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Abstract

This paper studies estimation of conditional and unconditional quantile treatment e�ects

based on the instrumental variable quantile regression (IVQR) model (Chernozhukov and

Hansen, 2004, 2005, 2006). I introduce a class of semiparametric plug-in estimators based

on closed form solutions derived from the IVQR moment conditions. These estimators do

not rely on separability of the structural quantile function, while retaining computational

tractability and root-n-consistency. Functional central limit theorems and bootstrap va-

lidity results for the estimators of the quantile treatment e�ects and other functionals are

provided. I apply my method to reanalyze the e�ect of 401(k) plans on individual savings

behavior.
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1 Introduction

This paper studies estimation of quantile treatment e�ects (QTE) with endogenous policy vari-

ables. As with linear models, endogeneity renders standard quantile regression methods incon-

sistent for estimating QTE. A common approach to deal with this problem is to use instrumental

variable (IV) methods.

The goal and main contribution of this paper is to develop a regression-based semiparamet-

ric estimation approach based on the instrumental variable quantile regression (IVQR) model

(Chernozhukov and Hansen, 2004, 2005, 2006). The principal feature of the IVQR model is the

rank similarity assumption, a condition that restricts the evolution of individual ranks across

treatment states. Rank similarity implies a conditional moment restriction that can be used to

construct estimators for QTE.

However, estimation is complicated by the nonsmoothness and nonconvexity of the result-

ing generalized method of moments (GMM) objective function that occurs even for linear-in-

parameters quantile models (Chernozhukov and Hansen, 2013). Di�erent approaches have been

proposed to overcome this problem: estimation procedures for linear-in-parameters models and

nonparametric minimum-distance-type estimators. While linear-in-parameters models typically

impose strong additivity assumptions on the structural quantile function and thereby substan-

tially restrict treatment e�ect heterogeneity, nonparametric approaches su�er from the curse of

dimensionality and require choosing tuning parameters.

The semiparametric estimation approach proposed in this paper does neither impose separa-

bility restrictions, require the choice of tuning parameters, nor su�er from the curse of dimension-

ality. Instead, it relies on �exible parametric models for the observed conditional distributions

and conditional probabilities. The key idea is to construct analytic plug-in estimators based on

closed form solutions for the IVQR estimands of the potential outcome cumulative distribution

functions (cdfs), which are available whenever the policy variable is binary.1 These closed form

solutions are compositions of observable conditional distributions and conditional probabilities.

I estimate the conditional distributions using distribution regression (DR) and the conditional

probabilities using binary choice models.2 I then apply the closed form solutions to obtain

plug-in estimators of the conditional potential outcome distributions and the conditional QTE.

Because analytic closed form solutions are only available for binary treatments, this plug-in

estimation approach is inherently limited to binary treatments.

Because the semiparametric plug-in estimators do not rely on additive separability of the

structural quantile function, the conditional QTE are generically nonlinear functions of the

covariates. These high-dimensional objects are typically hard to summarize and convey. Conse-

1These analytic closed from solutions have been derived in a companion paper (Wüthrich, 2014).
2DR was �rst proposed by Foresi and Peracchi (1995). Uniform inference results have been derived by

Chernozhukov et al. (2013).
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quently, one is often more interested in unconditional QTE, which are obtained by integrating

the estimators of the conditional potential outcome distributions with respect to the empirical

distribution of the covariates.3

This paper shows that under standard regularity conditions, the semiparametric estimators

of the QTE and other related functionals are uniformly consistent and satisfy functional cen-

tral limit theorems. Moreover, I prove validity of the exchangeable bootstrap for estimating

the limiting laws. These results allow me to construct uniform con�dence bands and to test

functional hypothesis such as no-e�ects, positive e�ects, constant e�ects, or stochastic domi-

nance. I also suggest simple overidenti�cation speci�cation tests for the IVQR model based

on the Kolmogorov-Smirnov distance between the QTE estimates obtained from using di�erent

instruments.

Although the focus of this paper is on QTE, the semiparametric plug-in approach to esti-

mation and inference also covers many other smooth functionals of the conditional and uncon-

ditional potential outcome distributions. Examples include average treatment e�ects (ATE),

distributional treatment e�ects, Lorenz curves, and Gini coe�cients.

The method is illustrated by reanalyzing the distributional e�ect of 401(k) plans on individ-

ual savings behavior using the data from the 1991 Survey of Income and Program Participation

(SIPP) studied in Chernozhukov and Hansen (2004) and Belloni et al. (2014). My estimates

suggest that 401(k) participation has a moderate e�ect on individual assets at lower quantiles

while having a substantive impact at high quantiles. A comparison of these results with the esti-

mates from a linear-in-parameters model shows substantive di�erences between both approaches,

highlighting the importance of analyzing nonseparable models.

1.1 Related literature

This paper contributes to the extensive literature on estimation in the IVQR model. Estimation

and inference in linear conditional quantile models have been analyzed by Chernozhukov and

Hong (2003), Chernozhukov and Hansen (2006), Chernozhukov et al. (2007a), Chernozhukov

and Hansen (2008), Chernozhukov et al. (2009), and Kaplan and Sun (2014). Nonparametric

estimation has been studied by Chernozhukov et al. (2007b), Horowitz and Lee (2007), Chen and

Pouzo (2009), Chen and Pouzo (2012), Gagliardini and Scaillet (2012), Su and Hosino (2013),

Kaplan and Sun (2014), and Belloni et al. (2014). Chernozhukov and Hansen (2013) provide a

recent survey on the IVQR model including further references.

The semiparametric estimation strategy is also related to several estimation approaches that

rely on estimating conditional distributions using distribution or quantile regression as ingredi-

ents for deriving plug-in estimators. Chernozhukov et al. (2013) have analyzed counterfactual

3I refer to Firpo (2007) or Frölich and Melly (2013) for a discussion of the di�erences between conditional
and unconditional QTE.
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distributions, Yu (2014) has proposed a semiparametric estimation approach for marginal QTE,

and Melly and Santangelo (2015) have analyzed nonlinear di�erence-in-di�erences models.

More broadly, this paper contributes to the literature on identi�cation and estimation of QTE

and structural quantile functions with endogeneity. Abadie et al. (2002), Frandsen et al. (2012),

and Frölich and Melly (2013) have studied semi- and nonparametric estimation of local QTE

with binary treatments. Triangular models with continuous treatments have been analyzed by

Chesher (2003), Ma and Koenker (2006), Lee (2007), Imbens and Newey (2009), and Torgovitsky

(2012) among others.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2, I present the IVQR model and

the analytic closed form solutions. Section 3 describes the estimators and compares them to

existing methods. In Section 4, I give the asymptotic results and their proofs. Section 5 extends

the analysis to nonbinary instruments and suggests a simple overidenti�cation speci�cation test

for the IVQR model. In Section 6, I apply my method to estimate the distributional e�ects

of 401(k) plans on accumulated assets. Section 7 concludes. The appendix contains additional

proofs and two simple numerical examples that illustrate the di�erence between linear separable

and nonseparable quantile models.

