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Abstract

We consider a “tenure-clock problem” in which a principal may set a deadline by which

she needs to evaluate an agent’s ability and decides whether to promote him or not. We

embed this problem in a continuous-time model with both hidden action and hidden

information, where the principal must induce the agent to exert effort to facilitate her

learning process. The value of committing to a deadline is examined in this environment,

and factors that make the deadline more profitable are identified. Our simple framework

allows us to obtain a complete characterization of the equilibrium, both with and without

commitment, and provides insight into why up-or-out contracts are prevalent in some

industries while they are almost non-existent in others.

JEL Classification Number: D82, D83
Keywords: dynamic agency, deadlines, experimentation, standard promotion practices, up-
or-out contracts.

∗Institute of Economic Reserach, Kyoto University. Email: chchen@kier.kyoto-u.ac.jp
†Institute of Social and Economic Research, Osaka University. Email: jishida@iser.osaka-u.ac.jp



1 Introduction

Suppose that an employer needs to hire a worker to carry out a project over time. The

project is ability-intensive in that the worker can successfully complete the project only if he is

sufficiently productive. As is often the case, however, the worker’s productivity is not directly

observable to the employer, who must instead make an inference about his productivity from

a sequence of observed outputs. A number of issues arise in this dynamic environment. How

much time should the employer give the worker before she terminates the project? Should

the employer commit to a deadline at the outset? If so, under what conditions?

In this paper, we attempt to address these issues by constructing a stylized model of a

“tenure-clock problem,” in which a principal hires an agent and evaluates his productivity over

time in an ongoing relationship. The problem is embedded in a continuous-time framework

with both hidden action and hidden information. At each instance, the agent privately

chooses how much effort to supply. The outcome is either a success or a failure, depending

on his effort choice as well as his productivity type. The game ends immediately when the

agent achieves a success (or a “breakthrough”). The principal’s task in this environment is

to determine when to terminate the project, conditional on no success having occurred.

Two distinct cases are analyzed within this environment to evaluate the value of setting an

evaluation deadline. In one case, the principal sets a deadline and commits to it at the outset,

and the project is terminated automatically when the deadline is reached without attaining

a success (but never before). In the other, the principal makes no such commitment, thereby

retaining discretion to terminate the project at any instance with no specific deadline. The

principal simply terminates the project when the principal judges that the agent is not up

to the task. By directly comparing these two solutions, we evaluate the extent to which the

principal benefits from committing to an evaluation deadline at the outset of the relationship

in this dynamic environment.

The driving force of our analysis is a dynamic strategic interaction between the agent’s

effort choices and the principal’s termination strategy. On one hand, the agent’s effort choices

depend clearly on how much time is left until the project is terminated: since the net value

of achieving a success is low when the project is still far from termination, the agent tends

to start off with low effort and gradually shift to higher effort as the expected termination

date approaches. On the other hand, the principal’s willingness to terminate the project

depends also on the agent’s effort choices: when the agent is less motivated and exerts low

effort, less information is revealed about his type, which makes the principal more reluctant

to terminate the project. This strategic interaction can generate a vicious cycle where the
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principal’s reluctance to terminate the project diminishes the agent’s motivation, which in

turn makes the principal even more reluctant. It is in general profitable to commit to a

deadline when each player’s incentive to “procrastinate” is sufficiently strong.

We provide an analytical framework that can capture this dynamic interaction, arguably

in its simplest form. Our simple framework allows us to obtain a complete characterization

of the equilibrium, both with and without commitment. The case that is technically more

challenging is the no-commitment one where the principal’s termination strategy must be

sequentially rational along the way, and the belief off the equilibrium path plays a crucial

role. Even in this case, we show that a (pure-strategy) perfect Bayesian equilibrium always

exists and is generically unique for any given set of parameters. We then build on this result

to derive a necessary and sufficient condition under which the principal can strictly benefit

from committing to an evaluation deadline.

Among other things, an interesting, somewhat counterintuitive, property of our model is

that the average duration of the project can be either shorter or longer with commitment

than without. In other words, there exists an equilibrium in which the principal prematurely

terminates the project when she does not commit to a deadline. This result is somewhat

surprising, provided that the inefficiency of the problem stems partly from the principal’s

reluctance to terminate the project. The principal tends to terminate the project too early

when the agent’s productivity under low effort is sufficiently small. To see this possibility

most clearly, suppose that the agent’s productivity under low effort is arbitrarily close to

zero, in which case the principal can learn very little from failures (during the phase where

the agent is supposed to exert low effort). The principal’s belief thus declines very slowly

over time, forcing her to incur a large amount of loss if she is to wait until the instantaneous

payoff equals zero. We show that if the expected loss is prohibitively large, the principal

chooses to terminate the project early even when the belief is still relatively high.

The most prominent example of evaluation schemes with deadlines is perhaps the “up-or-

out system,” which is widely observed in academia and professional service industries such

as law, accounting, and consulting. From a practical point of view, our analysis offers some

implications for when up-or-out contracts are more valuable by identifying several key factors

that favor the use of an evaluation deadline: high ability intensity, stable job descriptions,

similar jobs across ranks, and initial screening. Each of these factors intensifies either the

agent’s incentive to delay exerting high effort for a given deadline or the principal’s incentive

to delay terminating the project for a given effort sequence (or both). We later argue that

these factors are staple features of industries that are traditionally characterized by the up-

or-out system.
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The paper is organized as follows. The literature review is provided in the remainder

of this section. The model is presented in section 2 and analyzed in section 3, where we

characterize both the commitment and no-commitment solutions. These solutions are then

compared in section 4, in order to derive a necessary and sufficient condition under which it is

optimal to commit to a deadline and conduct comparative statics exercises. Some extensions

of the baseline model are discussed in section 5, and concluding remarks are offered in section

6.

Related Literature: The current analysis is most closely related to the experimentation

literature in that the principal here attempts to uncover the agent’s type though a sequence

of experiments.1 From the principal’s point of view, our model can be seen as a variant

of the canonical two-armed bandit problem with one safe arm (continuing the project) and

one risky arm (terminating the project). A crucial difference from the existing models is

that experiments in our context are “intermediated,” i.e., experiments are conducted not by

the principal herself but by an informed intermediary who may or may not behave as the

principal wishes.2

Recently, there have been increasingly many works that explore the optimal provision of

incentives in bandit problems. Manso (2011) considers the classic two-armed bandit problem

and shows that the optimal contract in this context must tolerate, or even reward, early

failures in order to encourage exploratory activities. Bergemann and Hege (1997, 2005) and

Hörner and Samuelson (2013) analyze a financing problem of a venture capitalist where the

principal provides funding to the agent who conducts experiments on a project of unknown

quality. Gerardi and Maestri (2012) consider a similar environment where an agent conducts

experiments but assume that the outcome of each experiment can only be observed by the

agent. The principal must hence devise a contract not only to induce costly effort but also

to truthfully reveal the information. Halac et al. (2013) analyze a model of long-term con-

tracting for experimentation with hidden information about the agent’s ability and dynamic

moral hazard and obtain an explicit characterization of optimal contracts. Aside from some

technical differences,3 these previous works are primarily concerned with characterizing op-

1An early economic application of the bandit problem can be found in Rothschild (1974). See Bergemann
and Välimäki (2008) for a survey.

2There are now increasingly many works, often called strategic experimentation, where a group of individ-
uals, rather than a single individual, face bandit problems (Bolton and Harris, 1999; Keller et al., 2005; Klein
and Rady, 2011; Bonatti and Hörner, 2011). There is some connection to this strand of literature in that the
experimentation process in the current setup involves decisions of multiple individuals. In a different vein,
Guo (2014) analyzes a model of “delegated experimentation” in which a principal delegates experimentation
to an agent and solves for the optimal delegation rule.

3As a key technical difference, we consider a case where the agent knows his own productivity (or the
project quality), so that our model belongs to the class of dynamic signaling, rather than of experimentation,
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timal contracts. In contrast, the aim of this paper is to compare the allocations under full

commitment and no commitment, while focusing on a narrower class of contracts, in order

to evaluate the extent to which the principal can gain from committing to a deadline at the

outset.4

It is well known that players often wait until the deadline to reach an agreement in finite-

horizon models. This behavior, which is referred to as the deadline effect, is a topic of utmost

concern in many bargaining and war of attrition models (Hendricks et al., 1988; Spier, 1992;

Fershtman and Seidman, 1993; Hörner and Samuelson, 2011; Chen, 2012; Damiano et al.,

2012; Fuchs and Skrzypacz, 2013). Some recent works also explore the role of deadlines in

dynamic problems with multiple agents. Bonatti and Hörner (2011) analyze a dynamic moral-

hazard problem with a team in which two agents work on a project of unknown quality and

briefly discuss the optimal deadline in this context. Campbell et al. (2013) consider a similar

environment where two agents work jointly on a project. They assume that there is only one

project type but assume that one’s own outcomes are his private information. Each agent

can exert effort to produce a breakthrough individually, and a successful agent can reveal

that he has been successful. The focus of these works is placed on the interaction between the

agents, especially the freerider problem, whereas ours is on the dynamic interaction between

the principal’s termination decisions and the agent’s effort choices.

The use of up-or-out is clearly intriguing because of its unique features, and has naturally

spurred a lot of interest among economists. Two features are particularly crucial as defining

characteristics of up-or-out: (i) there is an evaluation deadline by which a promotion must

occur; (ii) a worker must leave the firm if he is not promoted by the deadline.5 Most previous

studies focus on the second feature (that unpromoted workers must leave their respective

firms) and rationalize the use of up-or-out from that perspective.6 In contrast, our analysis

from the agent’s point of view.
4Mason and Välimäki (2014) consider a dynamic moral hazard problem and derives optimal wage contracts,

both with and without commitment on wage payments. However, their work assumes only one agent type
with an exclusive focus on moral hazard and thus does not consider hidden information about the agent’s
productivity.

5In addition, Kahn and Huberman (1988) also argue that an up-or-out contract must specify a retention
wage, which is taken implicitly here.

6Some of the influential works on this topic focus on the second feature and emphasize its role in inducing
human capital investments. Kahn and Huberman (1988) consider an environment where a worker invests in
firm-specific human capital but the investment level is not verifiable. The unverifiability invites a problem,
often referred to as double moral hazard, where the firm cannot credibly compensate the worker for making
the investment. They show that the firm can effectively solve this problem by the use of an up-or-out contract,
because the contract gives the firm an incentive to retain the worker if and only if his productivity is high
enough. Similarly, building on the model of asymmetric learning, Waldman (1990) emphasizes the role of
signaling in inducing general human capital investments. From a different perspective, O’Flaherty and Siow
(1992) consider an environment where junior-level jobs are used to predict a worker’s productivity at senior-
level jobs and argue that up-or-out contracts prevail when junior-level job slots are scarce.
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focuses exclusively on the first, i.e., the presence of an evaluation deadline, as the essential

feature of up-or-out.7 We focus on this feature primarily because of the recent trend observed

in professional service industries: the way up-or-out is implemented in practice has become

diverse even within a specific industry, and there are now increasingly many instances of

up-or-out that do not necessarily force unpromoted workers to leave their respective firms.8

This recent trend away from the traditional sense of up-or-out suggests that the second

feature is not necessarily an essential aspect of up-or-out whereas the presence of a deadline

is clearly so, almost by definition. Moreover, by focusing on the optimal deadline problem,

the current framework can be applied to a wide range of circumstances in which a principal

(an evaluator) must assess an agent’s upside potential that is only gradually revealed in an

ongoing relationship, e.g., a manager who must evaluate subordinates, a professor who must

evaluate graduate students, a head coach in professional sports who must evaluate players,

and so on.

