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Summary: The stochastic frontier model with heterogeneous technical efficiency 

explained by exogenous variables is augmented with a sparse spatial autoregressive 

component for a cross-section data, and a spatial-temporal component for a panel data.  An 

estimation procedure that takes advantage of the additivity of the model is proposed, 

computational advantages over simultaneous maximum likelihood estimation of all 

parameters is exhibited.  The technical efficiency estimates are comparable to existing 

models and estimation procedures based on maximum likelihood methods.  A spatial or 

spatial-temporal component can improve estimates of technical efficiency in a production 

frontier that is usually biased downwards. 

 

Keywords: stochastic frontier models, technical efficiency, spatial externalities, spatial-

temporal model, backfitting  
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1.  INTRODUCTION 

Traditional econometric modeling aims to explain the output indicator ty  in terms 

of determinants, say tx .  The error term or the difference between the predicted value tŷ  

from the actual value ty , is attributed to other unaccounted determinants, random errors 

that cannot be account by tx  through the specified model, or simply due to model 

misspecification.  The equilibrium assumption also implies that the producer always aims 

to optimize the output, further implying that the error is a random occurrence.  In reality, 

some producers may not be efficient enough in utilizing their factors of production 

resulting to the discrepancy (inefficiency) between their actual output and the expected 

optimum output.  The discrepancy in output can further be explained by some exogenous 

factors peculiar in each producer.  The result is a stochastic frontier model where the error 

term in standard econometric specification is decomposed further into those that can be 

explained by exogenous factors characterizing the producer’s inability to maximize the 

output, and the pure error term.  Stochastic Frontier Analysis (SFA) helps explain 

producer’s efficiency and provide an alternative paradigm to econometric analysis when 

some assumptions fail.     

 

Although the producers by default are the firms, (Amos et. al., 2004), used SFA in 

studying productivity and technical efficiency of small-scale farmers (producing units).  

Empirical evidence of the usual assumption that technical efficiency of farmers engaged in 

mixed crops are generally higher than those propagating only one crop at a time were 
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generated.  The notion of a producing unit has been liberally defined in various applications 

of SFA.  

 

The literature of SFA initially focused on applications in various production setups, 

but estimates of efficiency were noted to vary with model specification and distributional 

assumptions on the error terms.  The non-robust estimates of efficiency should be addressed 

though a model specification that describes the production process more realistically. 

 

The literature of statistical modelling on the other hand continues to postulate new 

models that aim to describe reality in as vivid mathematical abstractions as possible.  

Spatial and temporal dependence has initially been treated separately.  However, as more 

panel data becomes available and the realization of the potential multiplier effect in 

information-generation capability of the interaction of space and time, there is a growing 

interest in spatial-temporal models.  A purely spatial model usually has no causative 

component in it; such models are useful when space-time process has reached temporal 

equilibrium, or when short-term causal effects are aggregated over a fixed time period 

(Cressie, 1993).  A spatial-temporal model then provides a more flexible alternative to 

postulate a model.  

 

In the simultaneous treatment of space and time, estimation procedures become more 

complicated. (Richardson et. al., 1992) estimated a spatial linear model with autocorrelated 

errors, where the spatial and temporal dependencies of the observations yield a general 

form of the variance-covariance matrix, hence least squares estimate is weighted by 
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elements of the variance-covariance matrix.  Iteratively estimated general least squares 

(EGLS) method was used to sequentially estimate the parameters and the elements of the 

variance-covariance matrix.  More complicated estimation procedures are proposed 

continuously, and the trend is to develop simpler, yet competitive estimation procedures.  

The backfitting algorithm initially proposed to estimate an additive model by (Hastie and 

Tibshirani, 1990) provides simple alternative to the least square or maximum likelihood-

based estimation procedures.  The same algorithm has been used to simplify the estimation 

procedure for a spatial-temporal model, see for example, (Landagan and Barrios, 2006). 

