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1 Introduction

If projects undertaken today influence the future, the costs and benefits of these projects
have to be aggregated and evaluated over time. The standard procedure, first introduced
by Ramsey (1928) and put on an axiomatic basis by Debreu (1954) and Koopmans
(1960), is to identify the welfare costs and benefits occurring at different times, discount
them at a constant rate and sum them up. Hence, the weight at which future costs and
benefits influence today’s decisions exponentially declines over time.

This exponential standard discounting model has increasingly been challenged by
empirical evidence (for an overview see Gintis 2000 and Frederick et al. 2002), which
suggests that decision makers discount rather hyperbolically than exponentially, i.e. the
discount rate is not a constant but declining over time. The most prominent feature
of non exponential discounting is the problem of time-inconsistency, first analyzed by
Strotz (1956): an intertemporal optimal consumption plan derived at time t = 0 is not
optimal anymore if reevaluated at a later time t > 0. If the decision maker anticipates
her own dynamic inconsistent behavior, it is rational for her to commit herself today
mandatory to future actions or, if no commitment can be enforced, to play the subgame
perfect Nash equilibrium of the non-cooperative sequential game with her later selves
(Phelps and Pollak 1968). In the past, hyperbolic preferences have often been interpreted
as irrational, due to the time-inconsistency problem.

Hence, a recent strand of economic literature on hyperbolic preferences tries to “ra-
tionalize” declining discount rates. Ahlbrecht and Weber (1995) formulate an axiomatic
approach to hyperbolic discounting. Weitzman (1998) and Azfar (1999) show that risk
over the future states of the world or the individual mortality risk lead to declining dis-
count rates, even if the decision makers have constant intrinsic rates of time preference.
Weitzman (2001) analyzes the aggregation of different constant individual discount rates
to a declining social rate.

This paper contributes to a second strand of the literature, which takes the hyperbolic
preferences of the decision maker as given and analyzes the resulting consequences.
I analyze optimal structural change from a polluting to a non polluting production
sector, given that the decision maker discounts hyperbolically. A ubiquitous feature
in environmental economics is that the welfare costs and benefits often spread over
decades or even centuries. As the optimal intertemporal decision depends the more on the
discount function applied, the longer the time horizon over which the costs and benefits
of the decisions spread, discounting is often the crucial issue in environmental economics
(e.g. Lind 1982, Portney and Weyant 1996 and IPCC 2001a). As an example, think of
the problem of climate change due to the anthropogenic greenhouse effect. The costs of
CO2 abatement, e.g. by investments in non fossil fuel based energy technologies, occur
today, while the benefits spread over the succeeding centuries. Another characteristic of
such long planning horizons is that not only one but a series of generations is involved.
As a consequence, I model a series of non overlapping generations (each represented by
a unique decision maker) where the welfare of the present generation is also influenced
by the welfare of all future generations. In fact, I assume that today’s welfare is the
discounted sum of the welfare obtained by the present and all future generations where
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the discount rates are declining over time. This setting was first introduced by Phelps
and Pollak (1968) which they called imperfect altruism. But in contrast to their and
more recent contributions I do not restrict the analysis to the special functional form
of the quasi hyperbolic discount function (e.g. Laibson 1997, Laibson 1998 and Harris
and Laibson 2001). Recently, Chichilnisky (1996) and Li and Lofgren (2000) showed (in
different model settings) that declining discount rates are consistent with a rule where
current generations must also take into account the welfare of future generations.

I improve the well known result from the hyperbolic discounting literature that it can
be optimal to postpone the investment into the future (e.g. Ackerlof 1991, O’Donoghue
and Rabin 1999, Brocas and Carrillo 2001) by identifying two different types of delay.
While ex ante procrastination is a fundamental feature of hyperbolic preferences, which
amounts to the declining discount rates of the decision maker, ex post procrastination
occurs because of the time-inconsistency problem and can only be observed if no manda-
tory commitment can be enforced. Furthermore, if no mandatory commitment can be
enforced the ex post implemented plan may be Pareto-inefficient (depending on the set
of exogenous given parameters and the functional form of the discount and the utility
function). In this case the ex post implemented plan is either efficient but dictatorial, or
non-dictatorial but inefficient. Hence, there is a potential trade-off between intertemporal
efficiency and equity, which cannot occur in the case of exponential discounting.

The paper is organized as follows. In section 2 the intertemporal preferences of the
decision maker and the production possibilities are introduced. The ex ante optimal
plan is analyzed in section 3, while section 4 is devoted to the ex post implemented plan.
Welfare and equity concerns are discussed in section 5. In section 6 numerical examples
illustrate the results. Section 7 concludes.

2 The model

2.1 Intertemporal preferences and hyperbolic discounting

Assume a decision maker in each period t, agent t, who makes the consumption and
investment decision in period t. Note that the various agents t can be identified with
one physical person at different times t in short term problems or with different physical
persons at different times t for the analysis of intergenerational problems. In the following
I will concentrate on the second line of interpretation which is in line with the long time
horizons involved in environmental economic problems. Assume further that agent t’s
intertemporal welfare W is her own welfare plus the discounted sum of the future welfare
of her successors. Furthermore, instantaneous welfare depends on consumption c and on
damage to environmental quality, which hinges upon the amount of emissions e produced:

W (t) =
τ∑

n=t

D(n − t + 1) [U(c(t)) − S(e(t))] , (1)

where D > 0 denotes a discount function and τ the time horizon. U represents the
instantaneous welfare gains due to consumption and S the instantaneous welfare loss as
a consequence of the emissions produced. Furthermore, I suppose U and S to be twice
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continuously differentiable and to exhibit standard properties (partial derivatives are
indicated by subscripts):

Uc > 0 , Ucc < 0 ,
Se > 0 , See ≥ 0 , S(0) = 0 .

(2)

Note that (1) implies that all agents apply the same discount function D. Suppose that
all agents prefer own consumption to consumption of her successors and environmental
damage suffered by future generations to environmental damage today. As a consequence,
the discount function D is a strictly decreasing function over time. Without loss of
generality, I scale the discount function to yield D(t=1) = 1.