2 The IVQR model

I consider a setup with a continuous outcome variable Y , a binary treatment D, a binary

instrument Z, and a vector of covariates X. While the estimation approach can be extended

to nonbinary instruments as discussed in Section 5, it is not possible to extend it to nonbinary

treatments because there are no analytic closed form solutions in this case. Let the symbols Y,

D, Z, and X denote the supports of these random variables and let T ⊂ (0, 1) be a compact

interval of quantile indices. Moreover, de�ne YX := {(y, x) : y ∈ Y, x ∈ X} and generate other

index sets accordingly, for example DZ := {(d, z) : d ∈ D, z ∈ Z}. The analysis is developed

within the potential outcomes framework (e.g., Rubin, 1974). Let Y1 and Y0 (indexed by D)

denote the potential outcomes. Having conditioned on covariates X = x, by the Skorohod

representation of random variables, potential outcomes can be represented as

Yd = QYd|X(Ud|x) with Ud ∼ Unif(0, 1),

where QYd|X(τ |x) is the τ -quantile of Yd given X = x. This representation is essential for the

IVQR model.

The IVQR model is based on the following set of assumptions (some of which are represen-
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tations) (Chernozhukov and Hansen, 2005, 2013):

Assumption 1. Given a common probability space (Ω, F, P ), the following conditions hold

jointly with probability one:

1. Potential outcomes: Conditional on X = x, for each d, Yd = QYd|X(Ud|x), where QYd|X(τ |x)

is strictly increasing in τ and Ud ∼ U(0, 1).

2. Independence: Conditional on X = x, {Ud} are independent of Z.

3. Selection: D := ρ(Z,X, V ) for some unknown function ρ(·) and random vector V .

4. Rank similarity: Conditional on X = x, Z = z, V = v, {Ud} are identically distributed.

5. Observed variables: Observed variables consist of Y := QYD|X(UD|X), D, X, and Z.

Assumption 1.1 restates the Skorohod representation of random variables and imposes strict

monotonicity on the structural quantile function, thus ruling out discrete outcome variables.

Assumption 1.2 imposes independence between the potential outcomes and the instrument.

Assumption 1.3 states a general selection equation in which the unobservable random vector V

leads to di�erent treatment choices between observationally identical individuals. Assumption

1.4 represents the arguably most important condition of the IVQR model. It requires that

individual ranks are constant across potential outcome distributions up to random slippages

away from a common level U . Finally, Assumption 1.5 summarizes the observable variables. The

interested reader is referred to Chernozhukov and Hansen (2005, 2013) for in-depth discussions

of Assumption 1.

The main statistical implication of Assumption 1 is the following nonlinear moment condition

(Chernozhukov and Hansen, 2005, Theorem 1):

P
(
Y ≤ QYD|X(τ |X)|X,Z

)
= τ (1)

Estimation based on (1) is challenging because the sample analogue of the GMM objective func-

tion is nonsmooth and generically nonconvex. References to di�erent approaches to overcome

these challenges are given in the introduction.

Here I propose a computationally tractable estimation approach that exploits closed form

solutions of the potential outcome distributions FY1|X(y|x) and FY0|X(y|x) to construct semi-

parametric plug-in estimators. These analytic closed from solutions have been derived in a

companion paper (Wüthrich, 2014).
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Lemma 1. Suppose that Assumption 1 holds and that

F cY1|X(y|x) :=
p(1, x)FY |D,Z,X(y|1, 1, x)− p(0, x)FY |D,Z,X(y|1, 0, x)

p(1, x)− p(0, x)
,

F cY0|X(y|x) :=
(1− p(0, x))FY |D,Z,X(y|0, 0, x)− (1− p(1, x))FY |D,Z,X(y|0, 1, x)

p(1, x)− p(0, x)
, (2)

are strictly increasing and continuously di�erentiable cdfs, then

FY1|X(y|x) =p(1, x)FY |D,Z,X(y|1, 1, x)

+ (1− p(1, x))FY |D,Z,X

(
QcY0|X

(
F cY1|X(y|x)|x

)
|0, 1, x

)
,

FY0|X(y|x) = (1− p(0, x))FY |D,Z,X(y|0, 0, x)

+ p(0, x)FY |D,Z,X

(
QcY1|X

(
F cY0|X(y|x)|x

)
|1, 0, x

)
, (3)

where p(z, x) := P (D = 1|Z = z,X = x).

Proof. See appendix B.2.

Lemma 1 and its proof are closely related to Lemma 1 in the companion paper (Wüthrich,

2014). Based on the closed form solutions in Lemma 1, the conditional QTE are identi�ed as

δ(τ |x) = F←Y1|X(τ |x)− F←Y0|X(τ |x),

where F←Yd|X(y|x) denotes the left-inverse of FYd|X(y|x). Conditional QTE are useful for ana-

lyzing e�ect heterogeneity by observable characteristics and across di�erent quantiles. Because

conditional QTE are generically high-dimensional objects, one is often more interested in uncon-

ditional QTE, which are informative about the e�ect of the treatment on the marginal outcome

distribution:

δ(τ) = F←Y1 (τ)− F←Y0 (τ),

where unconditional potential outcome distributions are obtained by integrating the conditional

potential outcome distributions with respect to the marginal distribution of the covariates,

FX(x):

FY1(y) =

∫
X
FY1|X(y|x)dFX(x),

FY0(y) =

∫
X
FY0|X(y|x)dFX(x).

Note that all the previous estimands are functions of FY |D,Z,X(y|d, z, x), p(z, x), and FX(x) only.

This suggests a plug-in estimation approach as detailed in Section 3.
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3 Estimators

The conditional distributions are estimated using DR. For all (d, z) ∈ DZ, let

F̂Y |D,Z,X(y|d, z, x) = Λ
(
x′β̂d,z(y)

)
for all y ∈ Y,

with

β̂d,z(y) = arg max
b

n∑
i=1

1{Di = d, Zi = z}
[
1{Yi ≤ y} ln

[
Λ
(
X ′ib

)]
+ 1{Yi > y} ln

[
1− Λ

(
X ′ib

)]]
,

where Λ(·) denotes the logit or probit link. In �nite samples, the estimated conditional distribu-

tions do not need to be monotone. To overcome this problem, I suggest applying the rearrange-

ment procedure proposed by Chernozhukov et al. (2010). Because these rearrangements do not

a�ect the asymptotic properties of the estimators, I keep them implicit throughout the paper.

The conditional probabilities are estimated using binary choice models:

p̂(z, x) = Λ
(
x′γ̂z

)
,

where

γ̂z = arg max
g

n∑
i=1

1{Zi = z}
[
1{Di = 1} ln

[
Λ
(
X ′ig

)]
+ 1{Di = 0} ln

[
1− Λ

(
X ′ig

)]]
.

Note that the speci�cations of the conditional cdfs and conditional probabilities are very �ex-

ible in the sense that for a given Λ(·), FY |D,Z,X(y|d, z, x) and p(z, x) can be approximated

arbitrarily well by using a rich enough dictionary of transformations of the original covariates

(Chernozhukov et al., 2013).

Remark 1. Instead of DR, the conditional distributions can be estimated using quantile regres-

sion (QR). In the linear QR model it is assumed that for all (d, z) ∈ DZ,

Q̂Y |D,Z,X(y|d, z, x) = x′β̂d,z(τ) for all τ ∈ T ,

where

β̂d,z(τ) = arg min
b

n∑
i=1

1{Di = d, Zi = z}
[
τ − 1

{
Yi ≤ X ′ib

}] [
Yi −X ′ib

]
.