As another departure from the literature, it is also worth noting that our analysis di-

rectly evaluates the value of up-or-out by comparing the commitment and no-commitment

solutions. This aspect of our analysis stands in sharp contrast to the existing literature: as

pointed out by Ghosh andWaldman (2010), most previous studies analyze up-or-out contracts

independently, with no specific reference to “standard promotion practices,” thereby leaving

unresolved why up-or-out contracts are commonly instituted in some industries whereas they

are virtually nonexistent in others.9 Our analysis provides a new take on when up-or-out

contracts can be more valuable vis-a-vis other more standard promotion practices, from a

perspective previously unexplored in the literature.

2 A tenure-clock problem

Environment: We employ a continuous-time model because of its greater tractability; a

discrete-time counterpart of the model is briefly discussed in Appendix B. Consider a situa-

tion where a principal (female) hires an agent (male) to complete a project. The game ends

either when the agent attains a success (a “breakthrough”) or when the principal terminates

the project. The agent is either good with prior probability p0 ∈ (0, 1) or mediocre with prob-

7As such, we are not necessarily concerned about what happens after the deadline: the agent in our context
may or may not be fired after the deadline; all we need is that the agent must incur some cost, in whatever
form, for not being promoted before the deadline.

8For instance, many law firms now shift away from the traditional up-or-out model, known as the Cravath
system, and increasingly adopt a two-tier partnership model where they retain those who fail to make partner
as permanent associates or non-equity partners.

9As an exception, Ghosh and Waldman (2010) build on an asymmetric-learning model and compare the
performance of up-or-out contracts with that of standard promotion practices.
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ability 1−p0. The ability type is the agent’s private information and is not directly observable

to the principal who must instead evaluate it from a sequence of observed outcomes.

Production: The agent makes unobservable effort at ∈ {l, h} at each instance t. We in-

terpret that low effort (at = l) refers to the minimum level of effort that can be induced

via input monitoring while high effort (at = h) refers to any part of effort that cannot be

directly monitored by any means. The instantaneous cost of effort a is denoted by da where

dh = d > 0 and dl = 0. A success arrives stochastically, depending on the effort choice as

well as the agent’s type. If the good type chooses at = a over time [t, t + dt), he attains a

success with probability λadt where λh > λl > 0. In contrast, the mediocre type can never

succeed with any effort level.10 Define ∆λ := λh − λl.

Payoffs: A success yields a net present value of y > 0 to the principal; otherwise, she receives

zero. If the agent attains a success, the principal pays a bonus b ≥ 0 to him. Aside from this

bonus, the principal also needs to pay a fixed wage w ≥ 0 at each instance as long as she hires

the agent. We call (b, w) ∈ (0,∞)2 the wage scheme for clarity and assume for most part that

it is given exogenously: for a practical interpretation, w reflects the ongoing market wage of

entry-level workers whereas b reflects that of senior-level workers.11 The reservation payoff is

assumed to be zero for both players. The common discount rate is denoted by r ∈ (0,∞).

Remark on exogenous wages: For most part of the analysis, we restrict our attention

to the case where the principal can only set a deadline to motivate the agent while taking

the wage scheme as given; the case with endogenous wages is briefly discussed in section 5.2.

Although we make this assumption to clarify the role of deadlines, we also argue that this

constitutes a nice starting point for several reasons. First, in many instances, equilibrium

wages are dictated by market forces. Second, there are also many cases in reality where

contingent monetary transfers are neither feasible due to contractual incompleteness nor

desirable as in a professor-student relationship. Finally, the cost and benefit of achieving

a success, or simply staying in a particular job, may involve non-transferrable gains such

as prestige, authority, and the sense of achievement. Monetary transfers are of secondary

importance when this non-pecuniary motive is sufficiently large. In any of these cases, the

principal has little control over what we loosely refer to as the wage scheme, whereas the

10Our model specification is thus the “breakthrough” type in which one success can resolve all the uncertainty
regarding the agent’s type – an assumption that is predominant in the experimentation literature. See, for
instance, Keller et al. (2005) and Bonatti and Hörner (2011, 2013). The analysis remains essentially the
same even when the mediocre type can succeed with some probability, as long as the success probabilities are
sufficiently small. See section 5.3 for details.

11 In a broader sense, while we call b a bonus for expositional clarity, it is meant to capture all the benefits
which accrue from a promotion, including non-transferrable gains such as prestige, authority, and job security;
similarly, w is also meant to capture all the flow benefit from remaining in the current job.
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option of setting a deadline is almost always viable.

Contract: The only contractible decision for the principal in this environment is whether

to set a deadline, and if so, at what point; we thus do not consider the possibility of any

screening contract (no direct mechanism).12 An incentive scheme offered by the principal is

thoroughly summarized by T ∈ R+ ∪ {∅}, while the wage scheme (b, w) is taken as given.

If T ∈ R+, the principal terminates the project at time T (but never before) if the agent

has not attained a success up to that point. If T = ∅, the principal chooses not to set any

specific deadline, in which case she can terminate the project at any instance. In either case,

both parties receive zero payoff once the project is terminated.

3 Analysis

3.1 Agent’s effort decision

The agent decides whether or not to exert high effort at each instance. To analyze this

problem, it is important to note that the principal’s belief affects the agent’s payoff only

through her termination decision. The agent’s optimal effort choice thus depends only on

the remaining time to the termination date (hereafter, simply the remaining time), i.e., the

maximum length of time for which the principal continues the project without attaining a

success. The remaining time is obvious when the principal sets a deadline at T , in which

case the remaining time at time t is simply given by T − t. Even without such an explicit

commitment, however, the remaining time can be computed from the principal’s equilibrium

strategy in essentially the same manner as we shall discuss below. For now, we proceed with

the presumption that the remaining time exists and is well-defined at any given point in time.

The agent’s problem is rather straightforward since the mediocre type, knowing that his

marginal value of effort is zero, never exerts high effort. As such, we can focus on the good

type whom we refer to simply as the agent in what follows. Denote by U(k) the agent’s value

function when the remaining time is k. Taking k > 0 as given, the value function can be

written as

U(k) = max
a∈{l,h}

(

(λab− da + w)dt+ e−rdt(1− λadt)U(k − dt)
)

.

Taking limit dt→ 0, we obtain the Bellman equation:

rU(k) = max
a∈{l,h}

(

λab− da + w − λaU(k)− U̇(k)
)

, (1)

12As we will discuss below, we only consider deterministic deadlines, in which case there is no feasible way
to screen out the mediocre type. If we allow for stochastic deadlines, on the other hand, it may be possible
for the principal to screen out the mediocre type by a menu of contracts. In this paper, however, we do not
consider this possibility for the reasons mentioned later in footnote 13.
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with limk→0 U(0) = 0. It is clear from this that the agent chooses high effort if and only if

∆λ

(

b− U(k)
)

≥ d.

As usual in this type of setup (see, e.g., Bergemann and Hege, 2005), a success today

implies the loss of future opportunities to earn rent, which inevitably diminishes the agent’s

incentive to work hard today. This rent-dissipation effect is naturally more accentuated when

the agent has more time to prove himself. As such, the agent exerts high effort only when

the project is sufficiently close to termination. This is a manifestation of the deadline effect

that lies at the core of our entire analysis.

Proposition 1 If

λhb− d+ w

λh + r
> b−

d

∆λ

, (2)

there exists k∗ such that the good type exerts high effort if the remaining time is less than or

equal to k∗ and low effort otherwise. The threshold k∗ is given by

k∗ =







− 1
λh+r

ln
(

1−
(λh+r)(b−

d
∆λ

)

λhb−d+w

)

if b > d
∆λ
,

0 if d
∆λ

≥ b.
(3)

If (2) does not hold, the agent always exerts high effort.

Proof: See Appendix A.

When ∆λb ≤ d, the static incentive is too weak for the agent to exert high effort for any

remaining time. In contrast, when (2) fails to hold, the static incentive is strong enough

to overcome the rent-dissipation effect, and the agent is willing to supply effort under any

circumstance. As these cases only result in trivial solutions and are clearly of less interest

for the question we pose here, we restrict our attention to the case where the strength of the

static incentive lies in some intermediate range by making the following assumption.

Assumption 1 λhb−d+w
λh+r

> b− d
∆λ

> 0.

Among other things, the assumption implies that the optimal threshold k∗ is bounded from

above and away from zero, i.e., k∗ ∈ (0,∞).
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3.2 Principal’s termination decision

Let pt denote the principal’s belief that the agent is good at time t. Conditional on no success

having occurred by time t, the updated belief evolves according to

ṗt = −λatpt(1− pt), (4)

taking the agent’s effort choice as given. It is clear that the belief is strictly decreasing over

time for any effort choice (due to the fact that λl > 0) until the agent attains a success, in

which case the belief immediately jumps up to one.

In the current setup, because the principal’s belief is strictly decreasing over time, there

is a one-to-one relationship between the belief and the time for any given effort sequence.

Since time is only an intermediate concept that by itself does not admit any economically

meaningful interpretation, it is often more convenient to represent strategies in terms of

the belief rather than time. The principal’s problem can thus be defined as one wherein

she chooses a cutoff belief (in the commitment case) or a set of cutoff beliefs (in the no-

commitment case), at which she terminates the project. Accordingly, we represent the agent’s

strategy as A : P → {l, h} where P ⊂ [0, 1] refers to the relevant domain of the belief (to be

defined more precisely in later subsections).

Let τ(p;A) denote the time at which the belief reaches p under a given strategy A, with

τ(p0;A) = 0 and pτ(p;A) = p for any p. The principal’s continuation payoff at time t for some

termination belief q is obtained as

∫ τ(q;A)

τ(pt;A)
v(ps;A)e

∫ s

τ(pt;A) −(λaupu+r)duds,

subject to (4), where v(p;A) is the instantaneous payoff given by

v(p;A) = λA(p)py − w.

It is immediate to see that for a given effort level, there exists a threshold belief below

which the instantaneous payoff is negative for the principal. We denote by qa := w
λay

the

“break-even” belief at which the principal’s instantaneous payoff equals zero under effort a

(whenever it is well defined). Let qa = 1 if w
λay

> 1. Combined with the fact that the

belief is strictly decreasing over time for any effort sequence, qh then represents the absolute

lowerbound of the belief, as the principal clearly has no incentive to continue the project

once her belief dips below this level. Since the belief must reach this level sooner or later

(due to the fact that λl > 0 and w > 0), the presence of such a lowerbound suggests that the

game must end in some finite time. This allows us to solve the game by backward induction,

analogously to the “gap case” of the durable-good monopoly problem.
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Finally, if the value of a success is too small, the model only admits a trivial solution

where the principal chooses to stop immediately (or not to hire the agent in the first place).

In what follows, therefore, we assume that the value of a success is large enough for the

principal to hire the agent at least for some positive duration.

Assumption 2 p0 > qh ⇔ λhp0y > w.

3.3 The commitment solution

The principal’s problem under commitment is to choose a termination belief q which maxi-

mizes her expected payoff at time 0. Throughout the analysis, we restrict attention to deter-

ministic deadlines where the principal stops when the belief reaches q with probability one.13

As we have already seen, the high-ability agent exerts high effort only in [max{T − k∗, 0}, T ]

for any given deadline T . Let A∗
q denote the agent’s best response, given the principal’s

strategy q. To represent the agent’s best response, it is convenient to define a backward

operator:

φ(p) :=
p

p+ (1− p)e−λhk∗
.

That is, φ(p) indicates the belief wherein starting with ps = φ(p), if the agent exerts high

effort for t ∈ [s, s + k∗], we end up with ps+k∗ = p. Given this definition, the agent’s best

response is given by

A∗
q(p) =

{

l for p0 ≥ p > φ(q),

h for φ(q) ≥ p ≥ q,

if p0 > φ(q); otherwise, A∗
q(p) = h for all p ∈ [q, p0]. In what follows, we abbreviate the

subscript q and denote the best response simply by A∗ to ease notation.

Let τ∗(p) := τ(p;A∗), σ∗(q) := max{τ∗(q) − k∗, 0} and V ∗(p; q) := V (p; q,A∗). The

principal’s continuation payoff at time 0 can then be written as

V ∗(p0; q) =

∫ σ∗(q)

0
(λlpsy − w)e−

∫ s

0
(λlpu+r)duds

+ e−
∫ σ∗(q)
0

(λlpu+r)du

∫ τ∗(q)

σ∗(q)
(λhpsy − w)e

−
∫ s

σ∗(q)(λhpu+r)duds.