If the agents have exponential intertemporal preferences, the discount function reads:

Dexp(t) =
1

(1 + ρ)t−1
, (3)

where ρ denotes the constant rate of time preference. Hence, the following equation holds
for all t:

ρ =
Dexp(t)

Dexp(t+1)
− 1 , ∀ t = 1, . . . , τ−1 . (4)

In the case of non-stationary intertemporal preferences the rate of time preference is not
longer a constant. Nevertheless, I define the instantaneous rate of time preference ρ(t)
analogously to equation (4):

ρ(t) =
D(t)

D(t+1)
− 1 > 0 , ∀ t = 1, . . . , τ−1 . (5)

In the following I assume hyperbolic preferences, i.e. the sequence of ρ(t) is weakly
decreasing over time.

ρ(t) ≥ ρ(t+1) , ∀ t = 1, . . . , τ−1 ∧ ∃ t = 1, . . . , τ−1 , ρ(t) > ρ(t+1) . (6)

As shown by Strotz (1956), for all non-stationary intertemporal preferences, including
hyperbolic preferences, the potential problem of time-inconsistency occurs. This means
that an ex ante optimal intertemporal consumption and investment plan, derived by
maximizing intertemporal welfare in period t = 0, will be suboptimal if reevaluated at a
later date t > 0. If the agents are fully aware of the problem of time-inconsistency, it can
be overcome by agent 1’s mandatory commitment to the ex ante optimal intertemporal
consumption and investment plan. In this case all successors have to stick to the ex ante
optimal plan, even if they would like to alter it according to future reevaluations. If agent
1 does not have the possibility to mandatory commit her successors to future actions
but anticipates their future depart from the ex ante optimal intertemporal plan, the
agents end up in a non-cooperative sequential game (Phelps and Pollak 1968). Hence,
the best thing to do for all agents t is playing the subgame perfect Nash equilibrium of
this non-cooperative game. If the agents do not recognize that their preferences are non-
stationary, in general they will alter their previously derived intertemporal plan every
time they reevaluate it.
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As a consequence, if we want to determine the consumption and investment plan
carried out, it is not sufficient to assume that all agents maximize their intertemporal
welfare. In addition, we have to specify to which extent they are aware of the potential
problem of time-inconsistency, to which degree they can commit themselves mandatory
to future actions and how often they are going to reevaluate the alleged optimal ex
ante plan. Assuming that every agent reevaluates the former intertemporal plan of her

degree of time
inconsistency

intertemporal
action space

hyperbolic
committed

hyperbolic
non-cooperative

hyperbolic
myopic

0 1

1

real
person

degree of
comittment to
future actions

Figure 1: Sketch of the intertemporal action space for hyperbolic preferences. The corners
are the three behavior patterns hyperbolic committed, hyperbolic myopic and hyperbolic
non-cooperative. In general, the behavior of real persons with hyperbolic preferences will
be described by a point inside the manifold.

predecessor and eventually modifies it, we have to further specify to what extend the
agents can commit their successors to future actions and to what degree they are aware
of the non-stationarity of their own preferences. As these two characteristics are at least
partly independent of each other, they span a two dimensional manifold of possible
intertemporal actions. Simplified, we can sketch this manifold as a triangle as done in
figure 1. In the following I focus on three special behavior patterns.

Definition 1 (hyperbolic committed)
The agents are fully aware of the potential problem of time-inconsistency and agent 1
commits her successors mandatory to the intertemporal optimal ex ante consumption
and investment plan. In the following I call this behavior hyperbolic committed.

Definition 2 (hyperbolic myopic)
The agents are totally unaware of the non-stationarity of their preferences. They reeval-
uate the ex ante optimal plan in every period and will in general modify it. This behavior
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is irrational in so far as the agents do not learn about their own and the other agents
time inconsistent behavior. In the following I refer to this behavior as hyperbolic myopic.

Definition 3 (hyperbolic non-cooperative)
All agents are fully aware of the potential problem of time-inconsistency but do not have
the possibility to commit their successors mandatory to the intertemporal optimal ex ante
consumption and investment plan. Hence, to derive a time consistent plan they play the
subgame perfect Nash equilibrium of the non-cooperative sequential game against all other
agents. In the following this behavior is termed hyperbolic non-cooperative.

In fact, these three behavior patterns correspond with the corners of the intertemporal
action space and have to be assessed as the three possible extreme cases. Real persons,
who have hyperbolic preferences, are more likely to exhibit a behavior pattern, which
may be described by an interior point of the intertemporal action space.

2.2 Production

Suppose a society with one non producible factor of production l (e.g. labor), which is
given in each period in amount l̄ and two production sectors, each producing a consump-
tion good ci (i = 1, 2).1 The consumption good is supposed to be homogenous, thus total
consumption is the sum of the production outputs produced by sector 1 and sector 2:

c(t) = c1(t) + c2(t) . (7)

The first sector produces the consumption good solely by the means of labor:

c1(t) = l1(t) , (8)

where l1 denotes the amount of labor employed to sector 1. In addition, as an unwanted
by-product, sector 1 causes one unit of emissions e for every unit of consumption good
produced:

e(t) = c1(t) = l1(t) . (9)

Furthermore, consumption can be produced in sector 2, which combines λ units of labor
and κ units of a specific capital good k to produce one unit of the consumption good:

c2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

. (10)

Analogously to (8), l2 denotes the labor input employed to sector 2. If the capital stock
k is fully employed in every period2 and efficient labor allocation is supposed, then
equation (10) yields:

c2(t) =
l2(t)

λ
=

k(t)

κ
. (11)

1 This model originates from Faber and Proops (1991), who analyze structural change in a neo-Austrian
capital theoretical framework. It has been extended to joint production by Winkler (2002).

2 If the economy starts with an initial capital stock of k1 = 0 and given the intertemporal welfare W

as defined in (1), full employment of the capital stock is also efficient as shown by Winkler (2002).
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Note that sector 2 does not produce any unwanted joint products. Hence, emissions can
be reduced by switching from production sector 1 to production sector 2.