 

We proposed to augment the stochastic frontier model with a sparse autoregressive 

component for cross-section data, and a spatial-temporal component for a panel data.  The 

backfitting algorithm will be modified in estimating both models. 

  

2.  STOCHASTIC FRONTIER ANALYSIS 

 

The extensive literature on SFA has been summarized comprehensively by 

(Kumbhakar and Lovell, 2000).  A cross-sectional production frontier model is given by: 

(1)  ( ) ( ) iiii TEvxfy exp;β=  or ( ) ( )ii

i
i vxf

yTE
exp;β

=     

 

where iy  is the single output of producer i, ix  is the vector of inputs used in producing iy , 

f  is a parametric function, TEi is the output-oriented technical efficiency of producer i, 

and iv  is a random error.  There is perfect efficiency when TE=1, while inefficiency when 
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TE<1.  The shortfall in production environment characterized by ( )ivexp  varies across 

producers.  Let ( )ii uTE −= exp , then the production stochastic frontier model becomes 

( ) ( ) ( )iiii uvxfy −= expexp;β , the last two factors are corresponding error components.  

 

For the parametric function f , the literature is dominated among those using the 

Cobb-Douglas production function family.   Recently however, (Henderson and Simar, 

2005) considered a nonparametric specification of f , desirable in cases where the modeler 

is not willing to risk any parametric functional form because of the insufficient knowledge 

about the phenomenon being modeled.  A Bayesian formulation of f  was considered by 

(Koop and Steel, 2004), where contrary to the nonparametric argument, prior knowledge 

about the efficiency of producers being analyzed are incorporated into the model. 

 

The model is estimated usually via the maximum likelihood (MLE) or its variants.  

The quantities iv , iu , and ix , are assumed to be independent and iv  is usually assumed to 

be normally distributed while iu  is the positive half normal distribution to ensure that 

technical efficiency estimates are between zero and one.  Other combination of the 

distribution of v  and u  include normal-exponential, normal-truncated normal, and normal-

gamma.  The nature and relationship between v  and u   can be enhanced further using 

mixed model specifications.  (Green, 1990) however, observed that estimates of efficiency 

vary depending on the distributional assumption on v  and u .  A model specification that 

best characterize reality can help improve the robustness property of the estimates.   
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Since the model is postulated in such a way so that efficiency is an upper bound of 

productive capacity of producers, efficiency estimates are restricted to be biased 

downwards (inefficient than they really are).  The bias is analyzed by (Gijbels et.al., 1999) 

in the data envelopment analysis (DEA) estimator which is the set under “lowest” concave 

monotone function covering all the sample points, for a single input and single output case.    

 

For time series data on the other hand, time-invariant or time-varying technical 

efficiency were considered.  The error assumptions also included fixed and random effects. 

Heteroskedasticity in v  and u  was also considered, possibly leading to volatility 

assumption in technical efficiency.   

 

Stochastic frontier models for panel data were postulated with time-invariant 

technical efficiency assumption, fixed-effects model, random-effects model, or even mixed 

model.  A careful attention on coverage period of the data used in estimation is necessary.  

(Kumbhakar and Lovell, 2000) warned that the longer the panel, the less likely it becomes 

that technology remains constant, a serious violation of the assumption.  The learning curve 

of producers is expected to improve over time and inefficiency realized in the distant past 

will be less likely to repeat in the future.  (Battese and Coelli, 1992) postulated the 

following model 

 (2) ( ) ( ) ( )itititit uvxfy −= expexp;β      

(3) ( ){ } iit uTtu −−= γexp       
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Where ( )2,0~ vit NIDv σ  and ( )2,0~ ui NIDu σ+ .  Equation (3) characterizes the improving 

learning curve over time.  The likelihood function is easily constructed from the normal and 

half-normal distributions and maximum likelihood estimators formulated. 

