-on-U ; b10

}
. In both equilibria, player D fills the Ellsberg urn with an equal

number of black and yellow balls. As a best response to this, player E’s chooses

bet-on-K in the first Nash equilibrium. That is, he bets on the events with known

probabilities. In the second equilibrium, player E bets on the events with unknown

probabilities and chooses the strategy bet-on-U. Both equilibria are payoff equivalent

for the players. Under the game-theoretic interpretation of the Ellsberg experiment

and risk neutrality, Nash behavior predicts bet-on-K and bet-on-U together with the

uniform composition of the urn.9

In the benevolent 3-color Ellsberg game, the payoffs of player D and E are perfectly

positively correlated. Both players win $1 whenever the color of a randomly drawn ball

9In the analysis, we concentrate on pure Nash equilibia. For sake of completeness, mixed behavior

is analyzed in Appendix 9.

10



matches the chosen color(s) of player E and $0 when the colors do not match. Under

Table 3: Expected payoffs in the benevolent 3-color Ellsberg game.

bet-on-Y bet-on-K bet-on-U bet-on-B

b20
20
30
, 20

30
1, 1 1, 1 40

30
, 40
30

...
...

...
...

...

b15
25
30
, 25

30
1, 1 1, 1 35

30
, 35

30
...

...
...

...
...

b10
30
30
, 30

30
1, 1 1, 1 30

30
, 30

30
...

...
...

...
...

b5
35
30
, 35

30
1, 1 1, 1 25

30
, 25

30
...

...
...

...
...

b0
40
30
, 40
30

1, 1 1, 1 20
30
, 20

30

risk neutrality of both players, the expected payoffs in the benevolent Ellsberg game

are depicted in Table 3. Unlike the malevolent game, this is not a zero-sum game. The

set of Nash-Equilibria is larger in the benevolent game. Again, NE1 =
{

bet-on-K ; b10

}
and NE2 =

{
bet-on-U ; b10

}
constitute pure Nash equilibria. However, there are two

additional Nash equilibria in pure strategies: NE3 =
{

bet-on-Y ; b0

}
and NE4 ={

bet-on-B ; b20

}
. In the third Nash equilibrium, player E chooses bet-on-Y, while player

D fills the Ellsberg urn with 20 yellow balls. In the fourth Nash equilibrium, player E’s

strategy is bet-on-B and player D chooses the distribution containing 20 black balls.

The additional Nash equilibria predict coordination behavior. Both players coordinate

on one color and obtain the highest possible joint payoff.

It is also worth mentioning that the equilibrium behavior with coordination on the

black or yellow color strongly Pareto dominates the behavior in NE1 and NE2 where

player E chooses bet-on-K and bet-on-U, respectively. Furthermore, equilibria NE1

and NE2 are also risk dominated by the two pure coordination equilibria.

So far, the analysis has been conducted under the assumption of risk neutral play-

ers.10 Now, suppose that players’ utility functions are nonlinear. Note that the malev-

10In the risk neutral case, the pure Nash equilibria strategies used by player E correspond to
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olent game need not be zero-sum in utilities any longer. Table 4 represents player E’s

expected utilities for each strategy combination.

Table 4: Expected payoffs of player E - nonlinear utility function.

bet-on-Y bet-on-K bet-on-U bet-on-B

b20 u(2)100
900

+u(1)400
900

u(2)200
900

+u(1)500
900

u(2)200
900

+u(1)500
900

u(2)400
900

+u(1)400
900

...
...

...
...

...

b15 u(2)150
900

+u(1)450
900

u(2)200
900

+u(1)500
900

u(2)225
900

+u(1)450
900

u(2)300
900

+u(1)450
900

...
...

...
...

...

b10 u(2)200
900

+u(1)500
900

u(2)200
900

+u(1)500
900

u(2)200
900

+u(1)500
900

u(2)200
900

+u(1)500
900

...
...

...
...

...

b5 u(2)250
900

+u(1)550
900

u(2)200
900

+u(1)500
900

u(2)125
900

+u(1)650
900

u(2)100
900

+u(1)550
900

...
...

...
...

...

b0 u(2)300
900

+u(1)600
900

u(2)200
900

+u(1)500
900

u(2) 0
900

+u(1)900
900

u(2) 0
900

+u(1)600
900

The best response structure of a risk averse or risk loving player E is identical to

the case of risk neutrality: Given b10, all strategies of E are a best response. In the

case of less black balls, the only best response is bet-on-Y. For more black balls, the

only best response is to play bet-on-B. This implies that the Nash equilibria are not

changed by the risk attitude of player E.

However, this is not the case for player D. A player D with a nonlinear util-

ity function has an incentive to deviate from the uniform distribution of balls given

that player E chooses bet-on-U. The deviation depends on the curvature of his util-

ity function and the treatment. In the benevolent treatment when player D’s utility

function is (strongly) concave, his best response to bet-on-U is to fill the Ellsberg urn

with no black balls and 20 yellow balls. However, when player D’s utility function is

his pure maxmin strategies. This is due to the game being zero-sum. The additional pure Nash

equilibria strategies that appear in the benevolent game correspond to his maxmax strategies. This

makes intuitive sense: when playing against an adversial player D in the malevolent game, the

cautious maxmin strategies are reasonable. In the benevolent game, where D’s payoff is maximized

by maximizing player E’s payoff, using maxmax is.

12



Table 5: Pure Nash Equilibria - Malevolent Treatment.

Player E

RA RN RL

P
la
y
er

D RA NE1 NE1 NE1

RN NE1;NE2 NE1;NE2 NE1;NE2

RL NE1 NE1 NE1

(strongly) convex, the distribution containing 15 black and 5 yellow balls is his best

response to bet-on-U. In the malevolent treatment, the deviations are the opposite

of that. In either case, NE2 does not exist when player D is not risk neutral. The

strategy combination where player E decides to bet-on-K and player D chooses the

uniform distribution is the only pure Nash equilibrium in the malevolent game, NE1.

