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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression methods have become

important tools for analyzing effect of policy variables on distributional outcomes beyond simple

averages. In many economic applications, the policy variables of interest are endogenous, render-

ing standard quantile regression inconsistent for recovering structural quantile treatment effects

(QTE).

One approach to addressing this problem is to use instrumental variable (IV) methods. In this

paper, I study the relationship between two competing IV models for estimating QTE: the instru-

mental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2004, 2005, 2006)

and the local quantile treatment effects (LQTE) model (Abadie et al., 2002). Apart from instrument

validity, both models rely on different sets of assumptions and identify different quantities. The

IVQR model is based on the rank similarity assumption, a condition that restricts the evolution of

individual ranks in the potential outcome distributions across treatment states. Under rank sim-

ilarity, the IVQR model identifies the QTE for the whole population. The LQTE model exploits

the monotonicity assumption introduced by Imbens and Angrist (1994) to identify the LQTE for

the compliers, the subpopulation whose treatment status is affected by the instrument. The two

sets of assumptions are generally non-nested and neither model is more general than the other

(Chernozhukov and Hansen, 2013). Despite these differences, the two models often yield similar

results in empirical applications (e.g., Chernozhukov and Hansen, 2004).

The goal of this paper is to formalize the relationship between the estimates of both models

by characterizing estimators based on the IVQR model under the LQTE assumptions. First, I

show that the IVQR estimators of the potential outcome cumulative distribution functions (CDF)

can be expressed as functions of the potential outcome CDFs for never takers, always takers, and

compliers. The key ingredients for deriving these results are closed form solutions for the IVQR

estimands that are derived from the IVQR moment conditions (e.g., Chernozhukov and Hansen,

2005, 2006). Moreover, I establish a close relationship between the IVQR and the changes-in-

changes (CIC) model (Athey and Imbens, 2006) that may be of interest in its own right. Second, I

show that the IVQR estimands of the QTE correspond to LQTE evaluated at transformed quantile

levels. This transformation adjusts for the difference between the distributions of the potential out-

comes in the treated state for always takers and compliers as well as for the difference between the

distributions of potential outcomes in the untreated state for never takers and compliers. Third, I

show that the IVQR estimate of the ATE corresponds to a convex combination of the local average

treatment effect (LATE) and a weighted average of LQTE. Consequently, differences between the
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estimates of both models are uniquely determined by two factors: between-subpopulation differ-

ences in the potential outcome distributions that are identified under the LQTE assumptions and

the relative size of the respective subpopulations, which depends on the strength of the instru-

ment.

These results have several important implications: First, comparisons between the estimates

of both models are not indicative of the validity of the rank similarity assumption. Second, the

sensitivity of the IVQR estimates to deviations from rank similarity decreases with the strength

of the instrument. Third, IVQR estimates capture particular causal effects for the compliers irre-

spective of the validity of the rank similarity assumption so long as the LQTE assumptions hold.

Forth, the IVQR estimates preserve sign and monotonicity of the LQTE estimates provided that

these properties are invariant across quantiles. Fifth, the IVQR model estimates the QTE and the

ATE by extrapolating from the compliers to the whole population based on the rank similarity

assumption. Therefore, it constitutes an alternative approach to extrapolation in the LATE frame-

work.1

The analysis is extended to more general setups that allow for failures of the LQTE monotonic-

ity assumption, non-binary instruments, and covariates. I show that the main results describing

the relationship between the IVQR and the LQTE estimates have intuitive analogues in these more

general setups.

The results are illustrated using two application. In the first application, I examine the causal

effect of JTPA training programs on the distribution of subsequent earnings. I find that both mod-

els yield similar results, which can be attributed to the strength of the instrument that outweighs

the differences between the potential outcome distributions of never takers and compliers. In

the second application, I study estimation of the structural effect of veteran status on civilian

wages using draft lottery data. The substantial numerical differences between the estimates of

both models can be attributed to a relatively weak instrument combined with a large treatment

effect heterogeneity for the compliers.