 

One aim in SFA is to explain inefficiency/efficiency in terms of exogenous 

determinants, (Kumbhakar and Lovell, 2000) summarized some models to explain 

inefficiency/efficiency of a producer.  (Kumbhakar et. al., 1991) assumed a Cobb-Douglas 

production function ( ) iiii uvxfy −+= β;lnln  with iii zu εγ += ' , the exogenous 

determinant of efficiency is postulated outside the production function, implying additivity 

of the effect of factors of production and exogenous factors to actual production.    

(Reifschneider and Stevenson, 1991) generalized the efficiency equation into 

( ) iii zgu εγ += ; . 

 

The choice of the best way to analyze the effect of exogenous factors depends on 

adequacy of the underlying assumption associated with the model.  Even a nonlinear 

regression was used in estimation.  The resulting estimates of production efficiencies 

however, are expected to vary according to the postulated model.   

 

3.  SPATIAL TEMPORAL MODELS 

The classes of spatial temporal models are widely varied, differences usually depends 

on the nature of the spatial units, measurements of spatial correlations and subsequent 

specification of the spatial component, and the temporal model.  The spatial units can be 
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defined as units arranged in a lattice or some irregularly shaped elements.  Specification of 

the spatial and temporal components determines the nature of the error structure that affects 

estimation.  Parameter estimation varies from simple likelihood based procedures to 

hierarchical approaches.   

 

A spatial-temporal model, possibly entertaining irregularly shaped spatial units, with 

temporal observations made at equal intervals of time was postulated by (Landagan and 

Barrios, 2006) as 

(4) itititit wxy εγβ ++=  i = 1,…,n t = 1,…,T     

where  ity  is the response variable from location i at time t, itx  is the set of covariates from 

location i at time t, wit is  set of variables in the neighborhood system of  location i at time t, 

and εit are error components.  The error component is postulated as itiit υ+μ=ε   following 

a one-way error component with individual effects μI ~ IID(0,σ2
μ), and the remainder 

disturbances υit following a stationary AR(p).  The backfitting algorithm introduced by 

(Hastie and Tibshirani, 1990) for additive models was modified to simultaneously estimate 

certain group of parameters at some point of the iterative process.  The estimated model is 

superior to some panel data models.   

 

The introduction of the spatial component in the usual time series models will help 

econometric specification in the context of the new economic geography.  The spatial 

component accounts for some spatial externalities like, industrial clustering, trade 
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agreements, local policies in a decentralized economy, natural resource constraints, and 

many others.  

 

4.  SPARSE SPATIAL AUTOREGRESSION STOCHASTIC FRONTIER 

Consider a cross-section data for n producers and the production stochastic frontier 

model ( ) ( ) ( )iiii uvxfy −= expexp;β .  The inefficiency iu  is not a purely random 

occurrence but postulated to be influenced by some factors that affect production 

efficiency.  Following (Reifschneider and Stevenson, 1991), with ( ) iiii uvxfy −+= β;lnln

and ( ) iii zgu εγ += ; , we imbed a sparse spatial autoregression (SAR ) proposed by (Pace 

and Barry, 1997) in the production frontier, and the general linear mixed model into the 

efficiency equation 

(5) ( ) ( )[ ] iiiiii uvxfyDxfy −+−+= βδβ ;lnln;lnln      

(6) ( )[ ] i
ii

i zw
u ε

φϕ
+

+−+
=

exp1
1

      

where ( )',...,1 inii ηηη = , ( )',...,1 iaii www = , ( )',...,1 ibii zzz =  ( )'1,..., aϕϕϕ = , ( )'1,..., bφφφ = , 

and ( )',...,1 inii εεε = .  The function f may take a general Cobb-Douglas form or a more 

general exponential or a non-linear function.  To allow dummy variables among the factors 

of production (zero values for some producers), an exponential function f  can be used.  δ  

is the parameter accounting for spatial externalities common among spatial neighbors, this 

also accounts for clustering or convergence of efficiency among ‘neighboring’ producers.  

