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1 Introduction

The degree of U.S. inflation-gap persistence varied considerably during the last forty years

(see Levin and Piger, 2004, Cogley and Sargent, 2005 and Cogley et al., 2010).1 While

inflation-gap persistence was high during the 1970s, it fell sharply in the early 1980s

and, thereafter, remained at a considerably lower level than in the 1970s. It is often

informally argued that the observed changes in persistence are related to changes in the

FED’s monetary policy (see, e.g., Clarida et al., 2000). In particular, the strong decline in

persistence in the early 1980s is associated with the Volcker disinflation. In this paper, we

analyze the link between a Taylor rule for monetary policy and inflation-gap persistence

in a simple New Keynesian type of model, which allows for a closed form solution of

the persistence parameter as a function of the weights that the central bank attaches to

inflation and the output gap.

Our model can be considered a closed-economy version of the model discussed in

Clarida and Waldman (2008). It consists of three equations: a forward looking aggregate

demand curve, a backward looking supply curve and a standard Taylor rule. In this

setting, the reduced form representation of the inflation gap is a stationary autoregressive

process of order one. The degree of inflation-gap persistence, which is given by the first

order autoregressive coefficient, strictly decreases in the Taylor rule coefficient on the

deviation of inflation from its target and strictly increases in the Taylor rule coefficient on

the output gap. That is, our model predicts that the more aggressively the central bank

reacts to deviations of inflation from its target, the faster does the inflation rate converge

to the target. This central property of our model is then tested empirically for the U.S.

In a first step, we estimate a forward looking Taylor rule for a rolling window of twenty

years of quarterly observations. The estimated weights on inflation and the output gap

reveal substantial variation during the period 1975:Q1 to 2010:Q1. In particular, we find

the highest weight on inflation during the early years of the Volcker era. For that period

the output-gap coefficient was insignificant, but significantly positive thereafter. In a

second step, we obtain rolling window estimates of the degree of inflation-gap persistence

whereby we control for potential changes in the inflation target. We find evidence for

two changes in the target: a first one in 1980:Q4 and a second one in 1992:Q. Neglecting

such changes leads to an overestimation of the true degree of persistence.2 Interestingly,

1The inflation-gap is defined as the difference between actual inflation and the central bank’s inflation

target.
2This finding is in line with Cogley and Sbordone (2008) who argue that inflation itself is highly

1



the estimated persistence was lowest in the period for which we estimated the highest

values for the reaction coefficient on inflation. Also, inflation-gap persistence increased

during a period in which the FED increased its weight on the output gap. A more formal

test of our model’s implications is performed by regressing the estimated inflation-gap

persistence on the estimated reaction coefficients on inflation and the output gap. In line

with the model’s predictions, we find that a higher weight on inflation (on the output gap)

significantly decreases (increases) persistence. Finally, we utilize the estimated reaction

coefficients to generate a series of persistence measures as predicted by our theoretical

model and then compare this series with the actually observed persistence. Again, the

predictions of the model are confirmed by the observed data.

In summary, our empirical analysis strongly supports the hypothesis that the changes

in U.S. inflation-gap persistence can be well explained by changes in the conduct of the

FED’s monetary policy. Stated differently, the paper supports the view that inflation

persistence is not inherent in the structure of the economy, but rather influenced by

monetary policy (e.g., Benati, 2008). Our findings can be considered complementary to

other recent evidence provided by, e.g., Levin and Piger (2004), Carlstrom et al. (2008),

Davig and Doh (2009) and Kang et al. (2009).

The remainder of this article is organized as follows. In Section 2 we introduce the

model and derive a closed form solution for the inflation-gap persistence parameter. Sec-

tion 3 presents the data and the empirical analysis. A short discussion closes the paper.