The conditional distribution is then estimated as

F̂Y |D,Z,X(y|d, z, x) = ε+

∫ 1−ε

ε
1
{
x′β̂d,z(τ) ≤ y

}
dτ,
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where ε > 0 is a trimming constant to avoid estimation of tail quantiles. Based on the results

in Chernozhukov et al. (2013), it is straightforward to extend the asymptotic theory to QR. The

interested reader is referred to Koenker et al. (2013), Chernozhukov et al. (2013), or Rothe and

Wied (2013) for further discussions as well as speci�cation tests of distribution and quantile

regression.

Based on the estimates F̂Y |D,Z,X(y|d, z, x) and p̂(z, x) plug-in estimators for FY1|X(y|x) and

FY0|X(y|x) are constructed as

F̂Y1|X(y|x) =p̂(1, x)F̂Y |D,Z,X(y|1, 1, x)

+ (1− p̂(1, x)) F̂Y |D,Z,X

(
Q̂cY0|X

(
F̂ cY1|X(y|x)|x

)
|0, 1, x

)
,

F̂Y0|X(y|x) = (1− p̂(0, x)) F̂Y |D,Z,X(y|0, 0, x)

+ p̂(0, x)F̂Y |D,Z,X

(
Q̂cY1|X

(
F̂ cY0|X(y|x)|x

)
|1, 0, x

)
,

where

F̂ cY1|X(y|x) =
p̂(1, x)F̂Y |D,Z,X(y|1, 1, x)− p̂(0, x)F̂Y |D,Z,X(y|1, 0, x)

p̂(1, x)− p̂(0, x)
,

F̂ cY0|X(y|x) =
(1− p̂(0, x))F̂Y |D,Z,X(y|0, 0, x)− (1− p̂(1, x))F̂Y |D,Z,X(y|0, 1, x)

p̂(1, x)− p̂(0, x)
.

For the conditional and unconditional QTE, I also obtain estimators via the plug-in rule

δ̂(τ |x) = F̂←Y1|X(y|x)− F̂←Y0|X(y|x) and δ̂(τ) = F̂←Y1 (y)− F̂←Y0 (y),

where the unconditional distributions, F̂Y1(y) and F̂Y0(y), are estimated by integrating the esti-

mators of the conditional distributions, F̂Y1|X(y|x) and F̂Y0|X(y|x), with respect to the empirical

distribution of the covariates F̂X(x).

F̂Y1(y) =

∫
X
F̂Y1|X(y|x)dF̂X(x),

F̂Y0(y) =

∫
X
F̂Y0|X(y|x)dF̂X(x),

where

F̂X(x) =
1

n

n∑
i=1

1 {Xi ≤ x} .

Similarly, one can construct plug-in estimators for other functionals of interest.
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3.1 Comparison to other estimation approaches

The alternative estimation approaches can be classi�ed broadly into two categories: approaches

based on the linear-in-parameters models such as

QYD|X(τ |x) = Dδ(τ) +X ′β(τ), (4)

and nonparametric minimum-distance type estimators.

The most popular approach for estimating IVQR models is the inverse quantile regression

algorithm (IQR) developed by Chernozhukov and Hansen (2006). This approach exploits the

linear-in-parameters structure to overcome the problems associated with maximizing the function

by combining robust grid search methods with standard quantile regression techniques. The key

feature and main limitation of IQR is that the dimensionality of the grid search equals the

dimensionality of the endogenous variables. Thus, IQR is computationally tractable only if the

dimensionality of the endogenous variables is small, typically one or two. However, this feature

crucially limits the appeal of IQR for analyzing models with treatment e�ect heterogeneity across

observable covariates. To see this, note that models such as (4) impose that the conditional

QTE δ(τ) is constant across X = x. Imposing more �exible models including interactions of

D and (transformations of) X increases the dimensionality of the endogenous variables and

consequently the dimensionality of the grid search, rendering IQR computationally prohibitive.

In contrast, the semiparametric estimation approach remains computationally tractable without

imposing separability restrictions on the structural quantile function. Instead, it relies on �exible

parametric models for the conditional cdfs and conditional probabilities. Moreover, if we use

fully saturated speci�cations for the conditional distributions and the conditional probabilities,

the parametric restrictions are without loss of generality and the semiparametric estimation

approach presents a computationally convenient procedure to nonparametric estimation of QTE.

In contrast, the IQR algorithm is computationally prohibitive in this case, even in situations

where X is rather low dimensional. Moreover, to the best of my knowledge, there are no results

about the interpretation of linear IVQR models with misspeci�cation.4 Thus, it is unclear what

linear IVQR models estimates when the functional form is misspeci�ed. There are at least

two alternatives to IQR, namely quasi-Bayesian estimators (Chernozhukov and Hong, 2003)

and estimators based on smoothed estimation equations (Kaplan and Sun, 2014). While both

approaches remain computationally tractable with multiple endogenous variables, the former

requires a careful tuning in applications and the latter relies on the choice of a smoothing-

bandwidth (Chernozhukov and Hansen, 2013).

The nonparametric estimation approaches cited in the introduction do not rely on sepa-

rability assumptions nor impose parametric models for the conditional cdfs and probabilities.

4This is in contrast to the exogenous case, see Angrist et al. (2006).
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However, these methods su�er from the curse of dimensionality5, necessitate the choice tuning

parameters, and are typically computationally demanding. In addition, nonparametric estima-

tion is complicated by nonlinear ill-posed inverse problems. In contrast, the semiparametric

estimation approach constitutes a computationally feasible and easily implementable approach

that does not rely on tuning parameters nor su�er from the curse of dimensionality.

Finally, it is noteworthy that many of the alternative estimation approaches such as the IQR

algorithm accommodate multivalued, continuous, or even multiple treatments. This is in sharp

contrast to the semiparametric estimation approach that is limited to binary scalar treatments.

4 Asymptotic theory and inference

4.1 Limiting distribution

Assumption 2 gives conditions under which the plug-in estimators are uniformly consistent and

asymptotically Gaussian.

Assumption 2 (Regularity conditions).

1. {Yi, Di, Zi, Xi} are i.i.d.

2. p(z, x) = Λ (x′γz) and FY |D,Z,X(y|d, z, x) = Λ (x′βdz(y)) for all (y, d, z, x) ∈ YDZX , where

Λ(·) is either the probit oder logit link function.

3. The region of interest Y is a compact interval in R and the conditional density fY |D,Z,X(y|d, z, x)

exists, is uniformly bounded, and uniformly continuous. Moreover, X is a compact subset

of Rdim(X).

4. E||X||2 <∞ and the minimum eigenvalues of

Jγz = E

[
1{Z = z} λ (X ′γz)

2

Λ (X ′γz) [1− Λ (X ′γz)]
XX ′

]
,

and

Jβdz(y) = E

[
1{D = d, Z = z} λ (X ′βdz(y))2

Λ (X ′βdz(y)) [1− Λ (X ′βdz(y))]
XX ′

]

are bounded away from zero uniformly over y ∈ Y, where λ(·) is the derivative of Λ(·).

5. P (Z = 1|X = x) and |p(1, x)−p(0, x)| are bounded away from zero and one for all x ∈ X ,

and F cYd|X(y|x) admits a positive, uniformly bounded, and uniformly continuous density on

an interval containing an ε-enlargement of the set {QcYd|X(τ |x) : (τ, x) ∈ T X}.

