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WHEN AND HOW TO
SUPPORT
RENEWABLES?
LETTING THE DATA
SPEAK

GEORG ZACHMANN*, AMMA SERWAAH** AND MICHELE PERUZZI†

Highlights

• Low-carbon energy technologies are pivotal for decarbonising our
economies up to 2050 while ensuring secure and affordable
energy. Consequently, innovation that reduces the cost of low-car-
bon energy would play an important role in reducing transition
costs. We assess the two most prominent innovation policy ins-
truments (i) public research, development and demonstration
(RD&D) subsidies and (ii) public deployment policies. 

• Our results indicate that both deployment and RD&D coincide with
increasing knowledge generation and the improved competitive-
ness of renewable energy technologies. We find that both support
schemes together have a greater effect that they would indivi-
dually, that RD&D support is unsurprisingly more effective in dri-
ving patents and that timing matters. Current wind deployment
based on past wind RD&D spending coincides best with wind pa-
tenting. If we look into competitiveness we find a similar picture,
with the greatest effect coming from deployment. 

• Finally, we find significant cross-border effects, especially for wind-
deployment. Increased deployment in one country coincides with
increased patenting in nearby countries. 

• Based on our findings we argue that both deployment and RD&D
support are needed to create innovation in renewable energy tech-
nologies. However, we worry that current support is unbalanced.
Public spending on deployment has been two orders of magnitude
larger (in 2010 about €48 billion in the five largest EU countries in
2010) than spending on RD&D support (about €315 million).
Consequently, basing the policy mix more on empirical evidence
could increase the efficiency of innovation policy targeted towards
renewable energy technologies. 

* Research Fellow at Bruegel. ** Research Fellow at WZB, Berlin.
† Research Assistant at Bruegel. The authors gratefully
acknowledge research assistance from Nicholas Schöll.
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1. Introduction 

 

All developed countries have been putting in place a number of policies to support renewable energy 

technologies for more than a decade and will continue to do so in the foreseeable future. The corresponding 

policies differ widely in scale, scope and design of legislation. However, none of the existing approaches is 

undisputedly accepted as effective and efficient. Hence, quantitatively benchmarking the different approaches 

is useful for structuring the discussion and identifying efficiency potential. To do this, we will first introduce the 

different rationales why to support renewables. We will than argue the most important policy to support them is 

to promote innovation in order to reduce the cost of a large scale deployment of yet uncompetitive technologies. 

Then, we will focus on the balance and timing of two main policy areas to drive innovation: deployment support 

and (public) research development and demonstration (RD&D) spending. We argue that numerous countries 

introduced deployment support and RD&D spending but that the allocation of funds between the two and timing 

resemble a ‘shot in the dark’. Based on this motivation we will analyse a 28 country panel to determine which 

menus of policies are most successful in driving innovation. Finally we will draw policy conclusions. 

 

1.1. Why support renewables? 

 

Renewable energy technologies have been publicly supported for several decades but the reasons for doing so 

changed over time. Public support to the development of biofuels and renewable energy generation were part of 

the war effort that aimed at ensuring and diversifying energy supplies1 and providing technical solutions for war-

specific purposes2 during the first and second world wars. The oil crises in the 1970s brought about substantive 

programmes for RD&D of photovoltaic cells and wind turbines in Europe and the US, as one tool to reduce 

dependence from Arab oil suppliers and shielding Western economies from high and volatile oil prices. The 

argument of renewables as a means to reduce import-dependency reappeared in the European public debate 

with the Ukrainian-Russian and Belarus-Russian ‘gas wars’ and the increasing oil and gas prices in the 2000s. 

With the Club of Rome report in 1972, the narrative on the finite nature of energy resources received high public 

attention. The argument became somewhat side-lined in the public debate in the phase of low resource prices in 

the 1980s but re-emerged with the ‘peak oil’ debate in the 2000s. It can be found as one rationale for public 

support for renewable energy technologies in numerous public documents. One side-benefit claimed for 

renewables is that, by replacing power production in fossil plants, they reduce pollution (NOx, SOx, VOCs, etc.) 

that has negative health and/or environmental externalities3. Since the 1970s, the awareness of anthropogenic 

climate change increased in the public debate. It culminated in the 1996 Kyoto Conference in which most 

developed countries committed to reduce greenhouse gas emissions. The International Panel of Climate Change 

(IPPC) reports reiterate that containing global temperature increase requires a reduction of emissions from fossil 

                                                            
1 Eg half a million producer gas vehicles running on wood pellets were used in Germany during the war. 
2 Eg Ethanol production from potatoes for fuelling German rockets or wind power for decentralised electricity production. 
3 One example: http://www.bmu.de/fileadmin/bmu-
import/files/pdfs/allgemein/application/pdf/ee_innovationen_energiezukunft_bf.pdf (BMU 2011, p.13) 
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fuels while the baseline scenario expects increasing emissions. Consequently, massive public support for 

renewable energy technologies was rolled out to replace existing fossil plants by yet uncompetitive renewable 

units in the short term and/or to reduce the costs of renewable energy technologies units to make them 

competitive in the long term. By the late 1990s the outlined narratives indicated that a growing market for 

renewable energy technologies will emerge. To anticipate this development, economic policy makers suggested 

supporting domestic renewable energy technologies in order to gain a competitive edge in this growing field (i.e. 

industrial policy). Furthermore, demand side polices in order to mitigate the economic crises of the 2000s 

envisaged public investments in renewable energy technologies. Consequently, industrial and macro-economic 

policies became a further rationale for supporting renewables. Finally, the nuclear accidents of Chernobyl 

(1986) and Fukushima (2011) undermined the public acceptance of nuclear as a source of clean energy in 

some countries, making renewables the only acceptable source. 

 

Table 1: Rationale for public renewable energy technology support 

Event  Rationale for public renewable energy support (RES) 

WWI 1914-18 and WWII 1939-45 Military use of renewable energy technologies 

Oil crises 1972 and 1979 Reduction of energy dependence, 

shield economies from oil price shocks 

Club of Rome report 1972 Prepare for the finite nature of energy resources 

1996 Kyoto Conference RES as a means to mitigate carbon emissions from energy production 

Since around 2000 RES support as infant industry policy 

2008 crisis RES deployment as demand-side macroeconomic policy 

1986 Chernobyl, 2011 Fukushima RES as a means to replace nuclear reactors 

Side benefit RES to reduce pollution (NOx, SOx, VOCs, … ) from fossil plants 

 

So we conclude that several different rationales have been used to justify past and present support for 

renewable energy technologies4.  