2 Theoretical Model

We consider a simple New Keynesian model consisting of three equations: aggregate

demand, aggregate supply and a monetary policy rule that specifies how the central bank

sets the interest rate as a function of the output gap and of deviations of inflation from

its target. Our model is motivated by Clarida and Waldman (2008) and can be viewed

as a closed economy version of their model. The simple structure of the model allows us

to investigate how changes in monetary policy (changes in the weights in the monetary

policy rule) affect the degree of inflation-gap persistence in the reduced form solution of

the model.

persistent because of changes in trend inflation. By controlling for such changes they also find that the

inflation gap is less persistent.
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Let aggregate demand be given by

yt = Et {yt+1} − (it −Et {πt+1}) + ut, (1)

where yt is the output gap, it the nominal interest rate, Et {πt+1} expected inflation,

and ut a demand shock which is assumed to be white noise. The nominal interest rate is

linked to the real rate through the Fisher equation it = rt+Et {πt+1}. The forward looking

aggregate demand equation (1) can be derived by log-linearizing the consumption Euler

equation that arises from the household’s optimal savings decision.3 Following Clarida

and Waldman (2008), aggregate supply is given by

πt = πt−1 + yt + et, (2)

where et is a white-noise aggregate supply shock (“cost-push” shock). Two comments

are in order. First, we assume that the coefficients on lagged inflation and on the output

gap are both equal one. This assumption simplifies our model but does not affect its

qualitative predictions. We will discuss the implications of this assumption in more detail

in Section 3.2. Second, the aggregate supply curve is assumed to be backward looking,

that is, current inflation depends on lagged inflation. In the literature, both backward and

forward looking aggregate supply curves are common. A purely forward looking aggregate

supply curve is not appropriate for our setting because it does not generate the degree

of inflation-gap persistence we typically observe in the data. A compromise would be a

“hybrid” aggregate supply curve in which both lagged and expected inflation appear on

the right hand side. The reason why we focus on a backward looking aggregate supply

curve (sometimes called an “accelerationist” Phillips curve) is that it allows for a simple

closed form solution of the inflation-gap persistence parameter.

We close the model by assuming that the central bank conducts monetary policy

according to the following Taylor rule

it = γ0 + γπ(Et {πt+1} − π̄j) + γyyt, (3)

where π̄j is the central bank’s inflation target. In the subsequent (empirical) analysis we

will allow for j = 1, . . . , J discrete changes in the inflation target which will be associated

with different monetary policy regimes. Under the forward looking policy rule given by

equation (3), policy responds to the current output gap and to expected deviations of

3See, for example, Woodford (1996) or Bernanke et al. (1998).
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inflation from the target. When both expected inflation and output are at their target

levels, then the constant γ0 is equal to the desired nominal interest rate. Taylor rules of

this type are standard in the literature and are in line with the optimal rules derived,

for example, in Clarida at al. (1999). The weight on the output gap is assumed to be

positive (γy > 0) and the weight on inflation is assumed to be greater than one (γπ > 1).

The assumption that γπ > 1, is referred to as the Taylor condition and is necessary for a

stable solution. To get an intuition for this principle, use the Fisher equation above and

rewrite the policy rule in terms of the real rate

rt = (γ0 − π̄j) + (γπ − 1) (Et {πt+1} − π̄j) + γyyt.

The Taylor condition states that the central bank needs to respond more than one for one

to deviations of expected inflation from the target in order for the real rate to rise. The

term (γ0 − π̄j) corresponds to the long-run equilibrium real interest rate within regime j.

In the following proposition we show that the reduced form representation of the

inflation-gap πt− π̄j, i.e. the difference between the actual inflation rate and the inflation

target, is an autoregressive process of order one (AR(1)). Following Pivetta and Reis

(2005), we then measure inflation-gap persistence by the autoregressive coefficient.4 We

focus on inflation-gap persistence rather than on inflation persistence because a change of

the inflation target implies a change of the constant in the reduced form AR(1) process

and, hence, neglecting such changes in the empirical analysis will lead to biased estimates

of the persistence parameter. Since we believe that these changes are due to shifts in

monetary policy, we consider j = 1, . . . , J discrete regimes and our theoretical result

holds within each regime (see also Cogley and Sbordone, 2008). Obviously, if a single

policy regime with a constant inflation target is assumed, there is no difference between

measuring inflation-gap persistence and inflation persistence.