( )[ ]ijdD =  is the spatial weight matrix where 
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(7)  
⎩
⎨
⎧

=
otherwise                                              ,0

relatedspatially  are junit  and iunit  if ,1
ijd     

If the observations are arranged so that neighboring units are next to each other, then the 

matrix D is block-diagonal.  iw is a vector of fixed factors while iz  is a vector of random 

factors, and ( )',...,1 inii εεε =  is pure error.  The logistic specification of iu  in (6) will ensure 

positive values for iu , this will no longer require a positive-valued error distribution like the 

truncated normal that will only cause computing problems in the iterative process of 

maximum likelihood estimation.  The sparse spatial autoregression in equation (5) accounts 

for spatial externalities in the production capacity of the producers.  Producers in a spatial 

neighborhood that commonly use inferior technology will all exhibit lower production 

while those exposed to superior technology will all exhibit higher production.  If such 

space-related production specificity is not accounted into the model, it could manifest into 

the error term either causing heterogeneity in the variance structure, or into a completely 

different error distribution.   

 

Spatial externalities help characterize producers’ response to various efficiency-

inducing interventions.  As an example, a targeted development intervention may have been 

packaged to be site-specific, thereby resulting to producers’ adoption exhibiting similarity 

among neighbors exposed to the same or similar packages.  Given the same technology at 

one point in time, the spatial component will account for that part of efficiency reflecting 

producers’ adoption capacity as facilitated by site-specific support services. 



 11

The model described in equations (5) and (6) constitutes an additive model including 

the components on production function, the effect of spatial externalities, and the logit of 

efficiency/inefficiency-inducing factors.  In an additive model, (Hastie and Tibshirani, 

1990), discussed the advantages and optimality of the backfitting algorithm in estimation.  

Estimation will also use a modified backfitting algorithm similar to (Landagan and Barrios, 

2006) and given as follows: 

1. Depending on the link function f , ignore iu in (5) and estimate β using maximum 

likehood estimation (MLE) or least  squares estimation (LSE).  Compute the 

residuals from (5) as ( )β̂;lnlnˆ iii xfyu −=−  or ( ) iii yxfu lnˆ;lnˆ −= β  containing 

information on δφϕ  and , . 

2. Estimate δ  from iii uDu ξδ += ˆˆ  ignoring ii zw  and .  Compute the residuals from 

iii uDuu ˆˆˆˆ̂ δ−= , this contain information on φϕ  and . 

3. Estimate φϕ  and  from ( )[ ] i
ii

i zw
u ε

φϕ
+

+−+
=

exp1
1ˆ̂ , a mixed model logistic 

regression where elements of u are taken from the residuals in (2).   

4. The estimates of technical efficiency is computed from  

(8) ( )[ ]⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

+−+
−=

φϕ ˆˆexp1
1expTE

ii
i

zw
        

See (Landagan and Barrios, 2006) for details of convergence issues.  Hypothesis testing 

can be carried out through resampling methods.  For the parameter estimates, a 

nonparametric bootstrap can be done in the respective steps (1,2, and 3) above to 
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understand their empirical distribution.  For the confidence interval of the estimates of 

technical efficiency, a jackknife can be applied to equation (8) in step 4.  

 

The spatial autoregression component of the model will reclaim that portion of the 

residuals from the production function that will otherwise be attributed to production 

inefficiency.  The underestimation of technical efficiency (overestimation of inefficiency) 

can somehow be eased when a source of discrepancy between output and predicted value of 

production function is identified, and not all lumped together into inefficiency.  The 

backfitting algorithm and the logistic specification of the inefficiency/efficiency equation 

will also yield computing advantage over maximum likelihood estimation that will require 

more complicated distribution (to account for the technical efficiency constraint) and the 

large set of parameters (production and efficiency determinants simultaneously estimated).     

 

5.  SPATIAL TEMPORAL STOCHASTIC FRONTIER  

Panel data contains information on both the temporal dependencies and the relationship 

among units at specific point in time.  However, if units were selected at one point in time 

using a probability sampling procedure, oftentimes, the induced sampling distribution 

characterizes basic independence of the observations. These are the most common models 

usually postulated for panel data.   