 

1.2. How to support renewables? 

 

Already in the past, renewable energy technologies such as hydropower and geothermal energy have been 

widely used where they were competitive with other energy sources. Close-to-competitive technologies such as 

small hydropower plants were introduced in the market by preferential regulatory schemes and by pricing the 

externalities of fossil sources, e.g. through taxes and environmental regulations. However, competitive and 

close-to-competitive sources are in most countries unable to replace conventional plants in the volumes 

                                                            
4 Most of the outlined reasons can be phrased as market-failure and hence a sensible case for public intervention can be 
constructed. See for example Riess et al (2012 p.83ff ). 

2



necessary to fulfil the above-outlined purposes. Consequently, renewable energy technologies that are not (yet) 

competitive with conventional sources are required.  

 

There are essentially three complementary strategies to replace fossil sources by renewable energy 

technologies that are currently not competitive. The first one is to substantially subsidise the current renewables 

until they are competitive. The second one is to make all undesired technologies uncompetitive either by 

taxation or regulation.  And the third approach is to support innovation in renewable energy technologies in order 

to reduce their cost in the future.  

 

Full-scale replacement of conventional sources by currently available renewable technologies (stimulated by 

subsidies and/or making conventional sources less competitive) would be prohibitively expensive5. 

Consequently, innovation is essential.  

 

Literature has identified two interacting innovation policies: (i) encouraging ‘learning-by-doing’ through 

government supported deployment of yet uncompetitive technologies and (ii) public RD&D as well as public 

support to private RD&D.  

 

1.2.1. Deployment driven innovation 

 

In recent years both environment and economic research started focusing on endogenous technical change in 

the energy sector using learning curves. Arrow (1962) first introduced this theory showing that ‘learning-by-

doing’ acted as a driver to reduce costs through different channels6. Costs of production are modelled as a 

function of the cumulated capacity. A learning rate can be derived which estimates the reduction of cost per 

doubling of capacity. ܿ = ߙ ∗ ఌܽܥ ܴܮ  = 1 − 2ିఌ  

where: 

c Unit cost (€/KW or €/KWh) 

Cap  Deployment (cumulative capacity or production, etc.) 

ε  Learning elasticity 

LR  Technology learning rate 

 
                                                            
5 Thereby, the cost not only refers to the cost of the renewable energy technologies, but those of the entire system. For 
example, to achieve 100 percent of electricity generation from solar and wind technology substantial investments into 
storage, networks and demand response are necessary. To give one excessive example, a 10,000 MW solar installation in 
Germany ( 10 percent capacity factor) costing about €10-20bn together with a 10,000 MW compressed air storage costing 
about €10 bn would be able to flexibly deliver electricity the same way as a 1,000 MW coal plant worth about €2 bn. To 
illustrate the magnitude of this effect, an economy wide shift from the current system to the outlined solar+storage system 
would increase electricity generation cost from less than 1 percent of GDP to about 10 percent. 
6 Jamasb and Köhler (2007) note that there have been, “early applications of learning curves, between 1930s and 1960s”. 
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Learning rates played a role for official policy documents as well as they are crucial part of a cost benefit 

analysis for renewable energy support (Jamasb and Köhler, 2007). Learning curves can provide a justification of 

subsidies exceeding the direct effect of climate change mitigation as they decrease the long term costs of new 

technologies. That is, deployment subsidies can lead to innovations in this sector which are more important than 

the direct reduction of green house gas (GHG) emissions in terms of social welfare (van Benthem et al, 2008). 

 

1.2.2. RD&D driven innovation 

 

The main purpose of RD&D is to generate innovations. Hence, it is little surprising that RD&D spending leads to 

innovations that can be measured in terms of patents. For example, Gurmu and Pérez-Sebastián (2005) develop 

a ‘patent production function’ based on R&D and lagged R&D. They find that the (semi)elasticity of patents 

ranges between 0.4 and 0.7 suggesting decreasing return to scales7. As the current year accounts for over 60 

percent of total R&D elasticity, they conclude that R&D impacts patenting at an early stage of the R&D sequence. 

 

Public RD&D spending on particular technologies is also deemed to create innovations8. For example, Braun et al 

(2010) find that public RD&D expenditure stimulates innovation in renewable energy technologies. 

 

1.2.3. A combination of deployment and RD&D is driving innovation 

 

Based on earlier literature Wiesenthal et al (2012) present a two-factor learning curve model that disentangles 

two of the most important learning factors: learning by doing and learning by researching. The latter describes 

the relationship between the accumulated knowledge stock and production costs. For a given technology t and 

time period y, the curve can be described as follows: ܥ௧,௬ = ܽܳ௧,௬ିఈܵܭ௧,௬ିఉ  

where: 

C Costs of unit production (€/W) 

Q Cumulative Production (W) 

KS Knowledge stock (here: approximated through R&D investments, €) 

α Elasticity of learning by doing 

β Elasticity of learning by researching 

a Normalisation parameter with respect to initial conditions 

 

 

Soederholm and Sandqvist (2007) use a two-variable model using deployment and R&D to estimate the 

effectiveness of different subsidy schemes. They show that learning rates depend crucially on the specification 

                                                            
7 Similar to Hall et al (1986) who analysed data set from the seventies with similar models. 
8 This is despite crowding-out effects of private RD&D spending. See for example Popp (2002). 
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used. Quantifying effects remains difficult and the authors stress that simultaneity can lead to possible biases 

as for example reduced costs can lead to higher deployment. 

 

Lindman and Söderholm (2012) review 35 studies on learning rates for wind power and warn that results are 

econometrically spurious in most empirical estimates. They argue that more attention should be paid on 

“learning and knowledge spillovers in the renewable energy field, as well as to the interaction between 

technology learning and R&D efforts”. 

 

Koseoglu et al (2013) discuss the allocation of subsidies to either R&D or market application. Their conclusion is 

that R&D is underused compared to market application subsidies. A possible reason could be that short term 

effects of deployment are more visible than R&D and therefore favoured by policy makers. However, too high 

deployment subsidies can induce lock-in into a (short-term) cost efficient technology preventing the 

development of other technology with higher long-term potential. Additionally, large subsidies can distort market 

incentives in a way that there is no net reduction in fossil energy use as the production of renewable energy 

units is very energy intensive. Public R&D on the other hand can fill the knowledge gaps covering areas which 

would not profitable for private R&D. In the US, states with transparent and openly available public R&D also 

attracted significantly more private R&D and venture capital in the respective sector (Koseoglu et al, 2013). 