Proposition 1. If the Taylor condition is satisfied and if the weight on the output gap

is positive, then within each monetary policy regime j there exists – conditional on the

minimum set of state variables – a unique rational expectations solution of the form

πt = (1− d)π̄j + dπt−1 + κt, (4)

4As discussed in Pivetta and Reis (2005) this measure can be viewed as an unconditional measure

of persistence. In contrast, conditional persistence measures would be derived from equations that, in

addition to lagged inflation, include other explanatory variables. Since we are interested in measuring

persistence and not predictability we focus on the former.
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or, equivalently,

(πt − π̄j) = d(πt−1 − π̄j) + κt, (5)

where κt is white noise and the persistence parameter d is the stable root of

(γπ − 2) d2 +
(

2 + γy

)

d−
(

1 + γy

)

= 0. (6)

The proof of Proposition 1 can be found in the Appendix. For analyzing the effects of

0.0

0.2

0.4

0.6

0.8
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Figure 1: Inflation persistence d (y-axis) as a function of the reaction coefficient γπ (x-

axis) with γy fixed at 0.1 (solid line), 0.5 (dashed line) and 1.0 (dotted line).

changes in γπ and γy on the persistence parameter d, take the partial derivatives to find:

∂d

∂γπ

< 0 <
∂d

∂γy

. (7)

Thus, inflation-gap persistence is strictly decreasing in γπ, the Taylor rule coefficient on

the inflation gap, and strictly increasing in γy, the Taylor rule coefficient on the output

gap.5 The more aggressively the central bank reacts to the inflation gap, the faster the

inflation rate converges to its long-run value (the target). However, the larger the weight

placed on output stabilization, the higher the degree of inflation-gap persistence. In the

limit, when γπ approaches one and when γy increases indefinitely, inflation approaches

a random walk (d → 1). On the other hand, as the weight on inflation goes to infinity,

inflation approaches a white noise process (d → 0). Figure 1 plots the persistence param-

eter d as a function of γπ, while γy is fixed at 0.1, 0.5 and 1.0 respectively. Note that the

effect of a change in γπ on d is stronger, the smaller the initial value of γπ.

5Note that this result is qualitatively the same as in Clarida and Waldman (2008).
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3 Empirical Analysis

In the following section, we will test empirically the implications of our theoretical model

using U.S. data. For the estimation of the forward looking Taylor rule, we will employ

inflation expectations data from the Survey of Professional Forecasters (SPF). Regarding

the output gap, we follow Orphanides (2004) and rely on real-time instead of revised data.

That is, we make use of the data available to the FED at the time the monetary policy

decisions were made. Since the survey respondents participating in the SPF are asked

about their expectations regarding the GDP deflator, we also use the GDP deflator for

estimating our measures of inflation persistence.

3.1 Data

We employ quarterly data for the period 1975:Q1 to 2010:Q1. The federal funds rate (it)

and the GDP deflator (pt) data are obtained from the FRED database at the Federal Re-

serve of St. Louis. The SPF one-year-ahead inflation expectations are denoted by π̂t+4|t.
6

The corresponding realized inflation rates are calculated as πt+4,t = 100 × [log(pt+4) −

log(pt)]. The real-time output data were retrieved from the Federal Reserve of Philadel-

phia. For each vintage the output gap is calculated as the deviation of actual output

from a quadratic time trend.7 Since the real-time dataset contains estimates for output in

quarter t− 1 (and before) based on information up to quarter t, we follow Molodtsova et

al. (2008) and obtain our real-time output gap series yt by collecting the last observations

from each vintage.8

3.2 Estimation Results

We begin the empirical analysis by estimating a standard Taylor rule for the full sample

and two selected subsamples. In this preliminary analysis we assume that the inflation

6The expectations data are collected in the second month of each quarter. The SPF has set the

deadline for the responses at late in the second to third week of the second month. The data we are using

are the median expectations among the survey participants.
7For a discussion of alternative methods for estimating the output gap see Orphanides and van Norden

(2002).
8More precisely, we could denote this series by yt−1|t, since it represents the preliminary estimate of

the output gap in t− 1 given the information available in t. This is, because the “advance” estimate of

GDP in quarter t− 1 is released near the end of the first month in quarter t.
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target is constant. The estimated rule is of the form

it = α0 + γππ̂t+4|t + γy ŷt + εt (8)

where α0 = γ0 − γππ̄ and εt is a stochastic innovation.9 The results for the full sample,

i.e. for the period 1975:Q1 - 2010:Q1, are presented in the second column of Table 1 and

provide reasonable estimates for the inflation and output-gap reaction coefficients. The

reaction coefficient on inflation is well above one, i.e. satisfies the Taylor principle, and

the reaction coefficient on the output gap is significantly greater than zero. Note that the

estimates of γπ and γy are quite close to 1.5 and 0.5, the values suggested in Taylor (1993).