13 Our exclusive focus on deterministic deadlines is motivated by the fact that we almost never observe a
contract in which the deadline is stochastic in nature. One possible reason for this is that a contract with
stochastic deadlines inherently requires a credible randomization device and is thus hard to implement in
practice. For instance, consider a contract where the principal terminates the project at t1 or t2, t1 < t2,
with equal probability. At time t1, however, the principal’s preference is generically strict, i.e., it is strictly
better either to stop or to continue, so that there is no incentive to randomize at that point. If it is strictly
better to stop at time t1, for instance, the principal stops at time t1 with probability one but knowing that,
the contract effectively has a deterministic deadline.
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With some computation, we obtain

V ∗(p0; q) =
p0πl

λl + r
(1− e−(λl+r)σ

∗(q)) +
p0e

−(λl+r)σ
∗(q)πh

λh + r
(1− e−(λh+r)(τ

∗(q)−σ∗(q)))

−
(1− p0)w

r
(1− e−rτ

∗(q)),

where πa := λay−w is the expected instantaneous payoff from the good type under effort a.

The first two terms represent the expected gain from the high-ability type whereas the last

term represents the expected loss from the mediocre type.

The commitment solution, denoted by qC , is defined as

qC := argmaxq∈[0,p0] V
∗(p0; q).

The continuation payoff is continuous but kinked at q = ψ0 := φ−1(p0). For p0 > q ≥ ψ0, the

first-order condition is given by

p0πhe
−λhτ

∗(q) − (1− p0)w = 0. (5)

For ψ0 > q, we have

p0e
−(λl+r)σ

∗(q)
(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k

∗

)
)

− (1− p0)we
−rτ∗(q) = 0,

which can also be written as

(

p0πhe
−(λlσ

∗(q)+λhk
∗) − (1− p0)w

)

e−rτ
∗(q) =

p0∆λe
−(λl+r)σ

∗(q)

λh + r

(

w + ry + πhe
−(λh+r)k

∗)

.

(6)

Note that the left-hand side of (6) is the expected instantaneous payoff for the principal at

the time of termination, whereas the right-hand side is the marginal cost of extending the

deadline. Since the right-hand side is strictly positive, the principal must set the deadline at

a point where the expected instantaneous payoff is positive if ψ0 > q.

Proposition 2 For any given set of parameters Θ := (b, y, w, d, λl, λh, r, p0) satisfying As-

sumptions 1 and 2, there exists a unique commitment solution qC ∈ [qh, p0). If

λl + r

λh + r
πh(1− e−(λh+r)k

∗

) ≥ πl, (7)

the commitment solution is given by

qC =







qh for φ(qh) ≥ p0 > qh,

p0e
−λhk∗

1−p0+p0e−λhk∗ for 1 > p0 > φ(qh).

11



If (7) fails to hold, the commitment solution is given by

qC =















qh for φ(qh) ≥ p0 > qh,

p0e
−λhk∗

1−p0+p0e
−λhk∗ for Π ≥ p0 > φ(qh),

q̂ for 1 > p0 > Π,

where Π := we−rk∗

πl−
λl+r

λh+r
πh(1−e

−(λh+r)k∗)+we−rk∗
∈ (φ(qh), 1), and q̂ ∈ (qh, 1) is the unique solution

to (6).

Proof: See Appendix A.

3.4 The no-commitment solution

The situation becomes more complicated, and perhaps more intriguing, when the principal

makes no commitment at the outset. Formally, for this no-commitment case, we solve for a

perfect Bayesian equilibrium in Markov strategies (hereafter, simply an equilibrium) with the

belief as the state variable. The restriction to Markov strategies is without loss of generality in

this context because the only observable history to the principal is the sequence of outcomes

that consists only of failures at any continuation game (conditional on no breakthrough having

occurred). The principal’s termination decision can thus depend only on her belief. Given

this and the fact that effort is unobservable, the agent’s strategy must also take a Markovian

form that depends only on the principal’s belief.

We first note that the instantaneous payoff must be negative for any effort choice once

the belief dips below qh. It is therefore a dominant strategy for the principal to stop for

any p ≤ qh. This implies that the strategies beyond that point are totally irrelevant, and we

specify the strategies only over [qh, p0].
14 The agent’s strategy is thus specified over this range

as A : [qh, p0] → {l, h}. The principal’s termination strategy is now specified in a different

way, as her strategy off the equilibrium path may matter. More precisely, the principal’s

strategy is given by a set of termination beliefs Q ⊂ [qh, p0] that may not be a singleton.

The agent’s best response is now denoted by A∗
Q (or simply A∗ when it does not cause any

confusion). With slight abuse of notation, let V ∗(p;Q) denote the continuation payoff under

the best response A∗.

We denote the equilibrium strategy by Q∗. One can then easily show that although Q∗

may or may not be a singleton, it is always finite.

Lemma 1 Q∗ is always finite.

14To be more precise, the principal always terminates the project immediately for any p ≤ qh. Given this,
the best response for the agent is to exert high effort for any p ≤ qh, but this has no consequence, even off the
equilibrium path, because it is a dominant strategy to stop when p ≤ qh.

12



Proof:

Since Q is defined on a compact set [qh, p0], it suffices to show that there is no continuous

interval L ⊂ [qh, p0] such that the principal stops for p ∈ L. To show this, suppose on the

contrary that there is such an interval. Since the remaining time is zero during this whole

interval, we must have A∗(p) = 1 for p ∈ L. However, this implies that the principal’s

expected payoff must be positive since p > qh. As this gives her an incentive to deviate,

there cannot be such an interval in equilibrium.

Given this result, we denote each element of Q by qi where q1 < q2 < · · · < qn. Ac-

cordingly, the game is divided into distinct segments P i, i = 1, 2, ..., n by termination beliefs,

where P i = [qi, qi+1) for i = 1, 2, ..., n − 1 and Pn = [qn, p0]. Only the last segment Pn

is actually played on the equilibrium path, as the game ends with probability one by the

time the belief reaches qn. Still, when the principal makes no commitment to a deadline, the

agent’s strategy off the equilibrium path may play a role in constructing an equilibrium. For

expositional clarity, we let qNC = qn and call it the no-commitment solution.

When the principal makes no commitment, her termination (or continuation) decision

must be sequentially rational at each instance, given the current belief. To be more precise,

for some given strategy A, the principal’s continuation payoff at the time of termination must

be zero, whereas it must be strictly positive elsewhere. Given that the agent adopts the best

response A∗
Q, these restrictions amount to the following two equilibrium conditions which the

principal’s termination strategy Q must satisfy.

Condition T: (i) q1 = qh and (ii) if n > 1, for each i = 2, ..., n, limp→qi−0 V
∗(p;Q) = 0.

Condition C: V ∗(p;Q) > 0 for p ∈ [qh, p0] \Q.

Condition T is the usual indifference condition that requires the principal to terminate the

project when the continuation payoff (when she deviates) is zero.15 This indifference condition

alone is in general not sufficient because the instantaneous payoff v may not be monotonically

decreasing over time: in any segment P i, the agent may start off with low effort, during which

the instantaneous payoff could be so small that the principal is tempted to stop prematurely.

Condition C assures that the principal does not stop before the intended termination belief

qi is reached.

The next result establishes that there exists a perfect Bayesian equilibrium that is always

unique even under no commitment.

15The right-hand limit of the continuation payoff must, by definition, be zero at the time of termination.
The principal has an incentive to terminate the project only if the left-hand limit is also zero. This condition
effectively implies that V ∗(p;Q∗) is continuous for all p ∈ [qh, p0].
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Proposition 3 For any given set of parameters Θ satisfying Assumptions 1 and 2, there

exists a unique equilibrium in which the principal stops at qNC ∈ [qh,min{p0, ql}). The

principal’s equilibrium strategy is characterized by a set of n ≥ 1 distinct termination beliefs

where (i) q1 = qh and (ii) if n > 1, qi+1 > φ(qi) > qi for all i = 1, 2, ..., n − 1.

Proof: See Appendix A.

When λl is sufficiently high, the principal’s instantaneous payoff is positive even under

low effort. In this case, the principal is not tempted to stop prematurely, and only Condition

T is sufficient to pin down the equilibrium. Figure 1 depicts this situation: the agent starts

with low effort and switches to high effort when the remaining time is k∗; the principal stops

when the belief reaches the lowerbound qh.

[Figure 1 about here]

In contrast, the instantaneous payoff may become negative under low effort when λl is

relatively low, in which case we may have a situation where the principal’s continuation payoff

also becomes negative before the belief reaches qh. Figures 2 and 3 show the evolution of

the belief and the expected payoff while fixing the principal’s strategy at Q = {qh}. In the

figures, ql is so high that the instantaneous payoff is negative for the entire interval during

which the agent exerts low effort, and there exists a point q2 such that the continuation payoff

is negative for p ∈ (q2, p0]. This implies that Q = {qh} does not constitute an equilibrium as

it violates Condition C. In this case, the game is divided into two segments, P 1 and P 2, as

illustrated in Figure 4. The pair of strategies now satisfies the equilibrium conditions since

the instantaneous payoff is always positive in P 2.

[Figures 2-4 about here]

3.5 The cooperative solution: a benchmark

Before we move on to discuss when it is optimal to commit to a deadline, we briefly examine

as a benchmark the case where both the principal and the agent attempt to maximize the sum

of their individual payoffs to derive the first-best allocation. More precisely, the instantaneous

payoff in the cooperative case, common to both players, is the difference between the expected

benefit from a success minus the effort cost, i.e., λap(y + b)− da for a given effort a.

There is one important caveat for the analysis of the cooperative case. If the agent shared

the same objective as we assume here, his private information could in principle be induced

at no cost: given that the agent’s reservation payoff is zero, the mediocre type is indifferent
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between participating and dropping out immediately (before time 0), as he would obtain zero

payoff in either case for any given deadline. As it turns out, however, the optimal deadline is

independent of the initial belief p0 and is hence identical irrespective of whether or not the

principal can immediately screen out the mediocre type. To make the situation comparable to

the noncooperative case, we assume that for some reasons, no information can be exchanged

between the principal and the agent.16

The agent’s problem is essentially the same and only needs a slight modification. Letting

Ũ(k) denote the agent’s continuation payoff, the agent exerts high effort if and only if

∆λ

(

(y + b)− Ũ(k)
)

≥ d.

As in the noncooperative case, there exists a threshold k̃∗ such that the good type exerts

high effort if and only if the remaining time is less than or equal to k̃∗. Under the maintained

assumptions, one can show that the agent is generally more motivated in the cooperative

case than in the noncooperative case. Formally, we make the following statement.

Proposition 4 Under Assumption 1, if

λh(y + b)− d

λh + r
> y + b−

d

∆λ

, (8)

the threshold is given by

k̃∗ = −
1

λh + r
ln
(

1−
(λh + r)(y + b− d

∆λ
)

λh(y + b)− d

)

. (9)

If (8) does not hold, the agent always exerts high effort. Moreover, k̃∗ > k∗.

Proof: See Appendix A.

The principal’s problem is, on the other hand, fundamentally different because in this

setup, there is no social cost of hiring the mediocre type who simply yields zero surplus

at every instance.17 To make the argument parallel to the noncooperative case, we denote

the principal’s continuation payoff in the cooperative case by Ṽ ∗(p; q), which is simply a

16Since the mediocre type is indifferent, there is also an equilibrium where the mediocre type chooses to
participate. Alternatively, one can think of this as a case where the mediocre type is selfish and cares about
his own payoff, as in the noncooperative case. In either event, however, the optimal deadline is exactly the
same; see the proof of Proposition 5 for details.

