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1 INTRODUCTION
Nash equilibrium (henceforth NE) is the most widely used equilibrium concept in game

theory. Though a large and growing number of experimental studies indicate its weaknesses, it

has proved dif�cult to �nd systematic patterns in the deviations from NE. Given this, we believe

that it is worth considering alternatives.

Goeree & Holt (2001) (henceforth GH) published an article with the provocative title �Ten

Little Treasures of Game Theory and Ten Intuitive Contradictions� in which they claim that

�for each of these ten games there is an experimental treatment in which behaviour conforms

nicely to predictions of NE� but where �a change in the payoff structure produces a large in-

consistency between theoretical predictions and observed behaviour�.1 In the present paper we

restrict attention to the �ve one-shot games, which GH studied. We argue that many of the

�inconsistencies� in these games can be explained by ambiguity.

Ambiguity describes situations where individuals cannot or do not assign subjective proba-

bilities to uncertain events. This may be because the problem is complex or unfamiliar. There

is by now considerable experimental evidence which shows that individuals treat ambiguous

decisions differently from risks with known probabilities. The best known example is the Ells-

berg paradox, Ellsberg (1961).2 There is also experimental evidence that behaviour in games is

affected by ambiguity. Colman & Pulford (2007) present some experimental evidence that am-

biguity affects behaviour in games but do not test any particular theories. Eichberger, Kelsey &

Schipper (2008b) use a similar theory of ambiguity to the present paper. They test it on games

with strategic complements or substitutes and �nd the evidence is broadly supportive.

We believe that ambiguity may be present in experimental games since the relevant uncer-

tainty is the strategy choice of one's opponent. Human behaviour is not intrinsically easy to

predict. It is plausible that there may be ambiguity in GH's experiments since each game was

1 Goeree & Holt (2001) p. 1402.
2 This has been con�rmed by the subsequent experimental literature, see for instance Camerer & Weber (1992)
and Cohen, Jaffray & Said (1985).
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only played once. Hence subjects did not have time to become familiar with the game or the

behaviour of their opponents.

In this paper, each player views the strategy choice by his/her opponents as potentially am-

biguous. We use a model of uncertainty axiomatised by Chateauneuf, Eichberger & Grant

(2007), (henceforth CEG), in which ambiguity is represented by non-additive beliefs. Applying

this theory to games, implies that players will maximize an objective function which consists

of a weighted average of the equilibrium pay-off, the best pay-off and the worst pay-off for any

given strategy. Thus players react to ambiguity partly in an optimistic way by over-weighting

good outcomes and partly in a pessimistic way by over-weighting bad outcomes. Subsection

2.1 will introduce these preferences, provide some intuition for the parameters of this model

and point to the experimental literature, which tries to estimate them.

Organization of the Paper The next section describes our basic model of ambiguity in

games. Subsection 2.3 de�nes an Equilibrium under Ambiguity (EUA), the equilibrium notion

which will be used in this paper. In section 3 we argue that GH's results on one-shot games

can be explained by ambiguity. In Section 4 we discuss competing theories such as Quantal

Response Equilibrium or the Cognitive HierarchyModel and section 5 concludes. The appendix

contains proofs of those results not proved in the text.

2 STRATEGIC AMBIGUITY
This section introduces our model of ambiguity and uses it as the basis of a solution concept

for normal form games.

2.1 Non-additive beliefs

In the present paper we restrict attention to ambiguity in 2-player games, which requires the

following notation. A 2-player game � = hf1; 2g ;S1; S2; u1; u2i consists of players, i = 1; 2,

�nite pure strategy sets Si and payoff functions ui (si; s�i) for each player. The space of all

strategy pro�les is denoted by S: The notation, s�i; denotes the strategy chosen by i's opponent.

The set of all strategies for i's opponent is S�i. We shall adopt the convention that female
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pronouns (she, her etc.) denote player 1 and male pronouns denote player 2.3

Beginning with Schmeidler (1989), ambiguous beliefs have been modelled as capacities,

which are similar to subjective probabilities except that they are not necessarily additive. We

shall use a model of ambiguity from CEG, which has the advantage that it is parsimonious in

the number of parameters. This theory represents beliefs by a neo-additive capacity � de�ned

by:

� (Aj�; �; �) =

8<: 1 for A = S�i;
�� + (1� �)� (A) for ; $ A $ S�i;
0 for A = ?;

where �; � 2 [0; 1]; � is an additive probability distribution � on S�i and �(A) :=
P

s�i2A
�i(s�i).

They show that preferences may be represented in the form:

Vi (si;�; �; �) = �

�
� max
s�i2S�i

ui (si; s�i) + (1� �) min
s�i2S�i

ui (si; s�i)

�
+(1��) �E�ui (si; s�i) ;

where E�ui (si; s�i) ; denotes a conventional expectation taken with respect to the probability

distribution �:4

One can interpret � as the decision-maker's belief. However (s)he may not be fully con�dent

in this belief. Thus it is an ambiguous belief. His/her con�dence is modelled by the weight

(1 � �) given to the expected payoff E�ui (si; s�i) : Or equivalently � can be interpreted as a

measure of the ambiguity the decision-maker perceives. The highest (resp. lowest) possible

level of ambiguity corresponds to � = 1; (resp. � = 0). Ambiguity-attitude is measured by �;

which represents the optimism/pessimism of the decision maker. Purely optimistic preferences

are given by � = 1; while the highest level of pessimism occurs when � = 0: If 0 < � < 1; the

individual is neither purely ambiguity-averse nor purely ambiguity-loving, since (s)he responds

to ambiguity partly in an optimistic way by over-weighting good outcomes and partly in a

pessimistic way by over-weighting bad outcomes.

3 Of course this convention is for convenience only and bears no relation to the actual gender of subjects in
GH's experiments.
4 For simplicity, we will write, in slight abuse of notation, Vi (si;�; �; �) instead of Vi (si; � (�j�; �; �)) :
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A possible interpretation is that the optimism parameter, �; is a personal characteristic of

the decision maker like his/her risk preferences. In contrast, the degree of ambiguity, �; may

depend on the situation. In particular, one would expect there to be more ambiguity when

players interact for the �rst time. Growing familiarity with the game and the behaviour of

opponents is likely to reduce ambiguity.

CEG also show that these preferences may be represented in the multiple priors form:5

Vi (si;�; �; �) = �max
p2P

Epui (si; s�i) + (1� �)min
p2P

Epui (si; s�i) ; (1)

where P := fp 2 �(S�i) : p > (1� �)�g : For the case of one opponent with three pure

strategies, Figure 1 shows the set of probability distributions P(�; �):

The multiple priors representation in equation (1) can be interpreted as follows. When an

individual perceives a situation as ambiguous (s)he considers more than one probability distri-

bution to be possible. He/she reacts to ambiguity partly in an optimistic way by using the most

favourable possible probability and partly in a pessimistic way by using the least favourable

distribution.