Table 6: Pure Nash Equilibria - Benevolent Treatment.

Player E

RA RN RL

P
la
y
er

D RA NE1;NE3;NE4 NE1;NE3;NE4 NE1;NE3;NE4

RN NE1;NE2;NE3;NE4 NE1;NE2;NE3;NE4 NE1;NE2;NE3;NE4

RL NE1;NE3;NE4 NE1;NE3;NE4 NE1;NE3;NE4

Summing up, when the Ellsberg task is conceived as an interactive situation, the

game-theoretic predictions are different for the malevolent and the benevolent variant

of the 3-color Ellsberg game. In the malevolent treatment (see Table 5), the concept of

pure Nash equilibrium predicts bet-on-K and, if the urn filler is risk neutral, bet-on-U.

However, bet-on-U is not predicted when the urn filler is risk averse or risk loving. In

the benevolent treatment (see Table 6), in addition to the Nash equilibria found in the

malevolent case, there exist pure coordination Nash equilibria. These are payoff and

risk dominant, and correspond to bet-on-Y and bet-on-B.
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Hypothesis 1. Pure Nash equilibria predictions:

a) In the malevolent treatment, subjects in the role of player E will bet-on-K or

bet-on-U.

b) In the benevolent treatment, subjects in the role of player E will bet-on-K, bet-

on-Y, bet-on-B or bet-on-U.

c) bet-on-Y and bet-on-B will be chosen more often in the benevolent treatment than

the malevolent treatment.

The idea to analyse the Ellsberg experiments as a game dates back to Schneeweiss

(1968, 1973). In those early papers, Schneeweiss already suggested that the Ellsberg

tasks can be analysed as a zero-sum game and calculated the maxmin solutions. For

the case of risk neutral subjects, the maxmin solutions are identical to the pure Nash

equilibrium strategies. However, the solution concepts differ for the case of risk aver-

sion and risk loving. Using maxmin, it is the Ellsberg decision maker’s risk attitude

that effects which strategy is chosen. Under the Nash equilibrium, it turns out that,

instead, it is the urn filler’s risk attitude that determines the decision maker’s equilib-

rium strategies. For the case of non-risk-neutrality, the Nash equilibrium is a better

solution concept than maxmin, since the game is no longer zero-sum in utilities.11 Dif-

ferent to our paper, Schneeweiss did not discuss the impact of Ellsberg’s experimental

conditions on actual experiments. Whether real subjects view the Ellsberg tasks as a

game, as an individual decision situation, or both, remains open.

3 Uncertainty Averse Preferences

Above, we derived the game-theoretic prediction for the Ellsberg 3-color experiment.

In this section, the decision-theoretic predictions are investigated.

There exist well established theories of decision-making under ambiguity, i.e., un-

certainty with unknown probabilities. Typically, the theories are formulated in the

setup of Anscombe and Aumann (1963). Let S be a finite set of states and let ∆(X)

11This drawback of using maxmin is already mentioned by Schneeweiss (1973).
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be the set of all (simple) lotteries over a set consequences X.12 Objects of choice are

acts f : S → ∆(X); i.e., mappings from states to lotteries. Bets are binary acts. A

decision maker is characterized by a preference relation < on F , the set of all acts.

Among lotteries, but not necessarily among acts, preferences obey the axioms of ex-

pected utility theory. The decision-theoretic approach characterizes a functional V (·),

representing <, which specifies how some form of subjective beliefs on S and a utility

function u : X → R are aggregated when evaluating acts.

The canonical approach is the Maxmin Expected Utility (MEU) theory of Gilboa

and Schmeidler (1989). In this theory, beliefs are represented by a non-empty, closed,

and convex set P of probability distributions on S with respect to which acts are

evaluated via the following functional:

V min(f) = min
p∈P

∫
S

u(f(s))dp({s}) ∀f ∈ F . (2)

Set P represents the probabilistic scenarios that the decision maker views as possible.

The min-operator encapsulates aversion towards ambiguity.13 When the min-operator

is replaced by its dual form, the max-operator, the decision maker exhibits proneness

towards ambiguity. If the subjective set of priors is a singleton, then the operators

min and max are irrelevant and the decision maker’s preferences are expected utility.

For a given set of priors P and an operator k ∈ {min,max}, we denote by V k the

k-functional representing a decision maker’s preference < on F .

Let us be more specific about how the functional V k rationalizes choices in the 3-

color experiment. In the MEU theory, the states of nature correspond to the outcome

of a random draw, the color of the ball. That is, S = {R,B, Y }. The bets of the

choice problems I and II (see Table 1) are depicted as mappings from S to degenerate

lotteries yielding $1 or $0, respectively. Consider a decision maker with a normalized

12The Anscombe-Aumann framework is a special case of the “purely subjective” setup of Savage

(1954) in which the set of consequences is an arbitrary set.

13The MEU model has been originally axiomatized by Gilboa and Schmeidler (1989) in the setup of

Anscombe and Aumann (1963). Alternative axiomatizations, in the subjective setup of Savage (1954),

were provided by Casadesus-Masanell, Klibanoff, and Ozdenoren (2000a,b); Ghirardato, Maccheroni,

Marinacci, and Siniscalchi (2003); and Alon and Schmeidler (2014).
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utility function, u($0) = 0 and u($1) = 1, and a set of probability distributions of the

following form:

P =
{
p ∈ ∆(S) : p({R}) =

1

3
, p({B}) ∈ [

1

3
− ξ, 1

3
+ ξ]

}
, where ξ ∈ (0,

1

3
). (3)

The min-functional with respect to set P delivers the following evaluations:

V min(f1) =
1

3
>

1

3
− ξ = V min(f2),

V min(f4) =
2

3
>

1

3
+ ξ = V min(f3).

The MEU decision maker with set P decides to bet-on-K. That is, he chooses f1 in

problem I because its expected utility, which is the same for any prior in P , is higher

than the lowest expected utility associated with the alternative option f2. Following

the same line of reasoning, f4 is chosen in problem II. The crucial feature of the

MEU model is that the two choice problems are evaluated separately. Although there

is one urn, the decision maker believes that two distinct probability distributions are

possible, one in each problem:

p1 = (
1

3
,
1

3
− ξ, 1

3
+ ξ) and p2 = (

1

3
,
1

3
+ ξ,

1

3
− ξ).