Columns four and five contain estimates for the Volcker era and the post-Volcker period.

Interestingly during the Volcker years the coefficient on the output gap is virtually zero

and statistically insignificant. On the other hand, the coefficient on inflation is highly

significant and close to 1.5. Thus, our estimates for the Volker era are in line with the

usual interpretation that in these years the focus of the FED’s policy was exclusively on

inflation. During the post-Volcker years both reaction coefficients are highly significant

and even slightly higher than in the whole sample. That is, in the post-Volcker years the

FED shifted its focus to both inflation and growth. Clearly, these sub-sample estimates

suggest that the FED’s monetary policy changed considerably during the last 35 years

(see also Clarida et al., 2000).

3.2.1 Time-Varying Taylor-Rule Reaction Coefficients

Next, we investigate the changes of the reaction coefficients in the FED’s Taylor rule in

more detail. For this, the estimation of the Taylor rule is performed for a rolling window

of M observations, which leads to a series of estimates (γ̂1
π, γ̂

1
y), . . . , (γ̂

M
π , γ̂M

y ). Note that

here we allow the inflation target to vary from one window to the other. Figure 2 shows

the estimates for γi
π and γi

y from regressions with M = 80, which corresponds to twenty

years of quarterly observations.10 Note that the estimates denoted by γ̂75:Q1
π and γ̂75:Q1

y

are based on observations ranging from 1975:Q1 to 1995:Q1. Similarly, the final estimates

9As an alternative to equation (8), we also considered a specification which allows for interest rate

smoothing and obtained similar results. However, in order to be as close as possible to the theoretical

framework introduced in Section 2, we prefer to work with the simpler specification.
10In choosing M , one faces a trade-off between obtaining precise estimates of the reaction coefficients

on the one hand and detecting changes in the coefficients as quickly as possible on the other hand. Our

choice of M = 80 balances the two desires.
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Table 1: Taylor Rule Reaction Coefficient Estimates.

full sample Volcker post-Volcker

1975:Q1-2010:Q1 1979:Q3-1987:Q3 1987:Q4-2010:Q1

α0 −0.313
(0.623)

1.747
(1.075)

−1.166
(0.652)

⋆

γπ 1.590
(0.211)

⋆⋆⋆ 1.576
(0.222)

⋆⋆⋆ 1.872
(0.218)

⋆⋆⋆

γy 0.319
(0.101)

⋆⋆⋆ 0.016
(0.138)

0.415
(0.065)

⋆⋆⋆

R̄2 0.70 0.69 0.78

Notes: The table shows the parameter estimates for the Taylor rule

given in equation (8). The numbers in parenthesis are Newey-West

robust standard errors. ⋆⋆⋆, ⋆⋆ and ⋆ indicate significance at the 1%,

5% and 10% level.

γ̂90:Q1
π and γ̂90:Q1

y are based on observations ranging from 1990:Q1 to 2010:Q1. Clearly,

the estimates of γi
π are steadily increasing from a value of about 1.5 when i = 1975:Q1

and reach a maximum of about 2.2 when i = 1982:Q1, respectively.11 Interestingly, the

steepest increase in γi
π occurs when we use a sample that begins in the early eighties.

Thus, this strong increase coincides with the period of the Volcker disinflation starting

in 1979:Q3. Thereafter, the estimates for γi
π are slightly decreasing but remain at a level

well above 1.5. The estimates for γi
y are insignificant before i = 1980:Q2 and significantly

positive thereafter. The estimate for γi
y is steadily increasing towards a value of about

0.5 when i = 1984:Q1 and then remains at this level.

Hence, combining the parameter estimates with the predictions of our theoretical

model, we would expect that γi
π should have a strong negative effect on inflation-gap

persistence in the period i = 1975:Q1, . . . , 1982:Q1, but a positive although considerably

weaker effect thereafter. On the other hand, we would expect no effect from γi
y before i =

1980:Q2, but a positive and significant effect thereafter.