2.2 Evidence on Individual Decisions

Tversky &Wakker (1995) study the relationship between decision weights and attitudes towards

risk and characterize the possibility and certainty effects. A majority of individuals appear to

behave cautiously when there is ambiguity. Following Wakker (2001), who relates such behav-

iour to a generalized version of the Allais paradox, we shall refer to such cautious behaviour

as pessimism. This article surveys the relevant experimental literature, which shows, that a

minority of individuals respond to ambiguity in the opposite way, i.e. they display optimism.

Experiments on decision-making with known probabilities have shown that individuals tend

to overweight both high and low probability events. As a result the decision weights assigned to

events are an inverse S-shaped function compared to the given probability distribution, (see for

instance, Gonzalez &Wu (1999) and Abdellaoui (2000)). This can be explained by insensitivity

5 Gilboa & Schmeidler (1989) axiomatised the multiple priors model, which represents ambiguous beliefs by sets
of probability distributions. Multiple priors and non additive beliefs produce related models of ambiguity. However
they are not, in general, identical.
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of perception in the middle of the range. For instance, the change from a probability of 0.55 to

0.60 is not perceived as great as the change from 0 to 0.05.

If probabilities are not known, a similar phenomena has been found (see, Kilka & Weber

(2001)). Individuals overweight both highly likely and highly unlikely events. (In this case

the likelihood of events is subjective.) This produces a pattern of decision weights like that

illustrated in Figure 2. The curved line represents the decision weights of a typical experimen-

tal subject and the 45o line represents SEU beliefs for comparison. This diagram is based on

observations that subjects are willing to take courses of action, which yield high outcomes in

unlikely events but refuse to accept even a small chance of bad outcomes. The more unfa-

miliar the source of uncertainty is the lower is the elevation of the curve, i.e. the curve shifts

downwards in less familiar situations. This can be interpreted as an effect of ambiguity.

.............................................

likelihood0

.........................................

1

1

w(p)

decision
weight

Figure 2. Inverse-S decision weights

Kilka & Weber (2001) report an experimental study of choices in �nancial markets, which

was able to distinguish beliefs from decision weights. They found that decision weights deduced

from actual choices were markedly non-additive. Moreover the weighting scheme of a neo-

additive capacity provides a simple version of an inverse-S shaped function relating beliefs, p;

to decision weights, w(p):

w(p) :=

8<: 1 for p = 1;
��+ (1� �) � p for 0 < p < 1;
0 for p = 0:

This weighting scheme is illustrated in Figure 3. It can be seen as a piecewise linear approxi-
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Figure 3. Neo-additive capacity

mation to that in Figure 2.

Kilka & Weber (2001) used their data to estimate degrees of optimism and ambiguity sepa-

rately. In terms of our notation, they report the following values:

� � ��
Average 0:5 0:52 0:26
Max. 0:62 0:61 0:34
Min. 0:4 0:41 0:18

The values of both optimism � and ambiguity � vary around 0:5 with deviations of 0:1.

In this paper we shall provide an explanation for experimental evidence assuming that in-

dividuals have CEU preferences with parameters compatible with the experimental data from

Kilka & Weber (2001). The evidence suggests that we should consider 0:4 6 � 6 0:62 and

0:41 6 � 6 0:61: We say that if � and � satis�es these inequalities that they lie in the KW-

range.6

2.3 Equilibrium under Ambiguity

We shall use a solution concept based on Dow & Werlang (1994).7 Formally, we assume that

each player maximizes his/her expected payoff with respect to a non-additive belief. In equilib-

rium, beliefs have to be reasonable in the sense that each player �believes� that the opponents

6 In the present paper we shall assume that� and � are distributed independently. We believe independence to be a
reasonable approximation. In any event, it is not possible to estimate the joint distribution from the data in Kilka &
Weber (2001).
7 Dow & Werlang (1994) assumed ambiguity-aversion. Their solution concept was later generalized to an arbi-
trary number of players in Eichberger & Kelsey (2000) and extended to include optimistic behavior in Eich-
berger & Kelsey (2006).
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play best responses. To model this we require that the support of any given player's beliefs con-

tain only best responses of the other players. Denote by Ri(��i) = argmaxfVi (si; ��i) j si 2

Sig the best response correspondence of player i; given beliefs represented by the capacity ��i

on S�i:

Most theories of ambiguity are formulated for single person decisions. To study ambiguity

in games it is necessary to extend them to allow for the interactions between different decision-

makers. In the absence of ambiguity, each player is assumed to choose a strategy which maxi-

mizes his/her expected payoff with respect to beliefs which are compatible with the strategies of

their opponents. Most equilibrium notions rest on some degree of consistency between actual

behaviour and beliefs, since players are likely to adapt their beliefs if they observe behaviour

which contradicts them. In the presence of ambiguity, perfect consistency is unlikely since there

do not exist non-additive randomising devices, which prevents us from constructing strategies,

corresponding precisely to ambiguous beliefs. We consider games where each player believes

that the strategy choice of his/her opponents is possibly ambiguous.8 An equilibrium is a situa-

tion where players behave optimally relative to their beliefs.

De�nition 2.1 A pair of capacities �� = h��1; ��2i is anEquilibrium Under Ambiguity (EUA)
if

? 6= supp ��1 � R1(��2) and ? 6= supp ��2 � R1(��1):9
If s�i 2 supp ��i for i = 1; 2; we say that s� = hs�1; s�2i is an equilibrium strategy pro�le.
If supp ��i contains a single strategy pro�le for 1 = 1; 2 we say that it is a pure equilibrium,
otherwise we say that it is mixed.10

A mixed equilibrium, where the support contains multiple strategy pro�les, should be inter-

preted as an equilibrium in beliefs rather than randomisations.

8 There are other possible modelling choices, for instance, one could consider there is ambiguity about the
opponents' type.
9 Existence of equilibrium can be proved in a standard way using �xed-point theorems, see Dow & Werlang
(1994), Eichberger & Kelsey (2000) and Eichberger, Kelsey & Schipper (2008a).
10 Our aim is to modify Nash equilibrium by allowing for the possibility that players may view their opponents
behavior as ambiguous. If beliefs were additive, then in a 2-player game, De�nition 2.1 would coincide with
Nash equilibrium. In this sense we have modi�ed Nash equilibrium to allow for ambiguity.
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2.4 Support of Ambiguous Beliefs

There is more than one way to extend the notion of a support from probability distributions

to capacities. This de�nition determines how tight the relationship between beliefs and actual

behaviour is. De�nition 2.1 requires the strategies in the support of a given player's equilibrium

belief be best responses. However it is ambiguous whether the opponents play best responses.

As result, in addition, the best and worst possible plays by one's opponent are taken into account

when evaluating a strategy. Decision-relevant strategies outside the support can be interpreted

as events a player views as unlikely but which, due to ambiguity cannot be completely ruled

out.

Several solution concepts for games with strategic ambiguity have been suggested, (see for

instance Marinacci (2000) and Lo (1996)). The main difference between the various solution

concepts is that they use different support notions. Thus the de�nition of support deserves

careful consideration.