In problem I, the expected utility of f2 is the smallest one under p1 and thus p1 is

the probability distribution rationalizing the decision maker’s preference for f1. Put

differently, he believes that p1 is the true distribution from which a random draw will

be taken to determine his payoff. For the same reason, the decision maker considers

p2 as the true distribution when comparing acts f3 and f4 in problem II. This is

exactly the manner in which the “malevolent Nature” enters into the model via the

min-operator: Nature is malevolent by always, “magically”, drawing a ball from such

a distribution that is the worst possible for this very part of the problem at which

the decision maker is currently looking. Under the max-operator, the logic works in

the opposite direction and Nature is perceived as benevolent. Given the max-operator

and set P , the decision maker behaves ambiguity loving and chooses f2 in problem I

and f3 in II. As mentioned before, if the subjective set P is a singleton, the min-

and max-operator play no role and the decision maker behaves ambiguity neutral. In
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particular, for a nonuniform prior, the decision maker chooses either f1 and f3 or f2

and f4 (i.e. bet-on-Y or bet-on-B). It is important to notice that the set of priors

P and the k-operator are characteristic of preferences reflecting the decision maker’s

perception of ambiguity and reaction to it, respectively (see Ghirardato, Maccheroni,

and Marinacci, 2004). Since subjects receive the same information about the Ellsberg

urn in both treatments, the decision-theoretic approach predicts no treatment effect.

That is, one expects to observe the same amount of subjects who bet-on-K, bet-on-U,

and bet-on-C in both treatments.

Hypothesis 2. Uncertainty averse preference predictions:

a) Consider a subject with preferences represented by V k with respect to a set P.

Depending on set P and the k-operator, the subject in the role of player E will

choose either bet-on-K, bet-on-U, or bet-on-C.

b) The behavior revealed by V k does only depend on the information about the

Ellsberg-urn, which is identical in the malevolent and benevolent treatments.

Therefore, the frequency of subjects who bet-on-K, bet-on-U and bet-on-C should

not change between treatments.

One could assume that for a given set of probabilities P , the k-operator is correlated

with the treatment, i.e., with the motives of the urn filler (player D). Since the

motives are explicitly stated in each treatment, it could be that subjects evaluate acts

according to V min in the malevolent treatment and according to V max in the benevolent

treatment. For ambiguity neutral subjects, whose sets of priors are singletons, themin-

and max- operators are irrelevant and this distinction does not matter. Therefore, the

same amount of subjects who bet-on-C will be observed in both treatments. However,

no bet-on-U should be observed in the malevolent treatment and no bet-on-K should

be observed in the benevolent treatment.

Hypothesis 2 is supported not only by MEU, but also by a broader class of ambigu-

ity models, the family of uncertainty averse preferences (UAP) introduced by Cerreia-

Vioglio, Maccheroni, Marinacci, and Montrucchio (2011).14 Let ∆(S) be the set of all

14Another model supporting Hypothesis 2 is the smooth ambiguity model of Klibanoff, Marinacci,
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possible probability distributions over the state space S. The UAP are represented by

V UA(f) = min
p∈∆(S)

G
(∫

u(f)dp, p
)

∀f ∈ F , (4)

where G : R × ∆(S) → (−∞,∞] is a quasiconvex function, increasing in the first

variable, and satisfies infp∈∆(S) G(t, p) = t for all t. Function G is interpreted as an

ambiguity aversion index. Let c : ∆(S)→ [0,∞] be a convex (cost) function on ∆(S)

satisfying infp∈∆(S) c(p) = 0. When G(t, p) = t + c(p), V UA represents the variational

preferences axiomatized by Maccheroni, Marinacci, and Rustichini (2006). For a given

set of priors P , V UA with G(t, p) = t + c(p) represents MEU preferences whenever

c(p) = 0 for any p ∈ P and otherwise c(p) = ∞. The broad class of UAP unifies

all the generalizations of the MEU model that maintain the key axiom of Schmeidler

(1989), called Uncertainty Aversion. The axiom is the behavioral counterpart of an

averse attitude towards ambiguity. Roughly, it requires that a decision maker always

displays a weak preference for mixtures (randomizations) between two acts among

which the decision maker is indifferent.15

Besides satisfying Schmeidler’s axiom, the family of UAP is said to admit a “game

against Nature” interpretation. That is to say, an ambiguity averse decision maker is

interpreted as playing a hypothetical zero-sum game against a “malevolent Nature”.16

In this case, an act f and a probability distribution p become, respectively, the strate-

and Mukerji (2005). The model is built on the “two-stage approach” dating back to Segal (1987). A

decision maker has a subjective second order prior: that is, a prior over the possible compositions of

the Ellsberg urn. A concave (resp. convex) second order “utility function” (the so-called φ-function)

corresponds to ambiguity averse (resp. loving) behavior. The prediction of player E’s betting behavior

is driven by the curvature of his φ-function.

15In the Anscombe-Aumann setup, mixtures between acts are well defined; for each α ∈ [0, 1],

αf +(1−α)g is the act that delivers αf(s)+(1−α)g(s) in state s ∈ S. According to the Uncertainty

Aversion axiom, for any f, g ∈ F and α ∈ (0, 1), if f ∼ g then αf + (1−α)g < g. Recently, Dominiak

and Schnedler (2011) provided an experimental evidence showing that ambiguity averse subjects

rather behave neutral towards mixtures, or even dislike randomization between two ambiguous acts.

16Based on the “game against Nature” interpretation, Ozdenoren and Peck (2008) use the notion

of subgame perfection to address the issue of dynamic consistency among ambiguity averse decision

makers in a dynamic version of the 3-color Ellsberg task. Similar to the UAP framework, they

keep the two questions separated and only consider responses to the second question as strategies.
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gies of the decision maker and of Nature (see Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio, 2011). For instance, if the decision maker has MEU preferences and

contemplates choosing an act f , Nature responds by choosing a probability from a set

P so as to minimize the decision maker’s expected utility given his choice of act f (see

Equation 2).