17Of course, the current setup is a special case in that the net value of the mediocre type is precisely zero.
On the other hand, if there is a fixed cost of production, the net value of the mediocre type is strictly negative.
In this case, however, the mediocre type has a strict incentive to drop out immediately. The qualitative nature
of the solution with a fixed cost remains the same: the principal never terminates the project until the agent
succeeds.
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restatement of Ũ(k) in terms of beliefs. Further, define τ̃∗(p) and σ̃∗(p) := max{τ̃∗(p)− k̃∗, 0}

analogously. We then obtain

Ṽ ∗(p0; q) =

∫ σ̃∗(q)

0
λlps(y + b)e−

∫ s

0
(λlpu+r)duds

+ e−
∫ σ̃∗(q)
0 (λlpu+r)du

∫ τ̃∗(q)

σ̃∗(q)
ps
(

λh(y + b)− d
)

e
−

∫ s

σ̃∗(q)(λhpu+r)duds,

which can be written as

Ṽ ∗(p0; q) =
p0λl(y + b)

λl + r
(1− e−(λl+r)σ̃

∗(q))

+
p0e

−(λl+r)σ̃
∗(q)(λh(y + b)− d)

λh + r
(1− e−(λh+r)(τ̃

∗(q)−σ̃∗(q))).

The cooperative solution, denoted by q̃, is defined as

q̃ := argmaxq∈[0,p0] Ṽ
∗(p0; q).

Since there is no social cost of hiring the mediocre type, the social surplus from hiring the

agent is strictly positive for any belief level, and as such, it could be optimal for the principal

to hire the agent indefinitely. This is indeed what happens in the cooperative case: the

principal never terminates the project even though the agent would never exert high effort

for any finite k̃∗ if the game were to continue indefinitely. The reason for this is simple. The

agent exerts low effort only when the continuation payoff, which coincides with the social

surplus by definition, is larger than the static gain. On the other hand, if it is ever optimal

to set a deadline to induce high effort, the deadline must be set at time k̃∗, at which point

the continuation payoff must be lower than the static gain. As such, when the preferences

are aligned (and there is no fixed cost of production), the first-best allocation is to continue

the project indefinitely until the agent succeeds, although the agent may only exert low effort

all the way.

Proposition 5 In the cooperative case, the principal never terminates the project, and the

game continues indefinitely. The agent always exerts low effort if (8) is satisfied and high

effort otherwise.

Proof: See Appendix A.

4 Up-or-out versus standard promotion practices

4.1 The value of up-or-out

The most prominent example of evaluation schemes with deadlines is arguably what is called

the “up-or-out system” – a promotion scheme that is widely observed in academia and profes-
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sional service industries such as law, accounting, and consulting. Under a typical up-or-out

contract, the employer sets a deadline by which a promotion must occur, and the worker

must leave the firm if he is not promoted by the deadline. Our simple framework offers some

practical implications for up-or-out by precisely evaluating the value of committing to such

an evaluation deadline at the outset.

To clarify what we attempt to investigate at this juncture, it is important to note that

the principal can gain no relevant information along the equilibrium path because the only

feasible history at any continuation game is the one consisting only of failures up to that

point. This immediately implies that the no-commitment solution can yield no higher payoff

than the commitment solution. Still, under some conditions, the no-commitment solution

can replicate the commitment solution, in which case the no-commitment solution becomes

optimal if the principal faces a (possibly very small) commitment cost.18 The main purpose

of this section is to clarify this condition, i.e., clarify when the absence of commitment entails

no additional cost, under the presumption that the commitment solution is generally more

costly to enforce than the no-commitment solution.

Given that the no-commitment solution can at best replicate the allocation of the com-

mitment solution, one can easily see that setting a deadline strictly benefits the principal

if and only if qC 6= qNC . On one hand, it is clear that the no-commitment solution gives

the principal a different, and necessarily lower, payoff when qC 6= qNC . On the other hand,

when qC = qNC , the equilibrium allocation must be exactly the same because Proposition

1 ensures the unique equilibrium given the same horizon. Using this fact, we can obtain an

exact necessary and sufficient condition under which setting a rigid deadline yields a strictly

positive value for the principal.

Proposition 6 The commitment solution generically yields a higher expected payoff for the

principal than the no-commitment solution if and only if p0 > φ(qh),
19 i.e.,

p0 >
qh

qh + (1− qh)e−λhk
∗ ⇔

1− qh

qh

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

λh
λh+r

>
1− p0

p0
. (10)

Proof: The sufficiency is obvious from the argument we have seen thus far: if p0 > φ(qh),

the optimal condition for the commitment solution is given by (6), which clearly differs from

that for the no-commitment solution. To show the necessity, note that if φ(qh) ≥ p0, the

18An obvious cost is that the principal must give up flexibility to adjust ex post to any uncertainty that may
resolve during the course of play although this aspect is assumed away in the current setup for clarity. The
commitment cost may also arise from the cost of writing and enforcing a formal contract.

19To be more precise, the expected payoff of the no-commitment solution is always lower if p0 > φ(qh) ≥ ql:
in this case, qC > qNC = qh always holds. If p0, ql > φ(qh), we may have qNC > qh, and there could be some
non-generic cases where qC = qNC and the expected payoffs are identical.
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agent exerts high effort from the beginning and the principal stops when the belief reaches

qh, which results in the same payoff for the principal, either with or without commitment.

The proposition states that the principal benefits from committing to a deadline if the

initial prior belief p0 exceeds a certain threshold φ(qh). The value of up-or-out depends

crucially on each player’s propensity to “procrastinate.” In short, the threshold is lower and

hence favors the commitment solution for a given initial belief either when the agent delays

exerting high effort for a given deadline or when the principal delays terminating the project

for a given effort sequence. Below, we briefly summarize how each player’s propensity to

procrastinate is determined:

1. The agent’s propensity to procrastinate is determined by the tradeoff between the

current gain of attaining a success and the potential loss of future payoffs. For a given

deadline, the agent tends to procrastinate more (a small k∗) when the potential loss of

future payoffs is large relative to the current gain.

2. The principal’s propensity to procrastinate depends on the break-even belief and the

likelihood of a success under high effort. The break-even belief is evidently the major

force determining how patient the principal can be, where the principal is more tempted

to wait for an eventual success when qh is low. Further, for a given qh, the principal

tends to wait longer when λh is small, because the information about the agent’s type

is revealed only slowly in that case.

Before we move on, it is important to note that our characterization result owes largely

to the fact that we consider a binary effort choice or, more importantly, that there is an

upperbound for effort. In contrast, if the effort domain is unbounded with a convex effort cost,

the commitment solution in general yields a strictly higher payoff than the no-commitment

solution.20 Even in this case, however, the nature of the problem remains largely intact.

The intuition provided above carries over to this more general case as well because the value

of up-or-out is still determined in essentially the same way, although the analysis would be

somewhat more complicated.

20On the other hand, we can obtain essentially the same result even if the effort level is continuous as long
as the feasible effort level is bounded from above.
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4.2 When is up-or-out optimal?

Up-or-out contracts are quite common in academia and professional service industries (here-

after, we refer to them inclusively as professional service industries).21 In academia, it is often

the case that incoming assistant professors must be promoted within a certain period of time

(typically around six years). Outside of academia, a leading example of industries with up-

or-out is the legal service industry. Many law firms traditionally adopt a set of managerial

practices, known as the Cravath system, which include up-or-out (or “partnership track”)

where incoming associates must make partner within a certain period of time (roughly seven

to ten years). This contrasts sharply with other typical firm organizations which almost never

specify deadlines by which workers must be promoted.

To understand why this is the case, note that these professional service industries are

indeed unique in several regards. For instance, high knowledge intensity, combined with low

capital intensity, is an obvious hallmark of these industries (von Nordenflycht, 2010).22 An-

other distinctive feature is a professionalized workforce that builds on a particular knowledge

base (Torres, 1991; von Nordenflycht, 2010). This in turn creates well-defined job boundaries,

from which we derive three additional implications: stable job descriptions, job homogeneity

across different ranks, and initial screening. In what follows, we interpret our main result in

light of these characteristics to provide further insight into why up-or-out is more prevalent

in professional service industries.

Ability intensity: It is often argued that knowledge intensity is perhaps the most funda-

mental characteristic of professional service industries. Combined with the fact that they

are also less capital intensive,23 the productivity of an organization depends crucially on the

extent of knowledge embodied in individuals. A likely consequence of this fact is that innate

ability matters and creates value that cannot be easily substituted by sheer effort, at least in

the short run – a feature which we call ability intensity for expositional clarity.

Since the mediocre type can never attain a success in the current setup, one way to

measure the extent of ability intensity is by the (good type’s) success probabilities. We say

that the project is more ability-intensive when λl and λh are larger with a fixed ∆λ. Note

that an increase in λh, while fixing ∆λ, yields three conflicting effects. First, it raises the

agent’s productivity at the margin, which in turn lowers the threshold qh. Second, it gives

21The military is another example which is characterized by up-or-out. We do not consider this case because
the underlying structure appears to be quite different.

22The discussion in von Nordenflycht (2010) is mainly about professional service industries, but these char-
acteristics are clearly applicable to academia as well.

23High knowledge intensity and low capital intensity are not equivalent in the strict sense of the word
because, as argued by von Nordenflycht (2010), an industry can be both knowledge- and capital-intensive at
the same time. For the purpose of this study, however, we do not make any distinction between them.
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the agent a stronger incentive to procrastinate (a lower k∗) as it raises his expected future

payoff under high effort. Finally, it also facilitates the principal’s learning as each failure

reveals more information. The first two effects raises the value of up-or-out while the last

lowers it, such that the overall impact is not immediately clear.

One can readily show, however, that there exists some threshold λ̄ such that it is optimal

to set a deadline, thereby favoring the use of up-or-out, for λh > λ̄. To see this, we rewrite

(10) as

p0

1− p0
>

qh

(1− qh)e−λhk
∗ =

w

(λhy − w)e−λhk
∗ . (11)

Under the maintained assumptions, λh > λ := max{ w
p0y
, ∆λ

d

(

r(b− d
∆λ

)+d−w
)

}. If ∆λ

d

(

r(b−

d
∆λ

) + d−w > w
p0y

, we have limλh→λ k
∗ = ∞, and hence, (11) is never satisfied if λh is small.

In contrast, we have

lim
λh→∞

qh

(1 − qh)e−λhk
∗ = 0,

implying that (11) must hold if λh is sufficiently large.

Stable job descriptions: Due to various professional requirements and accreditation pro-

cesses, workers in professional service industries are typically responsible only for a narrow

and clear set of tasks, compared to workers in other industries. This implies that the nature

of tasks that they are expected to carry out is very stable over time, and the production

environment is relatively immune to stochastic shocks. For instance, a demand or technology

shock that entirely changes the job description of a lawyer or a college professor is highly

unlikely.

We can interpret r as the rate at which the project is terminated for exogenous reasons,

e.g., the arrival of a stochastic shock that makes the project completely worthless.24 Define

r̄ such that

λhb− d+ w

λh + r̄
= b−

d

∆λ

.

Assumption 1 then implies that r must be bounded between (0, r̄). It is clearly not profitable

to commit to a deadline if r is sufficiently close to r̄ because limr→r̄ k
∗ = ∞. In contrast,

there exists some r such that it is profitable to commit to a deadline for r < r if

1− qh

qh

(

1−
λ1(b−

d
∆λ

)

λhb− d+ w

)

>
1− p0

p0
.

24Here, we allow the principal to terminate the project when the shock arrives; see section 5.1 for the case
where the principal must abide by the deadline under any circumstance.
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It can be seen from this argument that a decrease in r (a more stable relationship) in general

raises the value of up-or-out because the agent can be more forward-looking and tends to

procrastinate more, which in turn makes the principal unable to stop at the right time.