5This particularly applies to conditional QTE. For unconditional QTE, one could probably obtain
√
n-

consistent estimators as in Frölich and Melly (2013).
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Assumptions 2.1 � 2.4 are standard regularity conditions (e.g., Chernozhukov et al., 2013)

that ensure that functional central limit theorems and bootstrap validity results apply for the

conditional distributions and conditional probabilities. Assumption 2.5 implies point identi�-

cation based on the moment condition (1) and Hadamard di�erentiability of the closed form

solutions (3).6

To describe the results, let `∞(U) denote the set of bounded and measurable functions

h : U 7→ R. The following lemma provides the joint limiting distribution of the conditional

potential outcome cdfs.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then

√
n

F̂Y1|X(y|x)− FY1|X(y|x)

F̂Y0|X(y|x)− FY0|X(y|x)

 
ZF1(y|x)

ZF0(y|x)


as stochastic processes indexed by (y, x) ∈ YX in the metric space `∞(YX )2, where ZF1(y|x)

and ZF0(y|x) are tight zero-mean Gaussian processes de�ned in Appendix B.

Proof. See Appendix B.

The main di�culty in proving Lemma 2 is to show that the closed form solutions (3) are

Hadamard di�erentiable (uniformly with respect to an index). The result then follows from the

functional delta method and existing functional central limit theorems for the conditional cdfs

and the conditional probabilities.

The next theorem presents the limiting distribution for the conditional quantile functions

and the conditional QTE.

Theorem 1. Suppose that Assumptions 1 and 2 hold and that FYd|X(y|x) admits a positive

continuous density on an interval containing an ε-enlargement of the set {QYd|X(τ |x) : (τ, x) ∈

T X} for d ∈ D. Then

√
n
(
δ̂(τ |x)− δ(τ |x)

)
 Zδ(τ |x),

as a stochastic process indexed by (τ, x) ∈ T X in the metric space `∞(T X ), where Zδ(τ |x) is a

mean-zero tight Gaussian process de�ned as

Zδ(τ |x) :=ZFY0|X
(
QY0|X(τ |x)|x

)
/fY0|X

(
QY0|X(τ |x)|x

)
− ZFY1|X

(
QY1|X(τ |x)|x

)
/fY1|X

(
QY1|X(τ |x)|x

)

6This condition implies continuity and full rank of the Jacobian of the moment condition (1), which in turn
implies point identi�cation of the IVQR estimands (Chernozhukov and Hansen, 2005).

11



Proof. The proof follows from Lemma 2, Hadamard di�erentiability of the inverse map uniformly

with respect to an index (Chernozhukov et al., 2010), and the functional delta method.

Functional central limit theorems for the unconditional quantile functions and QTE can

be derived based on the Hadamard di�erentiability of the counterfactual operator, φ (G,F ) =∫
G(y, x)dF (x), established in Chernozhukov et al. (2013).

Theorem 2. Suppose that Assumptions 1 and 2 hold and that FYd(y) admits a positive contin-

uous density on an interval containing an ε-enlargement of the set {QYd(τ) : τ ∈ T } for d ∈ D.

Then

√
n
(
δ̂(τ)− δ(τ)

)
 Zδ(τ)

as a stochastic process indexed by τ ∈ T in the metric space `∞(T ) where Zδ(τ) := ZQY1 (τ) −

ZQY0 (τ) is a mean-zero tight Gaussian process and ZQY1 (τ) and ZQY0 (τ) are de�ned in (5) and

(6).

Proof. By the Donsker theorem, the empirical distribution of the covariates

1√
n

n∑
i=1

(
f (Yi, Xi)−

∫
f (Yi, Xi) dP

)
 Zx (f(y, x))

as a stochastic process indexed by f ∈ F , where F is a universal Donsker class. The limit

process Zx (f(y, x)) is a tight P-Brownian bridge (Chernozhukov et al., 2013). This convergence

is jointly with the conditional potential outcome cdf process in Lemma 2.

By Lemma 2, Hadamard di�erentiability of the counterfactual operator (Chernozhukov et al.,

2013), and the functional delta method, obtain

√
n

F̂Y1(y)− FY1(y)

F̂Y0(y)− FY0(y)

 
∫X ZF1(y|x)dFX(x) + Zx

(
FY1|X(y|·)

)∫
X ZF0(y|x)dFX(x) + Zx

(
FY0|X(y|·)

)
 :=

ZFY1 (y)

ZFY0 (y)

 .

By Hadamard di�erentiability of the inverse map (e.g., Van der Vaart and Wellner, 1996, Lemma

3.9.20) and the functional delta method,

√
n

Q̂Y1(τ)−QY1(τ)

Q̂Y0(τ)−QY0(τ)

 
ZQY1 (τ)

ZQY0 (τ)

 in `∞(T )2,

where

ZQY1 (τ) := −ZFY1 (QY1(τ)) /fY1 (QY1(τ)) , (5)

ZQY0 (τ) := −ZFY0 (QY0(τ)) /fY0 (QY0(τ)) . (6)

12



The result then follows from the functional delta method.

Finally, I present a general result that characterizes the limiting distribution of a generic

Hadamard di�erentiable functional of FY1|X(y|x) and FY0|X(y|x). Examples of Hadamard dif-

ferentiable functionals include the ATE, distributional treatment e�ects, Lorenz curves, and Gini

coe�cients.

Theorem 3. Suppose that Assumptions 1 and 2 hold and that the map ϕ
(
FY1|X , FY0|X

)
(w)

(indexed by w) is Hadamard di�erentiable with derivative maps ϕFY1|X (·) and ϕFY0|X (·). Then

√
n
(
ϕ
(
F̂Y1|X , F̂Y0|X

)
(w)− ϕ

(
FY1|X , FY0|X

)
(w)
)
 ϕFY1|X (ZF1) (w) + ϕFY0|X (ZF0) (w)

as a stochastic process indexed by w ∈ W in `∞(W).

Proof. Follows directly from the functional delta method.

Remark 2. The functional central limit theorems imply that the standard pointwise estimators

(e.g., the QTE estimator at a single quantile) converge to normal random variables. Moreover,

any �nite collection of pointwise estimators (e.g., the QTE estimators at two di�erent quantiles)

converges jointly to multivariate normal random variables. The variance-covariance matrices

are given by the above expressions.

The above characterizations of the limit processes can be used to perform inference using

standard analytical methods. Because all asymptotic variances contain terms that are di�cult

to estimate (e.g., conditional densities), I recommend using the bootstrap, whose validity is

established in the next section.

4.2 Inference

Here I prove validity of a general resampling procedure called the exchangeable bootstrap (e.g.,

Van der Vaart and Wellner, 1996; Chernozhukov et al., 2013). To describe the bootstrap pro-

cedure, let (w1, ..., wn) be a vector of nonnegative random weights that are independent of the

data and satisfy the following assumption.7

Assumption 3. For each n, let (w1, ..., wn) be an exchangeable8, nonnegative random vector,

which is independent of the data, such that for some ε > 0,

sup
n

E[w2+ε
1 ] <∞, 1

n

n∑
i=1

(wi − w̄)2 →P 1, w̄ :=
1

n

n∑
i=1

wi →P 1.