Although both the “game against Nature” interpretation and the 3-color Ellsberg

game feature the aspect of playing against an opponent, there is a strong conceptual

difference. According to the “game against Nature” interpretation of UAP, when taken

literally, the Ellsberg task actually consists of two, separate, zero-sum games of the

subject versus Nature. One game for the first decision and a second game for the second

decision. In contrast, the 3-color Ellsberg game is a single game featuring all actions by

the decision maker as his strategy. As such, there is no separation of the two questions

asked during the Ellsberg task. Therefore, malevolence is captured very differently

in the game-theoretic setup. It is not modeled via the functional representing the

decision maker’s preferences, as in the UAP model, but, via the utility function of the

urn filler. The structural differences between the two approaches are explored in more

detail in the next section.

4 Comparing the Theories

What is the structural difference between the decision-theoretic models and the game-

theoretic one? Each model makes different assumptions about the characteristics

of the situation that the subjects are supposed to take into account when making

their decision. As a general rule, the UAP models restrict the subjects to consider

the outcome of a random draw from the urn as the only payoff-relevant source of

uncertainty. The decision is derived from the decision maker’s tastes over outcomes

in addition to some form of subjective beliefs. The form of the beliefs might differ

A real experiment on a dynamic version of the 3-color experiment was conducted by Dominiak,

Duersch, and Lefort (2012), finding that subjects behave in line with consequantialism rather than

dynamic consistency. One of these fundamental properties of dynamic behavior has to be relaxed

when modeling ambiguity aversion in dynamic setups (see Ghirardato, 2002; Siniscalchi, 2011).
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depending on the model, but is supposed to encompass the ambiguity perceived by

the decision maker (Ghirardato, Maccheroni, and Marinacci, 2004). Not taken into

account are the motivations of the person filling the urn. The situation is not modeled

as a strategic (interactive) one.

In the game-theoretic model, it is assumed that both players are expected util-

ity maximizers. That is, the model strongly restricts the form of players’ preferences.

However, it additionally allows subjects to take into account a broader amount of infor-

mation about the situation they face. Instead of only looking at possible compositions

of the Ellsberg urn, subjects now consider as well the strategic implications of how

the urn was set up. As is shown in Section 2, even when using the most standard way

of modeling preferences, taking into account the strategic implications of the decision

situation leads to a prediction of bet-on-K or bet-on-U in the 3-color Ellsberg experi-

ment.17 Note that, since the Nash model does not possess free parameters, we arrive

at this prediction via a model that is more parsimonious compared to the ambiguity

models discussed in Section 3.

By far, the majority of Ellsberg urn experiments feature payoffs that correspond

to the malevolent game. That is, each amount of money paid to subjects is paid out

of the pockets of the person or institution which is also responsible for setting up the

composition of the urn. Subjects who take into account the monetary motivations of

the experimenters can legitimately consider the situation to be adversary.

The game-theoretical interpretation of the Ellsberg task delivers a prediction of

treatment differences in our experiment: more subjects E are predicted to choose

bet-on-C in the benevolent game compared to the malevolent game (see Table 7).

While ambiguity models can predict all choices, they need different parameter values

to predict different choices. Given that there is no within-model way of obtaining the

parameters from the situation faced by the decision maker, a reasonable assumption is

that the parameters are part of the preferences and as such stable across situations.18

17There are some recent papers that generalize the Nash equilibrium notion to ambiguity-sensitive

preferences: Dow and Werlang (1994), Lo (1996), Eichberger and Kelsey (2000), Marinacci (2000),

Bade (2011) and Lehrer (2012).

18One counter argument to this is that parameters could change from situation to situation. How-
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Table 7: Frequency Predictions of Behavior for Player E.

UAP Models Game Theory

Malevolent

Treatment

Benevolent

Treatment

Malevolent

Treatment

Benevolent

Treatment

# bet-on-K︸ ︷︷ ︸
“averse”

≥ # bet-on-K︸ ︷︷ ︸
“averse”

# bet-on-K︸ ︷︷ ︸
NE1 ≥

# bet-on-K︸ ︷︷ ︸
NE1

# bet-on-U︸ ︷︷ ︸
“loving”

≤ # bet-on-U︸ ︷︷ ︸
“loving”

# bet-on-U︸ ︷︷ ︸
NE2

# bet-on-U︸ ︷︷ ︸
NE2

# bet-on-C︸ ︷︷ ︸
“neutral”

= # bet-on-C︸ ︷︷ ︸
“neutral”

· · · ≤ # bet-on-C︸ ︷︷ ︸
NE3&NE4

UAP: The number of subjects who bet-on-C is equal across treatments. The fraction of subjects

who bet-on-K (bet-on-U) is larger (smaller) or equal in malevolent than in benevolent.

GT: The number of subjects who bet-on-C is higher in Benevolent. (Note: Nash equilibrium NE2

only exists if player D is risk-neutral.)

Given the same set of parameters for beliefs, the ambiguity models would not predict a

difference in the number of subjects who bet-on-C, bet-on-K and bet-on-U between the

malevolent and benevolent treatments. Additionally, if one allows the min-operator

to change into a max-operator, the MEU model would predict a difference between

treatments, but only in the number of subjects who bet-on-K and bet-on-Y. That is, no

bet-on-Y in the malevolent treatment and no bet-on-K in the benevolent treatment.

We conduct an experiment to empirically test the different predictions made with

actual behavior by subjects in the malevolent and benevolent case.

ever, note that a model which can predict each possible outcome (given some parameters), and does

not tie down parameters, essentially has no predictive power.
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5 Experiment

5.1 Experimental Design

The experimental design includes three treatments - (B)enevolent, (M)alevolent and

(S)tandard - which all employ the 3-color Ellsberg urn to elicit subjects’ behavior in

the face of an ambiguous situation.