This paper is related to the extensive literature on both models. The IVQR model is intro-

duced by Chernozhukov and Hansen (2004, 2005, 2006) and recently surveyed by Chernozhukov

and Hansen (2013). Linear conditional quantile models are analyzed by Chernozhukov and Hong

(2003), Chernozhukov and Hansen (2006), Chernozhukov et al. (2007a), Chernozhukov and Hansen

(2008), and Chernozhukov et al. (2009). Nonparametric estimation of the IVQR model is studied

1There are several approaches to extrapolation in the LATE framework: Heckman et al. (2001, 2003) and Angrist
(2004) use parametric models latent index models, Chamberlain (2011) analyzes a Bayesian semiparametric approach,
and Angrist and Fernandez-Val (2013) consider covariate-based extrapolation methods.
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by Chernozhukov et al. (2007b), Horowitz and Lee (2007), and Gagliardini and Scaillet (2012).

The LQTE model is introduced by Abadie et al. (2002) and extends the LATE framework (Im-

bens and Angrist, 1994; Angrist et al., 1996; Imbens and Rubin, 1997; Abadie, 2002) to the analysis

of conditional LQTE for the compliers using the weightig theorem by Abadie (2003). In subse-

quent work, Frandsen et al. (2012) analyze estimation and inference of LQTE in regression discon-

tinuity frameworks, Frölich and Melly (2013) study nonparametric identification and estimation

of marginal LQTE with covariates, and Frölich and Melly (2013) analyze identification of marginal

LQTE under one-sided non-compliance.

Two additional papers are related to mine. First, the analysis of the IVQR estimands under

the LQTE assumptions without monotonicity nests the framework analyzed by De Chaisemartin

(2014a,b) and imposing his compliers-defiers condition is helpful for interpreting the IVQR esti-

mands in this case. Seond, my paper is related to Yu (2014), who extends the (MTE) framework

(e.g., Heckman and Vytlacil, 2005) to marginal QTE as a means to unify different quantile treat-

ment effects. The author provides a detailed discussion of the relationship between his framework

and the IVQR and LQTE model that complements my analysis.

The remainder of the paper is organized as follows. In Section 2, I introduce the basic notation

and review the IVQR and the LQTE model. In Section 3, I characterize the IVQR model under the

LQTE assumptions. Section 4 generalizes these results to setups that allow for failures of the LQTE

monotonicity assumption, non-binary instruments, and covariates. In Section 5, I illustrate the

results in this paper using two empirical examples. Section 6 concludes. All proofs and additional

results are collected in the appendix.

2 Setup and Models

The data consist of a random sample of N observations on a continuous outcome Y, a binary

treatment D, and a binary instrument Z. In Section 4, I generalize this setup to incorporate mul-

tivalued instruments and covariates X. Throughout the paper, I assume that Y|Z, D is absolutely

continuous with respect to the Lebesgue measure on the support Y . This technical assumption is

made for expositional convenience. The analysis is developed in the potential outcomes frame-

work (Rubin, 1974). Let Y1 and Y0 (indexed by D) denote the potential outcomes with and without

the treatment. The fundamental problem of causal inference is that we only observe one potential

outcome for each individual. Formally, the observed outcome is given by Y = DY1 + (1− D)Y0.

Similarly, let D1 and D0 (indexed by Z) denote the potential treatments that are related to the ob-

served treatment as D = ZD1 +(1−Z)D0. Based on the potential treatment status, the population
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can be categorized by four types, T ∈ {a, n, c, f }, (Angrist et al., 1996):

Definition 1. (a) Compliers (T = c): the subpopulation with D1 = 1 and D0 = 0. (b) Always takers

(T = a): the subpopulation with D1 = D0 = 1. (c) Never takers (T = n): the subpopulation with

D1 = D0 = 0. (d) Defiers (T = f ): the subpopulation with D1 = 0 and D0 = 1

where I use f instead of d to denote defiers to distinguish the type from the treatment status d.