7This assumption corresponds to condition EB in Chernozhukov et al. (2013).
8A sequence of random variables X1, X2, ..., Xn is exchangeable if for any �nite permutation σ of indices

1, 2, ..., n the joint distribution of the permuted sequenceXσ(1), Xσ(2), ..., Xσ(n) is the same as the joint distribution
of the original sequence (Chernozhukov et al., 2013).
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The exchangeable bootstrap uses (w1, ..., wn) as random sampling weights to construct boot-

strap versions of the estimators. Speci�cally, the bootstrap versions of the conditional distri-

bution and the conditional probabilities are given by F̂ ∗Y |D,Z,X(y|d, z, x) = Λ
(
x′β̂∗d,z(y)

)
and

p̂∗(z, x) = Λ (x′γ̂z
∗) respectively, where

β̂∗d,z(y) = arg max
b

n∑
i=1

wi1{Di = d, Zi = z}
[
1{Di = 1} ln

[
Λ
(
X ′ib

)]
+ 1{Di = 0} ln

[
1− Λ

(
X ′ib

)]]
,

and

γ̂∗z = arg max
g

n∑
i=1

wi1{Zi = z}
[
1{Di = 1} ln

[
Λ
(
X ′ig

)]
+ 1{Di = 0} ln

[
1− Λ

(
X ′ig

)]]
.

Finally, F̂ ∗X(x) = (
∑n

i=1wi)
−1∑n

i=1wi1 {Xi ≤ x} is a bootstrap version of the estimator of the

marginal covariate distribution.

As explained in Van der Vaart and Wellner (1996) and Chernozhukov et al. (2013), by ap-

propriately choosing the weights, the exchangeable bootstrap covers many resampling schemes

as special cases. For example, the empirical bootstrap corresponds to the case where (w1, ..., wn)

is a multinomial vector with parameter n and probabilities (1/n, ..., 1/n). The weighted boot-

strap corresponds to the case where (w1, ..., wn) are i.i.d. nonnegative random variables with

E[w1] = V ar[w1] = 1. The m out of n bootstrap is nested by letting (w1, ..., wn) be equal to√
n/m times multinomial vectors with parameter m and probabilities (1/n, ..., 1/n). Finally,

subsampling corresponds to letting (w1, ..., wn) be a row in which the number n(n−m)−1/2m−1/2

appears m times and 0 appears n−m times ordered a random.

The next theorem formally establishes validity of the exchangeable bootstrap.

Theorem 4. Suppose that Assumptions 1 � 3 hold. Then the exchangeable bootstrap consistently

estimates the limit laws for the processes in Lemma 2 and Theorems 1 � 3.

Proof. By Lemma 2 and Corollary 5.4 in Chernozhukov et al. (2013), the exchangeable bootstrap

is valid for the conditional distribution functions and conditional probabilities. The result then

follows from Hadamard di�erentiability of all maps involved and the functional delta method

for the bootstrap (e.g., Van der Vaart and Wellner, 1996, Section 3.9).

The exchangeable bootstrap distributions can be used to perform asymptotically valid in-

ference for the causal e�ects of interest. Here I focus on uniform inference methods. These

methods cover standard pointwise methods as special cases and, in addition, allow for testing

richer functional parameters and hypothesis (Chernozhukov et al., 2013). For example, one can

construct asymptotic simultaneous (1−α)%-con�dence bands for the whole quantile treatment
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e�ect process δ̂(τ):9

δ̂±(τ) = δ̂(τ)± t̂1−αΣ̂(τ)1/2/
√
n

such that

lim
n→∞

P
{
δ(τ) ∈

[
δ̂−(τ), δ̂+(τ)

]
for all τ ∈ T

}
= 1− α,

where Σ̂(τ) is a uniformly consistent estimator of Σ(τ), the asymptotic variance function of
√
n
(
δ̂(τ)− δ(τ)

)
, and t̂1−α is a consistent estimator of the (1−α)-quantile of the Kolmogorov-

Smirnov maximal t-statistic,

t = sup
τ∈T

√
nΣ̂(τ)−1/2|δ̂(τ)− δ(τ)|.

The critical value t̂1−α can be estimated using the exchangeable bootstrap. Uniform con�dence

bands for other functionals of interest can be obtained similarly.

5 Nonbinary instruments and a simple speci�cation test

Here I brie�y discuss how to incorporate nonbinary instruments and present a simple speci�ca-

tion test for the IVQR model.

If the instrument is multivalued or continuous, it can be dichotomized such that Assumption

2 holds. Estimation can then proceed based on the dichotomized instrument. If there are

multiple instruments, the same strategy can be applied based on the propensity score p(Z,X).

Under the assumptions put forth in the previous sections, the choice of the dichotomization does

not matter for consistency of the estimators. However, e�ciency could be improved upon by

developing plug-in estimators based on closed from solutions for general instruments (Wüthrich,

2014, Section 4 and Lemma 2) or overidenti�ed GMM objective functions. Such extensions are

beyond the scope of this paper and left for future research.

With nonbinary instruments the IVQR model and, in particular, the rank similarity assump-

tion are testable. Suppose that the researcher has access to two di�erent binary instruments Z1

and Z2 that are obtained as transformations of the original instrument respectively instruments

and let δZ1(τ |x) and δZ2(τ |x) denote the associated QTE estimands. Under Assumption 1, the

conditional moment equation (1) implies that

δZ1(τ |x) = δZ2(τ |x) for all (τ, x) ∈ T X .

9Chernozhukov et al. (2013) and Melly and Santangelo (2015) use similar constructions.
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The intuition behind this testable restriction is relatively simple. Under Assumption 1, the

IVQR model yields QTE for the whole population. These treatment e�ects do not depend

on the choice of the instrument because they are not local e�ects for an instrument-speci�c

subpopulation.10 Hence, one can use an overidenti�cation-type test to empirically assess the

validity of the rank similarity assumption (conditional on having a valid instrument). I consider

the following formal testing problem:

H0 : δZ1(τ |x) = δZ2(τ |x) for all (τ, x) ∈ T X

against

H1 : δZ1(τ |x) 6= δZ2(τ |x) for some (τ, x) ∈ T X

Given this representation, speci�cation tests are constructed based on a Kolmogorov-Smirnov-

type measure of distance,11

Tn =
√
n sup

(τ,x)∈T X
|δ̂Z1(τ |x)− δ̂Z2(τ |x)|.

The test then rejects H0 when Tn > T̂1−α, where T̂1−α is a consistent estimator of the (1− α)-

quantile of the limiting distribution of Tn. Under the conditions set forth in the previous sections,

the critical value T̂ (1− α) can be obtained using the exchangeable bootstrap.

6 Empirical application

In this section, I illustrate my method by estimating the distributional impact of 401(k) plans on

accumulated assets as in Chernozhukov and Hansen (2004) and Belloni et al. (2014). The goal

here is to complement their �ndings with unconditional QTE based on the IVQR model and to

provide an empirical comparison to estimates from a linear IVQR models as in Chernozhukov

and Hansen (2004).

6.1 Semiparametric quantile treatment e�ect estimates

As explained by Chernozhukov and Hansen (2004), the 401(k) plans were introduced in the

United States in the early 1980s in an e�ort to increase individual savings. 401(k) plans are

provided by employers and allow individuals to deduct contributions from taxable income. The

main problem in estimating the e�ect of 401(k) plans on accumulated assets is the potential

endogeneity of the actual participation status caused by non-random enrollment. To overcome

10This is in sharp contrast to the local average treatment e�ects framework (Imbens and Angrist, 1994; Abadie
et al., 2002).