In treatments B and M, the Ellsberg decisions are made by subjects of type E,

while the urns are filled by subjects of type D. Both treatments are identical up to

the monetary incentives of subjects D. At the start of the experiment, each subject

is randomly assigned role D or role E, and Ds and Es are anonymously matched into

pairs. Each subject D is separately tasked with determining the distribution of a 3-

color Ellsberg urn. To this end, all Ds receive a nontransparent urn already filled with

10 red balls. Additionally, they receive 20 black and 20 yellow balls. Out of these,

they are asked to choose 20 balls, in any combination, to add to the 10 red balls. The

thus constructed 3-color urns are taken by the experimenter and placed on a table in

sight of all subjects.19

Subjects of type E are asked to make the usual 3-color Ellsberg choices. That is,

each E is asked to make a decision on the following two choices, each refering to a

separate draw (with replacement), conducted later, out of the Ellsberg urn constructed

by the matched D:

• First choice: Do you prefer to

– receive a payment of 4 EUR if the drawn ball is red, or

– receive a payment of 4 EUR if the drawn ball is black?

• Second choice: Do you prefer to

– receive a payment of 4 EUR if the drawn ball is red or yellow, or

– receive a payment of 4 EUR if the drawn ball is black or yellow?

19The remaining balls are used by the experimenter to fact check that all urns contain the correct

number of balls.
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Note that we use the standard framing of the Ellsberg task, where two questions are

asked separately, instead of a possible different framing where strategies are elicited via

a single question. As such, our design is conservative when testing whether subjects

view the two questions as one integrated task. Subjects E are also asked to indicate

their confidence in their own decisions on a five point Likert scale.20

In treatment B, the incentives of E and D are perfectly aligned: whatever E wins

in the Ellsberg task will be paid to D as well. In treatment M, this is reversed.

D is paid a lump sum of 12 EUR, and all earnings by E are deducted from this.21

Thus, treatments B and M implement the benevolent and malevolent Ellsberg game

discussed in Section 2.

Treatment S corresponds to the standard Ellsberg procedures. All subjects are of

type E and the urn was filled by the experimenter. The instructions gave no specific

procedure indicating how the urn was filled.

All subjects answered a questionnaire at the end of the experiment. As part of

the unpaid questionnaire, subjects were asked for a point estimate of the number of

black and yellow balls in the urn if they were of type E. Both E and D had to answer

how they would have, hypothetically, chosen if placed in the other role. Finally, the

questionnaire included a 10 item optimism/pessimism scale.22

5.2 Procedures

The experiment consisted of eleven sessions and was conducted at the laboratory

of University of Heidelberg from June 2010 to March 2011 and in May 2013. All

recruitment was done via ORSEE (Greiner (2004)). In total, 169 subjects took part

in our experiment, 88 male and 81 female.23

20See http://www.adominiak.com/InstructionsDominiakDuersch.zip for all instruction material.

21If both E and D choose randomly, the expected earnings in both treatments are 8 EUR for all

subjects.

22German version of the Life-Orientation-Test, LOT-R (Glaesmer, Hoyer, Klotsche, and Herzberg,

2008).

23One subject D has been excluded from the dataset, since he had participated in two sessions.
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While entering the lab, subjects randomly picked a table tennis ball labeled with

their seat number and a letter. In treatments B and M, the letter was used to match

subjects D and E, who were seated at opposite walls of the lab. No communication

was allowed, and we did not observe any instances of attempted communication by

subjects. The matching rule was explained in neutral wording by the experimenter

before the instructions were handed out. Subjects were told that everyone received the

same instructions. Questions were answered in private by the experimenter. After Ds

had filled their urns and Es marked their decisions on the decision sheet, the sheets

and urns were collected by the experimenter.24

The draws from each urn were done by the experimenter in public in the middle

of the room. Afterwards, the experimenter calculated the earnings of each subject in

private, while subjects answered the questionnaire. Finally, all subjects were called

according to their seat number and paid their earnings in private and in cash. Subjects

earned on average 7.50 EUR for roughly 45 minutes in the lab.

In treatment S, no subjects of type D took part. All participants were of type E.

A single urn was used and placed in sight of the subjects for the entire experiment.

5.3 Results

We start by describing the behavior of the 104 subjects E, our main group of interest.

Averaged over all treatments, 8.7% of subjects bet-on-U, 44.2% bet-on-K and 47.1%

bet-on-C.25 However, as depicted in Figure 1, this varies across treatments: while in

treatment B 22.6% of subjects E bet-on-K, this jumps to 48.5% in treatment M and

57.5% in treatment S. Using the Fisher exact test, the differences between B and

M (two-sided, p=.039, obs=64) and between B and S (two-sided, p=.004, obs=71)

are significant. However, M and S are not significantly different (two-sided, p=.486,

obs=74). This result is mirrored when looking at subjects who bet-on-C. Treatments

24Urns were collected first to ensure that Es could make their decision after the composition of

the urn was determined. Both urns and decision sheets were labeled with the same letter as the

respective table tennis ball.

25Out of the subjects who bet-on-C , 53.1% favored black and 46.9% favored yellow.
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B and M are significantly different (two-sided, p=.047, obs=64) and so are B and S

(two-sided, p=.001, obs=71), while M and S are not (two-sided, p=.225, obs=74).

The share of subjects who bet-on-U is never significantly different between any two

treatments.

Result 1a: More subjects choose bet-on-K and fewer subjects bet-on-C in the

malevolent treatment compared to the benevolent treatment.

Result 1b: In all treatments, bet-on-U is chosen least often.

Concerning the across treatment predictions, we thus find evidence in favor of the

Nash prediction (Hypothesis 1c), while the results are not compatible with the UAP

prediction (Hypothesis 2b). Regarding within treatment predictions, the UAP theo-

ries can explain every possible betting behavior. Hypothesis 2a is therefore trivially

satisfied in all treatments. Pure Nash equilibrium Hypothesis 1b for treatment B is

similar. In the case of risk neutral players D, every betting behavior can be explained

as a pure Nash equilibrium strategy. If players D are not risk neutral, bet-on-U is

not predicted. In the experiment, there are indeed very few subjects who bet-on-U.