New capital goods are produced by the means of labor. Employing one unit of labor
yields one unit of new capital good. Denoting the amount of labor employed to the
production of new capital goods by l3, yields for the investment i:

i(t) = l3(t) . (12)

A central assumption in this model is that the production of the capital good needs
time. This amounts to the assumption that in general the costs and the benefits of
investments in environmental quality (in terms of welfare) do not accrue at the same
time. A well known example, where costs occur before the benefits, is the abatement of
CO2 to slow down the anthropogenic greenhouse effect. While the costs occur today, the
(insecure) benefits spread over several decades or even centuries (IPCC 2001b). Hence,
the investment i in new capital goods in period t accumulates the existing capital stock
k in period t+1. Assuming further that the deterioration of capital is proportional to
the existing capital stock at the constant and exogenously given rate γ, leads to the
following equation of motion for the capital stock k:

k(t) = (1 − γ)k(t−1) + i(t−1) . (13)

The exogenously given technical coefficients λ, κ and γ specify the production technology.
As welfare is strictly increasing in consumption, in the optimum the labor supply l̄ will
be used up completely by the three production processes in every period t:

l̄ = l1(t) + l2(t) + l3(t) . (14)

Suppose that sector 1 is the status quo in the economy, which is used to its maximal
extend. From period t = 1 on, the society is aware of the (potential) harmfulness of the
jointly produced output. In the following I examine if it is optimal for agent t to invest
in the clean production sector 2 for a given set of technical coefficients λ, κ and γ, and
a given behavioral pattern as described in definitions 1–3.

3 Ex ante intertemporal optimal consumption and investment

First, I derive the ex ante intertemporal optimal consumption and investment plan. This
is the plan agent 1 achieves by maximizing her intertemporal welfare in period t = 1
subject to the production possibilities of the economy.

3.1 Intertemporal optimization

Inserting equations (8), (11) and (12) in the labor restriction (14) yields:

c1(t) = e(t) = l̄ −
λ

κ
k(t) − i(t) . (15)
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Using this equation together with equations (11) and (7), I derive for the total consump-
tion c(t):

c(t) = l̄ +
1 − λ

κ
k(t) − i(t) . (16)

Note that given an initial capital stock k1 = k(1), the outcome is completely determined
by choosing the investment decisions i(t) for all periods t = 1, . . . , τ . Thus, setting the
initial capital stock k1 = 0, the ex ante optimal control problem reads:

max
i

τ∑

t=1

D(t) [U(c(t)) − S(e(t))] s.t. (17)

c(t) = l̄ +
1 − λ

κ
k(t) − i(t) , ∀ t = 1, . . . , τ ,

e(t) = l̄ −
λ

κ
k(t) − i(t) ≥ 0 , ∀ t = 1, . . . , τ ,

k(t+1) = (1 − γ)k(t) + i(t) , ∀ t = 1, . . . , τ ,

i(t) ≥ 0 , ∀ t = 1, . . . , τ ,

k1 = 0 .

Introducing shadow prices pc(t), pe(t) and pk(t) for the consumption, the emissions and
the capital stock, and a Kuhn-Tucker variable pi(t) to control for the non-negativity of
investment, one obtains the Lagrangian L:3

L =
τ∑

t=1

D(t) [U(c(t)) − S(e(t))] (18)

+
τ∑

t=1

pc(t)

[

l̄ +
1 − λ

κ
k(t) − i(t) − c(t)

]

+
τ∑

t=1

pe(t)

[

l̄ −
λ

κ
k(t) − i(t) − e(t)

]

+
τ∑

t=1

pk(t+1) [(1 − γ)k(t) + i(t) − k(t+1)]

+
τ∑

t=1

pi(t)i(t) .

Hence, the first order conditions for an optimal intertemporal investment plan read:

D(t)Uc(c(t)) − pc(t) = 0 , ∀ t = 1, . . . , τ , (19)

−D(t)Se(e(t)) − pe(t) = 0 , ∀ t = 1, . . . , τ , (20)

3 To simplify the exposition, I do not explicitly introduce a Kuhn-Tucker variable to control for the
non-negativity of the emissions e(t). This is justified as I am mainly interested in determining the
conditions for which there is some investment in the capital intensive production technique at all.
Nevertheless, note that due to the linear production processes, a full replacement of process R1 by
process R2 might occur if investment is optimal.
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1 − λ

κ
pc(t) −

λ

κ
pe(t) + (1 − γ)pk(t+1) − pk(t) = 0 , ∀ t = 1, . . . , τ , (21)

−pc(t) − pe(t) + pk(t+1) + pi(t) = 0 , ∀ t = 1, . . . , τ , (22)

pi(t) ≥ 0 , pi(t)i(t) = 0 , ∀ t = 1, . . . , τ . (23)

Because of the strict concavity of the Lagrangian (strictly concave objective function
and linear restrictions), these necessary conditions are also sufficient if, in addition, the
following transversality condition holds:

pk(τ + 1) = 0 . (24)

The economic interpretation of the necessary and sufficient conditions is straight for-
ward. Equation (19) claims that for an intertemporal optimal plan the shadow price
of consumption equals the present value of the marginal utility of consumption. Analo-
gously, according to equation (20), in the optimum the shadow price of emissions equals
the present value of the marginal welfare loss due to environmental damage. Note that
the shadow price of emissions pe(t) is negative in the optimum as emissions decrease
welfare.

Equation (21) is a difference equation, which can be solved unambiguously if the
transversality condition (24) is taken into account:

pk(t) =
1

κ

τ∑

m=t

D(m)(1 − γ)m−t [(1 − λ)Uc(c(m)) + λSe(e(m))] . (25)

The term in brackets on the right hand side is the net welfare gain of a marginal unit of
the capital good in one period. As capital goods are long-lived commodities, the welfare
gains of different periods have to be accumulated by taking account of discounting and
the depreciation of capital goods. Thus, in the optimum the shadow price of capital
equals the present value of the accumulated future welfare gain of a marginal unit of the
capital good.

Inserting (19), (20) and (25) in equation (22) I derive the following necessary and
sufficient conditions for an intertemporal optimal (ex ante) plan (t = 1, . . . , τ):

D(t) [Uc(c(t)) − Se(e(t))] − pi(t) = (26)

1

κ

τ∑

m=t+1

D(m)(1 − γ)m−t−1 [(1 − λ)Uc(c(m)) + λSe(e(m))] .