 

Across units fixing time, dependencies can be defined not only by the sampling 

distribution by the selection procedure, but also by those exerted by other units within 

specific neighborhood.  Several measures of spatial distance have been proposed in the 
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literature of spatial statistics, from the simplest to the more complicated ones.  Depending 

on the complexity of the model and the problem, simple or complicated measures of spatial 

distance will be needed. 

    

In stochastic frontier modelling, several models were proposed given a panel data.  

Assuming constant factor coefficients over time, (Battese and Coelli, 1992) postulated a 

time-decaying inefficiency (improving learning curve) as 

 (9) ( ) ( ) ( )itititit uvxfy −= expexp;β      

(10) ( ){ } iit uTtu −−= γexp       

Over time, the producers get to realize their failure to adopt efficient technologies and 

correct it soon after which, more efficient production process is applied.  (Battese and 

Coelli, 1995) further postulated that inefficiencies are function of some exogenous 

variables and used the maximum likelihood technique in parameter estimation.  

 

Many stochastic frontier models for panel data failed to account for temporal 

dependencies (improving learning curve of producers) and spatial externalities (adoption of 

efficiency-enhancing technologies among the producers in a spatial neighborhood) 

simultaneously.  Ignoring this aspect of the information contained in the panel data will 

result to inadequate differentiation of the producer’s efficiency-inducing potentials, hence, 

may result to inferior estimates of technical efficiency coefficients.   

 

A spatial-temporal stochastic frontier model is postulated as      
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(11)   ( ) itititit uvxfy −+= β;lnln        

(12) ititit vv ψρ += −1        

(13) ( )[ ] it
itit

it zw
u ε

φγ
+

+−+
=

exp1
1       

where, the subscript i refer to the producer and t the time period, hence, ity  is the output of 

producers i at time t, itx  are the factors of production, itv  is the autocorrelated pure error, 

itu  are measures of inefficiency, itw  are measures of spatial distance, itz  are other 

determinants of inefficiency, itε  and itψ  are a white noise terms,  β , γ , φ , and ρ  are the 

corresponding parameters. The production structure is assumed to be constant over time, 

hence reflected in time-independence of β .  In a reasonably sized panel, production 

structure is not expected to change since changes may have been brought by significant 

technological innovations that can be detected only in a much longer panel.  The temporal 

dependence measured by ρ  also assumes homogeneity across producers.  The short-term 

dependency in efficiency indexed by ρ  is not expected to exhibit structural changes within 

a short panel.  Unlike (Battese and Coelli, 1995) that specified a non-negative-valued 

distribution for error terms (hence, complicating the likelihood function), the logit 

specification in equation (13) will ensure non-negative predicted values of itu  that yield 

estimates of technical efficiency ≤1. 

 

A dynamic production parameter in equation (13) may account for the spatial 

externalities accounted by the spatial indicator, but will require more complicated 
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estimation procedure.  Equation (12) can also be generalized to higher-order AR process, 

but the time-adjustment process of inefficiency reduction might be contaminated for much 

longer autoregressions given a short panel. 

 

The additivity of the models presented in equations (11) to (13) will make estimation 

via the hybrid backfitting algorithm feasible.  The estimation algorithm follows: 

1. Equations (11) and (12) are combined and ignore itu−  to estimate β and ρ  

simultaneously using generalized least squares.  Compute the residuals  

( ) 1ˆˆ;lnlnˆ −−−= itititit exfyu ρβ , this contains information on γ , φ .  1−ite  is the 

lagged value of the residuals from the fitted model. 

2.  Given itû , fit equation (13) as a general linear model to estimate γ andφ . 

3. The estimate of technical efficiency is  

(14) ( )[ ]⎥⎥⎦
⎤

⎢
⎢
⎣

⎡

+−+
−=

φγ ˆˆexp1
1expTE

itti
it

zw
     

The simultaneous estimation of β and ρ  yield optimality over individual estimation in 

pure backfitting of an additive model.  Following, the argument of (Landagan and Barrios, 

2006), this will not necessitate further iteration of the algorithm. 