Hypothesis 1a for treatment M is not confirmed, since there exist players E in M who

bet-on-C.

We can draw additional conclusions. Notice that there are no significant differ-

ences between the malevolent treatment M and the standard implementation of the

3-color Ellsberg task in treatment S.26 This suggests that subjects perceive the stan-

dard implementation as a game against the experimenter and view the experimenter

as an opponent rather than as an ally. In most Ellsberg experiments, the filling of the

urn, and the monetary consequences for subjects and experimenters are set up similar

26The Ellsberg paradox has been studied in a large literature in psychology as well. Here, the

most common implementation of the Ellsberg experiment is not incentiviced. Subjects are asked to

imagine a particular situation and report their imagined behavior. Using such a hypothetical 2-color

Ellsberg urn, Kühberger and Perner (2003) study the effect of playing against or with an urn filler.

Their data is broadly in line with our game theoretic analysis presented in Appendix 7 & 8.
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Figure 1: Betting behavior by treatment

to our treatment S. That is, a large part of the experimental literature looks only at

one extreme case of implementing the Ellsberg task, namely subjects reacting to a

malevolent urn filler. The other extreme, reacting to a benevolent urn filler, has been

ignored so far.27

Result 2: Betting behavior in the standard treatment is not significantly different

from the malevolent treatment, but significantly different from the benevolent treat-

ment.

Table 8 shows a multinomial probit regression controlling for being female, partici-

pation in a formal course in game theory or statistics, optimism, whether the subjects

play games of chance; and the subjects’ self-reported confidence in their choices. The

regression compares subjects who bet-on-C and bet-on-U to the base outcome, bet-on-

K. Result 1 is confirmed. Subjects in the benevolent treatment choose significantly

27See Camerer and Weber (1992) and Trautmann and van de Kuilen (2014) for a review of ambiguity

experiments.



more often bet-on-C rather than bet-on-K. This is not true in the malevolent treat-

ment, where the difference is insignificant. Gender or playing games of chance do not

have a significant impact; neither does being more optimistic on the psychological op-

timism scale we elicit in the questionnaire nor having participated in a formal course

in game theory or statistics. However, subjects who choose bet-on-K have a higher

average confidence in their choices.28

Figure 2: Histogram of black balls used by subjects D.

Up till now, we evaluated subjects E, who choose more bet-on-C in treatment B.

That is, they tried to coordinate on one color. Now, we look at subjects D. Do these,

as well, try to coordinate? As Figure 2 shows, they do. The number of subjects D

playing a pure coordination strategy (no black balls at all, or only black balls, corre-

sponding to their strategy in NE3 and NE4) is significantly higher in the benevolent

treatment (Fisher exact test, two-sided, p=0.023, obs=25). That is, both players try

28Overall, our subjects are reasonably confident in their choices. On average, they report a confi-

dence of 2.45 and 2.95 (out of {0, 1, 2, 3, 4}) for the first and the second task. Only 6, respectively 3,

subjects reported having a confidence of zero. All of our results are unchanged if we exclude subjects

with zero confidence from the analysis.
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Table 8: Multinomial Probit on Betting Behavior

Multinomial Probit Regression Number of obs = 104

Wald χ2(14) = 25.33

Prob > χ2 = 0.0314Log Likelihood = -82.075347

Betting Behavior Coef. Std. Err. z P >| z | 95% Conf. Inter.

bet-on-U

Treatment M -0.5473915 0.7228561 -0.76 0.449 -1.964163 0.869380

Treatment B -0.0259499 0.6992147 -0.04 0.970 -1.396386 1.344486

Optimism 0.0842592 0.0553064 1.52 0.128 -0.024139 0.192658

AVGconfidence -0.7010100 0.3283717 -2.13 0.033 -1.344607 -0.057414

Female 0.3138005 0.5968215 0.53 0.599 -0.855948 1.483549

Formal Course -0.6276003 0.6304215 -1.00 0.319 -1.863204 0.608003

Games of Chance -0.1157415 0.7190218 -0.16 0.872 -1.524998 1.293515

Cons 0.8256525 0.8953712 0.92 0.356 -0.929243 2.580548

bet-on-C

Treatment M 0.3940401 0.4846323 0.81 0.416 -0.555822 1.343902

Treatment B 1.4532870 0.4908000 2.96 0.003 0.491336 2.415237

Optimism 0.0055134 0.0347493 0.16 0.874 -0.062594 0.073621

AVGconfidence -0.4681461 0.2309238 -2.03 0.043 -0.920748 -0.015544

Female -0.1847030 0.4052473 -0.46 0.649 -0.978973 0.609567

Formal Course 0.4485750 0.4078894 1.10 0.271 -0.350874 1.248024

Games of Chance 0.4201125 0.4603592 0.91 0.361 -0.482175 1.322400

Cons 0.5086800 0.7273153 0.70 0.484 -0.916832 1.934192

bet-on-K (base outcome)
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to achieve the higher coordination payoff in treatment B, but shy away from this po-

tentially exploitable strategy when in a zero-sum payoff game in treatment M. This

is in line with the pure Nash equilibrium prediction.

Result 3: Subjects D attempt to coordinate more in treatment B than in treat-

ment M.

A last question concerns the success of coordination. Did subjects manage to coor-

dinate on one color? The results show that they did not. While both groups of subjects

tried to coordinate, they failed to pick one color on which to coordinate. 62.5% of sub-

jects E who attempted to coordinate did so on the strategy favoring black; but out of

the coordinating D, only 52.9% used black balls. Therefore subjects reap only a very

small advantage from their coordination attempts.29

Result 4: Coordination on one color is attempted, but fails.