In order to strengthen the evidence of time-varying Taylor rule coefficients, we formally

test for breaks in the γπ and γy coefficients. For this, we consider again the full sample

11At first sight, it may be surprising that γi
π is estimated to be greater than one for i < 1979:Q3 already,

while studies such as Clarida et al. (2000) have shown that the FED’s behavior was “accommodative” in

the pre-Volcker years. However, one has to recall that, e.g., γ̂75:Q1

π is based on observations from 1975:Q1

to 1995:Q1 and, hence, only the first four years of this period are from the pre-Volcker era.
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Figure 2: Estimates of γπ (solid) and γy (dotted) with corresponding 95% confidence

bands (dashed). γ̂y is insignificant for i < 1980:Q2, but significant thereafter (shaded

area).

and apply the Quandt-Andrews likelihood ratio (QLR) statistic for unknown break dates

individually to the two reaction coefficients (for details see Andrews, 1993). In both cases

the null hypothesis of no break in the respective coefficient can be rejected at the 1% level.

The QLR test identifies a break in the γπ coefficient in 1980:Q4 and in the γy coefficient

in 1983:Q3. The corresponding pre/post-break parameter estimates are presented in

Table 2. Clearly, the estimated break dates as well as the size of the pre/post-break

parameter estimates are in line with the above interpretation of Figure 2.

Table 2: QLR Test for Breaks in the Taylor Rule Reaction Coefficients.

break date pre-break estimate post-break estimate

γπ 1980:Q4 1.480
(0.130)

⋆⋆⋆ 2.292
(0.102)

⋆⋆⋆

γy 1983:Q3 −0.169
(0.326)

0.503
(0.085)

⋆⋆⋆

Notes: The table reports the estimated break dates in the γπ and

γy coefficients and the corresponding pre/post-break parameter es-

timates. In both cases the null hypothesis of no break was rejected

at the 1% level. ⋆⋆⋆, ⋆⋆ and ⋆ indicate significance at the 1%, 5%

and 10% level. A 15% trimming of the sample period is applied; the

critical values are based on Hansen (1997).
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In summary, both the rolling window estimates of the reaction coefficients and the

QLR tests provide strong support for the existence of time-varying weights in the FED’s

Taylor rule.

3.2.2 Measuring Inflation-Gap Persistence

As discussed in Section 2, we focus on inflation-gap persistence and allow for discrete

changes in the target over time. This is important because in our theoretical model the

unconditional expectation of inflation is equal to the inflation target and, hence, neglected

structural breaks in the target will lead to biased estimates of the true degree of inflation-

gap persistence (see Peron, 1990). Since we associate changes in the inflation target

with discrete shifts in the policy regime, we first estimate the different target levels π̄j,

j = 1, . . . , J . Two complementary strategies are possible for identifying the potential

break dates. First, we can test for changes in the constant α0 = γ0 − γππ̄ in the Taylor

rule in equation (8) and, second, we can test for a change in the unconditional mean of the

inflation series πt+4,t. While the second approach has the advantage that (in our model)

the unconditional mean of inflation is equal to the target, empirically a shift in the target

will lead to a change in the mean only with some time delay. On the other hand, while a

shift in the target may be detected more timely by testing for breaks in the constant in

the Taylor rule, looking at the parameter α0 does not allow to separate changes from π̄

and γπ. Since the approaches have their pros and cons we apply both.

As a baseline scenario we consider the case with no change in the inflation target.

Figure 3, top panel, shows the inflation series, πt+4,t, together with the implied inflation

target, π̄, as derived from the estimated α0 (left figure) or as the mean of the inflation

rate (right figure).12 The target level is close to 4% in both cases. Next, we allow for

one shift in the policy regime. The inflation targets corresponding to this scenario are

presented in the middle panel of Figure 3. The QLR test provides strong evidence for a

break in α0 in the fourth quarter of 1980 (left figure), while the break in the mean of the

inflation series is dated 1983:Q2 (right figure). As expected, both figures show a sharp

decrease in the inflation target which we associate with the Volcker disinflation policy.