 

The model can be extended with additional variables to account for other factors that drive technological 

change9. Johnstone et al (2008) conduct a panel regression across 25 countries between 1978-2003 for 

renewable energy patents showing that with respect to patent activity taxes, obligations and tradable 

certificates are the only tools statically significant. The estimations exhibit that R&D spending is more effective 

for wind technologies whereas solar technologies are better supported by price incentives. Furthermore, 

stronger environmental legislation leads to more patents with heterogeneity across technologies: obligations 

and tradable certificates are most important for wind energy, which can be explained by the cheapest form of 

renewables hypothesis. According to their findings, solar energy on the other hand requires more direct 

investment support.  Nonetheless, Johnstone et al (2008) argue that in general most patent estimates are 

flawed due to country heterogeneity and time trends.  

 

Bettencourt et al (2013) explain the production of new energy patents in terms of new R&D investments and 

expanding markets based on a Cobb-Douglas production function. They find that ‘most technologies show 

greater sensitivity to market growth than to public R&D investments though for wind the two contributions are 

similar’.  

 

                                                            
9 Popp (2002) argues that the knowledge stock and the price of energy are important drivers of innovation in renewable 
energy technologies. 
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Summing up, literature provides some evidence of (i) decreasing returns to both, deployment and RD&D in 

driving innovation and (ii) a potential positive interaction of the two policy measures. In addition, the price of the 

competing technologies matters. This would indicate that innovation is best driven by a combination of RD&D 

and deployment. We summarise this interaction in Figure 2. Innovations that cause system cost reduction are 

driven by (1) a certain amount of initial (or basic) RD&D that brings down the cost of the technology before the 

first unit is deployed, (2) learning-by-doing through the subsidised deployment of certain amount the 

technology, (3) a price on carbon making conventional forms of energy less competitive and (4) parallel RD&D 

expenses in order to speed up the learning. Finally (5), the break even for the new technology is contingent on 

how well the negative externalities of the incumbent technologies are priced in. 

 

If this model were a fair description of reality, there should be an optimal combination of RD&D spending and 

deployment. In this case, one would expect that such an optimal combination is different for different 

technologies. The exact relationship is, however, impossible to determine ex ante. Nevertheless, ex-post 

analysis of existing support schemes should allow to learn on efficient timing and balance. 

 

Figure 1: Schematic picture of cost reduction for renewable energy technologies 

 

 

1.3. Renewables support in practice 

 

Based on the rationales outlined in the first section (decarbonisation, import substitution, etc.), various support 

policies have been implemented with significant differences across countries and changes over time. 

Differences are partly explained by national differences in the prioritisation of the different aims. For example, if 

the goal is decarbonisation, then emission pricing might play a more prominent role. If the concern is on 

industrial policy, instead, RD&D subsidies might be preferred. Finally, if security of supply is deemed to be more 

important, then deployment may be the focus.  However, we cannot read the choice of a support mechanism or 

its intensity only as a techno-economic optimal response to the aforementioned challenges. In fact, every 

support mechanism produces substantial distributional effects, and institutional and information barriers are 
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high. Consequently, without the complex political economy it is impossible to understand why different 

countries (and even regions) embarked on very different policy mixes. 

 

There are different reasons why it is difficult to analytically identify optimal policy mixes: (i) the different 

rationales for renewables support, (ii) the numerous technology options, (iii) the substantial differences in the 

initial conditions, (iv) a wide continuum of combinations of support policies. According to Figure 2, countries like 

Germany and Italy spent on RD&D less than 0.5 percent of the budget for public support to the deployment of 

renewable energy technologies. Thereby, to our knowledge no country applies an ‘analytic’ approach for 

determining the policy mix that best suits the rationales. This resembles a ‘shot in the dark’ approach, and its 

persistence is astonishing, given the magnitude of the corresponding public spending. 

 

Figure 2: Deployment vs. RD&D expenditure for wind and solar in 2010 in six EU countries (in € millions) 

 
 

Source: Bruegel calculation based on IEA and datastream.  

Note:  Net deployment costs are calculated as the difference of the deployment costs10 and the net present value of the future electricity generated11. The 

countries are the five largest EU countries (DE,ES,FR,IT,UK) plus the Czech Republic (the largest Central East European country for which we have data) 

  

                                                            
10 Deployment costs are calculated as the installation costs per MWe multiplied with the deployed capacity. The country-
specific costs per MWe are obtained from the "Projected Costs of Generating Electricity 2010" report of the IEA. 
11 The net present value of future electricity generated is calculated by discounting future revenues which can be obtained 
by projecting the yearly energy prices (we use the price of a 2013 futures contract) and production of the respective 
technology in the respective country (differences across countries arise because of varying hours of sun/wind per year as 
well as different energy prices). We assume a nominal interest rate of 10 percent. 

48298
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Figure 3: Deployment vs. RD&D expenditure for wind and solar in 2010 in six EU countries (in € million) 

 

Source: Bruegel calculation based on IEA and datastream.  

Note:  Net deployment costs are calculated as the difference of the deployment costs and the net present value of the future electricity generated. 

 

1.4. Research question 

 

Our research question is based on the above argumentation that (i) there are different rationales for supporting 

renewables; (ii) for all rationales, long-term cost reduction is key. Therefore, supporting innovation in renewable 

energy technologies is the major policy to achieve each of the policy goals; (iii) literature has identified 

deployment policies and RD&D spending policies as effective innovation policies; (iv) countries use a very 

heterogeneous set of balance and timing of the two policies. 

 

The research question is whether innovation in certain renewable energy technologies (in our case wind and 

solar) can be best encouraged by a specific timing and balance of deployment policies and RD&D spending12. 

 

Data 

 

We build a panel of 28 OECD countries, covering the time period from 1990 to 2010. The main variables of 

interest - patent count, R&D expenditure and deployment - are provided by the OECD and IEA statistical services. 

We focus on the two most prominent renewable energy technologies: wind power and photovoltaic solar energy. 

These two sources accounted for about 64 percent of newly installed capacities in 2012 in the EU, and 

                                                            
12 Ie, we will not evaluate individual instruments (such as ‘green certificates’ vs. ‘feed in tariffs’) or individual technologies 
(such as ‘on-shore wind’ vs. ‘off-shore wind’). 

0

10

20

30

40

50

60

70

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Solar

Net Deployment costs (left scale)

RDD expenditure (right scale)

in million euros

0

10

20

30

40

50

60

70

80

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Wind

Net Deployment costs (left scale)

RDD expenditure (right scale)

in million euros

8



accounted for roughly 7 percent of total cumulative capacity by 2010. We follow the OECD classifications of 

patenting and spending into these two categories13. 