Job similarity across ranks: Another immediate consequence of stable job descriptions

is that jobs necessarily become similar across different ranks.25 In the current setup, this

aspect may be captured by y, which can be interpreted as the expected payoff of promoting

a high-ability agent. If entry- and senior-level jobs are similar, y tends to be larger because

a success at the entry level is a reliable predictor of productivity at the senior level. This is

not necessarily the case in typical firm organizations where jobs across ranks can differ to a

considerable extent, as often discussed in the context of the Peter Principle.26

The effect of a change in y is fairly straightforward, as it only affects the break-even belief

with no impact on the agent’s behavior. A large value of y implies a small value of qh which

gives the principal a stronger incentive to wait for a breakthrough. Given this, the agent

also has a stronger incentive to procrastinate, hoping to achieve a breakthrough with low

effort. The principal can then unambiguously benefit from committing to a deadline when

y is sufficiently large, implying that the value of up-or-out is higher in industries where jobs

are similar and there is a strong correlation between performances at different ranks.

Initial screening: When the principal holds a very optimistic belief to begin with, the

incentive to wait for a success is stronger, making it harder to stop at the right time. We

argue that this is generally the case in professional service industries, for reasons that pertain

to their professional nature and well-defined job boundaries. First, job candidates are all

trained specialists who have already gone through some selection processes. Second, it is

relatively easy to assess an individual’s upside potential even at the entry level because

there are readily available signals. Moreover, combined with the fact that these industries

are typically vertically differentiated, the job market is largely characterized by assortative

matching where top organizations attract top prospects: although different organizations

have different expectations for incoming workers, each hires a candidate only when there is a

reasonable chance for the candidate to clear the hurdle. All of these amount to the fact that

the quality of workers is relatively high and homogenous in professional service industries,27

25Ghosh and Waldman (2010) also raises job similarity as one of the distinctive characteristics of academia
and law. Job similarity is also crucial in Kahn and Huberman’s (1988) classic argument because if jobs
are sufficiently different, we may use promotions to solve the double moral-hazard problem as suggested by
Prendergast (1993).

26The Peter Principle states that every post tends to be occupied by an employee who is incompetent to
carry out its duties, because employees are promoted through positions where they have excelled until they
reach a level of incompetence (Peter and Hull, 1969). A premise of this argument is that jobs are inherently
different and become progressively harder as one climbs though ranks.

27Abowd et al. (2012) show that most workers are of high ability and that technology favors positive
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which in turn raises the value of up-or-out.

4.3 Too early or too late?

In the absence of commitment, the principal often fails to stop at the right time because

she has a strong incentive to wait for a success. This reasoning seems to indicate that the

principal always terminates the project earlier with commitment than without, or equiva-

lently, pC ≥ pNC for any given parameters Θ. As indicated in Figures 3 and 4, however,

this is not necessarily true in the current setup. When the principal knows that she cannot

stop soon enough, and it is too costly for her, she may terminate the project even when the

instantaneous payoff is still strictly positive or, alternatively, when the belief is strictly higher

than the break-even point qh. This is generally the case when λl is low, in which case the

principal must incur losses in the low-effort phase.

Proposition 7 pNC > pC for almost all p0 ∈ (φ(qh), 1) as λl tends to zero.

Proof: It follows from Proposition 2 that if p0 > φ(qh),

p0e
−λhk

∗

1− p0 + p0e−λhk
∗ ≥ pC .

To prove the first part of the proposition, it thus suffices to show that

pNC >
p0e

−λhk
∗

1− p0 + p0e−λhk
∗ . (12)

We know from the proof of Proposition 3 that (12) holds if φ(qNC) > p0 ≥ qNC : in this

case, the agent starts with high effort and the principal stops when the belief reaches qNC

in equilibrium, which takes less than k∗ units of time by definition. Note that as λl → 0, we

have qNC → φ(qNC), and thus, this holds for almost all p0 ∈ (φ(qh), 1).

Two additional implications follow from this result. The first is concerned with the role

of λl. As in any moral-hazard environment, a low value of λl directly implies a high marginal

value of effort, which tends to better motivate the agent given the same wage. Aside from this

conventional effect, our analysis also suggests an alternative logic by which the principal can

benefit from a low λl. Suppose that (10) holds, so that the principal has a strong incentive to

wait for a success. In fact, if λl is sufficiently large, the principal cannot help but wait until

the belief reaches qh, as there is no incentive to stop along the way. A lower value of λl can

help in this context, because that gives the principal an incentive to stop before the belief

assortative matching in professional service industries.
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reaches qh, thereby prompting the agent to shift effort earlier. In other words, a low value of

λl may be beneficial for the principal because it works as a strong commitment device.

Second, the result also suggests that under no commitment, the average duration of the

project may not be monotonically increasing in the initial belief. When the initial belief is

relatively high, it takes long for the belief to reach the lowerbound qh, and the principal may

have to incur large losses if she is to wait until the moment at which the instantaneous payoff

equals zero. To avoid this situation and discipline the agent, the principal must act early, i.e.,

she may need to pull the trigger earlier for ex ante more promising agents in some cases.28

5 Extensions

5.1 The case with uncertainty

An important cost of making commitment arises from the fact that the principal loses flex-

ibility to adjust to future stochastic shocks. The baseline model does not capture this cost

because the principal can gain no relevant information on the equilibrium path, and there is

thus no uncertainty regarding the termination date. As a consequence, it is weakly optimal

to commit to a deadline in the baseline model. This is apparently unsatisfactory, provided

that we live in a world filled with uncertainty where there is clearly value in being flexible.

While we focus on the simplest case to illuminate the key insight, it is of crucial interest

to examine whether and how our results can be extended to cases where the principal faces

some uncertainty that can be resolved only gradually over time.

There are obviously many different ways to introduce uncertainty into the baseline model.

Among a plethora of possibilities, we here consider a case where a permanent productivity

shock may strike with some probability, which totally changes the nature of the task and

subsequently makes the agent unproductive, i.e., λh = λl = 0.29 For simplicity, we assume

that (i) the shock is permanent and arrives at most once, with a Poisson arrival rate β, and (ii)

the arrival of the shock is publicly observable. Other cases, e.g., those with transitory shocks,

can in principle be analyzed in an analogous manner although it may be computationally

more cumbersome.

The agent: The agent’s problem requires a slight modification. The augmented Bellman

28Formally, when the principal’s termination equilibrium strategy is characterized by multiple termination
beliefs, the average duration increases with the initial belief within each segment P i but jumps down to zero at
each pi. As is clear from this argument, the principal’s expected payoff, though continuous, is not monotonic
either when the principal’s strategy is characterized by multiple termination beliefs. The expected payoff is
single-peaked within each segment P i and equals zero at each pi.

29Once the principal chooses to commit to a deadline, the principal must abide by it and is not allowed to
terminate the project, unlike in the discussion in section 4.2.
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equation is obtained as

rU j(k) = max
a∈{l,h}

(

(bλa − da + w)− (λa + β)U(k) + βŨ j(k)− U̇(k)
)

, j = C,NC

where Ũ j denotes the value function after the shock has arrived. Since the principal’s reaction

to the shock differs, Ũ j , and hence U j(k), depend on whether or not the principal makes

commitment. As in the baseline model, the incentive compatibility constraint (before the

shock strikes) can be written as

∆λ

(

b− U j(k)
)

≥ d,

although the value function U j(k) now differs. As such, the agent exerts high effort only when

the project is sufficiently close to termination. We let kC and kNC denote the threshold under

commitment and no commitment, respectively.

Proposition 8 For any Θ and β, kNC > kC . Both kNC and kC are strictly increasing in β

if bλh−d+w
λh+β+r

> b− d
∆λ

> 0.

Proof: See Appendix A.

It is interesting to note that the possibility of a negative shock generally lowers the

expected future payoff and hence induces the agent to exert high effort for longer, either with

or without commitment. First, with commitment, the best the agent can do after the shock

strikes is to exert low effort and earn the flow payoff w, which is the lowest possible payoff

as long as the project survives. The situation is even worse without commitment, however,

because the principal can immediately terminate the project, thereby leaving no rent for the

agent. The extent of the loss is therefore larger when the principal makes no commitment.

The agent is generally better motivated in the face of uncertainty, which in turn favors the

no-commitment solution.

The principal: We start with the case where the principal commits to a deadline at the

outset. Let V C(p0; q) denote the principal’s expected payoff at time 0, which can be written
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as

V C
0 (p0; q) =

∫ σC(q)

0
(λlpsy − w)e−

∫ s

0
(λlpu+β+r)duds

+ e−
∫ σC (q)
0 (λlpu+β+r)du

∫ τC

σC(q)
(λhpsy − w)e−

∫ s

σC (λhpu+β+r)duds

−
β

r

∫ σC(q)

0
w(1 − e−r(τ−s))e−

∫ s

0
(λlpu+β+r)duds

−
β

r
e−

∫ t̄

0 (λlpu+β+r)du

∫ τC(q)

σC(q)
w(1− e−r(τ−s))e

−
∫ s

σC (q)
(λhpu+β+r)duds. (13)

where τC(q) is the time at which the belief reaches q under the agent’s best response, and

σC := max{τC(q)− kC , 0}. The commitment solution is obtained as

τC = argmaxτV
C
0 (τ).

As can be seen from (13), the marginal benefit of extending the deadline decreases with β,

which prompts the principal to terminate earlier than in the case with no uncertainty.

In contrast, the problem is roughly the same as in the baseline model when the principal

makes no commitment because the principal only pays attention to the instantaneous pay-

off. As in the baseline model, the principal stops when the instantaneous payoff becomes

sufficiently low. To be more precise, define

φNC(p) :=
p

p+ (1− p)e−λhkNC
.

Given that no shock has arrived, if φNC(qh) > ql, the principal stops when the belief reaches

qh. The only difference is that when the shock strikes, the instantaneous payoff falls to −w,

which prompts her to stop immediately. The principal’s expected payoff is given by

V NC(p; q) =

∫ σNC (q)

0
(λlpsy − w)e−

∫ s

0
(λlpu+β+r)duds

+ e−
∫ σNC (q)
0 (λlpu+β+r)du

∫ τNC

σNC (q)
(λhpsy − w)e

−
∫ s

σNC (q)
(λhpu+β+r)duds, (14)

where τNC and σNC are defined analogously. Note that for the same time horizon,

V NC(p0; q) > V C
0 (p0; q) for any q.

The optimal incentive scheme: In the baseline model with no uncertainty, any allocation

which can be realized without commitment can be realized with commitment as well. This

is no longer the case with uncertainty because the principal cannot foresee if and when the

shock strikes, in which case she needs to immediately terminate the project.
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Proposition 9 The principal strictly benefits from not committing to a deadline for any

β > 0 if φNC(qh) ≥ p0.

Proof: If φNC(qh) ≥ p0, the agent exerts high effort from the beginning under no commit-

ment. The principal’s payoff is maximized, and the principal strictly benefits from making

no commitment in this case. To see this, observe that kNC > kC implies φNC(qh) > φC(qh).

If φNC(qh) ≥ p0 > φC(qh), the agent starts off with low effort, and the principal is forced to

set a deadline before the belief reaches qh. The profit is clearly lower than V NC
0 (τNC). On

the other hand, if φNC(qh) > φC(qh) ≥ p0, the agent exerts high effort from the beginning

even under commitment. The profit is still lower, however, because the principal must incur

a flow loss when the shock strikes whereas she can immediately terminate the project if she

makes no commitment.

The presence of uncertainty lowers the value of up-or-out through two channels. First, by

making no commitment, the principal can retain the flexibility to adjust to the negative shock

by immediately terminating the project whenever it strikes. Aside from this conventional

effect of flexibility, there also arises another force that favors the no-commitment solution:

in the face of uncertainty, the agent is better motivated by the constant threat of project

termination, and thus, he starts exerting high effort earlier. Since φNC(qh) > φ(qh) for any

β > 0 by Proposition 8, we could have φNC(qh) ≥ p0 > φ(qh), in which case the value of

up-or-out is strictly negative with uncertainty whereas it is strictly positive without.