De�nition 2.2 We de�ne the support of the neo-additive capacity �(�j�; �; �) by supp � =
supp �:

As explained above a neo-additive capacity is intended to represent a situation where the

decision-maker's belief is represented by the additive probability distribution � but (s)he is not

fully con�dent in this belief. Given this it is plausible that the support of � should coincide with

that of �: Eichberger & Kelsey (2006) show that, for a neo-additive capacity �(�j�; �; �);

supp � =
\

p2P
supp p; 11

where P is the set of probability distributions de�ned in equation (1).12

11 This de�nition of support essentially coincides with the inner support notion in Ryan (1997).
12 Much of the existing literature on ambiguity in games has explicitly or implicitly restricted attention to the case
of pessimistic players. In the present paper, an important part of our explanation of behavior in experimental games
relies to a large extent on optimistic responses to ambiguity. It is, therefore, necessary to reconsider the support
notions put forth in the previous literature. For a more detailed discussion of the relation of our proposal to
earlier support notions see Eichberger & Kelsey (2006).
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3 EXPERIMENTAL GAMES
Goeree & Holt (2001) present evidence that NE is a good predictor in some games but not

in others. In particular they consider �ve one-shot games, in which there is evidence in favour

of NE. However, in each case, a seemingly irrelevant parameter change produces the opposite

result. In this section we argue that much of this evidence can be explained by ambiguity. For

expository reasons we shall discuss the experiments in a different order to GH. To avoid undue

repetition, we shall discuss the �rst example in detail and discuss the remaining cases more

brie�y.

3.1 The Kreps Game

The impact of ambiguity is illustrated by the Kreps game, which is an asymmetric coordination

game with a safe strategy for Player 2, NN.13 The normal form of the game is described in the

following table:

GameA Player 2

Player 1
L (26%) M (8%) NN (68%) R (0%)

T (68%) 200; 50 0; 45 10; 30 20;�250
B (32%) 0; �250 10; �100 30; 30 50; 40

The numbers in brackets denote the number of subjects playing the respective strategies in

GH's experiment. The only two Nash equilibria in pure strategies are hT; Li and hB;Ri. There

is also a mixed strategy equilibrium, in which Player 2 chooses M and L each with positive

probability. The only strategy not played in any NE is NN. In stark contrast, over two thirds of

subjects chose NN. Interestingly, this game shows another behavioural feature not mentioned

in GH. Given the strong incentive of Player 2 to choose NN, Player 1 could be expected to play

the best reply B. This is, however, not the case for subjects in GH's experiment.

We claim that these results can be explained by ambiguity and are compatible with the es-

timated values of � and �: For player 2, strategy NN gives a certain pay-off of 30, even with

ambiguity. Pessimistic responses to ambiguity can motivate him to choose NN; since all the

13 The name comes fromKreps (1995) who discusses the possibility that the level of payoffs, rather than their rela-
tive values, may affect players' behavior. The payoffs have been modi�ed to allow the game to be run ex-
perimentally. These modi�cations do not affect the set of equilibria.
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other strategies can potentially yield a negative pay-off. Suppose that he has an ambiguous

belief that player 1 will play s1; where s1 can either take the values T or B; then the Choquet

expected utility of his other strategies is given by:14

V2 (L) 6 � � [� � 50� (1� �) � 250] + (1� �) �max fu2(T; L); u2(B;L)g

= 50� � � (1� �) � 300 6 30;

V2 (M) 6 � [� � 45� (1� �) � 100] + (1� �) �max fu2(T;M); u2(B;M)g

= 45� � (1� �) � 145 6 30;

V2 (R) 6 � � [� � 40� (1� �) � 250] + (1� �) �max fu2(T;R); u2(B;R)g

= 40� � � (1� �) � 290 6 30;

provided �(1 � �) > maxf50�30
300

; 45�30
145

; 40�30
290

g = 3
29
= 0:103: From which it follows that NN

is a best response. If � and � lie in the KW-range then 0:16 6 � (1� �) 6 0:37: Hence in EUA,

Player 2 will choose NN :

The observed behaviour of more than two thirds of Player 1's choosing T , can be obtained

as an equilibrium under ambiguity, ��1(T ) = ��2(NN) = 1; but never as a NE. Assuming 2 is

believed to play NN; the CEU value of pay-offs for Player 1 are:

V1(s1;NN) = � �
�
� � max

s22S2
u1(s1; s2) + (1� �) � min

s22S2
u1(s1; s2)

�
+ (1� �) � p1(s1;NN)

=

�
� � � � 200 + (1� �) � 10) for s1 = T;
� � � � 50 + (1� �) � 30 for s1 = B:

Thus T; is preferred to B if and only if 150�� � (1 � �)20 > 0 () ��
1�� >

2
15
= 0:13: This

inequality is satis�ed for all �; � in the KW-range. Hence, with the experimentally observed

parameter values for � and �; hT;NNi are equilibrium strategies under ambiguity.

In Game A the deviation from Nash equilibrium arises because 2
3
of the subjects play the

strategy NN which is not part of Nash equilibrium. A possible explanation of this is Loss

Aversion, see Kahneman, Knetsch & Thaler (1991). This refers to the fact that individuals

avoid taking actions which potentially could result in losing money. Loss aversion is in addition

to conventional risk aversion, which can arise even when all pay-offs are positive. Note that NN
14 For convenience we are suppressing the arguments �; � and �:
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is the only strategy for player 2 which does not potentially lead to a negative pay-off. Hence

Loss Aversion could be a reason why 68% of subjects choose NN in Game A:

Game B; is similar to Game A except that 300 has been added to all pay-offs. This change

does not affect the set of Nash equilibria nor does it affect the set of EUA.
Game B Player 2

Player 1
L (24%) M (12%) NN (64%) R (0%)

T (84%) 500; 350 300; 345 310; 330 320; 50
B (16%) 300; 50 310; 200 330; 330 350; 340

No strategy in Game B can yield losses. (Assuming that 0 is the reference point from which

subjects measure gains/losses.) If signi�cantly less players had played NN in Game B than

in Game A, this would have been evidence that play of NN in the Game A was due to loss

aversion. In fact adding the constant had little effect on the behaviour of player 2. This suggests

that ambiguity-aversion is a more likely explanation for playing NN.