 

Patents in this data set refer to granted patents and the dates referred to are the priority date, which is the date 

used by patent examiners to establish novelty. In effect this is the date of invention. This allows us to focus on 

the innovative timing without complications due to delays in different legal systems.  However, since the dataset 

only includes granted patents, some data in later years is still spotty as, for example, a patent filed and assigned 

a priority date in 2010 might only be granted in subsequent years. 

 

Similar to the literature on learning curves, we use lagged deployment and RD&D to explain technical change. 

The difference in our approach is that we proxy innovation by patents rather than costs. We consider the effects 

on patenting of (i) the knowledge stock, (ii) the deployment stock, (iii) technology spillovers, and (iv) country 

spillovers. 

 

The knowledge stock of each technology is measured as the cumulated sum of annual patents in the 

corresponding technology. The deployment stock is the cumulated sum of deployed technology, measured in 

MW. We use different discounting factors (0%, 5%, 10%, 20%) to account for the depreciation of the knowledge 

stock and the deployment stock over time. We account for technology spillovers by considering the impact of 

patenting and deployment in a given technology on the other technologies (i.e. patents and deployment in wind 

are included as control variables for the analysis in solar.) We also control for patenting and deployment in a 

broader range of renewables which includes solar thermal, geothermal, and wave energy. Country spillovers are 

taken into account by controlling for the deployment in the rest of the continent (e.g., one of the factors 

considered for explaining German patenting in wind energy is the deployment of wind power in Europe minus the 

German deployment). Furthermore, we also control for the deployment in all other countries weighted by the 

inverse distance. Here we use different distance measures, as provided by CEPII14. 

 

  

                                                            
13http://www.oecd.org/env/consumption-innovation/44387191.pdf. 
14 Mayer, T. & Zignago, S. (2011) Notes on CEPII’s distances measures : the GeoDist Database CEPII Working Paper 2011-25 - 
See more at: http://www.cepii.fr/CEPII/en/bdd_modele/presentation.asp?id=6#sthash.ZE7LKOSm.dpuf. 

9



Table 2: Summary of main variables 

 Units Source Coverage 

Patent count Absolute number OECD 1990 - 2011 

Installed capacity 
(deployment) 

Megawatts IEA, EIA15 1990 - 2011 

RD&D expenditure Millions of Euros 
(2011 prices and 
exchange rates) 

IEA, OECD16 1990 – 2011 
(missing in some 
years for some 
countries) 

Notes: 
Patents are measured with the OECD count system, where patents are fractionally allocated to countries 
according to the countries of the applicants. 
 
Deployment variables all refer to new deployment in a given year which is calculated from the change in total 
deployment, therefore data is available for one year less than the entire dataset. 
To deal with missing data we linearly interpolate the missing data values and we average the last/first 3 years in 
order to fill possible missing at the beginning or end. 

 

Table 3: Descriptive statistics of main variables. Observations per country, per year. 

 Min Max Mean Std. Deviation Obs 
total patents 0 52433 3100 7447 616 
pv patents 0 544 14 54 616 
wind patents 0 186 7 17 616 
rdd renewables, M€ 0 1807 51 119 498 
rdd pv, M€ 0 325 20 36 482 
rdd wind,  M€ 0 152 7 12 469 
total deployment, MW 0 57050 1507 4232 609 
pv deployment, MW 0 9303 109.3 658 609 
wind deployment, MW 0 9645 253.5 784 609 

 

Table 3 provides descriptive summary statistics of the variables while Figures 4 to 6 plot the values of the key 

indicators for the EU and the US over the time period under consideration, 1990-2010.  

 

The number of patents claiming a particular priority year (Figure 4) demonstrates a sharp increase in patenting 

in wind and solar technologies after 2005. While the EU and the US claim about the same number of solar 

patents throughout the sample period, the EU patents significantly more in wind technologies than the US. 

 

                                                            
15For world total. 
16For world total. 
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Figure 4: Solar and wind patents US and EU 
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Figure 5: Solar and wind deployment in US and EU 

 

 

Despite the stronger patenting in solar, US solar deployment lags significantly behind US wind deployment 

(Figure 5). On the other side of the Atlantic, EU solar deployment is outpacing EU wind deployment from 2009 on 

– cumulated capacities stay still larger. 
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Figure 6: Solar and wind RD&D in US and EU 

 

 

When we consider RD&D (Figure 6), we do see a small increasing trend after 2005 that slightly echoes the 

increase in patenting. Perhaps unsurprisingly, given the patenting figures, RD&D in solar is greater than in wind, 

lending support to a notion that connects RD&D spending with actual innovation. 

 

Finally, as an alternative measure of the relative progress individual countries did make in making solar panels 

and wind turbines produced in their county competitive on the global market, we use the revealed comparative 

advantage (RCA). In order to obtain an interpretable measure with a known distribution we use the ranking of the 

RCA-score for each country compared to our sample. To ensure the intuitive ‘more is better’, we invert the 

ranking, so that the worst country gets a 1 and the best country gets a score equal to the number of countries 

(28). To give an example, the US was a ‘slightly above average’ performer in exporting solar panels in the 1990s 

(inverse ranking score below 20), it became one of the most successful solar exporters in the early 2001-02 

(inverse ranking above 20) before it started to constantly lose competitive edge in solar exports until 2011 

(inverse ranking 12). 
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Figure 7: Revealed comparative advantage position in wind and solar for selected countries, 1990-2011 

 

 

Analysis 

 

We do not possess a theoretical model that explains patenting in a certain technology in a certain country based 

on past deployment, RD&D spending and other variables17. While our prior belief is that both, deployment, RD&D 

spending and their interaction have all a positive effect on patenting, it is unclear to us how fast the 

corresponding inputs might generate innovation and whether this effect is linear or not. Consequently we 

decided to rely on a data-driven approach to select the relevant variables, time lags, operations (such as the 

logarithm) and interactions. To select the explanatory variables included in our model we proceed in five steps. 

First, we create four ‘derivatives’ of each of the original variables (level, log, square root and square). Then we 

include the first five lags in the set of explanatory variables. Third, we include all possible partial sums of 

consecutive lags, such as the deployment in the past five years, or the RD&D spending three-to-six years ago. 

Fourth, we include dummies for countries and years. Finally, we create all possible bilateral interaction terms 

between all these variables (original variables, derivatives, lags, partial sums and dummies). For example, one 

variable is the interaction of deployment in the last five years with the RD&D spending three-to-six years ago. 