 

The inclusion of autoregression in the error of the production function will account for 

the producers’ learning curve while also accounting for the possible cumulative effect of 

production errors.  The spatial externalities that can vary over time and across spatial 

neighbors help characterize efficiency/inefficiency differences among the producers.    
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6.  NUMERICAL ILLUSTRATIONS 

To illustrate the application of the models and the estimation procedures, two data sets 

are used.  The first is a subset of the 2003 Family Income and Expenditure Survey, 

considering rural households only.  The survey is conducted by the Philippine National 

Statistics Office, where data on income and expenditures as well as its possible 

determinants are collected at the household level.  The second data set is based on the 

monitoring of Agrarian Reform Communities by the Philippine Department of Agrarian 

Reform, collected from the period 2002-2005.  The data collected includes an index of 

sustainable rural development and various factors/indicators needed in the attainment of 

development.  

 

Total Family Income 

The sparse spatial autoregression SFM estimated through the modified backfitting 

algorithm (Model 1) and the ordinary SFM estimated using maximum likelihood estimation 

in a truncated normal error distribution (Model 2) are compared.  The producing units are 

the households, the output is total income.  There were 15 factors of production, where 9 

are continuous variables, while 6 are dummy variables.  For the efficiency equation, 14 

determinants (7 continuous and 7 dummy indicators) were used to characterize household’s 

income-generating efficiency/inefficiency.  The Cobb-Douglas production frontier is 

specified for both models. 
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Model 2 requires careful specification of the iterative estimation process since it 

involves matrices with large dimension in the likelihood function.  Model 1 on the other 

hand, is much easy to handle in the empirical implementation since the factors of 

production and the factors of efficiency are dealt separately at different steps in the iterative 

process.   

 

The parameter estimates for both models are similar, indicating that they both estimate 

similar empirical structures characterizing the income-generation process of rural 

households (see Table 1 for details).  Model 1 yields an average estimate of technical 

efficiency of 0.9007 (s.d.=0.1203) or about 10% inefficiency in income-generation among 

the rural households.  Model 2 on the other hand, produced an average estimate of technical 

efficiency of 0.7624 (s.d.=0.1695) or 24% inefficiency.  The higher average technical 

efficiency estimate from Model 1 can be attributed to the significant amount of the residual 

that is further accounted into the effect of spatial externalities, added to the inefficiency in 

the case of Model 2.  The technical efficiency estimates from Models 1 and 2 yield a 

correlation of 0.8051, indicating that the models were able to identify the same households 

as inefficient/efficient.  The correlation between technical efficiency estimates with the 

output (income) is 0.2530 for Model 1, while 0.3708 for Model 2.  Both models also yield 

similar correlation between technical efficiency estimates and the determinants in the 

efficiency/inefficiency equation.    

(INSERT TABLE 1 HERE) 

Index of Sustainable Rural Development 
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The panel data on agrarian reform communities (production unit) is analyzed with an 

index of sustainable rural development as output and provision of rural infrastructure and 

support services as input and determinants of the efficiency equation.  The data is first 

analyzed by ignoring the panel, and analyzed separately per year.  The Model 1 and Model 

2 described in the previous section are also compared.  In analyzing the panel, the spatial 

temporal SFM (Model 3) and the time-varying decay model (Model 4) of (Battese and 

Coelli, 1992), are also compared.  