Equation (26) states that invest in new capital goods in period t (i.e. pi(t) = 0) can only
be optimal, if the present welfare loss due to the investment in capital goods (left hand
side) equals the net present value of the future possible use of this investment (right
hand side).

3.2 Exponential versus hyperbolic intertemporal preferences

First, assume that all agents t have exponential intertemporal preferences as described
in equation (3). Inserting (3) in equation (26), one obtains:

(1 + ρ)1−t [Uc(c(t)) − Se(e(t))] − pi(t) = (27)
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1

κ

τ∑

m=t+1

(1 − γ)m−t−1

(1 + ρ)m−1
[(1 − λ)Uc(c(m)) + λSe(e(m))] .

Given exponential intertemporal preferences, it cannot be optimal not to invest in capital
goods in period t = 1 but to invest in later periods t > 1. This is true, because the relative
weights between the welfare loss today and the future benefits remain unaltered by a
transition in time, due to the constat rate of time preference, but the time span over
which the new capital can produce consumption goods declines. Hence, the welfare loss
stays constant (in current values), while the future welfare gain declines the more the
later one starts to invest.

Suppose it is not optimal to invest in the capital intensive technique in period t = 1
(and in all later periods). Then, according to (23), i(t) = 0 and pi(t) ≥ 0 for all t =
1, . . . , τ . As a consequence, all labor will be employed in production sector 1 in each and
every period t, yielding the constant consumption c̄ = l̄ and constant emissions ē = l̄.
Thus, equation (27) states for period t = 1:

Uc(c̄) − Se(ē) ≥
(1 − λ)Uc(c̄) − λSe(ē)

κ

τ∑

m=2

(1 − γ)m−2

(1 + ρ)m−1
. (28)

Using the formula for the geometric series one obtains that investment in the capital
intensive production technique is optimal, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

(1 + ρ)τ−1 − (1 − γ)τ−1

(1 + ρ)τ−1(γ + ρ)
. (29)

Second, suppose the agents have hyperbolic preferences. Suppose further that it is not
optimal to invest in the capital good in all periods t. Then, again all labor will be
employed in production sector 1 in each and every period t, yielding c̄ = l̄ and ē = l̄.
Hence, we derive for period t:

D(t) [Uc(c̄) − Se(ē)] ≥
(1 − λ)Uc(c̄) − λSe(ē)

κ

τ∑

m=t+1

D(m)(1 − γ)m−t−1 . (30)

Different from the case of exponential intertemporal preferences, now it can be optimal
not to invest in period t = 1 but in one or more later periods. This is true, because the
present value of future benefits increases by a transition in time due to the decreasing
instantaneous rates of time preference. Hence, the welfare loss stays constant (in current
values), while the future welfare gains decline on the one hand, because the remaining
time horizon declines, but rise on the other hand due to the declining rates of time
preference. Hence, in the case of hyperbolic intertemporal preferences, investment in the
capital good in period t is optimal, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

m=t+1

D(m)

D(t)
(1 − γ)m−t−1 . (31)

If investment is optimal, i.e. equation (31) holds for some t, but equation (31) does not
hold for t = 1, then it is optimal for the hyperbolically discounting agent to postpone
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the investment in the clean technology into the future. I term this delay ex ante pro-
crastination to distinguish it from ex post procrastination described in the next section.
The following proposition summarizes this result.

Proposition 1 (Ex ante procrastination)
Given the maximization problem (17) and hyperbolically discounting agents as described
in (5) and (6), the ex ante intertemporal optimal plan can exhibit ex ante procrastination,
i.e. investment in the clean production sector is ex ante optimal in the long run but not
in the first period.

Note that within this model ex ante procrastination cannot be optimal, if the agents
discount exponentially. Hence, this is a special feature of hyperbolic preferences.

4 Ex post implemented consumption and investment

As described in section 2, the agents might not stick to the ex ante optimal plan, if
they reevaluate it in later periods, because of the non-stationarity of their hyperbolic
preferences. Hence, depending on the behavior pattern assumed, the ex post actually
implemented plan can differ from the ex ante intertemporal optimal plan.

4.1 Hyperbolic committed discounting

As described in definition 1, the hyperbolic committed agent 1 derives the ex ante
intertemporal optimal investment and consumption plan, implements the investment
i(1) for the first period and mandatory commits her successors to the future investments
as suggested by the ex ante plan. As a consequence, even if the succeeding agents want
to depart from the ex ante plan due to reevaluations in later periods, they have to stick
to it. Obviously, in this case the ex post implemented plan is identical to the ex ante
optimal plan.

According to the analysis exposed in the former section, investment in the clean pro-
duction technique is ex ante optimal, if equation (31) holds for some t. Suppose the
t which maximizes the right hand side of (31) is t′. Hence, the hyperbolic committed
agent t′ will invest in the capital intensive technique, if (31) holds for t′, as the following
proposition states.

Proposition 2 (Hyperbolic committed discounting)
Suppose an agent with hyperbolic preferences as described by (5) and (6), and a hyperbolic
committed behavior pattern according to definition 1. Given the maximization problem
(17), the agent will invest into the clean production sector, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
< max

t





τ∑

m=t+1

D(m)

D(t)
(1 − γ)m−t−1



 .

Note that the ex post implemented plan of a hyperbolic committed agent exhibits ex
ante procrastination, if and only if the ex ante optimal plan does.

10



4.2 Hyperbolic myopic discounting

The hyperbolic myopic agents are not aware of the non-stationarity of their preferences.
Hence, agent 1 will maximize her intertemporal welfare in period t = 1, derive the
ex ante optimal plan as described in section 3 and implement the putative optimal
investment i(1). She is not aware that i(1) is only optimal, if her successors stick to the
future investments as derived by the ex ante optimal plan. In period t = 2 agent 2 will
reevaluate the optimal plan. In general, the optimal results derived by the reevaluation do
not coincide with the ex ante optimal plan, because the relative weights of welfare gains
and losses between different periods have changed due to the declining instantaneous
rates of time preference. Again, she will implement the alleged optimal investment i(2).
In period t = 3 agent 3 reevaluates the optimal plan again and will alter the previously
derived decision and so on. The behavior of the hyperbolic myopic agents are irrational
as they do not learn from the permanent reevaluation experiences of their predecessors.