11Alternatively, one could consider Cramer-Von-Mises-type test statistics.
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this problem, Abadie (2003), Chernozhukov and Hansen (2004), and Belloni et al. (2014) use

401(k) eligibility as an instrument for the actual participation status, arguing that eligibility

can be taken to be exogenous after conditioning on a small set of covariates including income.12

I adopt their identi�cation strategy, noting that there are also arguments that eligibility is not

conditionally exogenous (e.g., Engen et al., 1996).

I use the same dataset as Chernozhukov and Hansen (2004) and Belloni et al. (2014). The

data consist of 9,915 observations from a sample of households from the 1991 Survey of Income

and Program Participation (SIPP). Descriptive statistics are presented in Tables 1 and 2 in

Chernozhukov and Hansen (2004). The outcome variables of interest are two measures of wealth:

net �nancial assets and total wealth. Covariates include dummies for income categories, dummies

for age categories, dummies for education categories, a marital status indicator, family size, two-

earner status, de�ned bene�t pension status, individual retirement account participation status,

homeownership, and a constant. This is identical to the main speci�cation in Chernozhukov and

Hansen (2004).

Because only individuals who were eligible could enroll in 401(k) plans, 401(k) eligibility

satis�es one-sided non-compliance. Formally, one-sided non-compliance implies that p(0, x) = 0

for all x ∈ X . In practice, this feature reduces the computational burden because p(0, x) and

FY |D,Z,X(y|1, 0, x) need not be estimated.

Figure 1 contains the main empirical results, estimated using a logit link functions and 99 grid

points for DR. I construct pointwise and uniform con�dence bands using 250 empirical bootstrap

replications and a �ne grid of quantile indices {0.15, 0.16, ..., 0.85}. For both outcomes, 401(k)

participation has a small to moderate impact on accumulated assets at the low quantiles while

having a much larger impact at high quantiles. This pattern is more pronounced for net �nancial

assets than for total wealth. Looking at the con�dence bands, one can see that the estimates

for total wealth are much noisier than those for net �nancial assets.

In Figure 2, I assess the robustness of the results with respect to the choice of the link

function. The results indicate that there are almost no visible di�erences between the probit

and the logit link for either outcome variable and only minor di�erences between these nonlinear

link functions and the linear link function at the high quantiles of total wealth. However, these

di�erences are negligible compared to the sampling variation. Overall, the comparison indicates

that my results are robust with respect to the choice of the link function.

12This argument is detailed in Poterba et al. (1994, 1995, 1998) and Benjamin (2003).
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Figure 1: The number of observations is 9,915. The �gure reports unconditional QTE, pointwise
95%-CI, and uniform 95%-CI. The CI are obtained from 250 bootstrap replications.
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Figure 2: The number of observations is 9,915. The �gures compare the QTE estimates based
on the logit link to the QTE estimates based on the probit link and a identity link.
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6.2 Comparison to the linear-in-parameters model

Figure 3 compares the semiparametric plug-in estimates to the estimates obtained from linear-

in-parameters models as in Chernozhukov and Hansen (2004):

QYD|X(τ |x) = Dδ(τ) +X ′β(τ),

which are estimated using IQR. The comparison suggests that there are substantial di�erences

regarding the magnitude and shape of the QTE estimates. In particular, for total wealth, the

relatively constant pattern for the conditional estimates based on the linear model sharply con-

trasts with the increasing shape of the unconditional QTE estimates based on the nonseparable

model. Interestingly, my estimates are similar to the unconditional QTE estimates for the

compliers based on a �exible nonparametric model reported in Belloni et al. (2014), while the

results based on the linear-in-parameters IVQR model are comparable to the estimates based

on linear models for the compliers (Chernozhukov and Hansen, 2004). The di�erences between
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Figure 3: The number of observations is 9,915. The �gure displays unconditional QTE estimates
based on the semiparametric plug-in approach (red), conditional QTE estimates obtained from
a linear model (blue), and unconditional QTE obtained from a linear model (green).

the estimates of both models can be either due to misspeci�cation of the linear model or due

to di�erences between conditional and unconditional QTE. To further assess this issue, I also

plot unconditional QTE based on the linear model. These estimates are constructed in three

steps. In the �rst step, the conditional potential outcome cdfs are estimated by inverting the

conditional potential outcome quantile functions,

Q̂Y1|X(τ |x) = δ̂(τ) + x′β̂(τ),
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and

Q̂Y0|X(τ |x) = x′β̂(τ).

Second, I obtain unconditional distributions integrating the conditional distributions with re-

spect to the estimated empirical distribution of the covariates. Finally, I invert the uncondi-

tional cdfs to estimate the unconditional QTE. Note that steps two and three are identical to

the semiparametric estimation approach. Thus, di�erences between the estimates are solely due

to di�erences between the conditional potential outcome distributions. The di�erences between

the unconditional QTE estimates suggest that imposing e�ect homogeneity across covariates can

substantially bias the estimates and highlight the importance of more �exible models. Appendix

A contains two simple examples to further illustrate this point.

7 Conclusion and directions for future research

This paper proposes semiparametric plug-in estimators for conditional and unconditional QTE

based on the IVQR model. Exploiting analytic closed form solutions, the estimation procedure

does not rely on separability of the structural quantile function, while retaining computational

tractability and
√
n-consistency. I prove functional central limit theorems and establish validity

of the exchangeable bootstrap for estimating the limiting laws. The semiparametric estimation

approach is applied to reanalyze the e�ect of 401(k) plans on individual assets. My �ndings

suggest that the e�ect of 401(k) plans is positive and increasing along the distribution. A

comparison to a separable linear-in-parameters model highlights the potential bias arising from

separability restrictions and the importance of estimating more �exible models.

The semiparametric plug-in approach relies on parametric �rst stage estimates of conditional

cdfs and conditional probabilities. Although �exible, these parametric models might not be

appropriate and one might prefer fully nonparametric estimation approaches. It would thus

be interesting to extend the estimation approach to accommodate nonparametric �rst stage

estimators. Such an extension is outside of the the scope of this paper but is certainly worth

pursuing in future research.

One important limitation is that the estimation approach is inherently limited to binary

treatments because closed from solutions are only available for this important special case.

Moreover, despite the fact that nonbinary instruments can be accommodated as outline in

Section 5, e�ciency of the estimators could be improved upon by using the more general closed

form solutions (Wüthrich, 2014, Lemma 2). Deriving more general analytic closed form solution

and extending the plug-in approach accordingly thus constitutes a promising extension.

Finally, the speci�cation test for the IVQR model presented in Section 5 could be extended
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by considering more general test statistics that e�ciently make use of all the available overiden-

tifying restrictions.
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A Linear vs. nonlinear models: two simple examples

Section 6.2 shows substantial di�erences between the unconditional QTE estimates of the linear

model and the nonseparable semiparametric estimation approach. To further investigate the

di�erences between linear and nonlinear IVQR models, I analyze two di�erent data generating

processes (DGP):

1. U ∼ N(0, 1), V ∼ N(0, 1), Z ∼ Bernoulli(0.5),X ∼ N(0, 1),D = 1 {Z + 0.25 · (X + U) > V },

Y0 = X · U , Y1 = X + U , Y = Y1 ·D + Y0 · (1−D).