This gives us more than 47,000 explanatory variables. 

 

A standard panel regression of 28 countries times 20 years based on about 47,000 explanatory variables (that 

are suffering almost perfect collinearity) is obviously unfeasible. To select the explanatory variables that are 

most useful in explaining the patenting in certain technologies we employ a penalised regression approach (see 

Tibshirani, R., 1996)18, the so-called ‘Lasso’. Basically, instead of running an unconstrained optimisation 

problem (of SSR or likelihood), the Lasso does a constrained optimisation with a penalty. The Lasso is a 

                                                            
17 To our knowledge, existing models like "one factor learning curves", "two factor learning curves" or Cobb-Douglas patent 
production functions are not based on theoretical models either. 
18 As patents are typically discretely scaled (i.e., 1,2,3,…) we base the regression on a Poisson model. 
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particular case of shrinkage estimator. These are estimators that optimise on a restricted set of values for the 

coefficients of the variables. The penalty parameter can be chosen by the researcher, and controls how large this 

restricted set is. The particular form of the penalty function results in sets of different shapes. The Lasso penalty 

in particular results in subsets that have a corner at zero in all dimensions. The outcome is that the optimum is 

reached with many coefficients set exactly to 0. Hence, by its construction the Lasso performs a variable 

selection. Thereby, the larger the lambda, the more restrictive the variable selection is and the smaller the set of 

non-zero coefficients. In addition to the variable selection, the coefficients for all non-zero variables have been 

shrunk. While other selection mechanisms that do not apply shrinkage may be unstable because they are 

affected by collinearity, the Lasso overcomes this issue by construction. 

 

 This allows for two interpretable outputs: first, the order in which the different explanatory variables are included 

in the regression – when reducing lambda – is meaningful. It gives an indication on which variables contribute 

most to explaining the regressant19. 

 

Second, the size and sign of the coefficients of a ‘best’ model can be interpreted. We define the best model as the 

model that best performs an n-1 prediction exercise. That is, we do not focus on maximising the goodness of fit, 

but want to minimise the forecasting error.  This allows an indication which combination of factors is best able to 

predict patenting and whether these factors have a positive or negative impact on the prediction. The standard 

Lasso does not come with an easy way to calculate the standard errors of the coefficient estimates, and a 

Bayesian approach would help in this regard. In any case, it is interesting to see which variables are most 

effective in explaining the variation in the explained variable, and in which direction this variation appears. 

In order to make the results more easily interpretable, all variables are standardised. Also, model selection is 

restricted to models with at most 25 explanatory variables. 

 

We present the result for solar in Table 4. The Lasso algorithm only selects 11 out of the 47,000 variables as 

being most relevant for predicting solar patenting behaviour. 

 

The first, observation is that rdd_solar and rdd_res, i.e, the spending on RD&D for solar and the spending on RD&D 

for all renewables have a measurable effect. The delay with which rdd_solar increases patenting appears to be 

three to four years. 

 

A second observation in that pat_total is important. We interpret this variable as a control for the overall patenting 

activity in a country/year. 

 

                                                            
19 For shrinkage estimators such as ridge or lasso ‘f(betas) < c’ for some function f and some constant c. With the ridge, f is 
the sum of the squares of the coefficients. Hence in the Ridge, all coefficients are non-zero, but a larger value is assigned to 
the coefficient that helps reducing the SSR the most. With the Lasso, f is the sum of the absolute values of the coefficients. 
Thus again, we obtain larger beta for variables that help reducing SSR, but in addition, the least significant coefficients are 
forced to 0. 
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The third important variable is market size. If dep_total is large, the impact of rdd_solar on patenting gets bigger.  

 

Table 4: Results for solar photovoltaic 

(Intercept) 2.849 
pat_total_rooted 0.183 
pat_total_rooted_lag2 0.071 
pat_total_rooted_partsum1_lag1 0.003 
pat_total_rooted_partsum2_lag1 0.022 
rdd_solar_squared : dep_total_partsum3_lag3 0.050 
dep_tech_lag3 : rdd_res_squared_lag5 0.022 
rdd_res_squared_lag5 : dep_solar_partsum1_lag2 0.007 
rdd_res_squared_lag5 : dep_solar_partsum2_lag2 0.036 
rdd_res_rooted_lag5 : rdd_solar_rooted_lag4 0.336 
rdd_res_rooted_lag5 : rdd_solar_rooted_partsum1_lag3 0.000 
Note: Model chosen from >47000 variables based on the lowest mean square error in predicting 
the n’th observation based on n-1 data. Coefficients rounded at the third decimal digit. Number of 
included variables limited to 25 during model selection. 
 

The stability of the above-presented results is confirmed by a plot of the coefficients selected by the Lasso for a 

range of lambdas. 

 

Figure 8: Coefficients for solar patents at different lambda 

 

 

For wind, a larger number of variables have been included in the estimation by the Lasso.  

 

Again, total patenting (pat_total) is controlling for the general propensity to patent in a given country in a given 

year. And patenting in solar (pat_solar) seems even better suited to control for the propensity to patent in 

(renewable?) energy technologies.  
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Also, RD&D spending on wind technology seems to encourage patenting in this area. We find rather long and 

disperse time-lags for the effect of RD&D on patenting. RD&D between the second to sixth year (partsum5_lag2) 

seems to be most effective. 

 

The most interesting finding in our view is that the effect of RD&D spending on wind technologies gets 

substantially augmented when the deployment of wind turbines on the continent is high (continent_dep_wind : 

rdd_wind). Again timing matters, current deployment based on past RD&D spending coincides best with 

patenting. 

 

Beyond these three main drivers, there are a number of variables with typically small negative values that are 

somewhat difficult to interpret. We would see them as correction factors that reduce the aforementioned effects 

in certain conditions. The largest is the interaction of RD&D spending on renewables with the deployment of wind 

on the continent (continent_dep_wind : rdd_res). One way of interpreting this is that countries with a lot of non-

wind RD&D spending do not benefit (in terms of wind patents) as much from the deployment of wind turbines on 

their continent, as countries that focus their renewables RD&D on wind. 