The �Treasure� treatment of the Kreps game is as follows.
Game C Player 2

Player 1
L (0%) M (0%) NN (16%) R (84%)

T (4%) 200; 50 0; 45 10; 30 20;�250
B (96%) 0; �250 10; �100 30; 30 350; 400

The pay-offs from the strategy combination hB;Ri have been substantially increased. This

does not affect the set of Nash equilibria. It does vastly increase the number of players using

the Nash equilibrium strategies B and R:

It is easy to show that this result is also compatible with EUA. Consider �rst player 1: Sup-

pose that she believes that player 2 will playR; then her (Choquet) expected utility from her two

strategies are V1 (T ) = ��200�� (1� �) 250�(1� �) 250 and V1 (B) = ��350+(1� �) 350:

It can be seen thatB will be preferred to T for and � and �; 0 6 � 6 1; 0 6 � 6 1:Now suppose

that player 2 believes that 1 will play B: Then his Choquet expected utility from his strategies

is:

V2 (L) = ��50� � (1� �) 250� (1� �) 250

V2 (M) = ��45� � (1� �) 100� (1� �) 100;

V2 (NN) = 30;

12



V2 (B) = ��400� � (1� �) 250 + (1� �) 400:

First note that B will be preferred to L andM for any �; �: For B to be preferred to NN we

require: ��40�� (1� �) 25+(1� �) 40 > 3, 37 > � (1� �) 65, 0:57 = 37
65
> � (1� �) :

All values of �; � with in the KW-range are compatible with this inequality and hence hB;Ri is

an equilibrium under ambiguity of Game C.

3.2 The Traveller's Dilemma

In the Traveller's Dilemma, each player makes a claim ni for a payment between 180 and

300 cents, i.e., ni 2 S := f180; 181; 182; :::; 298; 299; 300g:15 Given two claims (n1; n2); both

players obtain the minimum minfn1; n2g; but, if the claims are not equal, the player with the

higher claim pays R > 1 to the other, yielding the payoff function:

ui(n1; n2) = minfn1; n2g+R � sign(nj � ni);

with i; j 2 f1; 2g and i 6= j:

It is easy to see that for R > 1 each player has an incentive to undercut the opponent's claim

by one unit. The following diagram shows the best-reply of Player 1: Hence, for any R > 1;

claiming the minimum amount, (n�1; n�2) = (180; 180); is the unique NE. In fact, n�i = 180 is

the only rationalisable strategy for each player, since it is the only strategy which cannot be

undercut by the opponent.

GH show, however, that the experimental results, depend on R: For large R; players claim

180; or close to this amount, as predicted by the NE. For R = 180; almost 80 percent of the

subjects chose ni 6 185: In contrast to the NE predictions, for small R; players make claims

close to 300; i.e., for R = 5; almost 80 percent of the players chose n > 295.

The evidence can be explained by ambiguity as follows. In the Traveller's Dilemma, pay-offs

are high if players coordinate on a high claim. As a result there are two possible best responses

to an action by one's opponent. Either one can undercut by one unit or alternatively one can

choose 299, which yields the highest coordination gain and maintains at least the chance to

avoid the penalty. For R = 180 however, the penalty for being the highest bidder is extreme,

15 The story which motivates the game can be found in Basu (1994), where this game was introduced.
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180 n1

n2

300

300

best reply

Figure 4. Best response of Player 1 without ambiguity

wiping out any possible gain from coordination. Hence, even a small amount of pessimism

in response to ambiguity will deter players from making a high claim and the only possible

equilibrium is where both claim 180:

In contrast, for R = 5; the penalty is so low that a little ambiguity and optimism, ��
1�� > 0:1;

suf�ces to make it worthwhile to claim 299. Figure 5 illustrates the equilibrium best-reply

correspondence. There is a mixed equilibrium with two best responses 299 and �n: For example,

if � = 0:4 and � = 0:6, the ambiguous beliefs that one's opponent would choose [n] = 285

would be 0:18 and the belief for 299 would equal 0:82: The observation, that 80 percent of

subjects chose a claim higher than 295; seems to be not obviously incompatible with EUA for

these values of � and �: This analysis is summarised in the following proposition.

Proposition 3.1 Suppose players's beliefs are given by a neo-additive capacity with parame-
ters �; � in the KW-range.

1. For R = 180; in the unique symmetric EUA both players have beliefs:
��(180) = 1:

In response, both players choose n�1 = n�2 = 180:

2. For R = 5; in the unique symmetric EUA is a mixed equilibrium in which each player has

14
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Figure 5. Best reply of Player 1 with ambiguity

two best responses, [n] and 299 where16

n(�; �; R) :=

�
300� 1� �

��
(2R� 1)

�
:

The table below gives the values of [�n] for R = 5 and parameter values in the KW-range.
�

�

0:4 0; 5 0:62
0:41 268 274 280
0:52 279 283 286
0:61 285 288 291

3.3 Matching Pennies

In experiments on the Matching Pennies game, GH discover that subjects tend to conform

with NE predictions if the game is symmetric, but deviate systematically if the pay-offs are

asymmetric. They study the following two versions of matching pennies.17 The ratios to the left

of the strategies indicate the unique NE mixed strategies and the bold numbers to the right of the

strategies show the percentage of subjects choosing the respective strategy in the experiments.

16 As usual [y] denotes the largest integer smaller than y:
17 GH also consider a third version of matching pennies. The impact of ambiguity on this game can be analysed in
a similar way.
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GameD Player 2

Player 1
0:5 L (48%) 0:5 R (52%)

0:5 T (48%) 80; 40 40; 80
0:5 B (52%) 40; 80 80; 40

Game E Player 2

Player 1
0:12 L (16%) 0:88 R (84%)

0:5 T (96%) 320; 40 40; 80
0:5 B (4%) 40; 80 80; 40

The games differ only in the payoff of Player 1 for hT; Li ; which is indicated by a bold-face

number. In mixed-strategy NE, the probabilities which a given player uses to randomise, are

chosen to make his/her opponent indifferent between all of his/her equilibrium strategies. Thus

NE predicts that a change in player 1's payoff will leave her own behaviour unchanged, while

causing a change in the behaviour of player 2.

Actual play reveals a quite different pattern. While the relative frequency of strategy choices

in Game D correspond to the NE prediction, they deviate dramatically from the predictions

in the asymmetric game. In Game E, Player 1's choose almost exclusively strategy T; the

payoff of which has been increased. As a result they make their behaviour predictable, which

is exploited by the subjects in the role of Player 2. It is surprising that Player 1 does not appear

to foresee this shift in the behaviour of her opponent. It appears as if Player 2 understands the

change in Player 1's incentives better than she does herself. One interpretation of Player 1's

behaviour may be a shift in decision weights to extremely attractive low-probability events.

Ambiguity makes little difference to gameD. Symmetry implies that the only equilibrium is

where each player believes that his/her opponent is equally likely to use either strategy. In game

E, optimistic responses to ambiguity cause player 1 to overweight unlikely events which yield

the high payoff 320. This causes her to choose strategy T almost exclusively. From Player 2's

point of view, the two strategies are symmetric. However 1 has a bias in favour of T: HenceR is

a best response for 2. Thus for the parameter values we �nd in Kilka and Weber's experiments,

there is an equilibrium with ambiguity where the equilibrium strategy combination is hT; Li :

(For details see the appendix.) There is no NE which describes such behaviour. There is a
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unique NE, where Player 2 plays �(L) = 1
8
and Player 1 plays �(T ) = 1

2
: Such randomisations

are incompatible with the observed choices.