2. Same as DGP 1 but with Y1 = X/U .

DGP 1 and DGP 2 both satisfy Assumption 1 and feature heterogeneity across covariates, the

only di�erence being the speci�ation of Y1. Figure 4 compares unconditional QTE estimated

based on a linear model and the IQR algorithm with those based on the nonseparable model

estimated using the semiparametric approach proposed in this paper.13 Panel A shows a similar
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Figure 4: Based on N = 10′000. The �gure displays unconditional QTE estimates based on the
semiparametric plug-in approach, unconditional QTE estimates obtained from a linear model,
and the true unconditional QTE.

pattern as in the empirical application: the linear model underestimates the heterogeneity across

quantiles compared to the nonseparable model. Moreover, the semiparametric estimates are

close to the true QTE. In contrast, Panel B shows a scenario where both estimates are similar

and coincide with the true value. These examples illustrate that separability of the structural

quantile function can seriously bias QTE estimates for some DGPs while not being restrictive

for others.

13The IQR algorithm is based on a grid search over {−5,−4.99, ..., 5} and the semiparametric estimation
approach is based on a logit link function and 199 DR to approximate the conditional distributions.
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B Additional Proofs

B.1 Additional notation

To ease the exposition, I introduce some additional notation. De�ne

γ :=
(
γ′0, γ

′
1

)′
,

β(y) :=
(
β00(y)′, β01(y)′, β10(y)′, β11(y)′

)′
,

θ(y) :=
(
γ′, β(y)′

)′
,

W (y) :=
(
W ′γ0 ,W

′
γ1 ,Wβ00(y)′,Wβ01(y)′,Wβ10(y)′,Wβ11(y)′

)′
where, for all (d, z) ∈ DZ,

Wγz := G(κγz),

Wβdz(y) := G(κβdz(y)),

and

κγz := 1{Z = z}
[
Λ
(
X ′γz

)
−D

]
H(X ′γz)X,

κβdz(y) := 1{D = d, Z = z}
[
Λ
(
X ′βdz(y)

)
− 1(Y ≤ y)

]
H(X ′βdz(y))X,

where H(·) := λ(·)/ {Λ(·)[ 1− Λ(·) ]} and G is a P-Brownian bridge. De�ne the matrix J(y) as

J(y) :=



Jγ0 0 0 0 0 0

0 Jγ0 0 0 0 0

0 0 Jβ00(y) 0 0 0

0 0 0 Jβ01(y) 0 0

0 0 0 0 Jβ10(y) 0

0 0 0 0 0 Jβ11(y)


.

Finally, denote by C(U) the set of continuous functions from U to R

B.2 Proof of Lemma 1

The proof of Lemma 1 is closely related to the proof of Lemma 1 in Wüthrich (2014).

Step 1: Under Assumption 1, we have that

P
(
Y ≤ QYD|X(τ |x)|X = x, Z = 1

)
= τ

P
(
Y ≤ QYD|X(τ |x)|X = x, Z = 0

)
= τ.
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By the law of iterated expectiations and the de�nition of a conditional cdf,

FY |D,Z,X
(
QY1|X(τ |x)|1, 1, x

)
p(1, x) + FY |D,Z,X

(
QY0|X(τ |x)|0, 1, x

)
(1− p(1, x)) = τ (7)

FY |D,Z,X
(
QY1|X(τ |x)|1, 0, x

)
p(0, x) + FY |D,Z,X

(
QY0|X(τ |x)|0, 0, x

)
(1− p(0, x)) = τ. (8)

Step 2: Equating (7) and (8) and rearranging terms yields

FY |D,Z,X
(
QY1|X(τ |x)|1, 1, x

)
p(1, x)− FY |D,Z,X

(
QY1|X(τ |x)|1, 0, x

)
p(0, x) =

FY |D,Z,X
(
QY0|X(τ |x)|0, 0, x

)
(1− p(0, x))− FY |D,Z,X

(
QY0|X(τ |x)|0, 1, x

)
(1− p(1, x))

Dividing by p(1, x)− p(0, x), we obtain

F cY1|X
(
QY1|X(τ |x)|x

)
= F cY0|X

(
QY0|X(τ |x)|x

)
,

by de�nition. By assumption, F cY1|X(y|x), F cY0|X(y|x), QY1|X(τ |x), and QY0|X(τ |x) are strictly

increasing. Thus,

QcY1|X

(
F cY0|X(y|x)|x

)
= QY1|X

(
FY0|X(y|x)|x

)
(9)

and

QcY0|X

(
F cY1|X(y|x)|x

)
= QY0|X

(
FY1|X(y|x)|x

)
. (10)

Step 3: By assumption, QY1|X(τ |x) and QY0|X(τ |x) are strictly increasing in τ . Hence, substi-

tuting FY1|X(y|x) = τ in equation (7) and FY0|X(y|x) = τ in equation (8), we obtain

FY1|X(y|x) =p(1, x)FY |D,Z,X(y|1, 1, x)

+ (1− p(1, x))FY |D,Z,X
(
QY0|X

(
FY1|X(y|x)|x

)
|0, 1, x

)
,

FY0|X(y|x) = (1− p(0, x))FY |D,Z,X(y|0, 0, x)

+ p(0, x)FY |D,Z,X
(
QY1|X

(
FY0|X(y|x)|x

)
|1, 0, x

)
.

The result then follows by plugging-in (9) and (10) from step 2.

B.3 Proof of Lemma 2

The proof has two steps. In the �rst step, I show that the conditional probabilities and condi-

tional distributions converge jointly to tight mean-zero Gaussian processes. This step builds on

the proof strategy detailed in Chernozhukov et al. (2013) and Yu (2014). The second step shows

that the closed form solutions are Hadamard di�erentiable maps, partly building on earlier work
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by Melly and Santangelo (2015) and De Chaisemartin and D'Haultfoeuille (2014).

Step 1: Using the arguments in Chernozhukov et al. (2013, Appendix E) and Yu (2014, Proofs

of Theorems 4 and 8) it is straightforward to show that

√
n
(
θ̂(y)− θ(y)

)
 Zθ(y)

as a stochastic process indexed by y ∈ Y in the metric space `∞(Y)dim(θ), where Zθ(y) :=

−J−1(y)W (y). Hence the details are omitted for brevity. Note that, Zθ(y) = (Z′γ ,Z′β(y))′,

where Zβ(y) is a stochastic process indexed by y ∈ Y and Zγ is a multivariate normal random

variable. Next, consider the map (g, b) 7→ ϕ(g, b), where

ϕ(g, b)(x, y) =



Λ (x′g0)

Λ (x′g1)

Λ (x′b00(y))

Λ (x′b01(y))

Λ (x′b10(y))

Λ (x′b11(y))


is Hadamard di�erentiable at (g, b(·)) = (γ, β(·)) tangentially to Rdim(γ) × C(Y)dim(β) with

derivative map given by (η, α) 7→ ϕγ,β(·)(η, α), where

ϕγ,β(·)(η, α)(y, x) =



λ (x′γ0)x
′η0

λ (x′γ1)x
′η1

λ (x′β00(y))x′α00(y)

λ (x′β01(y))x′α01(y)

λ (x′β10(y))x′α10(y)

λ (x′β11(y))x′α11(y)


.

Therefore, by the functional delta method

√
n



p̂(0, x)− p(0, x)

p̂(1, x)− p(1, x)

F̂Y |D,Z,X(y|0, 0, x)− FY |D,Z,X(y|0, 0, x)

F̂Y |D,Z,X(y|0, 1, x)− FY |D,Z,X(y|0, 1, x)

F̂Y |D,Z,X(y|1, 0, x)− FY |D,Z,X(y|1, 0, x)

F̂Y |D,Z,X(y|1, 1, x)− FY |D,Z,X(y|1, 1, x)


 ϕγ,β(·) (Zγ ,Zβ(y)) :=



Zp0(x)

Zp1(x)

ZF00(y|x)

ZF01(y|x)

ZF10(y|x)

ZF11(y|x)


as a stochastic process indexed by (y, x) ∈ YX in the metric space `∞(YX )6.