Let’s turn to the question under which circumstances the hyperbolic myopic agent
will invest into the clean production technique. As we have seen already, if the ex ante
optimal plan suggests investment in period t = 1, she will invest in exactly the proposed
amount. Now suppose, she faces ex ante procrastination, i.e. the ex ante optimal plan
suggests to invest in the clean production technology not earlier than in period t′ > 1.
Hence, agent 1 will not invest in period t = 1. But what about agent t′? As shown in
the appendix, she will invest in period t = t′, as suggested by the ex ante optimal plan,
if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

n=t′+1

D(n−t′+1)(1 − γ)n−t′−1 . (32)

But if (32) holds, investment would have been already optimal in period t = 1, because
in the condition for optimal investment in t = 1, the left hand side is the same, but
the right hand side (RHS) is even larger as the sum contains the same terms plus some
additional positive addends:

τ∑

n=t′+1

D(n−t′+1)(1 − γ)n−t′−1 = (33)

τ−t′+1∑

m=2

D(m)(1 − γ)m−2

︸ ︷︷ ︸

RHS for t=t′

<
τ∑

m=2

D(m)(1 − γ)m−2

︸ ︷︷ ︸

RHS for t=1

.

This contradicts the assumption that the ex ante optimal plan exhibits ex ante pro-
crastination. As a consequence, the hyperbolic myopic agents will never invest in the
clean production sector, if they do not invest in the first period. I call this (infinite)
delay caused by the time-inconsistency problem ex post procrastination. The following
proposition summarizes this result.

11



Proposition 3 (Hyperbolic myopic discounting)
Suppose agents with hyperbolic preferences as described by (5) and (6), and a hyperbolic
myopic behavior pattern according to definition 2. Given the maximization problem (17),
agent 1 will invest into the clean production technique, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

m=2

D(m)(1 − γ)m−2 .

Furthermore, if agent 1 does not invest, nor do all succeeding agents.

A direct consequence of proposition 3 is that in the case of hyperbolic myopic agents, ex
ante procrastination implies ex post procrastination. That means, if the ex ante optimal
plan exhibits ex ante procrastination, the hyperbolic myopic agents will never invest in
the capital good, although agent 1 thought that her successors would, according to the
ex ante optimal plan.

4.3 Hyperbolic non-cooperative discounting

As stated in definition 3, the hyperbolic non-cooperative agents are aware of the time-
inconsistency problem but have no possibility to mandatory commit their successors to
the ex ante plan. In this case the best they can do, is playing a non-cooperative sequential
game against all other agents. Then, the time consistent consumption and investment
plan is the subgame perfect Nash equilibrium of this game.

As known from game theory, the Nash equilibrium is the mutual best-response of all
agents t, given the investment decisions of all other agents. As shown in the appendix,
maximizing each agents intertemporal welfare, given the investment decisions of all other
agents, leads to the following system of nonlinear equations (t = 1, . . . , τ), whose unique
solution describes the investment plans of all agents in the subgame perfect Nash equi-
librium:

Uc(c(t)) − Se(e(t)) − pi(t) = (34)

1

κ

τ∑

n=t+1

D(n−t+1)(1 − γ)n−t−1 [(1 − λ)Uc(c(n)) + λSe(e(n))] .

Suppose that in the subgame perfect Nash equilibrium no agent t invests in the capital
intensive production technique, i.e. i(t) = 0, pi(t) ≥ 0 (t = 1, . . . , τ). Then, in each and
every period the consumption c̄ and the emissions ē will be implemented. Hence, for all
agents t the following inequality holds:

κUc(c̄) − Se(ē)

[(1 − λ)Uc(c̄) + λSe(ē)]
≥

τ∑

n+t+1

D(n−t+1)(1 − γ)n−t−1 . (35)

Turning it the other way round, agent t′ will depart, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

n=t′+1

D(n−t′+1)(1 − γ)n−t′−1 . (36)

12



This condition is identical to condition (32) for an ex post implemented investment of
the hyperbolic myopic agents. Exploiting the same line of argument, it follows that in
the subgame perfect Nash equilibrium no agent t invests in sector 2, if agent 1 does
not invest. As a consequence, also in the case of hyperbolic non-cooperative agents, ex
ante procrastination implies (infinite) ex post procrastination. The following proposition
summarizes this result.

Proposition 4 (Hyperbolic non-cooperative discounting)
Suppose agents with hyperbolic preferences as described by (5) and (6), and a hyper-
bolic non-cooperative behavior pattern according to definition 3. Given the maximization
problem (17), agent 1 will invest into the clean production technique, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

m=2

D(m)(1 − γ)m−2 .

Furthermore, if agent 1 does not invest, nor do all succeeding agents.

Note that, although the necessary and sufficient condition for an ex post implemented
investment in the clean production technique is identical for both the hyperbolic myopic
and the hyperbolic non-cooperative agents, the optimal dynamic path in case of an
investment will in general differ for the various behavior patterns (see section 6). Hence,
propositions 3 and 4 do not imply that the optimization calculus for both behavior
patterns is identical.4

5 Welfare analysis and intertemporal equity

Let’s turn to the ex post derived welfare, which depends of the different behavior patterns
described by definitions 1–3. Agent t’s ex post derived welfare is given by (1), when
inserting the actually implemented ex post plan. In the following I am concerned about
intertemporal equity. As equity is not an economic but an ethical concept, I am obviously
in an insecure position when analyzing intertemporal equity. As a consequence, I apply
a very weak definition of intertemporal equity (in fact, I give a very strong definition of
inequity): A behavioral regime is called inequitable, if the decision of agent t is determined
by the dictatorship of another agent t′ 6= t.5

First, suppose the case of exponential discounting, i.e. D(t) = Dexp(t) as given in
(3). Then, the intertemporal distribution of welfare of the ex ante optimal plan among
the agents living in different periods t is Pareto optimal insofar, as it is not possible to
increase the intertemporal welfare of one agent without decreasing the welfare of another
agent. In addition, the distribution is optimal for every agent t, as no one could improve
its own welfare (even at the cost of others) by departing from the ex ante optimal plan.
Apparently, the exponential discounting regime is very favorable, as it is efficient and it
is not inequitable in the sense defined above.