5.2 Endogenous wages

We have thus far assumed that the principal has no control over wage payments and takes

the wage scheme (b, w) as given. While we argue that this covers a range of situations of

our interest, it is also important to understand how the wage scheme affects the equilibrium

allocation when the principal has some control over it. What is especially intriguing in this

respect is the role of the flow wage w, as it can directly influence the principal’s termination

decision and hence can be used as a substitute for the deadline when the commitment cost

is prohibitively large.

Here, we briefly analyze the case where the principal can choose to pay any w ≥ 0 as

she likes. To analyze this problem, note that because the flow wage here is a pure transfer

payment with no incentive effect on the agent’s side, there is no reason for the principal to

offer any wage beyond the minimum level, which is normalized at zero, if she can stop at

the right time. However, as we have seen, this is not always true when the principal makes

no commitment to a deadline. As such, the main question we address here is whether there
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are circumstances in which she offers any strictly positive w.30 Since only the case with no

commitment is relevant, we focus on this case by assuming that the commitment cost is so

large that it is never optimal to commit to a deadline.

In general, an increase in w above zero yields two opposing effects. On one hand, it raises

the critical value qh that may give the principal the incentive to stop earlier than otherwise.

On the other hand, it also raises the expected future payoff that in turn lowers k∗ and gives

the agent the incentive to procrastinate even more. A necessary condition for w > 0 is that

the first effect dominates the second, or alternatively that τ∗(qNC)− k∗ decreases with w.31

Proposition 10 w∗ > 0 if λl is sufficiently small.

Proof: See Appendix A.

When w = 0, the instantaneous payoff is always strictly positive (as in the cooperative

case), no matter how unlikely the agent is to succeed. This is the most extreme case of the

principal’s procrastination, as she can never terminate the project, and given that, the agent

never exerts high effort. The principal can alter this structure by raising w above zero because

the flow cost of employment is now positive, rendering the instantaneous payoff negative at

some point. This can be profit-enhancing for the principal because with the credible threat

of termination, she can induce the agent to shift effort earlier, which is especially beneficial

when the success probability under low effort is low.

5.3 When the mediocre type too can succeed

We have thus far assumed that only the good type can succeed with positive probability,

which amounts to a breakthrough-type specification where one success can resolve all the

uncertainty. As is clear from the argument, the assumption that the mediocre type can never

succeed is not crucial, as long as the model retains the breakthrough-type structure. Here,

we briefly make a remark on this assumption and show that the basic results are independent

of the success probabilities of the mediocre type as long as they are sufficiently small.32

The success probabilities are now denoted by λja, where j = G,M indicates the agent’s

type (G for good and M for mediocre). Let ∆j
λ := λ

j
h − λ

j
l . We now allow for the possibility

30In other words, we assume that the minimum wage level is zero. On the other hand, if the principal can
set a negative w, she can immediately screen out the mediocre type by offering w < 0. This means that we
focus on the situation where the minimum wage is so high that even the mediocre type can earn a positive
rent by being employed.

31Note that τ∗(qNC) − k∗ is the interval during which the agent exerts low effort. If it is longer with a
smaller k∗, the principal’s expected payoff is necessarily lower.

32In contrast, if the success probabilities are relatively large, the principal may not stop after one success,
and the analysis would be much more complicated.
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that λMh > 0 and λMl > 0, so that the mediocre type may achieve a success with positive

probability. We restrict attention to the case where λMh and λMl are both sufficiently small,

such that λGh > λGl > λMh > λMl ≥ 0. When the mediocre type too can succeed, the principal’s

belief never hits the maximum, and hence some uncertainty always remains. We thus need

to formally address the optimal stopping problem for the principal, which we sidestepped in

the baseline model: after the agent achieves a success, the principal can either continue the

project in search of an additional success or to stop the process and “promote” the agent.33

Suppose that the principal earns payoffs of yG and −yM if she promotes the good type and the

mediocre type, respectively. The expected net payoff of promoting the agent at any instance

is now a function of the current belief pt and is given by B(pt) = yGpt− yM (1− pt). Let s(p)

denote the updated belief when a success occurs at belief p, which is given by

s(p) =
λG
aGt
p

λG
aGt
p+ λM

aMt
(1− p)

,

where ajt denotes the effort choice of type j at time t.

In what follows, we solve for equilibria where the principal always promotes the agent

after one success; in other words, one success is still informative enough. Note first that the

principal’s belief declines monotonically over time for any effort profile if λGl > λMh , which

holds by assumption. The agent’s best response thus remains the same, where there exists

some threshold k∗ such that the agent exerts high effort if and only if the remaining time is

less than k∗. With slight abuse of notation, let V ∗(p, q) denote the principal’s value function

when the agent adopts the best response, and the principal always promotes the agent after

one success. For some given termination belief q, the principal promotes the agent after one

success if

B(s(p)) ≥ V ∗(s(p), q). (15)

There exists an equilibrium where the principal always promotes the agent after one success if

this condition holds for all p ∈ [q, p0] (on top of all the other equilibrium conditions). Clearly,

this is the case when λMh is sufficiently small even if it is strictly bounded away from zero.

6 Conclusion

This paper presents a simple model of a tenure-clock problem with particular emphasis on the

role of commitment to a deadline. We consider an environment where the principal chooses

33In principle, the principal can promote the agent at any instance. We only consider the moment at which
a success occurs because it is never optimal to do so at any other instance (except at time 0).
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whether to commit to a deadline and if so, at what time. Within this framework, we establish

the generic uniqueness of the equilibrium and obtain a necessary and sufficient condition for

committing to a deadline to be optimal. The simple framework also allows us to conduct

various comparative statics exercises to give insight into why up-or-out contracts are more

prevalent in some industries than others.

As a final note, since our model is highly stylized, there are several avenues to extend

the current analysis. Of particular interest is the case with symmetric information where the

agent himself does not know his own type and needs to uncover it through experiments. In

this symmetric-information case, there is an additional effect that is absent in our asymmetric-

information setup: having observed no success, the agent gradually loses confidence in his own

ability and is eventually discouraged to work hard as time progresses. This seems to be an

important aspect of many professional industries and is worth a comprehensive investigation.

We leave this for the future.
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Appendix A: Proofs

Proof of Proposition 1: It is intuitively clear that the value function is strictly increasing

in k. Formally, define

Ua(k) =
(

(λab− d+ w)− λaUa(k)− U̇a(k)
)

(16)

as the value function when the effort level is fixed at a = l, h. Solving this differential equation

and imposing the boundary condition U(0) = 0, we derive

Uh(k) =
λhb− d+ w

λh + r
(1− e−(λh+r)k).

If ∆λb > d, it is optimal for the agent to exert high effort as long as Uh(k) is sufficiently

small. Then, k∗ is obtained as a solution to Uh(k
∗) = b− d

∆λ
, which can be written as

λhb− d+ w

λh + r
(1− e−(λh+r)k

∗

) = b−
d

∆λ

. (17)

Note that the agent always exerts high effort if

b−
d

∆λ

≥
λhb− d+ w

λh + r
,
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while he never does so if d
∆λ

≥ b. For in-between cases, solving (17) yields

k∗ = −
1

λh + r
ln
(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w

)

,

so that the agent exerts high effort when the remaining time is less than or equal to k∗. For

k > k∗, the agent exerts low effort because U(k) ≥ Uh(k) > b− d
∆λ

.

Proof of Proposition 2: First, if φ(qh) ≥ p0 > qh (the latter inequality holds by Assumption

2), there exists a unique deadline T ∈ (0, k∗] that satisfies

p0e
−λhT

1− p0 + p0e−λhT
= qh.

There is clearly no reason to wait beyond this point because the instantaneous payoff is

strictly negative for any effort choice. It is also not optimal to stop before qh because the

instantaneous payoff is still strictly positive. The optimal termination belief is then qh and

it is unique in this range.

Second, suppose that p0 > φ(qh). In this case, it is optimal to set a deadline at k∗ if

limq→ψ0−0
∂V ∗

∂q
≤ 0. The condition for this can be written as

p0

(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k

∗

)
)

≤ (1− p0)we
−rk∗ ,

which can also be written as

we−rk
∗

≥ p0

(

πl −
λl + r

λh + r
πh(1 − e−(λh+r)k

∗

) + we−rk
∗
)

.

This condition holds for any p0 if

λl + r

λh + r
πh(1− e−(λh+r)k

∗

) ≥ πl. (18)

If this holds, it is optimal to set the deadline at T = k∗. The optimal termination belief is

given by

qC =
p0e

−λhk
∗

1− p0 + p0e−λhk
∗ ,

which is again unique in this range.

Finally, if (18) fails to hold, there exists some Π ∈ (φ(qh), 1) such that

we−rk
∗

= Π
(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k

∗

) + we−rk
∗
)

.

For p0 > Π, we can find a unique q̂ that solves

p0e
−(λl+r)σ

∗(q̂)
(

πl −
λl + r

λh + r
πh(1− e−(λh+r)k

∗

)
)

= (1− p0)we
−rτ∗(q̂).
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This is the unique termination belief when p0 > Π.

Proof of Proposition 3: We first establish the following two facts that will be useful for

the subsequent argument.

Lemma 2 In any equilibrium, qh ∈ Q∗ and A∗(p) = h for φ(qh) ≥ p ≥ qh.

Proof: Suppose otherwise, i.e., that the agent chooses low effort for some interval [t + dt)

when pt ≤ φ(qh). To satisfy the incentive condition, the agent must exert high effort at least

for [t + dt, t + k∗ + dt), but then the belief necessarily falls below qh at time t + k∗ + dt,

at which point the principal’s instantaneous payoff is negative for any effort choice. This is

therefore a contradiction.

The lemma indicates that the agent always exerts high effort once the belief dips below

φ(qh). Note that this result holds both on and off the equilibrium path. Of course, this

does not rule out the possibility that the agent exerts high effort for p > φ(q1); as we will

see below, there exists an equilibrium in which the agent exerts high effort before the belief

reaches φ(qh).

Lemma 3 For each qi ∈ Q∗, qi ∈ {qh} ∪ (φ(qh), ql].

Proof: We have already argued that it is a dominant strategy to terminate the project for

any pt < qh because the instantaneous payoff is negative for any effort choice. Likewise, it is

a dominated strategy to stop at any pt > ql because the instantaneous payoff is positive for

any effort choice, which shows that qi ∈ [qh, ql]. Note also that the instantaneous payoff un-

der high effort is strictly positive for all p ∈ (qh, φ(qh)), such that Condition T is not satisfied.

Given these results, we show the existence and uniqueness of the equilibrium by construc-

tion. There are three cases we need to consider, depending on the initial belief p0.

Case 1: φ(qh) ≥ p0

Lemmas 2 and 3 directly imply Q∗ = {qh} in equilibrium. In the unique equilibrium, the

agent always exerts high effort on the equilibrium path and the principal stops at pt = qh.

The no-commitment solution coincides with the commitment solution and is characterized

by qNC = qh.

Case 2: p0 > φ(qh) ≥ ql
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This is the case where the equilibrium may involve a phase during which the agent exerts

low effort on the equilibrium path. When φ(qh) ≥ ql, however, we can show the existence

and uniqueness of the equilibrium in essentially the same manner as in Case 1.

An obvious candidate strategy in this case is that the agent exerts low effort until the

belief reaches φ(qh) and then switches to high effort from that point on. To check whether

this strategy constitutes an equilibrium, note that once the belief reaches φ(qh), the unique

continuation equilibrium is that the agent exerts high effort and the principal stops when

the belief reaches qh, as shown by Lemmas 2 and 3. Moving backwards, it is optimal for the

principal to exert low effort before the belief reaches φ(qh). It follows from Lemma 3 that the

principal never stops before the belief reaches φ(qh) because φ(qh) > ql. The no-commitment

solution is then given by qNC = qh as above. It is also clear from this argument that the

constructed equilibrium must be unique: on one hand, there is only one equilibrium once the

belief reaches φ(qh); on the other hand, it is never optimal to stop before the belief reaches

φ(qh) because φ(qh) > ql.