This discussion is summarised in the following proposition, which is proved in the appendix.

Proposition 3.2 Suppose players's beliefs are given by a neo-additive capacity with parame-
ters �; � in the KW-range.

1. In game D there is a unique EUA where each player is equally likely to use either strategy
i.e. �1 (T ) = �1 (B) and �2 (L) = �2 (R) :

2. In game E there is a unique EUA in which T is the best response of player 1 and R is the
best response of player 2:

3.4 A Coordination Game with a Secure Option

GH study two coordination games, which have been modi�ed by giving Player 2 an extra secure

option.
Game F Player 2

Player 1
L (?) H (84) S(?)

L (4) 90; 90 0; 0 0; 40
H (96) 0; 0 180; 180 0; 40

GameG Player 2

Player 1
L (?) H (76) S(?)

L (36) 90; 90 0; 0 400; 40
H (64) 0; 0 180; 180 0; 40

Both of these games have two NEs, hL;Li and hH;Hi : The data suggests that in Game F

subjects are nearly all playing the hH;Hi equilibrium. In game G the majority of the subjects

are still playing the hH;Hi equilibrium, while a signi�cant minority of players have switched

to other strategies.18

For this experiment we are not able to make a precise prediction since both games have mul-

tiple equilibria with and without ambiguity. However we shall show that the results are not

incompatible with EUA. The following proposition shows that while in Game F; hH;Hi is an

equilibrium for all parameters values in the KW-range, in Game G this equilibrium only exists

for some parameters in this range. Thus in moving from Game F to Game G one would expect

some subjects to switch from H to another strategy. It is not possible to predict how many
18 GH do not report whether player 2 switches to L or S.
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subjects will switch without more details of the distribution of � and �: Unless the distributions

of the parameters are concentrated at the upper ends of their ranges, only a minority of sub-

jects would switch. Thus the theoretical prediction agrees with the experimental result at least

qualitatively.

Proposition 3.3 For the coordination game with a secure option:

1. In game F both hH;Hi and hL;Li are EUA for all parameters in the KW-range.
2. In game G;

a. hH;Hi is an EUA for �; � in the KW-range provided 0:82 > ��
1�� :

b. hL;Li is an EUA for all parameters in the KW-range.

Whether the hH;Hi equilibrium exists in game G depends on the parameter � = ��
1�� : KW's

evidence shows that 0:28 6 � 6 0:97: For illustrative purposes assume that � is uniformly

distributed on this range. Then for 21% of subjects, the hH;Hi equilibrium will not exist in

Game G. This is qualitatively similar to the experimental results, where 36% play L in Game

G. The discrepancy between 21% and 36% could be explained either because � is not uniformly

distributed or because subjects perceive co-ordination games to be more ambiguous than KW's

single person decisions, (i.e. � is larger than in the KW experiment). It is plausible that players

might perceive coordination games to be more ambiguous. The presence of multiple equilibria

means that even if one believes one's opponent will play an equilibrium strategy it is not clear

which one. Moreover there is no natural way to assign probabilities to the different equilibria.

If in addition it is not clear that one's opponents will play an equilibrium strategy this increases

the ambiguity still further.

3.5 A Minimum-Effort Coordination Game

In the minimum effort coordination game (also know as the weakest link model of public

goods, see Cornes & Sandler (1996)) two players have to choose effort levels from the set

E = f110; :::; 170g at a marginal cost of c < 1 yielding pay-offs

ui(e1; e2) := minfe1; e2g � c � ei;
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for i = 1; 2: GH played this experiment with the marginal cost parameters 0:1 and 0:9 and

observed the following distributions of play:19

GameH e = 115 e = 125 e = 135 e = 145 e = 155 e = 165
c = 0:1 0:1 0:02 0:1 0:1 0:08 0:6
c = 0:9 0:5 0:18 0:05 0:07 0:05 0:15

The observations show a clear concentration of play on high effort levels in the case of low

costs, c = 0:1; and on the low ones for high costs, c = 0:9: Coordinating on any of the six

possible effort levels is a Nash equilibrium for either possible value of costs i.e., the set of NE's

is f(e�1; e�2) 2 E2j e�1 = e�2g: Thus Nash equilibrium is unable to explain why an increase in the

cost parameter changes behaviour. Since the experiments were one-shot games and there were

many possible equilibria, coordination is not very likely.

We shall argue that such observations can be explained by ambiguity. In this game, the

best outcome is that your opponent plays the highest possible strategy. Suppose there is an

equilibrium with ambiguity in which both players coordinate on an effort level other than the

highest. If Player 1 increases her effort by one unit, the perceived marginal bene�t is ��; which

is the weight on the highest outcome. The marginal cost of increasing effort is c: Thus if �� > c

it is in her interest to increase her contribution. Player 2 will think similarly. Hence under

the assumption �� > c the only possible equilibrium is where both players make the highest

contribution.

Suppose there is an equilibrium with ambiguity in which both players use an effort level

other than the lowest (i.e. 115). If Player 1 decreases her contribution by one unit the perceived

marginal reduction in bene�t is �� + (1� �) : The marginal cost saving is c: Thus if c >

�� + (1� �) it is worth decreasing effort, which implies that the only possible equilibrium is

where both players coordinate on the lowest effort level.

If � and � lie in the KW-range we have 0:38 > �� > 0:16, which implies � � � � c > 0 for

c = 0:1: Similarly Kilka andWeber's experiment implies 0:85 > ��+(1� �) > 0:64 and hence

c > [� � �+ (1� �)] for c = 0:9: For marginal costs of 0:1; equilibrium with ambiguity predicts
19 Note that GH have grouped the data for ten successive integers.

19



that players would try to coordinate on the highest effort level, while for c = 0:9 they should

coordinate on the lowest effort level. The observed behaviour seems to correspond reasonably

well with this prediction.

4 COMPETING EXPLANATIONS
For economic theory, the notion of a Nash equilibrium is attractive. If the pay-offs of players

are common knowledge, a Nash equilibrium identi�es strategy combinations which leave no

incentives for individual players to change their behaviour as long as the opponents' follow

their equilibrium strategy. Thus, it combines two key ideas:

(i) Players choose the best strategy given their beliefs about the behaviour of the opponents and

(ii) Beliefs about the behaviour of the opponents are correct.

In order to infer their opponents' behaviour in one-shot games, however, players need to

know the incentives of these opponents. Whether the pay-offs of a player re�ect the incentives

of this player correctly is however questionable. Attitudes towards risk and ambiguity may mat-

ter, just as social attitudes like preferences for fairness, altruism or spite may affect behaviour.

The regularities of behaviour recorded in GH's experiments challenge the idea that the inter-

action of subjects in a one-shot game can be appropriately described by Nash-equilibrium. Yet,

as the treasure treatments show, NE does seem to work well for some payoff constellations.