4 In fact, they are quite different as can be seen from their derivation in the appendix.
5 This definition is very similar to the non-dictatorship-property in the Arrow’s paradox (Arrow 1951).
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Second, suppose the hyperbolic committed discounting scheme. Then, as shown in
section 4.1, the ex post implemented plan is identical to the ex ante optimal plan.
Again, the intertemporal distribution of welfare among the agents is Pareto optimal,
as it is not possible to increase the intertemporal welfare of any agent t (t = 2, . . . , τ)
without decreasing agent 1’s welfare. But in general the distribution is suboptimal for
all agents except agent 1. Furthermore, the hyperbolic committed discounting regime is
inequitable as the individual optimal decisions of all agents t (t = 2, . . . , τ) are overruled
by the commitment of agent 1 in period 1.

Third, assume that all agents discount according to the hyperbolic myopic or hyper-
bolic non-cooperative behavior pattern. Obviously, these discounting schemes are not
inequitable in the strict sense defined above, as every agent is able to implement its
own investment decision. But the ex post implemented plan may be Pareto inefficient,
depending on the set of exogenous given parameters and the functional form of the
discount and the utility function as shown in the appendix. In this case, one faces the
dilemma that the ex post implemented plan is either efficient or non-dictatorial. The
following proposition summarizes this result.

Proposition 5 (Efficiency-equity trade-off)
Suppose agents with hyperbolic preferences as given in (5) and (6). Then, the ex post
implemented plan is efficient but dictatorial in the hyperbolic committed regime, and
non-dictatorial but may be inefficient in the hyperbolic myopic and the hyperbolic non-
cooperative regime.

6 Numerical simulation

In this section the results obtained in sections 3 and 4 are illustrated by numerical opti-
mizations. All numerical optimizations were derived with the advanced optimal control
software package MUSCOD-II (Diehl et al. 2001), which exploits the multiple shooting
state discretization (Leineweber et al. 2003). The numerical optimization parameters
are given in the appendix. Note that there is no deterioration of the capital stock in the
numerical examples (γ = 0).

Figure 2 shows a numerical calculated ex post implemented plan for the three dif-
ferent behavior patterns, given ex ante procrastination. As expected from propositions
3 and 4, the ex post implemented plans for hyperbolic myopic and hyperbolic non-
cooperative agents also exhibit ex post procrastination, i.e. there is no investment in the
clean production sector in all periods. As a consequence, the status quo consumption
and emissions are obtained in every period. However, the hyperbolic committed agents
start with the status quo consumption of c = 10 in period 1 as agent 1 does not invest in
this period. Between period 2 and 9 the consumption is below 10 due to the investments
in the capital stock.

Figure 3 shows a numerical calculated ex post implemented plan, where investment is
undertaken in all three behavioral regimes. Note that given the time horizon τ = 25 (in
figure 2 and 3 only the first 15 periods are shown for a more convenient presentation) only
the hyperbolic committed agents realize a full replacement of the polluting production
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b) hyperbolic myopic discounting
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c) hyperbolic non-cooperative discounting
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Figure 2: Consumption (left), and capital and investments (right) for the hyperbolic
committed, the hyperbolic myopic and the hyperbolic non-cooperative representative
agents in the case of ex ante procrastination.
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sector 1 by the clean production sector 2. Note further that the investment path is
monotonic for the hyperbolic myopic and the hyperbolic non-cooperative agents while
it is non-monotonic for the hyperbolic committed agents. This is because the relative
weights between costs today and benefits in the future change due to the hyperbolic
discount function of the hyperbolic committed agents, while they don’t (at least in the
ex post implemented plan) for the hyperbolic myopic and hyperbolic non-cooperative
agents.

In table 1 the intertemporal welfare of the agents in all periods are given for the
different numerical examples. In the case of ex ante procrastination (figure 2), the agents
in all periods are better off in the hyperbolic committed than in the hyperbolic myopic
and hyperbolic non-cooperative regime. In fact, in this example the inefficiency of the
ex post implemented plan of the hyperbolic myopic and the hyperbolic non-cooperative
agents is obvious. Note that it is not necessarily the case that all agents are better off
in the hyperbolic committed scenario even if the ex ante intertemporal optimal plan
exhibits ex ante procrastination.

In the scenario, where we observe investment in all three discounting regimes (fig-
ure 3), again the hyperbolic myopic agents have a lower intertemporal welfare than the
hyperbolic committed representative consumer, which clearly indicates an inefficient in-
tertemporal allocation. Indeed, in the hyperbolic non-cooperative regime the agents 2 to
6 are better off than the corresponding agents in the hyperbolic committed regime. Nev-
ertheless, this outcome is inefficient as a Pareto improvement can easily be constructed.6

7 Conclusion

I have analyzed optimal intertemporal structural change from a polluting to a non
polluting production sector for hyperbolically discounting agents. Because of the non-
stationarity of hyperbolic preferences, the ex post observed outcome crucially depends
on additional behavioral constraints. As prime examples I have discussed the hyperbolic
myopic, the hyperbolic committed and the hyperbolic non-cooperative agents, which
correspond to the corners of the two dimensional behavioral manifold spanned by the
possibilities of commitment to future actions and the degree of foresight of one’s own time
inconsistent behavior. The well known result that hyperbolic agents tend to postpone
costs has been extended by a distinction between ex ante procrastination, a direct con-
sequence of declining discount rates, and ex post procrastination, a phenomenon which
amounts to the problem of time inconsistent behavior in the absence of commitment
possibilities.7

In the model framework analyzed I have shown that, if the agents exhibit hyperbolic
myopic or hyperbolic non-cooperative behavior, ex ante procrastination implies an infi-
nite ex post procrastination, i.e. there is no investment in the clean production technique

6 An example for a Pareto superior investment plan is i(1) = 2.5, i(2) = 2.1, i(3) = 1.8, i(4) =
1.5, i(5) = 1.2, i(6) = 0.8, i(7) = 0.3, i(8) = . . . = i(25) = 0.