Step 2: This step establishes Hadamard di�erentiability of the closed form solution. To simplify
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the exposition and to keep track of the exact expressions for the limit processes, I proceed step-

by-step, which is justi�ed by the chain rule for Hadamard derivatives (Van der Vaart andWellner,

1996, Lemma 3.9.3). Because,

F̂ cY1|X(y|x) =
p̂(1, x)F̂Y |D,Z,X(y|1, 1, x)− p̂(0, x)F̂Y |D,Z,X(y|1, 0, x)

p̂(1, x)− p̂(0, x)
,

F̂ cY0|X(y|x) =
(1− p̂(0, x))F̂Y |D,Z,X(y|0, 0, x)− (1− p̂(1, x))F̂Y |D,Z,X(y|0, 1, x)

p̂(1, x)− p̂(0, x)
,

by the functional delta method

√
n

 F̂ cY1|X(y|x)− F cY1|X(y|x)

F̂ cY0|X(y|x)− F cY0|X(y|x)

 
ZF c1 (y|x)

ZF c0 (y|x)

 in `∞(YX )2,

where ZF c1 (y|x) and ZF c0 (y|x) are tight mean-zero Gaussian processes given by

ZF c1 (y|x) :=
FY |D,Z,X(y|1, 1, x)− F cY1|X(y|x)

p(1, x)− p(0, x)
Zp1(x) +

F cY1|X(y|x)− FY |D,Z,X(y|1, 0, x)

p(1, x)− p(0, x)
Zp0(x)

+
p(1, x)

p(1, x)− p(0, x)
ZF11(y|x)− p(0, x)

p(1, x)− p(0, x)
ZF10(y|x),

and

ZF c0 (y|x) :=
FY |D,Z,X(y|0, 1, x)− F cY0|X(y|x)

p(1, x)− p(0, x)
Zp1(x) +

F cY0|X(y|x)− FY |D,Z,X(y|0, 0, x)

p(1, x)− p(0, x)
Zp0(x)

− 1− p(1, x)

p(1, x)− p(0, x)
ZF01(y|x) +

1− p(0, x)

p(1, x)− p(0, x)
ZF00(y|x).

Next, by Hadamard di�erentiability of the inverse map (uniformly with respect to an index)

(Chernozhukov et al., 2010) and the functional delta method,

√
n

 Q̂cY1|X(y|x)−QcY1|X(y|x)

Q̂cY0|X(y|x)−QcY0|X(y|x)

 
ZQc1(y|x)

ZQc0(y|x)

 in `∞(T X )2,

where ZQc1(y|x) and ZQc1(y|x) are tight mean-zero Gaussian processes given by

ZQc1(y|x) := −ZF c1
(
QcY1|X(y|x)|x

)
/f cY1|X

(
QcY1|X(y|x)|x

)
ZQc0(y|x) := −ZF c0

(
QcY0|X(y|x)|x

)
/f cY0|X

(
QcY0|X(y|x)|x

)
By Lemma 3.9.27 in Van der Vaart and Wellner (1996), which is valid uniformly with respect

to an index under Assumption 2 and the functional delta method, obtain

√
n
(
Q̂cY0|X

(
F̂ cY1|X(y|x)|x

)
−QcY0|X

(
F cY1|X(y|x)|x

))
 ZQc0◦F c1 (y|x) in `∞(YX ),

29



where ZQc0◦F c1 (y|x) is a mean-zero Gaussian process de�ned as

ZQc0◦F c1 (y|x) :=ZQc0
(
F cY1|X(y|x)|x

)
+

ZF c1 (y|x)

f cY0|X

(
QcY0|X

(
F cY1|X(y|x)|x

)
|x
) ,

and

√
n
(
F̂Y |D,Z,X

(
Q̂cY0|X

(
F̂ cY1|X(y|x)|x

)
|0, 1, x

)
− FY |D,Z,X

(
QcY0|X

(
F cY1|X(y|x)|x

)
|0, 1, x

))
 ZF01◦Qc0◦F c1 (y|x) in `∞(YX ),

where ZF01◦Qc0◦F c1 (y|x) is a tight mean-zero Gaussian process de�ned as

ZF01◦Qc0◦F c1 (y|x) :=ZF01

(
QcY0|X

(
F cY1|X(y|x)|x

)
|x
)

+ fY |D,Z,X

(
QcY0|X

(
F cY1|X(y|x)|x

)
|0, 1, x

)
ZQc0◦F c1 (y|x).

Similarly obtain,

√
n
(
F̂Y |D,Z,X

(
Q̂cY1|X

(
F̂ cY0|X(y|x)|x

)
|1, 0, x

)
− FY |D,Z,X

(
QcY1|X

(
F cY0|X(y|x)|x

)
|1, 0, x

))
 ZF10◦Qc1◦F c0 (y|x) in `∞(YX ),

where

ZF10◦Qc1◦F c0 (y|x) :=ZF10

(
QcY1|X

(
F cY0|X(y|x)|x

)
|x
)

+ fY |D,Z,X

(
QcY1|X

(
F cY0|X(y|x)|x

)
|1, 0, x

)
ZQc1◦F c0 (y|x),

and

ZQc1◦F c0 (y|x) :=ZQc1
(
F cY0|X(y|x)|x

)
+

ZF c0 (y|x)

f cY1|X

(
QcY1|X

(
F cY0|X(y|x)

)
|x
) .

Finally, because

F̂Y1|X(y|x) =p̂(1, x)F̂Y |D,Z,X(y|1, 1, x)

+ (1− p̂(1, x)) F̂Y |D,Z,X

(
Q̂cY0|X

(
F̂ cY1|X(y|x)|x

)
|0, 1, x

)
,

F̂Y0|X(y|x) = (1− p̂(0, x)) F̂Y |D,Z,X(y|0, 0, x)

+ p̂(0, x)F̂Y |D,Z,X

(
Q̂cY1|X

(
F̂ cY0|X(y|x)|x

)
|1, 0, x

)
,
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by the functional delta method obtain

√
n

F̂Y1|X(y|x)− FY1|X(y|x)

F̂Y0|X(y|x)− FY0|X(y|x)

 
ZF1(y|x)

ZF0(y|x)

 in `∞(YX )2,

where ZF1(y|x) and ZF0(y|x) are tight mean-zero Gaussian processes de�ned as

ZF1(y|x) :=
(
FY |D,Z,X(y|1, 1, x)− FY |D,Z,X

(
QcY0|X

(
F cY1|X(y|x)|x

)
|0, 1, x

))
Zp1(x)

+ p(1, x)ZF11(y|x) + (1− p(1, x))ZF01◦Qc0◦F c1 (y|x)

ZF0(y|x) :=
(
FY |D,Z,X

(
QcY1|X

(
F cY0|X(y|x)|x

)
|1, 0, x

)
− FY |D,Z,X(y|0, 0, x)

)
Zp0(x)

+ (1− p(0, x))ZF00(y|x) + p(0, x)ZF10◦Qc1◦F c0 (y|x),

This completes the proof of the lemma.
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