There are several responses to the challenge posed by the experimental results reported in

GH. One may take into account additional aspects of preferences, one may relax the assumption

that players maximise an objective function, or one may give up the idea of consistency between

beliefs and actual behaviour. Examples of the �rst approach include the fairness-based payoff

transformations in the spirit of Fehr & Schmidt (1999) and Rabin (1993) and the EUA approach

suggested in this paper. The Quantal Response Equilibrium (QRE) proposed by McKelvey &

Palfrey (1995) provides an example for the second type of response. QRE assumes that players

play mixed strategies which assign probabilities to the pure strategies based on the relative ex-
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pected payoff obtained with them20. McKelvey & Palfrey (1995) show that QRE can be viewed

as a Bayesian equilibrium of a game of imperfect information with payoff uncertainty. In con-

trast to models which explicitly assume a bias in the payoff evaluation QRE does not suggest

a reason for the particular error structure assumed. The third group of responses is represented

by the Cognitive Hierarchy Model (CHM) of Camerer, Ho & Chong (2004). Building on the

k-level optimality model proposed by Stahl & Wilson (1995) this approach abandons the no-

tion of equilibrium. It assumes a distribution of player types characterised by different levels

of rationality. These different levels of rationality remain unrelated to the actual behaviour of

players.

For the asymmetric Matching-Pennies game, Boylan & Grant (2006) consider fairness-based

payoff transformations in the spirit of Fehr & Schmidt (1999) and Rabin (1993). They show,

however, that such preferences do not predict the observed behaviour. In contrast, they �nd

that the QRE can explain the experimental data of Goeree & Holt (2001). To the best of our

knowledge there exists no study comparing these approaches. It appears however likely that all

these approaches will explain the observed data better than NE. They all add more parameters

to the model: EUA adds parameters for ambiguity and ambiguity attitude, QRE adds a sensi-

tivity parameter, and CHM allows for arbitrary levels of rationality. If these parameters can be

adjusted freely, it is not surprising that a better �t to the data can be achieved.

A better test requires constraints on these new parameters. In our opinion, this is the main

advantage of the EUA. Ambiguity and ambiguity attitudes have been studied in large numbers

of non-interactive decision-making experiments. From these studies we can obtain additional

constraints for the parameters � and �: As we have shown in this paper, estimates of these

parameters from the range obtained in many experiments seem to suf�ce to explain the observed

behaviour in the games of GH. Ideally, one would want to assess these parameters from the

participants of the game-theoretic experiments. For instance, one could run pretests in which

subjects choices over ambiguous bets reveal their ambiguity attitude, before they interact with

20 Since the expected payoffs from a player's pure strategy depend on the mixed strategies chosen by the op-
ponents, QRE has to solve a �xed point problem in order to obtain consistency among the players' mixed strategies.
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other players in games. Neither QRE nor CHM offer such possibilities because the parameters

of "sensitivity" and "level of rationality" lack an interpretation outside the given game. They

just measure the deviation from full rationality embodied in the Nash equilibrium concept.

All these approaches are more �exible in describing actual behaviour than NE, however we

believe that EUA may be given a more attractive interpretation. Ambiguity attitude, optimism

and pessimism, can be viewed as personal characteristics, which we may take as given, like a

player's preferences. Ambiguity, on the other hand, is more situation-dependent. In particular,

one would predict that a one-shot game is by nature more ambiguous than later rounds of a re-

peated game. Hence, there are testable hypotheses regarding EUAwhich have no counter-part in

QRE and CHM. Moreover, there is substantial evidence on individual behaviour, which allows

one to predict the attitude of a decision-maker towards ambiguity. Such evidence can help to

restrict behaviour in EUA, which makes the theory more powerful. It is a particular strength of

EUA that it can explain the diverging behaviour in many games with the same set of ambiguity

and optimism parameters. Indeed, a recent paper by Haile, Hortascu & Kosenok (2003) shows

that �without a priori distributional assumptions, aQRE can match any distribution of behaviour

by each player in any normal form game�. In contrast, the hypothesis that players view their

opponents' actions as ambiguous, produces some quite precise comparative predictions , which

could in principle be tested experimentally.

For economic analysis, it is desirable to have a model with parameters which one can inter-

pret behaviourally and which include the "full rationality" of a Nash equilibrium as a special

case. While Nash equilibrium can be obtained as a limiting case in all these models, a behav-

ioural interpretation can be given only in the context of the fairness approach of Fehr & Schmidt

(1999) and the EUA. Since the parameters of QRE and CHM are harder to interpret, it appears

also more dif�cult to use these concepts in economic analysis.

5 CONCLUSION
In this paper we have shown that many of the treasures of game theory from GH can be
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explained as responses to ambiguity. We have shown that four of the �ve Treasures can be

explained by the hypothesis that subjects have CEU preferences with parameters in the KW-

range. In the coordination game with a secure option there are multiple equilibria with and

without ambiguity. Thus it is not possible to make a point prediction. However the shift in

behaviour between Games F and G appears, at least in qualitative terms to be compatible with

our model of ambiguity.

We have only analysed those treasures based on normal form games. The other experiments

concern dynamic games some of which also have incomplete information. To study the impact

of ambiguity in these cases it would be necessary to develop new solution concepts for such

games. This is beyond the scope of the present article. Nevertheless we believe that explanations

based on ambiguity could be found for many of these games as well. For instance, the treasure

from GH entitled `Should you believe a threat that is not credible' is similar to the model of

frivolous lawsuits in Eichberger & Kelsey (2004).

The preferences we use have the effect of over weighting the best and worst outcomes. It is

likely that ambiguity-aversion would cause other bad outcomes to be over weighted. Similarly

optimism might have the effect that a number of good outcomes are over-weighted rather than

just the best outcome. While this objection may have some merits in general, the games studied

in this paper typically have salient best and worst outcomes. It does not seem implausible that

over-weighting should be concentrated on these outcomes. In Eichberger & Kelsey (2006) we

show that much of our analysis can be extended to the more general case where a number of

good and bad outcomes are over weighted.
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APPENDIX

The appendices provide details of the model and proofs of the claims made in the corre-

sponding section of the text.