Finally, we allow for two regime changes. In both cases we now identify 1992:Q2 as the

second break date.13 The corresponding inflation targets are presented in the lower panel

12The target rate implied by α̂0 is calculated as ˆ̄π = (γ̄0 − α̂0)/γ̂π, where γ̄0 is the average value of the

federal funds rate within the estimation period (see also Clarida et al., 2000).
13This second break roughly coincides with the end of the Savings and Loan Crisis.
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of Figure 3. Interestingly, both strategies lead to estimates of the inflation targets that

are of roughly comparable size. The main difference lies in the dating of the first break of

the target rate. As expected, the change in the target in the early 1980s is first detected

as a change of the constant in the Taylor rule.
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Figure 3: US inflation (solid line) and inflation targets (dashed line) when accounting

for no/one/two changes in the target. The inflation targets in the left/right figures are

obtained from the Taylor rule/inflation series respectively.

Next, we construct the empirical measure of inflation-gap persistence. As suggested

by our theoretical model, we specify the inflation gap series as an AR(1) process

(πt+4,t − ˆ̄πj) = c+ d(πt+3,t−1 − ˆ̄πj) + ηt, (9)

whereby the time-varying inflation targets ˆ̄πj are given by the estimates presented in

Figure 3. That is, we run the above regression separately for the five alternative infla-
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tion target scenarios discussed above.14 We then define inflation-gap persistence as the

estimated first order autoregressive coefficient.15

As before, we perform the estimation for the rolling sample and obtain a series

d̂1, . . . , d̂M of persistence parameters. Figure 4 shows exemplary the estimated degree

of persistence of π̃t+4,t for the case that a single inflation target is assumed throughout

the sample (solid line) and for the α0-scenario with two changes in the target (dashed

line).16 While in both cases the general course of inflation-gap persistence is quite sim-

ilar over time, the persistence estimates from the specification with two target changes

are somewhat lower than the ones from the regime with no change in the target. As

discussed above, this finding is reasonable since neglected structural breaks will lead to

an overestimation of persistence. More specifically, in both cases the estimated values d̂i

are starting at a high level of persistence and then sharply decrease until they reach a

minimum for i = 1981:Q4. The sharp decrease occurs exactly in the period for which

γπ was estimated to be strongly increasing. The minimum degree of inflation persistence

is reached when the reaction coefficient on inflation was approximately at its maximum

value. Thereafter, inflation persistence is again increasing but towards a lower level than

in the mid-seventies. The increase in inflation persistence now coincides with the raising

value of γ̂y until the mid-1980s. The fact that inflation persistence stabilizes from the

mid-1980s onwards is in line with the observation that thereafter both γ̂π and γ̂y remained

stable. Thus, the visual inspection of Figures 2 and 4 appears to support the theoretical

predictions of our model.17

14Although the two scenarios with no regime change imply different target levels, they obviously lead

to the same persistence estimates.
15As a robustness check, we also estimated higher order autoregressive models and defined gap per-

sistence as the sum of autoregressive coefficients. However, it appears that our focus on the first order

coefficient is innocuous and the subsequent results are robust to, e.g., considering in AR(2) process

instead.
16Note that in the scenario with a single inflation target there is no difference between inflation-gap

persistence and inflation persistence.
17Although economically significant, the observed changes in the degree of inflation persistence could

be viewed as being small relative to the overall level of persistence. Because of this observation, e.g.,

Pivetta and Reis (2007) or Stock and Watson (2007) argue that U.S. inflation persistence did not change

significantly during the period under consideration.
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Figure 4: The solid/dashed lines refer to the inflation-gap persistence measures as ob-

tained from the inflation gap series with no/two changes (α0-scenario) in the inflation

target. In both cases the lowest degree of persistence is reached for i = 1981:Q4.

3.2.3 Testing the Model Predictions

As a more formal check of our theory we run the regression

d̂i = δ0 + δπγ̂
i
π + δyγ̂

i
y + ξi, (10)

i = 1, . . . ,M , and then test whether δπ < 0 and δy > 0. Table 3 shows that for all

specifications δ̂π is negative and highly significant. That is, in line with our theory,

inflation persistence is lower the stronger the central bank reacts to deviations of actual

inflation from the target. Similarly, the estimate δ̂y is positive and significant at the 5%

level in all five specifications. Thus, our estimation results clearly support the hypothesis

that increases in γ̂π (γ̂y) lower (raise) the degree of inflation persistence.18

In order to connect our parameter estimates more closely to the theoretical framework,

we use the estimated Taylor rule coefficients, (γ̂i
π, γ̂

i
y), i = 1, . . . ,M , to construct a series

of persistence parameters d̂i,M(γ̂i
π, γ̂

i
y) as predicted by the theoretical model in Section 2.