7 Note that ex ante procrastination is similar to the result in the real options theory, where it can be
optimal to postpone an investment if its future benefits are uncertain and the uncertainty reduces as
time increases even with exponential discounting (e.g. Dixit and Pindyck 1994).
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a) hyperbolic committed discounting
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b) hyperbolic myopic discounting
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c) hyperbolic non-cooperative discounting
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Figure 3: Consumption (left), and capital and investments (right) for the hyperbolic
committed, the hyperbolic myopic and the hyperbolic non-cooperative agents in the
absence of ex ante procrastination.
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Figure 2 Figure 3
Agent

committed myopic non-coop. committed myopic non-coop.

1 27,99 27,91 27,91 41,87 41,82 41,85

2 27,15 27,11 27,11 40,55 40,51 40,62

3 26,37 26,29 26,29 39,25 39,17 39,35

4 25,65 25,46 25,46 37,94 37,80 38,02

5 24,93 24,63 24,63 36,59 36,40 36,65

6 24,20 23,78 23,78 35,20 34,97 35,22

7 23,44 22,91 22,91 33,76 33,50 33,74

8 22,66 22,03 22,03 32,26 31,97 32,20

9 21,84 21,14 21,14 30,69 30,40 30,62

10 20,97 20,23 20,23 29,10 28,82 29,03

11 20,03 19,30 19,30 27,49 27,23 27,43

12 19,05 18,35 18,35 25,87 25,62 25,81

13 18,04 17,38 17,38 24,23 24,00 24,18

14 17,01 16,39 16,39 22,58 22,36 22,53

15 15,95 15,37 15,37 20,91 20,71 20,86

16 14,87 14,32 14,32 19,21 19,03 19,17

17 13,74 13,24 13,24 17,50 17,33 17,46

18 12,58 12,12 12,12 15,76 15,61 15,72

19 11,38 10,96 10,96 13,99 13,86 13,96

20 10,12 9,75 9,75 12,19 12,07 12,16

21 8,80 8,48 8,48 10,35 10,25 10,32

22 7,40 7,12 7,12 8,46 8,38 8,44

23 5,89 5,67 5,67 6,52 6,45 6,50

24 4,24 4,08 4,08 4,49 4,45 4,48

25 2,35 2,27 2,27 2,35 2,33 2,35

Table 1: Intertemporal welfare of all agents in the different numerical examples.

in all periods, although this has been optimal from an ex ante point of view. This infinite
ex post delay is the result of the assumption of a flow pollutant. If not the emissions
themselves decrease welfare, but the emissions accumulate a stock of pollutant, which
has a welfare deceasing property, only finite ex post procrastination would result. Nev-
ertheless, the qualitative difference between ex ante and ex post procrastination would
persist.

Furthermore, I have shown that ex post procrastination may lead to a Pareto inefficient
intertemporal outcome. Note that the inefficiency hinges upon the set of exogenously
given parameters and the functional forms of D, U and S. Although the hyperbolic
committed behavioral regime produces always a Pareto optimal outcome, it has the
unfavorable property of a dictatorship of the present agent over all future agents. One
might get over this as long as time-inconsistency is a pure intrapersonal problem, i.e. the
different agents t are one physical person at different times t. But, once discussing inter-
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personal or intergenerational problems, i.e. the different agents t are different physical
persons living at different times t, a dictatorship of the first generation over all others is
out of question, either on ethical grounds or simply by the mere impossibility to com-
mit future generations to actions which are suboptimal in their view. Hence, there is
a potential trade-off between intertemporal efficiency and equity. The solution of this
problem is open to future research.8

Nevertheless, I believe that the differentiation between ex ante and ex post procras-
tination contributes to the explanation of the observed behavior of decision makers in
long-term projects. As an example think of the reduction of greenhouse gas emissions
according to the Kyoto protocol (United Nations Third Conference of the Parties of the
Framework Convention on Climate Change 1997). Suppose the commitment of the US
government signed in 1997 exhibited ex ante procrastination. As the 1997 government
had no means to enforce future governments’ cooperation and/or was unaware of their
time-inconsistent preferences, today’s and future governments are not willing to ratify
the Kyoto protocol, because of ex post procrastination.

Appendix

A.1 Hyperbolic myopic discounting

The intertemporal optimization problem the hyperbolic myopic agent has to solve in
every period t is similar to the ex ante intertemporal optimization problem (17). Nev-
ertheless, the remaining time horizon declines with increasing t, i.e. the time span, over
which capital goods can be used, also declines. The initial capital stock kt is determined
by the investment carried out in the former periods:

max
i

τ∑

m=t

D(m−t+1) [U(c(m)) − S(e(m))] s.t. (A.1)

c(m) = l̄ +
1 − λ

κ
k(m) − i(m) , ∀m = t, . . . , τ ,

e(m) = l̄ −
λ

κ
k(m) − i(m) ≥ 0 , ∀m = t, . . . , τ ,

k(m+1) = (1 − γ)k(m) + i(m) , ∀m = t, . . . , τ ,

i(m) ≥ 0 , ∀m = t, . . . , τ ,

kt =
t−1∑

n=1

(1 − γ)t−n−1i(n) .

Analogously to the calculation in section (3.1), we derive the following system of equa-
tions for every period t, which determines the investment in period t and the putative
optimal investments in the later periods (m = t, . . . , τ):

D(m−t+1) [Uc(c(m)) − Se(e(m))] − pi(m) = (A.2)

8 Cropper and Laibson (1996) suggest to Pareto improve the outcome by subsidizing the interest rate.
Their crucial assumption is that the effect of implemented policies occur time-lagged, which is identical
to a commitment for the next period. Hence, the fundamental dilemma remains.
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1

κ

τ∑

n=m+1

D(n−m+1)(1 − γ)n−m−1 [(1 − λ)Uc(c(n)) + λSe(e(n))] .