 

Models 1 and 2 yield similar parameters estimates, yielding the same signs for the 

factors of production and the determinants of efficiency/inefficiency for all years.  Model 1 

generally yield higher estimates of technical efficiency than Model 2, explained by the 

additional portion of the residual explained by spatial externalities in Model 1 that is 

contributed to inefficiency in Model 2.  The correlation between technical efficiency 

estimates from Models 1 and 2 has a minimum of 0.6654 to as much as 0.8258, indicating 

that both models were able to identify the similar group of communities to be 

efficient/inefficiency in utilizing infrastructure and support services in moving forward to 

development.  Furthermore, Model 1 was able to distinguish the more inefficient 

communities from the “average” communities, this can facilitate the identification of 

appropriate interventions (see Figure 1 for details). 

(INSERT FIGURE 1 HERE) 

The parameter estimates for the factors of production (using the Cobb-Douglas family) 

are given in Table 2.  Similarity in estimates from Models 3 and 4 justifies the assumption 

of additivity of the model described in equations 11 to 13.  Just like in the cross-section 
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data, estimates of technical efficiency from Model 3 are generally higher than those coming 

from Model 4.  Model 3 explained further that portion of the residuals from the production 

function into spatial externalities and temporal dependencies, lumped together into 

inefficiencies in Model 4.  The correlation between estimates of technical efficiencies from 

Model 3 and 4 is 0.5512 indicating that both models identified fairly similar communities 

to be efficient/inefficient.  The efficiency estimates from both models also yield similar 

correlations with the determinants of efficiency.  

(INSERT TABLE 2 HERE) 

 

7.  CONCLUSIONS 

In a stochastic frontier model where specification generally leads to estimates of 

technical efficiency that is biased downwards, a sparse spatial autoregression component in 

cross-section data and a spatial-temporal component in panel data can help improve the 

estimate.  A modified backfitting algorithm that take advantage of the additivity of the 

models can also facilitate computing especially when large set of factors of production and 

determinants of inefficiency complicates maximum likelihood estimation in truncated 

distribution.  The proposed model and the corresponding estimation procedure yields 

estimates of technical efficiency that are similar to those obtained from some commonly 

used methods, being able to identify similarly efficient/inefficient producers.     

 

 

 

 



 20

 

REFERENCES 

Amos T, Chikwendu D, Nmadu J. 2004. Productivity, technical efficiency, and cropping 

patterns in the savanna zone of Nigeria. Food, Agriculture and Environment 2:173-176. 

Battese G, Coelli T. 1992. Frontier production functions, technical efficiency and panel 

data with application to paddy rice farmers in India. Journal of Productivity Analysis 3:153-

169. 

Battese G, Coelli T. 1995. A model for technical inefficiency effects in a stochastic frontier 

production function for panel data. Empirical Economics 20:325-332. 

Cressie N. 1993. Statistics for Spatial Data.  Wiley: New York  

Gijbels I, Mammen E, Park B, Simar L. 1999. On estimation of monotone and concave 

frontier functions. Journal of the American Statistical Association 94:220-228. 

Green W. 1990. A gamma-distributed stochastic frontier model. Journal of Econometrics 

46:141-164. 

Hastie T, and Tibshirani R. 1990): Generalized Additive Models.  Chapman and Hall: New 

York. 

Henderson D, Simar L. 2005. A fully nonparametric stochastic frontier model for panel 

data. Working Paper No. 519, Department of Economics, Binghamton University. 

http://econ.binghamton.edu/wp05/WP0519.pdf. 



 21

Koop G, Steel M. 2004. Bayesian analysis of stochastic frontier models. ESE Discussion 

Paper No. 19, Edinburgh School of Economics, University of Edinburgh, 

http://ideas.repec.org/p/edn/esedps/19.html. 

Kumbhakar S, Ghosh S, McGuckin J. 1991. A generalized production frontier approach for 

estimating determinants of inefficiency in US dairy farms. Journal of Business and 

Economic Statistics 9:279-286. 

Kumbhakar S, Lovell K. 2000.  Stochastic Frontier Analysis. Cambridge University Press: 

UK. 

Landagan O., Barrios E. 2006. An estimation procedure for a spatial-temporal model. In 

press Statistics and Probability Letters, doi:10.1016/j.spl.2006.08.006.  