The objects of interest is the quantile function of Yd, QYd(τ) = q(d, τ), of the CDF FYd(y),

QYd(τ) = inf{y : FYd(y) ≥ τ}.

If potential outcomes are continuous, we have QYd (FYd(y)) = y and QYd(τ) = F−1
Yd

(τ). The poten-

tial outcomes can be related to the structural quantile functions by the Skorohod representation of

random variables.

Yd = q(d, Ud), where Ud ∼ U(0, 1)

Similarly, observed outcomes can be expressed as Y = q(d, U), where Y ≡ YD and U ≡ UD. This

representation is essential for the IVQR model. I am also interested in the τ-QTE,

δ(τ) ≡ QY1(τ)−QY0(τ),

and in the related ATE, ∆ ≡ E(Y1 −Y0) =
∫ 1

0 δ(τ)dτ.

2.1 The IVQR Model

The IVQR model consists of the following main conditions.2

Assumption 1. The following conditions hold jointly with probability one:

1. Monotonicity: q(d, τ) is strictly increasing in τ

2. Independence: For each d, Ud is independent of Z.

3. Selection: D ≡ ρ(Z, V), where ρ(·) is an unknown function.

4. Rank similaritiy: Conditional on (Z, V), {Ud} are identically distributed.

2These conditions are taken from Chernozhukov and Hansen (2005) and Chernozhukov and Hansen (2013) with
modifications.
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Assumption 1.1 requires Y to be non-atomic conditional on Z.3 The independence condition in

Assumptions 1.2 and 1.3 states that potential outcomes are independent of the instrument. Note

that this assumption is weaker than the conventional assumption that the disturbances in the

outcome and the selection equation are jointly independent of Z. Assumption 1.4 is arguably

the most important assumption of the IVQR model. It requires that individual ranks are constant

across potential outcome distributions up to unsystematic deviations. Chernozhukov and Hansen

(2005) present a more detailed discussion of the IVQR model.

The main statistical implication of Assumption 1 is the following nonlinear conditional mo-

ment restriction (Chernozhukov and Hansen, 2005, Theorem 1).

P (Y ≤ q(D, τ)|Z) = τ (1)

Under additional full rank and completeness conditions, the conditional moment restriction (1)

point identifies the structural quantile function q(D, τ) (Chernozhukov and Hansen, 2005, 2013).4

The conditional moment restriction (1) justifies the following unconditional moment equations for

estimating q(D, τ).

E ((τ − 1 [Y ≤ q(D, τ)]) Z) = 0, (2)

where 1[·] is the indicator function and Z is a vector of (transformations of) instruments. Esti-

mation based on (2) is challenging because the sample analogue of the GMM objective function

is non-smooth and non-convex. A non-exhaustive list of references that address this problem is

given in the introduction.

In this paper, I consider the following specification for q(D, τ), which is fully nonparametric

given that D is binary.

q(D, τ) = Dδ(τ) + QY0(τ) (3)

For linear-in-parameters models, which nest model (3), a computationally attractive approach for

estimating δ(τ) and QY0(τ) is the inverse quantile regression proposed by Chernozhukov and

Hansen (2006). The idea behind this approach is that at the true coefficient on D, δ(τ), the τ-

quantile regression of Y − Dδ(τ) on a constant and Z would yield a zero coefficient on Z by

3 Chernozhukov and Hansen (2013) discuss the IVQR model when Y has atoms conditional on Z, e.g., count or
discrete variables.

4I further discuss the specific conditions for binary treatments and binary instruments as well as their relationship
to the LQTE assumptions in Section 3.2 and in the appendix.

6



equation (1). This motivates a simple grid search algorithm over δ(τ):

1. Define a grid {δj, j = 1, ..., J} and estimate the coefficients on the constant, Q̂Y0(αj, τ), and

on the instrument, γ̂(αj, τ), using an ordinary τ-quantile regression of Y−Dδj on a constant

and the instrument Z.