Appendix A. The Traveller's Dilemma

Consider Player 1: Suppose she holds beliefs which are represented by a neo-additive capacity:

�(Aj�; �; �) = ��+(1� �)�(A):Given these beliefs, Player 1's Choquet expected utility from

the choice of n1 is

V1(n1;�; �; �) = �

�
�max
n22S

u1 (n1; n2) + (1� �) min
n22S

u1 (n1; n2)

�
+(1� �) �

X
n22S

u1 (n1; n2) � �(n2):

Lemma A.1 Suppose Player 1's beliefs are given by a neo-additive capacity �(�j�; �; �n2): If
� and � lie in the KW-range then the best-reply correspondence is

R1(�(�j�; �; n2)) =

8<: 299 for n2 < n(�; �; R);

n2 � 1 otherwise,
with

n(�; �; R) := 300� 1� �
��

(2R� 1) :

Proof. First note that R > 1, n1 = 299 weakly dominates n1 = 300; moreover, for �; � > 0;

n1 = 300 is strictly dominated: Since the highest pay-off for n1 = 299 is greater than that for

n1 = 300; and under our assumptions on � and �; the highest payoff gets positive weight in the

Choquet integral. Thus we may eliminate the possibility that either player plays strategy 300:

Consider n2 = 180: The CEU of a pure strategy n1 can be computed as.21

V1(n1;�; �; �
180) :=

Z
u1 (n1; �) d�1(�j�; �; �180)

= �

�
�max
n22S

u1 (n1; n2) + (1� �) min
n22S

u1 (n1; n2)

�
+ (1� �) � u1 (n1; 180)

21 Here �n2 denotes the Dirac measure with support n2:
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=

8<: � [� (180 +R) + (1� �)180] + (1� �) � 180 for n1 = 180;

� [� (n1 +R) + (1� �) (180�R)] + (1� �) � [180�R] for 180 < n1 < 300:

Consider next n2 2 (180; 300): The CEU of a pure strategy combination (n1; n2) is,

V1(n1;�; �; �
n2) :=

Z
u1 (n1; �) d�1(�j�; �; �n2)

=

8>>>>>>><>>>>>>>:

� [� (180 +R) + (1� �)180] + (1� �) � [180 +R] for n1 = 180;

� [� (n1 +R) + (1� �) (180�R)] + (1� �) � [n1 +R] for 180 < n1 < n2;

� [� (n1 +R) + (1� �) (180�R)] + (1� �) � n1 for n1 = n2;

� [� (n1 +R) + (1� �) (180�R)] + (1� �) � [n2 �R] for n2 < n1 < 300:

(ii) For n2 = 180; V1(n1;�; �; �180) is strictly increasing in n1 for n1 > 180: Hence,

V1(299;�; �; �
180)� V1(180;�; �; �180) = �� (299� 180)� (1� ��)R

= 119�� � (1� ��)R:

Thus

R1(�(�j�; �; 180)) =

8<: 299 for �� > R
119+R

;

180 otherwise.
Notice, for R = 5; R

119+R
= 5

124
� 0:041 6 0:4 � 0:4:1: Hence, R1(�(�j�; �; 180)) = 299: For

R = 180; we have R
119+R

= 180
299
� 0:6 > 0:61 � 0:62 and R1(�(�j�; �; 180)) = 180:

(iii) Consider now n2 2 (180; 300):

For n1 2 (180; n2) [ (n2; 300) the CEU value is strictly increasing in n1: Hence, only

n1 = 180; n1 = n2 � 1; n1 = n2; or n1 = 299 can be best responses.

(a) Comparing n1 = n2 � 1 and n1 = n2, we observe that:

V1(n2;�; �; �
n2)� V1(n2 � 1;�; �; �n2)

= f� [� (n2 +R) + (1� �) (180�R)] + (1� �) � n2g

�f� [� (n2 � 1 +R) + (1� �) (180�R)] + (1� �) � (n2 � 1 +R)g

= ��+ (1� �) � (1�R) = ��+ �(R� 1)� (R� 1) < 0
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holds, for R > 1 + �: For R = 5 and R = 180; this condition is satis�ed. Hence, n1 = n2

cannot be a best reply.

(b) Comparing n1 = 180 and n1 = 299:

(b1) Suppose 181 6 n2 6 298; then we observe that

V1(299;�; �; �
n2)� V1(180;�; �; �n2) = (� [� (299 +R) + (1� �) (180�R)] + (1� �) � [n2 �R])

� (� [� (180 +R) + (1� �)180] + (1� �) � [180 +R])

= 119�� + (1� �) � (n2 � 180� 2R) T 0, n2 T 180 + 2R�
��

1� �119:

By the assumption 0:28 6 ��
1�� 6 0:97; we obtain forR = 5; 180 > 180+2 �5�0:28 �119 >

180+2R� ��
1��119: Hence, for R = 5; V1(299;�; �; �

n2) > V1(180;�; �; �
n2) for all n2 > 180:

Moreover, for R = 180; we �nd that 180 + 2R � ��
1��119 > 180 + 2 � 180� 0:97 � 119 > 300:

Thus, V (180;�; �; �n2) > V (299;�; �; �n2) in this case.

(b2) For n2 = 299;

V1(299;�; �; �
299)� V1(180;�; �; �299)

= f� [� (299 +R) + (1� �) (180�R)] + (1� �) � 299g

�f� [� (180 +R) + (1� �)180] + (1� �) � [180 +R]g

= 119�� + (1� �) � (119�R) T 0 () 119

�
1 +

��

1� �

�
T R:

For R = 5, this condition is satis�ed, hence, n1 = 299 is the best reply to a belief concen-

trated on n2 = 299: For R = 180; 119
�
1 + ��

1��
�
� 119 (1 + 0:28) < 180 = R: Hence,

V1(299;�; �; �
299) < V1(180;�; �; �

299):

(c) Comparing n1 = n2 � 1 with n1 = 299:

(c1) For n2 = 299; we obtain

V1(298;�; �; �
299)� V1(299;�; �; �299)

= f� [� (298 +R) + (1� �) (180�R)] + (1� �) � (298 +R)g

�f� [� (299 +R) + (1� �) (180�R)] + (1� �) � 299g

= �� (�1) + (1� �) � (R� 1) R 0
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as R R 1 + ��
1�� : From

��
1�� 6 0:97 we have R > 1 +

��
1�� for R > 2: Thus, n1 = 298 is the best

reply to 299:

(c2) For n2 < 299; we obtain

V1(n2 � 1;�; �; �n2)� V1(299;�; �; �n2)

= f� [� (n2 � 1 +R) + (1� �) (180�R)] + (1� �) � (n2 � 1 +R)g

�f� [� (299 +R) + (1� �) (180�R)] + (1� �) � (n2 �R)g

= �� (n2 � 300) + (1� �) � (2R� 1) ;

thus

n2 R 300�
1� �
��

(2R� 1) =: n(�; �; R):

Hence,

R1(�(�j�; �; n2)) =

8<: 299 for n2 < n(�; �; R);

n2 � 1 otherwise.
For R = 180; n(�; �; R) < 0: More precisely, for the parameter values of � and � it ranges

between 300� 1��
��
(2R� 1) = 300� 359

0:28
' �982 and 300� 1��

��
(2R� 1) = 300� 359

0:97
' �70:

Since n2 > 180, n1 = n2 � 1 is the best response.

Notice, for R = 5; n(�; �; R) can range between 300� 9
0:28

' 287 and 300� 9
0:97

' 290:

The following proposition yields the symmetric equilibrium under ambiguity of this game.

The notation [x] refers to the smallest integer larger or equal to x: For ease of notation, we will

suppress the arguments of the function n(�; �; R) and will write n for its value.

Proposition A.2 Suppose the conditions of Lemma A.1 are satis�ed.