Pace R, Barry R. 1997. Sparse spatial autoregressions.  Statistics and Probability Letters 

33:291-297. 

Reifschneider D, Stevenson R. 1991. Systematic departures from the frontier: a framework 

for the analysis of firm inefficiency. International EconomicReview 32:715-723. 

Richardson S, Guihenneuc C, Lasserre V. 1992. Spatial linear models with autocorrelated 

error structure. The Statistician 41:539-557. 

 

 

 

 



 22

 

 

 

TABLE 1 

 PARAMETER ESTIMATES IN A CROSS-SECTION DATA 

Variables Model 1 Model 2 
 Coefficient p-

value 
Coefficient p-

value 
Factors of Production     
Log(family size) 0.4136 0.000 0.3297 0.000
Whether head is male -0.0550 0.000 -0.0529 0.000
Log(proportion of employed members) 0.0637 0.000 0.0455 0.000
Whether the spouse is employed 0.1238 0.000 0.1241 0.000
Whether head had no formal education -0.2025 0.000 -0.1888 0.000
Log(age of head) 0.0769 0.000 0.0781 0.000
Whether roof is made of strong materials 0.0809 0.000 0.0786 0.000
Whether wall is made of strong materials 0.1606 0.000 0.1235 0.000
Whether toilet is hygienic 0.2089 0.000 0.1863 0.000
Log(house and lot value) 0.3149 0.000 0.2661 0.000
Log(income from entrepreneurship) 0.0013 0.089 0.0010 0.156
Log(income from crop production) -0.0204 0.000 -0.0155 0.000
Log(income from livestock production) -0.0020 0.015 -0.0007 0.413
Log(income from fishing) -0.0064 0.000 -0.0048 0.000
Log(income from wholesale and retail trade) 0.0067 0.000 0.0041 0.000
Efficiency Equation  
Agriculture Dependency -0.1133 0.000 -0.0500 0.000
Savings Rate -5.3899 0.000 -3.7027 0.000
Expenditure to electricity 0.0003 0.000 0.0001 0.000
Expenditure to Water 0.0004 0.000 0.0002 0.000
Expenditure to fuel -0.0004 0.000 -0.0003 0.000
Land Fare -0.0003 0.000 -0.0002 0.000
Expenditure to Telephone -0.0024 0.000 -0.0008 0.000
Whether engaged in agriculture -0.0723 0.226 -0.0978 0.008
Whether engaged in crop production -0.0093 0.003 -0.0014 0.153
Whether engaged in livestock production -0.0415 0.000 -0.0041 0.153
Whether engaged in fishing -0.0103 0.068 -0.0026 0.181
Whether engaged in wholesale and retail 0.0674 0.006 0.0188 0.013
Whether engaged in manufacturing 0.0040 0.110 0.0031 0.109
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Whether engaged in transportation -0.3358 0.000 -0.0019 0.407
   

 

 

TABLE 2 

 PARAMETER ESTIMATES IN A PANEL DATA 

Variables Model 3 Model 4 
 Coefficient p-

value 
Coefficient p-

value 
Factors of Production     
Log(Index of basic social services) 0.3283 0.000 0.3051 0.000
Log(Index of organizational maturity) 0.1597 0.000 0.1794 0.000
Log(No.Beneficiaries cultivating the land) 0.0069 0.134 0.0036 0.070
Log(No. of Beneficiaries of agrarian reform) -0.0006 0.815 0.0013 0.520
Log(Index of land tenure improvement) 0.1829 0.000 0.1531 0.000
Log(Proportion of credit needs served) 0.0146 0.000 0.0179 0.000
Log(Land area covered by agrarian reform) 0.0023 0.697 -0.0113 0.000
Log(Age of the community in the program) 0.0876 0.032 0.0211 0.000
 

 

 

 

 

 

 

 

 



 24

 

 

 

FIGURE 1 

 BOXPLOTS OF ESTIMATES OF TECHNICAL EFFICIENCY 
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