 

Table 5: Results for wind power 

Intercept 2.014
continent_dep_wind_lag5 : rdd_res_squared_partsum3_lag2 -0.055
continent_dep_wind_partsum4_lag3 : rdd_res_squared_partsum1_lag3 -0.012
continent_dep_wind_partsum4_lag3 : rdd_res_squared_partsum2_lag2 -0.068
continent_dep_wind_partsum4_lag3 : rdd_res_squared_partsum2_lag3 -0.062
continent_dep_wind_partsum5_lag2 : rdd_res_squared_partsum2_lag2 0
continent_dep_wind : rdd_wind_partsum5_lag3 0.009
continent_dep_wind : rdd_wind_rooted 0.062
continent_dep_wind : rdd_wind_rooted_lag2 0.188
continent_dep_wind : rdd_wind_rooted_partsum1_lag1 0.012
continent_dep_wind : rdd_wind_rooted_partsum5_lag3 0.199
dep_total_lag5 : continent_dep_wind_partsum2_lag1 -0.003
dep_total : rdd_wind_partsum2 -0.008
dep_wind_dwdist : rdd_wind_dwdist -0.016
dep_wind : dep_wind_dwdistwces 0.069
pat_solar_rooted_lag1 0.36
pat_solar_rooted_partsum1 0.034
pat_total_logged 0.068
rdd_res_squared_lag4 : continent_dep_wind_partsum4_lag3 -0.045
rdd_wind_rooted_lag5 0.015
rdd_wind_rooted_partsum3_lag2 0.002
rdd_wind_rooted_partsum5_lag2 0.346
Note: Model chosen from >47000 variables based on the lowest mean square error in predicting 
the n’th observation based on n-1 data. Coefficients rounded at the third decimal digit. 
 

The stability of the above-presented results is confirmed by a plot of the coefficients selected by the Lasso for a 

range of lambdas. 
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Figure 8: Coefficients for wind patents at different lambda 

 

 

To get some indication of the quality of our results we calculate the share of variance in the patenting behaviour 

our model is able to explain (similar to the R²). The results are displayed in the following table. Given their 

parsimonious parameterisation the ‘goodness-of-fit’ performance of both models is impressive. 

 

Table 6: Deviance ratio for models explaining patenting behaviour in wind and solar 

 Deviance ratio N of variables incl. intercept 
Solar patents 0.73 11 
Wind patents 0.75 22 
 

To visualise the size and timing of the effect we display the response to a hypothetical shock predicted by the 

presented model parameterisation. 

 

Effect of a joint policy 

 

As indicated by the coefficient estimates, increasing both RD&D spending and deployment results in a 

substantial effect on patenting in the respective technologies. The effect on wind and solar implies that annual 

patenting might about double when the assumed policies are carried out. 
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Figure 9: Predicted response to an increase in RD&D spending and deployment in Germany by one standard 

deviation on patenting in solar (left) and wind (right) in Germany  

  

 

Effect of only RD&D support 

 

Increasing RD&D support by one standard deviation over a period of time has a substantial impact on patenting 

in this technology.  

 

Figure 10: Predicted response to an increase in RD&D spending in Germany by one standard deviation on 

patenting in solar (left) and wind (right) in Germany 
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Effect of only deployment 

 

Solar deployment has a strong effect on solar patenting. On the other hand, the effect of wind- deployment on 

patenting is modest. 

 

Figure 11: Predicted response to an increase in deployment in Germany by one standard deviation on 

patenting in solar (left) and wind (right) in Germany  

 

 

 

Effect of policy combination 

 

We find above, that both deployment and RD&D spending individually drive patenting and that consequently the 

policy combination is also having a positive effect. Figure 12 illustrates that the combination of both policies is, 

as was indicated by the positive interaction terms, more than the sum of its parts. In fact, for wind the additional 

benefit in terms of patents when joining policies is up to 25 percent (for solar 1 percent). 
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Figure 12: Predicted difference between a combined increase in deployment and RD&D on patenting in solar 

(left) and wind (right) in Germany to the sum of the individual effects  

 

 

 

Cross-border spillover 

 

The coefficients indicated an effect of deployment and RD&D spending in one country on patenting in 

neighbouring countries. Figure 13 confirms that this effect is significant for the impact of wind deployment  
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Figure 13: Predicted response to an increase in RD&D (above) and deployment (below) by one standard 

deviation on patenting in solar (left) and wind (right) in Germany  

 

 

From patents to competitiveness 

The explained variable, number of patents in the narrowly define technology, is only an imperfect proxy for what 

policy would really care about – innovation leading to sustainable reduction in the total cost of using the 

technology to replace existing technologies20. To also capture cost-savings that improve the technology beyond 

patented innovation we repeat the analysis using the inverse RCA ranking. This should allow us to understand 

which policies (deployment, RD&D support or both) coincide with improvements in the competitiveness of the 

domestic renewable energy technology industry. 

 

Overall, the results for RCA are significantly less robust. Obviously, the comparative advantage and its 

development over time is determined by many factors do not properly control for (labour cost, education, capital 

cost, etc.). Consequently, the variation of RCA explained by a relatively sparse model of less than 25 variables is 

low if compared to the results obtained in the patents regression. Thus, the results below should be interpreted 

                                                            
20 Popp et al (2011) for example argue that the diffusion of renewables is mainly driven by regulation and less by the 
knowledge stock. 
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with a substantial degree of caution21. The major factor that helps predicting the revealed comparative advantage 

in wind and solar in a country, is the logged number of all patents granted in this country in this year 

(pat_total_logged, see Tables in the Annex). This indicates that a key driver of export specialisation in renewables 

is the innovative power of a country. 

 

Table 7: Deviance ratio for models explaining the RCA in wind and solar 

(sparse model) Deviance ratio N of variables incl. intercept 
Solar RCA ranking 0.29 23 
Wind RCA ranking 0.46 23 
 

Deployment and competitiveness 

 

The clearest result for competitiveness is that deployment is indeed increasing the competitiveness of the 

corresponding technology. A sustained increase in domestic deployment of wind turbines increases the RCA 

ranking in wind turbines by about one position in the case of Germany. For solar panels there is also a clearly 

positive impact. Countries which deploy more solar panels are also exporting more of them in future. The clarity 

of the results somewhat surprised us, as our prior was that larger deployment coincides with larger domestic 

demand and hence more limited room for exports. 

 

Figure 14: Predicted response to an increase in deployment by one standard deviation on the RCA in solar 

(left) and wind (right) in Germany  

 

 

 

 

                                                            
21 We force the model selection to the subset of models that include 25 explanatory variables or less, as we noticed a 
tendency towards models with more than one hundred explanatory variables when only optimising on the in-sample 
predictive power. 
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RD&D and competitiveness 

 

The results for the impact of RD&D on competitiveness seem all not very meaningful. Our prior would be to find a 

positive impact of domestic support on RD&D support on the competitive position of the corresponding 

technology. By contrast, our results indicate that the impact of RD&D is insignificant.  