1. For R = 180; in the unique symmetric EUA both players have beliefs:
��(180) = 1:

In response, both players choose n�1 = n�2 = 180:
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2. For R = 5; in the unique symmetric EUA both players have beliefs:

��([n]) =

�
1 +

��

1� �

�
� 299� [n]
299� [n] +R;

��(299) =
R

(299� [n] +R) �
��

(1� �) �
(299� [n])

(299� [n] +R) ;

where
n(�; �; R) := 300� (1� �)

��
(2R� 1) :

In response, both players choose n�1; n�2 2 f[n] ; 299g:

Proof. The equilibrium beliefs �� of an EUA must make players indifferent between claiming

[n] and 299: Clearly, all strategies which are not best responses will be played with probability

zero. Hence, we can set ��(n) = 0 for all n =2 f[n] ; 299g: For notational convenience, let

��([n]) = � and ��(299) = 1� �: In an EUA the following equation must be satis�ed:

V1([n] ;�; �; �
�)� V1(299;�; �; ��) = 0:

Expanding, one has

� f� ([n] +R) + (1� �) (180�R)g+ (1� �) � f[n] � ��([n]) + ([n] +R) � ��(299)g

�� f� (299 +R) + (1� �) (180�R)g+ (1� �) � f([n]�R) � �([n]) + (299) � �(299)g

= �� ([n]� 299) + (1� �) � fR � � + ([n]� 299 +R) � (1� �)g = 0:

Solving for �; we obtain

� =

�
1 +

��

1� �

�
� 299� [n]
299� [n] +R:

Hence,

��([n]) =

�
1 +

��

1� �

�
� 299� [n]
299� [n] +R

��(299) =
R

(299� [n] +R) �
��

(1� �) �
(299� [n])

(299� [n] +R) :
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Appendix B. Matching Pennies

Proposition 3.2 Suppose players's beliefs are given by a neo-additive capacity with parame-

ters �; � in the KW-range.
1. In game D there is a unique EUA where each player is equally likely to use either strategy
i.e. �1 (T ) = �1 (B) and �2 (L) = �2 (R) :

2. In game E there is a unique EUA in which T is the best response of player 1 and R is the
best response of player 2:

Proof of Proposition 3.2 Let x be the payoff of Player 1 at the strategy combination hT; Li :

Consider �rst Player 1's pay-offs:22

V1(T )� V1(B) = � [�x+ (1� �) 40] + (1� �) [x � �(L) + 40 � �(R)]

�� [�80 + (1� �) 40]� (1� �) [40 � �(L) + 80 � �(R)]

= �� (x� 80) + (1� �) [x��(L)� 40] :

Similarly, for Player 2 we obtain:

V2(L)� V2(R) = � [�80 + (1� �) 40] + (1� �) [40 � �(T ) + 80 � �(B)]

�� [�80 + (1� �) 40]� (1� �) [80 � �(T ) + 40 � �(B)]

= (1� �)40 � (�(B)� �(T )) = (1� �)80
�
1

2
� �(T )

�
:

In game B; where x = 80;

��(L) = ��(R) =
1

2
;

��(T ) = ��(B) =
1

2
;

is the only EUA for any degree of optimism � and any degree of ambiguity �:

When x = 320; V1 (T )� V1 (B) = 240�a+ (1� �)320
�
�1(L)� 1

8

�
> 240�a� (1� �)40:

Thus if
��

1� � >
1

6
; (B-1)

T will be preferred toB for any beliefs about player 2's behaviour (i.e. T will be a best response

whatever the value of �1(L)). Provided � and � are in the KW-range 16 6 0:27 6
��
1�� 6 0:97;

22 For convenience we suppress the arguments �; � and �:
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hence inequality (B-1) will hold for all such parameter values.

In equilibrium, player 2's beliefs must satisfy �2 (B) = 0; which implies:

V2(L) = ��80 + � (1� �) 40 + (1� �) 40

V2(R) = ��80 + � (1� �) 40 + (1� �) 80:

Hence L is a best response for 2 for 0 < � 6 1; 0 < � 6 1:

Thus it follows that for parameters in the KW-range Game E has a unique equilibrium with

ambiguity in which 1 plays T and 2 plays R:

Appendix C. A Coordination Game with a Secure Option

Proposition 3.3 For the coordination game with a secure option:
1. In game F both hH;Hi and hL;Li are EUA for all parameters in the KW-range.
2. In game G;
a. hH;Hi is an EUA for �; � in the KW-range provided 0:82 > ��

1�� :

b. hL;Li is an EUA for all parameters in the KW-range.

Proof of Proposition 3.3 Conditions for hH;Hi to be an equilibrium inGame F Sup-

pose that player 2 `believes' player 1 will play H; i.e. H is the support of his beliefs. Then her

(Choquet) expected utility is: V2 (H) = ��180 + (1� �) 180; V2 (L) = ��90 and V2 (S) = 40:

V2 (H) > V2 (L) for all �; �, 0 6 � 6 1; 0 6 � 6 1:

V2 (H) > V2 (S) () ��9 + (1� �) 9 > 2:

One can check this inequality holds for all � � in the KW range.

Suppose that player 1 `believes' player 2 will play H; then her (Choquet) expected utility

is: V1 (H) = ��180 + (1� �) 180 and V1 (L) = ��90: Hence V1 (H) > V1 (L) for all �; �,

0 < � 6 1; 0 < � 6 1:

Conditions for hL;Li to be an equilibrium in Game F Suppose that player 2 `believes'

player 1 will play L: Then his (Choquet) expected utility is: V2 (H) = ��180; V2 (L) = ��90+

(1� �) 90 and V2 (S) = 40: Thus V2 (L) > V2 (S) () ��9 + (1� �) 9 > 4 and V2 (L) >

V2 (H) () ��+(1� �) > 2�� () 1 > ��
1�� :One can check that both of these inequalities
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hold for all � � in the KW range.

Conditions for hH;Hi to be an equilibrium in Game G Suppose that player 1 `believes'

player 2 will play H: Then her (Choquet) expected utility is: V1 (H) = ��180 + (1� �) 180

and V1 (L) = ��400: For H to be a best response we require: ��9 + (1� �) 9 > ��20 or

0:82 = 9
11
> ��

1�� :

Suppose that player 2 `believes' player 1 will play H: Then H will be a best response for

player 2 whenever the parameters are in the KW range. The reasoning for Game F applies here

since the pay-offs of player 2 are the same in the two games.

Conditions for hL;Li to be an equilibrium in Game G Suppose that player 1 `believes'

player 2 will play L: Then her (Choquet) expected utility is: V1 (H) = ��180 and V1 (L) =

��400 + (1� �) 90: Hence V1 (L) > V1 (H) for all �; � such that 0 < � 6 1; 0 < � 6 1:

If player 2 `believes' player 1 will play L; then L is a best response for player 2 whenever

the parameters are in the KW-range. As before the reasoning for Game F applies here. Thus

hL;Li is an equilibrium in Game G for all � � in the KW range.
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