2. Choose δ̂(τ) as the value in {δj, j = 1, ..., J} that minimizes ||γ̂(αj, τ)||. The estimated coeffi-

cient on the constant is then given by Q̂Y0(δ̂(τ), τ).

Chernozhukov and Hansen (2006) prove consistency of the IVQR estimators obtained form in-

verse quantile regression and derive functional limit theory for the IVQR process. Moreover, they

establish validity of subsampling for estimating the limiting law.

2.2 The LQTE Model

The LQTE model is based on the following set of assumptions.5

Assumption 2. The following conditions hold jointly with probability one:

1. Monotonicity: P(D1 ≥ D0) = 1

2. Independence: (U1, U0, D1, D0) is jointly independent of Z

3. Nontrivial assignment: 0 < P(Z = 1) < 1

4. First-stage: P(D = 1|Z = 1) > P(D = 1|Z = 0)

The monotonicity Assumption 2.1 rules out the presence of defiers. Consequently, always takers,

never takers, and compliers exhaustively partition the whole population. The independence As-

sumption 2.2 states that both, potential outcomes and potential treatments, are independent of the

instrument. Assumptions 2.3 and 2.4 require that the instrument assignment is non-trivial and

that the instrument affects the treatment status.6

Under Assumption 2, the potential outcome quantile functions and the LQTE for the compli-

ers, QY0|c(τ), QY1|c(τ), and δc(τ) ≡ QY1|c(τ)−QY0|c(τ), are determined by the following weighted

quantile regression objective function.

(
QY0|c(τ), δc(τ)

)
= argmin(QY0 |c,δc)E

[
κ · ρτ

(
Y− δcD−QY0|c

)]
, (4)

5The assumptions are taken from Abadie et al. (2002) with modifications.
6Vytlacil (2002) shows that Assumption 2 is equivalent, to a class of latent index models, Dz = 1[ν(z) > V], where

V is a scalar disturbance.
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where ρτ(·) is the usual check function and the weights κ are given by

κ = 1− D(1− Z)
1− P(Z = 1)

− (1− D)Z
P(Z = 1)

.

Because κ is negative when D 6= Z, the sample counterpart of (4) is typically globally nonconvex.

The circumvent this problem, Abadie et al. (2002) propose to modify the objective function by

taking conditional expectation given (Y, D), which amounts to use a different set of nonnegative

weights. Under appropriate regularity conditions (e.g., Abadie et al., 2002), the estimators based

on the sample analogue of this weighted quantile regression objective function are consistent and

asymptotically normal.

2.3 Comments on the Difference between both Models

Here I briefly summarize and highlight the most important differences between the IVQR and the

LQTE model.

First, the models are based on two different and non-nested sets of assumptions.7 The IVQR

model relies on rank similarity in the outcome equation, whereas the LQTE model requires the se-

lection equation to be weakly monotonic in a scalar disturbance. Yu (2014) shows that while allow-

ing for a general selection equation, the rank similarity assumption of the IVQR model imposes

strong restrictions on the treatment effect heterogeneity. In contrast, the LQTE model imposes

restrictions on the selection equation but allows for essential treatment effect heterogeneity. Fur-

thermore, the LQTE model relies on a stronger independence assumption than the IVQR model

that requires not only potential outcomes but also potential treatments to be independent of the

instrument.

Second, both models identify different quantities. The IVQR model identifies the QTE and the

ATE for the whole population, arguably the more interesting objects than the LQTE and the LATE

that are identified under the LQTE assumptions.

Third, the IVQR model accommodates arbitrary numbers and types of instruments and treat-

ment variables. This sharply contrasts the LQTE model that has not been extended beyond the

case of one binary instrument and one binary treatment variable (see e.g. the discussion in Imbens,

2007).

7This discussion draws from the exposition in Chernozhukov and Hansen (2013).
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3 IVQR Estimands under the LQTE Framework

In this section, I study estimators based on the IVQR model under the LQTE assumptions.

3.1 Setup

Let δIVQR(τ) ≡ QIVQR
Y1

(τ)− QIVQR
Y0

(τ), and QIVQR
Y0

(τ) denote the IVQR estimands that are given

by the IVQR moment conditions.