Case 3: p0 > φ(qh) and ql > φ(qh)

This is the case where if the agent starts out with low effort, the belief reaches ql before

switching to high effort. This can entirely change the structure of the equilibrium as the

principal may be tempted to stop when the belief reaches ql; in other words, Condition C

may now bind.

We show the existence and uniqueness of the equilibrium by checking Condition C se-

quentially until it is satisfied. We start with Q1 = {qh} and the corresponding best response

A∗
Q1 such that

A∗
Q1(p) =

{

l for p0 ≥ p > φ(q),

h for φ(q) ≥ p ≥ qh.
(19)

This pair of strategies constitute an equilibrium if V ∗(p;Q1) > 0 for all p ∈ (qh, p0]. It is

obvious that this holds for p ∈ (qh, φ(qh)] during which the agent exerts high effort. It thus

suffices to show that V ∗(p;Q1) > 0 for all p ∈ (φ(qh), p0]. The following fact is convenient to

this end.

Lemma 4 Fix the principal’s strategy Q1 = {qh} and the agent’s best response A∗
Q1 . Then,

V ∗(p;Q1) > 0 for all p ∈ (φ(qh), p0] if and only if V ∗(min{p0, ql};Q
1) > 0.

Proof: Since the necessity is evident by definition, we only prove the sufficiency part. Sup-

pose first that p0 ≥ ql. In this case, V ∗(ql;Q
1) > 0 implies V ∗(p;Q1) > 0 for all p > ql

because the instantaneous payoff is strictly positive for any effort choice when the belief
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is above ql. Given this, it suffices to show that V ∗(p;Q1) > 0 for all p ∈ (φ(qh), ql) if

V ∗(ql;Q
1) > 0. To show this, suppose on the contrary that V ∗(ql;Q

1) > 0 but V ∗(p;Q1) ≤ 0

for some p ∈ (φ(qh), ql). If this is the case, there must exist some p̂ ∈ (φ(qh), ql) such that

V ∗(p̂;Q1) = 0. Since

V ∗(p;Q1) =
p(λly − w)

λl + r

(

1− e−(λl+r)(τ
∗(p′)−τ∗(p))

)

−
(1− p)w

r

(

1− e−r(τ
∗(p′)−τ∗(p))

)

+ (1− p+ pe−λl(τ
∗(p′)−τ∗(p)))e−r(τ

∗(p′)−τ∗(p))V ∗(p′;Q1),

for any p > p′ > φ(qh), due to the recursive structure of the expected payoff, we have

V ∗(ql;Q
1) =

ql(λly − w)

λl + r

(

1− e−(λl+r)(τ
∗(p̂)−τ∗(ql))

)

−
(1− ql)w

r

(

1− e−r(τ
∗(p̂)−τ∗(ql))

)

+ (1− ql + qle
−λl(τ

∗(p̂)−τ∗(ql)))e−r(τ
∗(p̂)−τ∗(ql))V ∗(p̂;Q1)

=
ql(λly − w)

λl + r

(

1− e−(λl+r)(τ
∗(p̂)−τ∗(ql))

)

−
(1− ql)w

r

(

1− e−r(τ
∗(p̂)−τ∗(ql))

)

,

which is strictly negative by definition, and therefore a contradiction.

Now suppose that ql > p0. As above, it suffices to show that V ∗(p;Q1) > 0 for all

p ∈ (φ(qh), p0) if V
∗(p0;Q

1) > 0. We can apply the same reasoning to show that this holds.

The lemma shows that we only need to check the continuation payoff at x := min{p0, ql}

to see whether a given strategy is sequentially rational. We start with the candidate strategy

considered above, in which the agent exerts low effort until the belief reaches φ(qh) and

switches to high effort from that point on (until the belief reaches qh). The principal has no

incentive to deviate and stop if the expected payoff at x is positive, i.e.,

V ∗(x;Q1) =

∫ σ∗(qh)

τ∗(x)
(λlpsy −w)e

−
∫ s

τ∗(x)(λlpu+r)duds

+ e
−

∫ σ∗(qh)

τ∗(x)
(λlpu+r)du

∫ τ∗(qh)

σ∗(qh)
(λhpsy − w)e

−
∫ s

σ∗(qh)
(λhpu+r)duds > 0.

Letting ∆τ = τ∗(φ(qh))− τ∗(x), the condition can now be written as

r(λly −w)

λl + r

(

1− e−(λl+r)∆τ
)

+
r(λhy − w)

λh + r
e−(λl+r)∆τ

(

1− e−(λh+r)k
∗)

>
(1− r)w

r

(

1− e−r(∆τ+k∗)
)

. (20)

If (20) holds, we can apply the same argument as in Case 2 to show the existence and

uniqueness of the equilibrium.

The situation becomes more complicated when (20) fails to hold, in which case the princi-

pal has an incentive to deviate and stop at some point, and the candidate strategy no longer
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constitutes an equilibrium. In this case, there instead exists a critical belief that satisfies

(20) with equality, because V ∗(p;Q1) is continuous in p with V ∗(φ(qh);Q
1) > 0 > V ∗(r;Q1).

Define q2 such that q2 := min{q ∈ (φ(qh), x] : V
∗(q;Q1) = 0} under the candidate strategy

A∗
Q1(p) in (19). Given the critical belief, we can then consider Q2 = {q1, q2}, where q1 = qh,

and the best response

A∗
Q2(p) =























0 for p0 ≥ p > min{p0, φ(q
2)},

1 for min{p0, φ(q
2)} ≥ p ≥ q2,

0 for q2 > p > φ(qh),

1 for φ(qh) > p ≥ q1 = qh.

Note that if q2 exists, q2 > φ(q1) > q1 = qh.

The game is now divided into two segments (P 1, P 2). First, we can show that the

equilibrium is unique in P 1 (as done in Case 2). For P 2, we can apply the same procedure

to the truncated interval [q2, p0] to see whether Q2 can be an equilibrium strategy. More

precisely, we need to check if V ∗(p;Q2) > 0 for all p ∈ [p0, φ(q
2)). If this condition holds,

Q∗ = Q2. If not, we can find yet another critical belief q3 ∈ (φ(q2), x] and repeat the same

process until we find a strategy that can satisfy the equilibrium conditions. The existence of

an equilibrium is assured because qi+1 > φ(qi) > qi for all i = 1, 2, ..., n − 1, so that we are

bound to have qi at some point that satisfies either (i) φ(qi) ≥ p0 ≥ qi or (ii) p0 > φ(qi) ≥ ql.

The uniqueness is also evident in this setup: (i) the equilibrium is unique in P 1; (ii) moving

backwards, we can also show that the equilibrium in each P i is unique for i = 2, 3, ..., n.

Proof of Proposition 4: The agent always exerts high effort in the noncooperative case if

(2) fails to hold. An analogous condition for the cooperative case is given by

λh(y + b)− d

λh + r
> y + b−

d

∆λ

.

Applying the same argument as in Proposition 1, we obtain

k̃∗ = −
1

λh + r
ln
(

1−
(λh + r)(y + b− d

∆λ
)

λh(y + b)− d

)

.

Observe that k̃∗ > 0 under Assumption 1. It follows from this that k̃∗ > k∗ if

−
1

λh + r
ln
(

1−
(λh + r)(y + b− d

∆λ
)

λh(y + b)− d

)

> −
1

λh + r
ln
(

1−
(λh + r)(b− d

∆λ
)

λhb− d+w

)

,

which is reduced to

y + b− d
∆λ

λh(y + b)− d
>

b− d
Rλ

λhb− d+w
.
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With some algebra, we obtain

λldy

∆λ

+w
(

y + b− d
∆λ

)

> 0,

which always holds.

Proof of Proposition 5: Given some threshold k̃∗, the only possibility is to set a deadline

at time k̃∗, so that the agent exerts high effort from the beginning. This is because any other

finite deadline yields a strictly lower payoff. Let Ũ∞ := Ṽ ∗(p; 0) denote the continuation

payoff when the project continues indefinitely. We show that we cannot have Ũ(k) > Ũ∞ for

any finite k. Since, by definition,

y + b−
d

∆λ

= Ũ(k̃∗) =

(

λh(y + b)− d
)

λh + r
(1− e−(λh+r)k̃

∗

).

it is optimal to set a deadline at time k̃∗ if and only if

y + b−
d

∆λ

> Ũ∞.

This is the case, however, where (8) fails to hold, and the agent always exerts high effort,

i.e., k̃∗ → ∞. On the other hand, if (8) holds, it is strictly better to let the project continue

indefinitely as Ũ∞ ≥ U(k̃∗). This shows that no finite deadline can improve the social

surplus in the cooperative case.

Proof of Proposition 8: We first consider the case where the principal commits to a

deadline. Note that the principal cannot terminate the project even if the shock arrives before

the deadline. Since the agent has no incentive to exert high effort, we have ŨC(k) = w(1−e−rk)
r

.

Let UCa (k) denote the value function under commitment when the effort level is fixed at a.

We then obtain

UCh (k) =
bλh − d+ w

λh + β + r
(1− e−(λh+β+r)k) +

βw

r

(1− e−(λh+β+r)k

λh + β + r
−
e−rk(1− e−(λh+β)k)

λh + β

)

.

The threshold under commitment is a solution to UCh (kC) = b− d
∆λ

.

The problem is much more straightforward when the principal makes no commitment. In

this case, the optimal choice for the principal is to terminate the project as soon as the shock

arrives, which implies ŨNC(k) = 0 for all k. As above, define UNCa (k) as the value function

under no commitment with fixed effort a, which is given by

UNCh (k) =
bλh − d+w

λh + β + r
(1− e−(λh+β+r)k).
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If bλh−d+w
λh+β+r

> b− d
∆λ

> 0, there exists an interior threshold kNC given by

kNC = −
1

λh + β + r
ln
(

1−
(λh + β + r)(b− d

∆λ
)

bλh − d+ w

)

.

It is evident that kNC > kC because the expected payoff must be higher under commit-

ment for a given horizon. Formally, we need to show that

1− e−(λh+β+r)k

λh + β + r
>
e−rk(1− e−(λh+β)k)

λh + β
,

which can also be written as
∫ k

0
e−(λh+β+r)sds >

∫ k

0
e−(λh+β)s−rkds.

This condition holds because

e−(λh+β+r)s > e−(λh+β)s−rk ⇔ e−rs > e−rk,

for any s < k.

Finally, note that kC , kNC ∈ (0,∞) when bλh−d+w
λh+β+r

> b − d
∆λ

> 0. We can then show

that kj , j = C,NC, is increasing in β if U ja(k) is decreasing in β for k ≤ kj . Straightforward

computation shows that UNCh (k) is strictly decreasing in β. In contrast, it is a little more

involved to show the same for UCh (k). To see this, with some computation, we obtain

UCh (k) =
bλh − d

λh + β + r
(1− e−(λh+β+r)k)−

λhw

r

(1− e−(λh+β+r)k

λh + β + r
−
e−rk(1− e−(λh+β)k)

λh + β

)

+
w(1− e−rk)

r

=
bλh − d− λh

w(1−e−rk)
r

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
.

First, it is easy to verify that 1−e−αk

α
is strictly decreasing for any α > 0. Further, observe

that the second term is strictly decreasing in β. These two facts imply that it suffices to show

that

bλh − d > λh
w(1− e−rk)

r
,

for k ≤ kC . To show this, since bλh − d > bλh −
λh
∆λ
d ≥ λhU

C
h (k) for k ≤ kC , we have

UCh (k) >
λh(U

C
h (k) − w(1−e−rk)

r
)

λh + β + r
(1− e−(λh+β+r)k) +

λhwe
−rk

r

(1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

+
w(1− e−rk)

r
,
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for k ≤ kC . This is further reduced to

(

1−
λh(1− e−(λh+β+r)k)

λh + β + r

)(

UCh (k)−
w(1 − e−rk)

r

)

>
λhwe

−rk

r

(1− e−(λh+β)k

λh + β
−

1− e−(λh+β+r)k

λh + β + r

)

,

which gives UCh (k) > w(1−e−rk)
r

.