Then we compare the model-implied persistence with the empirical estimates d̂i from

the scenario with two changes in the inflation target. While the solid line in Figure 5

corresponds to d̂i, the dashed line represents d̂i,M as implicitly defined in equation (6)

18For checking the robustness of our results with respect to changes in the estimation procedure, we

re-estimated the inflation-gap persistence parameter (i) by the approximately median unbiased estimator

of Andrews and Chen (1994) and (ii) by assuming that ηt follows a GARCH(1, 1) process. The results

(not reported) clearly confirm the findings in Table 3 of a negative (positive) effect of γπ (γy) on d.
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Table 3: Empirical Test of Model Predictions.

Breaks determined by

Taylor rule inflation series

# breaks 0 1 2 1 2

break date - 80:Q4 80:Q4 & 92:Q1 83:Q2 83:Q2 & 92:Q1

δ0 1.255
(0.058)

⋆⋆⋆ 1.137
(0.069)

⋆⋆⋆ 1.271
(0.086)

⋆⋆⋆ 1.060
(0.114)

⋆⋆⋆ 1.493
(0.157)

⋆⋆⋆

δπ −0.177
(0.035)

⋆⋆⋆ −0.122
(0.042)

⋆⋆⋆ −0.207
(0.054)

⋆⋆⋆ −0.136
(0.067)

⋆⋆⋆ −0.414
(0.093)

⋆⋆⋆

δy 0.086
(0.027)

⋆⋆⋆ 0.103
(0.032)

⋆⋆⋆ 0.087
(0.050)

⋆ 0.280
(0.048)

⋆⋆⋆ 0.422
(0.067)

⋆⋆⋆

R̄2 0.73 0.45 0.58 0.62 0.59

Notes: The table shows the estimates for the coefficients in equation (10). The numbers in paren-

thesis are Newey-West robust standard errors. ⋆⋆⋆, ⋆⋆ and ⋆ indicate significance at the 1%, 5%

and 10% level.
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1.00

76:1 78:1 80:1 82:1 84:1 86:1 88:1

Figure 5: Model implied (left scale) and empirical (right scale) inflation-gap persistence.

Solid line: d̂i, dashed line: d̂i,M(γ̂i
π, γ̂

i
y), dotted line: d̂i,M(γ̂i

π, 0.5), squares: d̂
i,M(1.5, γ̂i

y).

but with the theoretical parameters (γi
π, γ

i
y) replaced by (γ̂i

π, γ̂
i
y). The general shape of

d̂i,M is quite similar to the one of d̂i, however the decrease in model-implied persistence

in the late seventies and early eighties is less sharp than the strong decline in d̂i. A likely

explanation for this effect is that in the calculation of d̂i,M the estimated coefficients on

14



the output gap enter even in the period in which this coefficient was not significant.19

Thus, for obtaining a better understanding of the individual contribution of γ̂i
π and γ̂i

y

to the model-implied persistence, we plot the model-implied persistence for the case that

only γ̂i
π is varying and γi

y is fixed at 0.5 (d̂i,M(γ̂i
π, 0.5), dotted line) or that γ̂i

y is varying

and γ̂i
π is fixed at 1.5 (d̂i,M(1.5, γ̂i

y), squares). Clearly, the dotted line closely follows the

behavior of the solid line until inflation persistence reaches its minimum, i.e. when we

fix γi
y the changes in γ̂i

π can explain the sharp decrease in inflation persistence towards

the early eighties. Similarly, the subsequent increase in d̂i is reflected in the increase of

d̂i,M(1.5, γ̂i
y) (squares). This is the effect of an increasing weight on the output gap while

holding the weight on inflation constant. In summary, as suggested by our theoretical

model, changes in the conduct of monetary policy can explain the changes in inflation

persistence. More specifically, the sharp decrease in inflation persistence at the beginning

of the eighties was a result of the aggressive disinflation policy in the Volcker era, while

persistence is moderately increasing thereafter because of an increasing weight that was

put on the output gap.