 

Figure 15: Predicted response to an increase in RD&D expenditure by one standard deviation on the RCA in 

solar (left) and wind (right) in Germany  

 

 

Policy combination and competitiveness 

 

This picture is confirmed for policy combination. For wind turbines having both policies in place at the same time 

increase the competitive position more than the effect of the individual policies together. For solar panels, we 

find a very small, negative impact of policy combination. 
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Figure 16: Predicted difference between a combined increase in deployment and RD&D on the RCA in solar 

(left) and wind (right) in Germany to the sum of the individual effects  

 

 

Discussion 

 

Our results suffer from a number of potential drawbacks: 

 

• Additional explanatory variables and controls for locational factors (sun, wind conditions), neighbouring 

country effects, interaction terms, non-linear relationships and others could make sense. 

• Our econometric approach does not allow us to fully explore the potentially complex interactions 

between the analysed variables. Whether a certain factor such as ‘deployment in the past five years’ is 

a true cause, or just an intermediate variable itself being caused by past knowledge stock and RD&D 

activities cannot be properly disentangled. In the same vein we cannot separate cause-and-effect for 

explained and explanatory variables. Such endogeneity might for example arise because countries that 

were successful in renewable innovation in the past might feel encouraged to invest more in this field.  

Hence, our results do not allow us to properly assess the impact of additional RD&D spending in t on 

patenting in all subsequent periods, as this would require a (theoretically founded) structural model of 

all interactions. 

• Furthermore, our model might just be an ‘explanation in hindsight’, meaning that it might explain those 

13 years for the 28 countries but not earlier years or future years or other countries. 

• The explained variable, number of patents in the narrowly defined technology, is only an imperfect 

proxy for what policy would really care about – innovation leading to sustainable reduction in the total 

cost of using the technology to replace existing technologies22. That is, we neither cover how patenting 

                                                            
22 Popp et al (2011) for example argue that the diffusion of renewables is mainly driven by regulation and less by the 
knowledge stock. 
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in complementary technologies such as storage is affected, nor can we measure unpatented 

innovation (such as process innovation or scale effects) that might have substantial cost-saving 

effects. We also do not know the actual cost-reduction effect of the patents. On the other hand, the 

relative competitiveness of exports on the global market – as measured by the RCA ranking – seems 

not to be a good proxy either.  

• Furthermore, we cannot give meaningful p-values, so some of the coefficients might have just been 

included by chance. Going for a Bayesian approach might allow an assessment of the confidence we 

put into the individual parameter estimates. In addition, it would allow us to include prior information 

(such as interactions deduced from theory). Hence, a corresponding implementation is very promising 

but had to be left to further research. 

 

Our results can at most shed light on what timing and balance of national support policies coincided with a 

certain patenting behaviour. This finding cannot, however, be directly translated into which policy combination is 

efficient. Such a ‘policy optimisation’ would require the parameterisation of the ‘patent production function’ to be 

complemented by a cost-function of the policies. Based on this, an ‘optimal’ policy balance and timing could be 

determined. Obviously, the parameterisation of the model would need to be constantly updated because the 

persistence of the interaction is not given. In fact, it would be akin to optimising a portfolio of policies in order to 

produce the maximum number of patents or maximise the competitiveness ranking. Similarly to financial 

hedging strategies, such a ‘portfolio optimisation’ approach would not work in the case of an event that was not 

observed in the historical data used for parameterisation (‘black swan’). Consequently, the choice of deployment 

and RD&D support policy should not be mechanically based on a quantitative optimisation strategy. 

Nevertheless quantitative ‘policy optimisation’ could serve as valuable additional tool in particular as a 

benchmark against existing (‘shot-in-the-dark’) strategies. 

 

Conclusion 

 

Our results are in line with the hypothesis that  deployment and RD&D expenditure both have an impact on 

technology development. Our finding that the combination of deployment and RD&D expenditures has a positive 

impact on patenting is in line with two-factor learning curves. 

 

Our results indicate substantial differences in the ‘patent production function’ between the two analysed 

technologies. While solar patenting strongly coincides with both past RD&D expenditures and deployment, wind 

patenting did not coincide with deployment alone, but was strongest in countries that featured a policy 

combination of RD&D expenditures and deployment. Whether this points to idiosyncratic learning curves for 

each technology, or whether certain technology families enjoy more similar learning curves or if technologies at 

a similar stage of maturity enjoy similar learning curves, is left for further research. 
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In addition, our results indicate that timing, cross-border spillovers and technology spillovers matter for the 

success of support policies. With respect to timing, the data suggests that a certain sequence of RD&D support 

and deployment is most strongly linked to patenting. In particular we find that deployment based on earlier 

RD&D expenditures strongly coincides with wind innovation. Cross-border spillovers play a positive role for wind 

deployment. Finally, we have (slight) evidence that technology spillovers might matter for patenting. 

 

Policy implications 

 

Our findings are in line with the hypothesis that both deployment and RD&D support are effective in advancing 

technology development. Our results also imply that the weight and timing of deployment and RD&D support 

matter. That is, certain combinations of deployment and RD&D support are more efficient than others. This calls 

for a strategic approach towards renewable energy technology support.  Furthermore, the existence of 

substantial cross-border spillovers from deployment implies that international coordination might make 

renewable energy technology support more efficient. 

 

Consequently, going beyond an uncoordinated ‘shot-in-the-dark’ is worthwhile, though more research is 

necessary to identify support structures that are resilient and efficient. In this respect, given the size of the issue 

(recall: about €48 billion spent on deployment and €315 million spent on RD&D support in the five largest 

EU countries in  2012) investing  more  in  ex-ante  and  ex-post  evaluation  of  renewable  energy  technology 

support schemes is a ‘no regret option’. 

 

  

27



References 

Arrow, K. (1962) 'Economic welfare and the allocation of resources for invention', in R.R. Nelson (ed.) The Rate 

and Direction of Inventive Activity, pp 609-625, Princeton University Press, Princeton, NJ 

Bettencourt, L.M.A., Trancik, J.E., and Kaur, J. (2013) 'Determinants of the Pace of Global Innovation in Energy 

Technologies', PLoS ONE, vol 8, no 10 

Braun, F.G., Schmidt-Ehmcke, J., and Zloczysti, P. (2010) 'Innovative Activity in Wind and Solar Technology: 

Empirical Evidence on Knowledge Spillovers Using Patent Data', CEPR Discussion Papers, no 7865 

Gurmu, S.,  and Pérez-Sebastián, F. (2008) 'Patents, R&D and lag effects: evidence from flexible methods for 

count panel data on manufacturing firms', Empirical Economics, vol. 35, no 3, pp 507-526 

Jamasb, T., and Köhler, J. (2007) 'Learning curves for energy technology: a critical assessment', in M. Grubb, T. 