E
((

τ − 1
[
Y ≤ δIVQR(τ)D + QIVQR

Y0
(τ)
])

(1, Z)′
)
= 0 (5)

Under appropriate regularity conditions (e.g., Chernozhukov and Hansen, 2006), the IVQR esti-

mators obtained from the inverse quantile regression described in Section 2.1 are consistent for

δIVQR(τ) and QIVQR
Y0

(τ). It should be noted that δIVQR(τ) and QIVQR
Y0

(τ) can differ from the struc-

tural QTE and the structural quantile functions, δ(τ) and QY0(τ), because I do not impose the

IVQR assumptions in this section. To simplify the exposition, I impose the following common

support assumption.

Assumption 3. Yd|T = t is continuously distributed with support Y for all d ∈ {0, 1} and t ∈

{a, n, c, f }.

Assumption 3 plays a similar role as the support assumptions in Athey and Imbens (2006) and is

essential for point identification in the IVQR model as I discuss below.

3.2 Point Identification under the LQTE Assumptions

The conditional moment equations (1) do not point identify the IVQR estimands absent additional

full rank and completeness conditions as pointed out in Section 2.1. In the appendix, I show

in more detail that the LQTE assumptions and the common support assumption are sufficient

for these additional assumptions. In particular, they imply the following monotone likelihood

condition (Chernozhukov and Hansen, 2005, 2013).

fY,D|Z(y, D = 1|Z = 1)
fY,D|Z(y, D = 0|Z = 1)

>
fY,D|Z(y, D = 1|Z = 0)
fY,D|Z(y, D = 0|Z = 0)

, (6)

where fY,D|Z(y, D = d, Z = z) is the joint probability density function of (Y, D) given Z. Condition

(6) implies that the Jacobian of the moment equations (1) is of full rank, which is essential for point

identification.
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3.3 Cummulative Distribution Functions

Here I characterize the estimands of the potential outcome CDFs in the IVQR model under the

LQTE assumptions. In subsequent sections, these results allow me to analyze the IVQR estimands

of the QTE and the ATE under the LQTE assumptions.

For all types t ∈ {a, n, c, f }, let FYd|t(y) ≡ FYd|T =t(y), and QYd|t(τ) ≡ QYd|T =t(τ) denote the

CDF and quantile functions associated with potential outcome Yd and let πt ≡ P(T = t) denote

the proportion of type t. Under the LQTE assumptions, one can decompose the CDFs of Y0 and

Y1 as

FY0(y) =πaFY0|a(y) + πnFY0|n(y) + πcFY0|c(y)

FY1(y) =πaFY1|a(y) + πnFY1|n(y) + πcFY1|c(y).

Imbens and Rubin (1997) show that the following potential outcome distributions are identified

from the data.

FY0|n(y) =FY|D=0,Z=1(y)

FY0|c(y) =
p(0|0)FY|D=0,Z=0(y)− p(0|1)FY|D=0,Z=1(y)

p(1|1)− p(1|0)

FY1|a(y) =FY|D=1,Z=0(y)

FY1|c(y) =
p(1|1)FY|D=1,Z=1(y)− p(1|0)FY|D=1,Z=0(y)

p(1|1)− p(1|0)

where FY|D=d,Z=z(y) ≡ FY|D,Z(yd|D = d, Z = z) and p(d|z) ≡ P(D = d|Z = z). However, FY1|n(y)

and FY0|a(y), and consequently, FY0(y) and FY1(y), are unidentified under the LQTE assumptions.

In contrast, these quantities are identified under the IVQR assumptions and can be computed by

inverting the corresponding quantile functions. The key question is how the IVQR model imputes

the unidentified quantities FY1|n(y) and FY0|a(y) using the rank similarity assumption. I answer

this question in Theorem 1 by characterizing the IVQR estimands of the potential outcome CDFs,

FIVQR
Y1

(y) and FIVQR
Y0

(y), under the LQTE assumptions.