6 Concluding Remarks

Experimental implementations of Ellsberg’s thought-experiments have traditionally

been used as evidence against SEU and in favor of axiomatic models of ambiguity-

sensitive preferences. We design an experiment showing that, rather than displaying

ambiguity-sensitive preferences in individual choice problems, subjects in real Ellsberg

experiments are better described as playing a game against the person who determined

the distribution of balls in the urn. In two treatments, which keep all information about

the Ellsberg urn unchanged - while varying the incentives of the urn filler - we find a

treatment difference as predicted by the pure Nash equilibrium, but not predicted by

the MEU model or its extensions.

While our work is concerned with the conclusions typically drawn from real Ells-

berg experiments, Al-Najjar and Weinstein (2009a,b) challenged the existing ambiguity

29Due to unlucky matching and draws, subjects in treatment B achieved an average payoff even

slightly less than the expected one for completely random choice on both sides.
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models by questioning the rationality of ambiguity averse behavior.30 They also crit-

icized the significance of the models as a descriptive approach. As a main argument,

Al-Najjar and Weinstein argued that the Ellsberg-type behavior can be consistently

explained by heuristics learned by subjects in the real-word context but misapplied

in the laboratory environment: “the basic experimental findings supporting Ellsberg

choices cannot distinguish between two competing explanations: 1. Ambiguity models

which explain these choices by appealing to taste (ambiguity aversion). 2. A model

where subjects misapply heuristics that serve them well in real-world situations.” (Al-

Najjar and Weinstein, 2009a, p. 277)

This paper demonstrates that there is no need to appeal to heuristics. Solving

the Ellsberg task as one game, using standard expected utility preferences, delivers

predictions that explain the observed behavior. Moreover, creating an actual game

with two subjects as players allows for an experimental test of the two competing

theories: game theory versus ambiguity models. Using a real experiment, we are not

restricted to argue our point from the practicality and reasonableness of the theories

alone. The experimental results show different behavior under different incentives of

the opponent, contrary to the predictions of the UAP models. On the other hand,

subject behavior matches what we would expect from game theory. This provides

evidence that subjects interpret the Ellsberg task as a game against the filler of the

urn and not as isolated individual decision tasks, as implied by the conditions placed

by Ellsberg on his thought-experiments.

One caveat is in order. In the malevolent treatment, 45.5% of the subjects bet-

on-C, even though this is not a pure Nash equilibrium. While bet-on-C can be part

of mixed Nash equilibria, it seems implausible to us that such a high proportion of

subjects would use mixed Nash equilibria. It is likely that not all subjects analyse the

situation as a game and integrate their choices into one decision. A part of the subjects

may indeed ignore the interaction with the urn filler, as assumed by Ellsberg and the

30As an argument against the rationality of the ambiguity models, Al-Najjar and Weinstein (2009a)

scrutinize some behavioral anomalies displayed by ambiguity averse subjects facing a dynamic decision

problem; e.g., the sunk cost fallacy or aversion towards new information. For counterarguments and

further discussion on the topic, see Mukerji (2009); Siniscalchi (2009).
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ambiguity literature. However, note that this cannot be interpreted as evidence for

theories of ambiguity aversion. The observations which cannot be explained by pure

Nash equilibria strategies are those who bet-on-C. That is, if these unexplained subjects

treat the situation as a one-person decision problem, then they act ambiguity neutral.

What is the consequence of our findings? Up until now, the Ellsberg experiment

results have typically been interpreted as strong evidence against the standard SEU

theory, and were, therefore, the empirical underpinning of a large amount of literature

on preference-based theories which were developed to resolve the Ellsberg paradox. It

has been shown that Ellsberg’s results are not paradoxical when the task is viewed

as a game by the subjects. As such, SEU cannot be rejected unless all the Ellsberg

conditions are satisfied. There is a new need to develop experimental tests of SEU

that take Ellsberg’s conditions into account, if possible at all.

7 Appendix: The 2-color Experiment

In the 2-color version of Ellsberg’s thought-experiment, 2 urns are used. A known urn

(K) containing 50 red and 50 black balls, and an unknown urn (U), containing 100

balls in total, with an unknown number of red or black balls. Subjects are asked, for

each color, whether they want to have a draw (to win a prize) from the known or the

unknown urn. Call rK a bet on drawing from the known urn, paying $1 if the draw is

red and $0 otherwise. Bets rU , bK , bU are defined equivalently. Then, the strategy set

of player E is SE = {(rK , bK); (rK , bU); (rU , bK); (rU , bU)}. The strategy set of player

D is SD = {b0, . . . , b100}. Suppose first that both players are risk neutral. Table 9

represents the players’ expected payoffs in the malevolent 2-color Ellsberg game. The

two pure Nash equilibria are: NE1 = {b50; (rK , bK)} and NE2 = {b50; (rU , bU)}. That

is, choosing bet-on-K or bet-on-U by player E is a pure Nash equilibrium. In either

case, the run filler uses exactly 50 balls of each color.

Next, suppose that player E has a nonlinear utility function. The corresponding

expected payoffs are summarized in Table 10. If player D is risk neutral, the Nash

equilibria remain unchanged. However, if player D is risk averse with a (strongly)
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Table 9: Expected payoffs in the malevolent 2-color Ellsberg game.

(rK, bK) (rK , bU) (rU , bK) (rU , bU)

b100 −1, 1 −3
2
, 3

2
−1

2
, 1

2
−1, 1

...
...

...
...

...

b50 −1,1 −1, 1 −1, 1 −1,1
...

...
...

...
...

b0 −1, 1 −1
2
, 1

2
−3

2
, 3

2
−1, 1

concave utility function then the only Nash equilibrium is NE1 = {b50; (rK , bK)}.

Table 10: Expected payoffs of player E in the 2-color Ellsberg game - nonlinear utility.

(rK , bK) (rK , bU) (rU , bK) (rU , bU)

b100 u(2)1
4

+u(1)1
2

u(2)1
2

+u(1)1
2

u(1)1
2

u(1)
...

...
...