Jamasab, and M.G. Pollitt (eds) Delivering a Low Carbon Electricity System: Technologies, Economics and 

Policy, Cambridge University Press, Cambridge 

Johnstone, N., Hascic, I., and Popp, D. (2010) 'Renewable Energy Policies and Technological Innovation: 

Evidence Based on Patent Counts', Environmental and Resource Economics, European Association of 

Environmental and Resource Economists, vol 45, no 1, pp 133-155 

Junginger, M., Faaij, A. and Turkenburg, W.C. (2005) 'Global experience curves for wind farms', Energy Policy, vol 

33, no 2, pp 133-150 

Koseoglu, N.M., van den Bergh, J.C.J.M., and Subtil Lacerda, J. 'Allocating subsidies to R&D or to market 

applications of renewable energy? Balance and geographical relevance', Energy for Sustainable 

Development, vol 17, no 5, pp 536-545 

Popp, D. (2002) 'Induced Innovation and Energy Prices', American Economic Review, American Economic 

Association, vol 92, no 1, pp 160-180 

Popp, D., Hascic, I., and Medhi, N. (2011) 'Technology and the diffusion of renewable energy', Energy Economics, 

vol 33, no 4, pp 648-662 

Riess, A.D., Zachmann, G.,  Calthrop, E.,  and  Kolev, A. (2012) 'Investment and growth in the time of climate 

change', Bruegel Books 

Sarasa-Maestro, C.J., Dufo-López, R., and Bernal-Agustín, J.L. (2013) 'Photovoltaic remuneration policies in the 

European Union', Energy Policy, vol 55, pp 317-328 

Söderholm, P., and Sundqvist, T. (2007) 'Empirical challenges in the use of learning curves for assessing the 

economic prospects of renewable energy technologies', Renewable Energy, vol 32, no 15, pp 2559-2578 

Tibshirani, R. (1996) 'Regression shrinkage and selection via the lasso', Journal of the Royal Statistical Society. 

Series B (Methodological), vol 58, no 1, pp 267-288 

Van Benthem, A., Gillingham, K., and Sweeney, J. (2008) 'Learning-by-doing and the optimal solar policy in 

California', The Energy Journal, vol 29, no 3, pp 131-151 

Wiesenthal, T., Dowling, P., Morbee, J., Thiel, C., Schade, B., Russ, P., Simoes, S., Peteves, S., Schoots, K., and 

Londo, M. (2012) 'Technology Learning Curves for Energy Policy Support', JRC Scientific and Policy Reports

28



Annex 

Patents regression 
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RCA ranking regression 

Solar 

(Intercept) 2.588 
dep_solar_partsum2_lag1 0 
dep_solar_partsum3_lag1 0.01 
dep_total_cumulated:rdd_solar_dwdist -0.107 
pat_total_logged 0.241 
rdd_res_rooted_partsum5_lag3 0.075 
rdd_res_squared_lag5:rdd_solar_logged_partsum4 -0.018 
rdd_res_squared_partsum4_lag2:rdd_solar_logged_partsum5_lag3 -0.001 
rdd_res_squared_partsum5_lag2:rdd_solar_logged_partsum5_lag3 0 
rdd_res_squared_partsum5_lag3:rdd_solar_logged_partsum5_lag2 -0.062 
rdd_res_squared_partsum5_lag3:rdd_solar_logged_partsum5_lag3 -0.019 
rdd_solar_dwdist:rdd_solar_dwdistwces -0.011 
rdd_solar_dwdistwces:rdd_res_rooted_partsum5_lag3 0.061 
rdd_solar_logged:rdd_res_squared_lag5 -0.003 
rdd_solar_logged:rdd_solar_logged_lag3 0.014 
rdd_solar_logged:rdd_solar_logged_partsum1_lag2 0 
rdd_solar_logged_partsum2:rdd_res_squared_partsum2_lag2 -0.022 
rdd_solar_logged_partsum2:rdd_res_squared_partsum4_lag1 -0.001 
rdd_solar_logged_partsum3:rdd_res_squared_partsum4_lag2 -0.013 
rdd_solar_logged_partsum5:rdd_res_squared_partsum5_lag2 -0.006 
rdd_solar_logged_partsum5:rdd_res_squared_partsum5_lag3 -0.001 
rdd_solar_logged_partsum5:rdd_solar_squared_partsum3_lag1 0 
rdd_solar_squared:rdd_solar_logged_partsum5_lag3 -0.021 
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Wind 

(Intercept) 2.603 
continent_dep_wind 0.028 
continent_dep_wind:rdd_res_rooted_lag3 0.025 
continent_dep_wind:rdd_res_rooted_partsum1_lag2 0.018 
continent_dep_wind:rdd_wind_partsum5_lag3 0.011 
dep_total:dep_wind_dwdist -0.009 
dep_wind_dwdist:dep_total_partsum2 -0.025 
dep_wind_dwdist:dep_total_partsum5 -0.003 
dep_wind_dwdist:dep_wind_dwdistwces -0.008 
dep_wind_dwdist:rdd_wind_dwdist -0.029 
dep_wind_dwdist:rdd_wind_rooted_lag5 -0.033 
dep_wind_dwdist:rdd_wind_rooted_partsum2_lag3 -0.008 
dep_wind_dwdist:rdd_wind_rooted_partsum5 -0.052 
dep_wind_dwdistwces:dep_wind_partsum5_lag3 0.02 
pat_total_logged 0.159 
rdd_wind_dwdistwces:dep_wind_partsum5_lag3 0.009 
rdd_wind_dwdistwces:rdd_res_lag5 0.014 
rdd_wind_dwdistwces:rdd_wind_partsum5_lag2 0.009 
rdd_wind_dwdistwces:rdd_wind_partsum5_lag3 0.028 
rdd_wind_logged_partsum2:rdd_wind_logged_partsum3_lag2 -0.006 
rdd_wind_logged_partsum3:rdd_wind_logged_partsum2_lag3 -0.012 
rdd_wind_logged_partsum3:rdd_wind_logged_partsum3_lag3 -0.02 
rdd_wind_logged_partsum5:rdd_wind_logged_partsum4_lag1 -0.014 
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Solar RCA
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Wind RCA 
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