4 Discussion

This paper studies how monetary policy affects inflation-gap persistence. U.S. inflation-

gap persistence (and inflation persistence per se) has declined considerably since the early

1980s and one explanation for this phenomenon is that the Federal Reserve responded

more aggressively to inflationary pressure. In a simple three equation model we derive a

closed form solution of the inflation-gap persistence parameter and show how it is affected

by the weights in the FED’s Taylor rule. Inflation-gap persistence is strictly decreasing in

the coefficient on the output gap and strictly increasing in the coefficient on inflation. The

more aggressively the central bank reacts to inflationary shocks, the faster the inflation

rate converges to its target. However, the larger the weight placed on output stabilization,

the higher inflation persistence.

The predictions of the theoretical model are confirmed by our empirical analysis. Using

19Note that the absolute levels of the two persistence measures differ considerably. While capturing the

general shape quite well, the model-implied persistence is lower than the estimated one throughout the

sample period. This low level of the model-implied persistence is likely to be caused by our assumption of

unit coefficients on lagged inflation and the output gap in the aggregate supply curve in eq. (2). Adjusting

these coefficients appropriately, we would obtain similar levels of persistence from both measures.
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simple rolling window regressions, we obtain time-varying parameter estimates of the

Taylor rule reaction coefficients on the inflation and output gap and estimates of the degree

of U.S. inflation-gap persistence. It is then shown that increases in the response coefficient

on inflation (the output gap) significantly decrease (increase) inflation persistence. By

comparing the empirically estimated changes in U.S. inflation-gap persistence with the

persistence implied by our model, we can show that the sharp decrease in inflation-gap

persistence in the early 1980s can be attributed to a strong increase in the weight that

the FED attached to inflation during the Volcker disinflation.

It is worth mentioning, that while in our model we treat inflation-gap persistence as

being endogenous, there is also a strand of the literature that treats inflation persistence

as a structural parameter. Under this assumption, the optimal reaction coefficients in

the Taylor rule are functions of the degree of inflation persistence (see, e.g., Clarida et

al., 1999). However, as suggested by Benati (2008), the question whether persistence

is structural or not can only be judged empirically by investigating inflation persistence

over different policy regimes. Our results thus deliver further support for the view that

inflation persistence is not a structural parameter.

Finally, we would like to link our findings to another ongoing debate, namely the

discussion on the sources of the Great Moderation, i.e. the strong decline in the volatility

of many macroeconomic series – including inflation – from the mid-1980s onwards. Since

in our model the reduced form inflation rate follows an autoregressive process, changes

on the degree of persistence directly affect the unconditional variance of the process. A

monetary policy which decreases the degree of inflation persistence (while holding the

variance of the innovation term constant) also reduces the volatility of the inflation rate.

Thus, our analysis also provides evidence for the good policy interpretation of the Great

Moderation.
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Fabian Krüger, and Michael J. Lamla for an interesting discussion on the topic. Finally,

we are grateful to Alexander Rohlf for excellent computational assistance.

16



Appendix

Proof of Proposition 1.

In order to derive equation (5), we reduce the three equation model above to a second

order difference equation in πt of the form

−a0Et {πt+1}+ πt − a1πt−1 = xt, (11)

where a0 and a1 are functions of γy and γπ

a0 ≡
2− γπ

2 + γy

and a1 ≡
1 + γy

2 + γy

and xt ≡
ut+(1+γy)et−γ0+γππ̄j

2+γy
. It is then straightforward to solve equation (11), for exam-

ple, by factorization. The result will be of the form

πt = π̄j (1− d) + dπt−1 + κt,

where d is the stable root of equation (6) in the main text and κt a white-noise innovation.

Note that the two roots of equation (6) are given by d1 + d2 = 1
a0

and d1d2 = a1
a0
. The

model is saddle path stable with one root larger and the other smaller than one. By

choosing d to be the smaller of the two roots, we are choosing the stable, non-explosive

solution. The innovation is given by

κt =
ut +

(

1 + γy

)

et

1 + γy

d.
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