Theorem 1. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands are given by (5). Then

FIVQR
Y1

(y) =πaFY1|a(y) + πcFY1|c(y) + πnFY0|n
(
QY0|c

(
FY1|c(y)

))
FIVQR

Y0
(y) =πnFY0|n(y) + πcFY0|c(y) + πaFY1|a

(
QY1|c

(
FY0|c(y)

))
The proof of Theorem 1 proceeds by equating the IVQR moment conditions after iterating ex-

10



pectations over Z and D. This yields a relationship between conditional CDFs of Y|Z, D and the

IVQR estimands. Under the LQTE assumptions these conditional CDFs correspond to CDFs for

compliers, never takers, and always takers as discussed before.

Theorem 1 shows that the IVQR model imputes FY1|n(y) and FY0|a(y) as

FIVQR
Y1|n (y) =FY0|n

(
QY0|c

(
FY1|c(y)

))
FIVQR

Y0|a (y) =FY1|a
(
QY1|c

(
FY0|c(y)

))
.

These formulas reveal a close analogy between the IVQR and the CIC model (Athey and Imbens,

2006).8 This analogy relates to the fact that both models rely on conditions that restrict the evolu-

tion of individual ranks in the outcome distributions. In the IVQR model it is assumed individual

ranks that are constant (up to random deviations) accross treatment states, whereas the CIC model

requires individual ranks to be constant across time periods. Moreover, Theorem 1 highlights the

importance of the common support assumption (Assumption 3) that guarantees that FIVQR
Y1|n (y)

and FIVQR
Y0|a (y) are well-defined.

3.4 Quantile Treatment Effects

Here I derive an explicit relationship between the QTE estimands of the IVQR model and the

LQTE. Based on Theorem 1, the QTE estimands in the IVQR model can be expressed as LQTE for

the compliers evaluated at transformed quantile levels.

Theorem 2. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands are given by (5). Then

δIVQR(τ) = δc

(
FY0|c

(
QIVQR

Y0
(τ)
))

= δc

(
FY1|c

(
QIVQR

Y1
(τ)
))

δIVQR
n (τ) = δc

(
FY0|c

(
QY0|n(τ)

))
δIVQR

a (τ) = δc
(

FY1|c
(
QY1|a(τ)

))
where δIVQR

n (τ) ≡ QIVQR
Y1|n (τ)−QY0|n(τ) and δIVQR

a (τ) ≡ QY1|a(τ)−QIVQR
Y0|a (τ).

The results in Theorem 2 are implications from the relationship between the IVQR estimands and

their counterparts for the compliers established in Theorem 1.

Theorem 2 shows that the IVQR estimands of the QTE can be expressed as LQTE for the com-

pliers at transformed quantile levels. The transformation adjusts for the respective difference to

8The formulas also exhibit similarities with the counterfactual mapping by Vuong and Xu (2014), who show that
under rank invariance or rank preservation (instead of rank similarity) and monotonicity the individual treatment
effects can be identified using this mapping.
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the complier distributions as measured by the rank functions FY0|c

(
QIVQR

Y0
(·)
)

, FY1|c

(
QIVQR

Y1
(·)
)

,

FY0|c
(
QY0|n(·)

)
, and FY1|c

(
QY1|a(·)

)
. Moreover, it follows from Theorem 1 that, ceteris paribus,

the absolute value of the difference between the arguments at which the functions δIVQR(·) and

δc(·) are evaluated decreases with the strength of the instrument as measured by the first stage,

p(1|1)− p(1|0), which equals the fraction of the compliers.9 Consequently, the difference between

the QTE estimates based on the IVQR model and the LQTE is uniquely determined by differences

between the potential outcome distributions that are identified under the LQTE assumptions and

the strength of the instrument. This result has two important implications. First, comparisons of

estimates between both models do not provide robustness or reality checks for the IVQR model

and the rank similarity assumption, and second, the sensitivity of the IVQR estimates to devia-

tions from the rank similarity assumption is decreasing in the strength of the instrument.