Hence, following the same argument as described in detail in section 3.2, investment in
period t = t′ is assessed to be optimal by the reevaluation in period t′ and thus will be
carried out, if and only if:

κ[Uc(c̄) − Se(ē)]

(1 − λ)Uc(c̄) + λSe(ē)
<

τ∑

n=t′+1

D(n−t′+1)(1 − γ)n−t′−1 . (A.3)

A.2 Hyperbolic non-cooperative discounting

In the subgame perfect Nash equilibrium every player t plays the best investment strat-
egy, given the investment strategies of all other players. Hence, each player t plays the
solution of the following optimization problem:

max
i(t)

τ∑

m=t

D(m−t+1) [U(c(m)) − S(e(m))] s.t. (A.4)

c(m) = l̄ +
1 − λ

κ
k(m) − i(m) , ∀m = t, . . . , τ ,

e(m) = l̄ −
λ

κ
k(m) − i(m) ≥ 0 , ∀m = t, . . . , τ ,

k(m+1) = (1 − γ)k(m) + i(m) , ∀m = t, . . . , τ ,

i(t) ≥ 0 , ∀m = t, . . . , τ ,

i(m) = im , ∀m = 1, . . . , τ , m 6= t ,

kt =
t−1∑

n=1

(1 − γ)t−n−1in .

Analogously to the calculation in section (3.1), we derive the following necessary and
sufficient condition for an optimal investment of player t:

Uc(c(t)) − Se(e(t)) − pi(t) = (A.5)

1

κ

τ∑

n=t+1

D(n−t+1)(1 − γ)n−t−1 [(1 − λ)Uc(c(n)) + λSe(e(n))] .

The subgame perfect Nash equilibrium can be determined by backward induction. This
leads to the following system of equations, whose solution describes the investment
decisions of all players in the Nash equilibrium:

Uc(c(1)) − Se(e(1)) − pi(1) =

1

κ

τ∑

n=2

D(n)(1 − γ)n−2 [(1 − λ)Uc(c(n)) + λSe(e(n))] ,

20



Uc(c(2)) − Se(e(2)) − pi(2) =

1

κ

τ∑

n=3

D(n − 1)(1 − γ)n−3 [(1 − λ)Uc(c(n)) + λSe(e(n))] ,

... (A.6)

Uc(c(τ−1)) − Se(e(τ−1)) − pi(τ−1) =
1

κ
D(2) [(1 − λ)Uc(c(τ)) + λSe(e(τ))] ,

Uc(c(τ)) − Se(e(τ)) − pi(τ) = 0 .

Note that due to the curvature properties of the Lagrangian of each player t a unique
subgame perfect Nash equilibrium exists.

A.3 Proof of proposition 5

The task is to show that the ex post implemented plan given hyperbolic myopic or
hyperbolic non-cooperative agents might be inefficient. In the following I construct an
example for both cases.

Suppose τ = 3 and that the ex ante optimal plan exhibits ex ante procrastination.9

Hence, in the ex post implemented plan no investment is undertaken in all periods for
both the hyperbolic myopic and the hyperbolic non-cooperative agents. Introducing the
following abbreviations

B =
(1 − λ)Uc(c̄) + λSe(ē)

κ
, C = Uc(c̄) − Se(ē) , (A.7)

from propositions 3 and 4 follows:

C ≥ B [D(2) + D(3)(1 − γ)] , (A.8)

C · D(2) < B · D(3) . (A.9)

Starting from this intertemporal investment plan, I show that depending on the exoge-
nously given parameters and the functional form of D, U and S a Pareto improvement
might be possible. Suppose agent 1 invests a marginal unit ∆i1. According to (A.8), this
investment will decrease her welfare while it increases the welfare of agent 2 and agent
3. Suppose further that agent 2 also invests a marginal unit ∆i2. According to (A.9) this
investment is welfare increasing for agent 1 and agent 3 but welfare decreasing for agent
2. If there are positive investments ∆i1 and ∆i2 such that both agent 1’s and agent 2’s
welfare increase compared to the case of no investment in all periods, then no investment
is Pareto inefficient. Note that an investment ∆i3 in period t = 3 is always inefficient as
the world ends after period 3.

Agent 1’s welfare change ∆W1 due to the investments ∆i1 and ∆i2 reads

∆W1 = −∆i1 · C + ∆i1 [D(2) + D(3)(1 − γ)] (A.10)

−∆i2 · C · D(2) + ∆i2 · B · D(3) .

9 Note that both assumptions are not necessary and are just chosen to simplify the exposition.
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Note that the first line is negative according to (A.8) and the second line is positive
due to (A.9). Hence, ∆W1 is the bigger the higher the marginal investment ∆i2. But
agent 2 can only invest in such amount that she is not worse off than in the case of no
investment:

∆W2 = ∆i1 · B [1 + D(2)(1 − γ)] − ∆i2 · C + ∆i2 · B · D(3) = 0 , (A.11)

⇒ ∆i2 = ∆i1
B [1 + D(2)(1 − γ)]

C − B · D(2)
> 0 . (A.12)

Note that ∆i2 > 0 according to (A.9). Inserting (A.12) in (A.10) and rearranging terms
yields:

∆W1

∆i1
= −C + B [D(2) + D(3)(1 − γ)] (A.13)

−C · D(2)
B [1 + D(2)(1 − γ)]

C − B · D(2)
+ B · D(3)

B [1 + D(2)(1 − γ)]

C − B · D(2)
.

Depending on the exogenously given parameters and the functional form of D, U and
S, (A.13) may be positive or negative. As an example, suppose that

λ = κ = γ = 1, U(c̄) = 1.5, S(ē) = 1 , (A.14)

which implies C = 0.5 and B = 1. On the one hand, for D(2) = 0.25 and D(3) = 0.24 one
obtains ∆W1/∆i1 > 0, indicating that no investment in all periods is not Pareto efficient.
On the other hand, from D(2) = 0.25 and D(3) = 0.15 follows that ∆W1/∆i1 < 0.
Hence, in this case no investment in all periods is Pareto efficient.

A.4 Parameter values for the numerical optimization

The following welfare function was used for the numerical optimizations:

V (c(t), e(t)) = U(c(t)) − S(e(t)) = ln(c(t)) − σe(t) . (A.15)

The applied discount function reads:

D(t) = (1 + ρ)−
ln(t)
ln(2) , (A.16)

where ρ = ρ(1) denotes the discount rate in the first period. In addition, the following
parameters were used for the different scenarios:

Figure τ l̄ λ κ γ σ ρ

2 25 10 0.95 1 0 0.0035 0.25

3 25 10 0.95 1 0 0.0025 0.1

Although the optimization has been calculated for τ = 25 in figure 2 and 3 only 15
periods are shown for a more convenient presentation.
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