...
...

b50 u(2)1
4

+u(1)1
2

u(2)1
4

+u(1)1
2

u(2)1
4

+u(1)1
2

u(2)1
4

+u(1)1
2

...
...

...
...

...

b0 u(2)1
4

+u(1)1
2

u(1)1
2

u(2)1
2

+u(1)1
2

u(1)

In a benevolent version of the 2-color Ellsberg game (not depicted here), additional

pure Nash equilibria arise where the urn filler uses only one color, on which the decision

maker bets. The two coordination Nash equilibria of the benevolent game are not

affected by the players’ risk attitudes.

Summing up, the predictions for the 2-color Ellsberg game mirror the predictions

derived in Section 2 for the 3-color Ellsberg game. In the malevolent game, the pure

Nash equilibria strategies correspond to betting on the known probability colors or to

betting on the unknown probability colors. When the urn filler has a nonlinear utility

function, only betting on the known probability colors survives. In the benevolent

game, additional coordination equilibria arise.

Sometimes, the 2-color Ellsberg experiment is conducted with only one question.

In this shorter version, subjects are asked to bet on one color, not the other. Then
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betting on the known probability color and a uniform distribution of balls constitute

the only pure Nash equilibrium.

8 Appendix: Suspicion

Regarding the 2-color Ellsberg experiment, the following line of reasoning is used

against fixing the colors of the bets. The experimenter fills the urn. Subjects are

suspicious of the experimenter and therefore do not bet on the (fixed) color in the

unknown urn. They reason that the experimenter would not put the color in the urn

that subjects can bet on. As a precaution against this suspicion, subjects are not only

allowed to choose whether to bet on the risky or the unknown urn, but allowed to

choose which color to bet on, as well.

How would the pure Nash equilibria of the 3-color Ellsberg game be impacted

if subjects, additionally to choosing the bets, could also choose whether to bet on

the unknown probability event suggested by the experimenter - black in problem

I and non black in problem II - or to reverse the payoffs on the unknown colors

and bet on the unknown color not originally suggested by the experimenter (i.e.,

yellow in problem I and non yellow in problem II)? Call the former option Keep

and the latter Switch. Consequently, the strategy set of player E enlarges to SE =

{(fK
1 , f

K
3 ); (fK

1 , f
K
4 ); (fK

2 , f
K
3 ); (fK

2 , f
K
4 ); (fS

1 , f
S
3 ); (fS

1 , f
S
4 ); (fS

2 , f
S
3 ); (fS

2 , f
S
4 )}. For in-

stance, a player choosing (fS
2 , f

S
3 ) bets on an unknown probability event, but not on

black in problem I and non black in problem II, as initially offered. Instead, the

player switches and bets on yellow in problem I and non yellow in problem II.

Table 11 represents players’ expected payoffs in the extended (malevolent) 3-color

Ellsberg game, under the assumption of risk neutrality. The original pure Nash equi-

libria persist for the Keep-strategies. For the Switch-strategies, two mirrored Nash

equilibria appear. As before, player E either chooses bet-on-K or bet-on-U, but does

not bet-on-C. If the urn filler has a nonlinear utility function, only the Nash equilibria

where player E bets on the known probability events are left (here Keep or Switch

are irrelevant, since switching only alters the payoffs when subjects bet on an unkown
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Table 11: Expected payoffs in malevolent 3-color Ellsberg game with switching.

(fK
1 , f

K
3 ) (fK

1 , fK
4 )(fK

2 , fK
3 )(fK

2 , f
K
4 ) (fS

1 , f
S
3 ) (fS

1 , f
S
4 ) (fS

2 , f
S
3 ) (fS

2 , f
S
4 )

b20 −20
30
, 20

30
−1, 1 −1, 1 −40

30
, 40

30
−40

30
, 40

30
−1, 1 −1, 1 −20

30
, 20

30
...

...
...

...
...

...
...

...
...

b15 −25
30
, 25

30
−1, 1 −1, 1 −35

30
, 35

30
−35

30
, 35

30
−1, 1 −1, 1 −25

30
, 25

30
...

...
...

...
...

...
...

...
...

b10 −30
30
, 30

30
−1, 1 −1, 1 −30

30
, 30

30
−30

30
, 30

30
−1, 1 −1, 1 −30

30
, 30

30
...

...
...

...
...

...
...

...
...

b5 −35
30
, 35

30
−1, 1 −1, 1 −25

30
, 25

30
−25

30
, 25

30
−1, 1 −1, 1 −35

30
, 35

30
...

...
...

...
...

...
...

...
...

b0 −40
30
, 40

30
−1, 1 −1, 1 −20

30
, 20

30
−20

30
, 20

30
−1, 1 −1, 1 −40

30
, 40

30

event). As such, the predictions with respect to betting behavior are unchanged. The

same holds true for the benevolent case.

Note that this is not surprising. As shown in Table 2, there is no way the ex-

perimenter can stack the urn in his favor in the 3-color urn. Therefore the suspicion

argument has no bite in the 3-color Ellsberg game.

9 Appendix: Mixed Nash Equilibria

There are infinitely many Nash equilibria in mixed (non-pure) strategies. Denote by

∆(SE) the set of all probability distributions on the set SE. For any α = (α1,3, α1,4, α2,3, α2,4)

in ∆(SE), αk,l denotes the probability that player E ’s choices are (fk, fl) with k ∈

{1, 2} and l ∈ {3, 4}. Denote by ∆(SD) the set of all probability distributions on the

set SD. For any β = (β0, . . . , βn, . . . , β20) in ∆(SD), βn is the probability that player D

chooses a composition of the urn consisting of bn black balls with n = 0, . . . , 20. A pair

of probability distributions (α∗, β∗) constitute a Nash equilibrium in mixed strategies
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for risk neutral players whenever they satisfy the following condition:

α∗ ∈ ∆(SE) such that α1,3 = α2,4 and α1,4 = α2,3,

β∗ ∈ ∆(SD) such that
∑20

n=0 βn(20+bn
30

) = 1.
(5)

The set of mixed equilbria is identical in the malevolent and the benevolent game.
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