Theorem 2 has three corollaries that further describe the relationship between the IVQR esti-

mates and the LQTE for the compliers.

Corollary 1. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands are given by (5). Then:

(i) If δc(τ) ≥ 0 for all τ ∈ (0, 1), then δIVQR(τ) ≥ 0 for all τ ∈ (0, 1). (ii) If δc(τ) ≤ 0 for all τ ∈ (0, 1),

then δIVQR(τ) ≤ 0 for all τ ∈ (0, 1).

Corollary 1 shows that the sign of the IVQR estimates corresponds to the sign of the LQTE esti-

mates, whenever the sign of the LQTE does not change as a function of the quantile level. Now

suppose that the LQTE is constant across quantile levels, i.e. δc(τ) = δc, as in a location model,

QYd|c(τ) = (d, 1)(δc, β)′ + QUd|c(τ). Corollary 2 shows that if the LQTE is constant, the estimates

of both models are equivalent.

Corollary 2. Suppose that Assumptions 2 and 3 hold, that the IVQR estimands are given by (5), and that

δc(τ) = δc for all τ ∈ (0, 1). Then δIVQR(τ) = δc(τ) = δc for all τ ∈ (0, 1).

Furthermore, if the LQTE is monotonically increasing or decreasing in the quantile level as in a

location location-scale model, QYd|c(τ) = (d, 1)(δc, β)′ + (d, 1)(γ1, γ2)′ · QUd|c(τ), where δc(τ) =

δc + γ1 ·QUd|c(τ), such monotonicity is preserved by the IVQR estimates.

Corollary 3. Suppose that Assumptions 2 and 3 hold, that the IVQR estimands are given by (5), and that

δc(τ) monotonically increasing (decreasing) in τ. Then δIVQR(τ) is monotonically increasing (decreasing)

in τ.

9However, this does not necessarily imply that the discrepancy between δIVQR(τ) and δc(τ) is reduced for a given
quantile level τ.
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In other words, if the treatment increases (decreases) the variance of the potential outcomes for

the compliers, the IVQR estimates yield the same conclusion.

Taken together, Theorem 2 and Corollaries 1, 2, and 3 show that there is a close relationship

between the estimates of the IVQR and the LQTE model. Because the analysis does not rely on

the validity of the rank similarity assumption, these results shed new light on the interpretation

of the IVQR estimates when this assumption fails. Moreover, these results can be interpreted as

robustness properties of the IVQR model to deviations from the underlying assumptions. In par-

ticular, the model captures a causal effect and inherits desirable properties of the LQTE estimates

irrespective of the validity of the rank similarity assumption.

3.5 Average Treatment Effects

Based on the results obtained in the previous sections, the IVQR estimand of the ATE, ∆IVQR ≡∫ 1
0 δIVQR(τ)dτ, can be expressed as a convex combination of the LATE, ∆c, and weighted averages

of LQTE for the compliers.

Theorem 3. Suppose that Assumptions 2 and 3 hold and that the IVQR estimands are given by (5). Then

∆IVQR = πc∆c + πa∆IVQR
a + πn∆IVQR

n

where

∆IVQR
n ≡

∫
0,1

δc
(

FY0|c
(
QY0|n(τ)

))
dτ

∆IVQR
a ≡

∫
0,1

δc
(

FY1|c
(
QY1|a(τ)

))
dτ

Theorem 3 shows that the IVQR model estimates a weighted average of the standard LATE for the

compliers and imputed ATE for the never takers and always takers that are both averages of rank

function adjusted LQTE for the compliers. As in Theorem 2, differences between the estimates of

both models are determined by differences between the potential outcome distributions of com-

pliers, always takers, and never takers as well as the relative size of these three subpopulations,

which is determined by the strength of the instrument. The IVQR estimate of the ATE inherits the

properties of the LQTE outlined in Corollaries 1 and 2. If the LQTE is positive (negative) for all

τ, then the sign of IVQR estimand equals the sign of the LATE. Moreover, the IVQR estimate is

equivalent to the LATE if the LQTE is constant as in a location model.