Proof of Proposition 10: As w → 0, we have qh → 0, which implies τ∗(qNC) → ∞. The

expected payoff converges to

lim
w→0

V ∗(p0, q
NC) =

p0λly

λl + r
, (21)

for any p0. Let

µ(w) :=
λhy − w

w

(

1−
(λh + r)(b− d

∆λ
)

λhb− d+ w̃

)

λh
λh+r

.

Since limw→0 µ(w) = ∞ and µ(λhy) = 0, there must exist at least one w̃ such that

µ(w̃) =
1− p0

p0
.

If we set w = w̃, then τ∗(qNC) = k∗ > 0 by definition, and the expected payoff is

V (p0, q
NC) =

∫ k∗

0
(λhypsy − w)e−

∫ s

0 (λhpu+r)duds,

which is always strictly positive and larger than (21) if λl is sufficiently small.

Appendix B: A discrete-time model

Our continuous-time setup is particularly convenient as it allows us to obtain a complete

characterization of equilibrium in a very tractable manner. The nature of the equilibrium

remains the same, however, even when actions can be taken only at discrete points in time. In

this appendix, we provide a discrete counterpart of our model to show how we can construct

an equilibrium and also that the constructed equilibrium converges to the continuous-time

equilibrium as the time interval vanishes to zero. Since the commitment case is essentially

the same, we only consider the no-commitment case in this appendix.

Setup: We consider the same setting as in the continuous-time case, except that actions

can now be taken only at a fixed interval ∆ > 0. We refer to each interval as a “period,”

each denoted by an integer t = 1, 2, 3, .... The timing of events within each period goes as

follows. At the beginning of each period, the principal first chooses whether to continue the
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project. If the principal chooses to continue, the agent then chooses the effort level, and the

outcome is realized. The game ends if the agent attains a success. If not, the game proceeds

to the next period. The common discount factor is replaced by δ := e−r∆. Further, define

θa :=
1−e−λa∆

∆ as the success probability (per unit time) for a given effort level a = l, h.

Agent’s effort decision: Let K denote the number of remaining periods, which is an

analogous concept to the remaining time in the continuous-time case: at the beginning of

period t, if the principal is to terminate the project at the beginning of period T , K = T − t.

Let U(K) denote the agent’s value function when there are K remaining periods. Similarly

to the continuous-time case, we show that the good type exerts high effort only in the last

few periods.

Proposition B.1 There exists K∗ such that the good type exerts high effort if and only if

the number of remaining periods is fewer than or equal to K∗.

Proof: We first show that U(K) is strictly increasing in K. Note that

U(1) = max{θhb− d+ w, θlb+ w}∆ > U(0) = 0.

It follows from this that

U(2) = max{(θhb− d+ w)∆ + (1− θh∆)δU(1), (θlb+ w)∆ + (1− θl∆)δU(1)}

> U(1) = max{(θhb− d+ w)∆, (θlb+ w)∆}.

Applying the same argument backward, we obtain U(K) > U(K − 1).

Given that there are K remaining periods, the good type exerts high effort if

(θhb− d+ w)∆ + (1− θh∆)δU(K − 1) ≥ (θlb+ w)∆ + (1 − θl∆)δU(K − 1).

This holds when U(K) is small enough. Since U(K) increases with K, there exists K∗ such

that the good type exerts high effort if and only if the number of remaining periods is fewer

than or equal to K∗.34

Principal’s termination decision: Since the belief makes discrete jumps on the equilib-

rium path, it is more convenient to define the principal’s continuation payoff as a function of

the number of remaining periods K rather than of the termination beliefs as we did in the

continuous-time case. The principal’s strategy is represented by a set of termination dates

34When ∆ → 0, K∗
→ ∞, but K∗∆ converges to k∗.
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S := {T i}ni=1. Let Vt(p;S,A) denote the principal’s continuation payoff at the beginning of

period t under strategies A and S. Straightforward computation yields

Vt(pt;S,A) =

t+Kt−1
∑

s=t

(

δs−t
s−t−1
∏

u=0

(1− pt+uθat+u
∆)

)

(psθasb− das + w)∆,

where Kt is the number of remaining periods in period t, subject to

pt+1 = Dat(pt) :=
pte

−λat∆

1− pt + pte
−λat∆

=
pt(1− θat∆)

1− ptθat∆
.

We can characterize the principal’s termination strategy in essentially the same manner

with some technical modifications. One difference is that since the belief now makes discrete

jumps, the termination belief in the discrete-time case is given by a set of continuous intervals

rather than of discrete points. As in the continuous-time case, it is a strictly dominated

strategy to continue the project if pt ≤ qh. More precisely, the game must end if pt ∈ Θh :=

(Dh(qh), qh], which is the lowerbound of the belief for the discrete-time case. Notice that the

lowerbound degenerates to a single point qh, the lowerbound for the continuous-time case, as

∆ → 0.

As in the continuous-time model, the principal may also need to stop before the belief

reaches Θh. The principal terminates the project at the beginning of period T i if the contin-

uation payoff is weakly negative in period T i but is positive from the next period on. More

precisely, the principal terminates the project if

VT i(pT i ;S,A) ≤ 0 and Vt(pt;S,A) > 0,

for all t = T i + 1, ..., T i+1 − 1.

Equilibrium construction: The fact that the principal’s termination strategy is charac-

terized by intervals gives rise to a technical issue that would not arise in the continuous-time

case. To see this, suppose that there exists some T such that pT ∈ Θh, so that the principal

terminates the project at the beginning of period T . The agent then starts exerting high

effort from period T −K∗, and the principal has no incentive to terminate the project until

period T . Before period T −K∗, however, there is an interval during which the agent exerts

low effort and the principal’s continuation payoff may become negative at some point. Letting

K := T − t denote the number of remaining periods, consider the agent’s strategy Â given by

at = Â(K) =

{

h if K∗ ≥ K,

l if K > K∗,

and define a backward operator BK(p), where pT−K = BK(p) for some p ∈ Θh under the

strategy Â. Let V̂ (p;K) := VT−K(p;S, Â).
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To construct an equilibrium, it is convenient to define the following notations. First,

define νK := (BK(Dh(qh)), BK(qh)]: if a continuation game starts from some p ∈ νK , the

belief reaches the lowerbound Θh after K periods under Â. Note that νK ∩ νK−1 is generally

nonempty, and when the belief falls in this overlapped range, there are (at least) two ways to

reach the lowerbound Θh. Second, for a given p ∈ Θh, we may find some κ(p) ∈ [K∗+1, T−1]

such that

V̂ (Bκ(p)(p);κ(p)) ≤ 0 and V̂ (Dl(Bκ(p)(p));κ(p) − 1) > 0.

If there is no such κ(p), there is no incentive for the principal to terminate the project until

period T and we let κ(p) = T in this case. Moreover, define p̄ := max{p ∈ Θh : κ(p) < T},

κ̄ := κ(p̄), and κ := κ(Dh(qh)). Note that κ ≥ K∗ + 1 because the continuation payoff must

be positive if the number of remaining periods is less than or equal to K∗.

Let p̄K := max{p ∈ Θh : κ(p) = K} for K ∈ [κ, κ̄] and p̄κ−1 = Dh(qh). We construct

a continuation equilibrium for the interval νκ̄ in which the principal may need to terminate

the project before period T .35 To this end, note first that if qh > p̄, there exists a nonempty

interval (Bκ̄(p̄), Bκ̄(qh)] in which the principal’s continuation payoff is invariably positive

until period T under Â: in this case, there exists a well-behaved continuation equilibrium in

which the principal never terminates the project until the belief reaches Θh. It thus suffices

to consider a (possibly truncated) interval ν̄κ̄ := (Bκ̄(Dh(qh)), Bκ̄(p̄)].

For p ∈ ν̄κ̄, the principal needs to terminate the project at some point. More precisely,

we go through the following procedure, starting from step 0, until we reach a point where the

principal has an incentive to stop.

Step j

Consider a continuation game with κ̄ − j remaining periods. Any p ∈ νκ̄−j is classified into

one of the following four cases.

Case 1: p ∈ (Bκ̄−j(p̄κ̄−1−j), Bκ̄−j(p̄κ̄−1)]

There always exists a nonempty interval (Bκ̄−j(p̄κ−1−j), Bκ̄−j(p̄κ̄−j)] in which the continua-

tion payoff is weakly negative but is positive from the next period. When the current belief

falls in this interval, there exists a well-behaved continuation equilibrium in which the prin-

cipal continues the project until period T and the players play for κ̄ periods. The principal

thus has an incentive to stop when the belief is in this interval.

Case 2: p ∈ (Bκ̄−1−j(qh), Bκ̄−j(p̄κ−1−j)]

35Note that each νK is by definition sufficiently long, so that any belief path starting from above must
eventually fall in this interval under an arbitrary strategy.
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For p ∈ (Bκ̄−1−j(qh), Bκ̄−j(p̄κ̄−1−j)], which may or may not be empty, the continuation payoff

in the next period is also negative under Â. The principal must then continue the project for

one more period, and the agent exerts high effort. Since Dh(p) ∈ νκ̄−1−j by definition, we

proceed to step j + 1 with the updated belief Dh(p).

Case 3: p ∈ (max{Bκ̄−1−j(p̄κ−1−j), Bκ̄−j(Dh(qh))},min{Bκ̄−1−j(qh), Bκ̄−j(p̄κ−1−j)}]

Note that p ∈ νκ̄−j ∩ νκ̄−1−j in this case, meaning that there are (at least) two ways to reach

Θh. The problem is that neither constitutes an equilibrium by itself: if the players play for

κ̄− j periods,

V̂ (p; κ̄ − j) < 0 and V̂ (Dl(p); κ̄− 1− j) ≤ 0,

whereas if they play for κ̄− 1− j periods,

V̂ (p; κ̄− 1− j) > 0 and V̂ (Dl(p; κ̄− 2− j) > 0.

Our equilibrium construction in this interval exploits the idea of public randomization, much

in the spirit of repeated games. Since

V̂ (Dl(p); κ̄ − 2− j) > V̂ (p; κ̄− 1− j) > 0 > V (Dl(p); κ̄− 1− j) > V̂ (p; κ̄− j),

there exists a range of γ such that

γV̂ (p; κ̄− j) + (1− γ)V̂ (Dl(p); κ̄ − 1− j) ≤ 0,

γV̂ (p; κ̄− 1− j) + (1− γ)V (Dl(p); κ̄− 2− j) > 0.

That is, possibly with the aid of some public randomization device, we can construct a well-

behaved continuation equilibrium where the players play for κ̄ − j periods with probability

γ and for κ̄− 1− j periods with probability 1− γ. Given this, the principal has an incentive

to stop when the belief falls in this interval.

Case 4: p ∈ (Bκ̄−j(Dh(qh)), Bκ̄−1−j(p̄κ−1−j)]

This is an interval, if any, where V̂ (p; κ̄− 1− j) ≤ 0, meaning that κ(p) < κ̄− j. We directly

proceed to step j + 1 with the current belief.

In cases 2 and 4, the process goes to the next step. This process must stop eventually as

it cannot go beyond K∗ + 1 > κ̄ − j. To see this, suppose that there exists a well-defined

κ = K∗ +1 and the belief falls in (BK∗+1(Dh(qh)), BK∗+1(p̄K∗+1)] in step κ̄−K∗ − 1. Since

p̄K∗ = Dh(qh), however, this must correspond to Case 1.
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Once we identify when to stop, we can again go back in time from that point and see if

the continuation payoff stays positive on the equilibrium path. If there is a point at which the

continuation payoff becomes negative, we go through the same procedure again to construct

a continuation equilibrium.

Finally, it is clear that as ∆ → 0, Θh degenerates to qh. As such, all the termination

intervals eventually converge to q2, q3,..., qn.
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Figure 1: Evolution of the belief on the equilibrium path
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Figure 2: A violation of Condition C: the belief
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Figure 3: A violation of Condition C: the continuation payoff
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Figure 4: Evolution of the belief, on and off the equilibrium path
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