An interesting implication of Theorems 1, 2, and 3 is that the IVQR model estimates treatment

13



effects by extrapolating from the compliers to the whole population. Theorefore, the IVQR model

can alternatively be considered as an approach to extrapolation in the LATE framework based on

restrictions of the evolution of individual ranks.

4 Generalizations

4.1 LQTE Assumptions without Monotonicity

The monotonicity assumption of the LQTE model is not innocuous and may be questionable in

many contexts; see e.g. the examples discussed by De Chaisemartin (2014b). Here I analyze the

IVQR estimands under the LQTE assumptions without monotonicity. Throughout this section, I

maintain Assumptions 2.2-2.4. It should be noted that independence between the potential treat-

ments (D0, D1) and the instrument Z is not required in the IVQR model but aids the exposition

and the interpretation of the results. Theorem 4 characterizes the IVQR estimates of the potential

outcome CDFs absent the LQTE monotonicity assumption.

Theorem 4. Suppose that Assumptions 2.2-2.4 and 3 hold, that the IVQR estimands are given by (5), and

that

FY1|c− f (y) ≡
πcFY1|c(y)− π f FY1| f (y)

πc − π f

FY0|c− f (y) ≡
πcFY0|c(y)− π f FY0| f (y)

πc − π f

are well-defined and strictly increasing CDFs. Then

FIVQR
Y1

(y) =πaFY1|a(y) + πcFY1|c(y) + πnFY0|n

(
QY0|c− f

(
FY1|c− f (y)

))
+ π f FY0| f

(
QY0|c− f

(
FY1|c− f (y)

))
FIVQR

Y0
(y) =πnFY0|n(y) + πcFY0|c(y) + πaFY1|a

(
QY1|c− f

(
FY0|c− f (y)

))
+ π f FY1| f

(
QY1|c− f

(
FY0|c− f (y)

))
where QY1|c− f (τ) ≡ F−1

Y1|c− f (τ) and QY0|c− f (τ) ≡ F−1
Y0|c− f (τ).

Theorem 4 shows that the IVQR model imputes the (mixtures of) distributions that are not di-

rectly identified, πnFY1|n(y) + π f FY1| f (y) and πaFY0|a(y) + π f FY0| f (y), using CIC-type arguments.

The key distribution is FYd|c− f (y), a weighted difference between the distributions of compliers

and defiers. Under the assumptions of Theorem 4, this is the only subpopulation for which both
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potential outcome distributions are identified. Under the compliers-defiers assumption (Assump-

tion S2) of De Chaisemartin (2014a,b), FYd|c− f (y) corresponds to the CDF for the well-defined

subpopulation of the compliers referred to as the comvivors.10

It should be noted that contrarily to the analysis under monotonicity, Assumptions 2.2-2.4 and

3 do not imply that FY0|c− f (y) and FY1|c− f (y) are well-defined and strictly increasing CDFs. As

suggested by the discussion in Section 3.2 and in the appendix, the assumption that FY0|c− f (y)

and FY1|c− f (y) are well-defined and strictly increasing is closely related to the conditions that are

required for point identification in the IVQR model.

The next theorem characterizes the QTE estimands in the IVQR model under the LQTE frame-

work without monotonicity.

Theorem 5. Suppose that Assumptions 2.2-2.4 and 3 hold, that the IVQR estimands are given by (5), and

that FY1|c− f (y) and FY0|c− f (y) are well-defined and strictly increasing. Then

δIVQR(τ) = δc− f

(
FY0|c− f

(
QIVQR

Y0
(τ)
))

= δc− f

(
FY1|c− f

(
QIVQR

Y1
(τ)
))

where δc− f (τ) ≡ QY1|c− f (τ)−QY0|c− f (τ).

Theorem 5 shows that the IVQR estimands can be expressed as QTE for the compliers-defiers

mixture population at transformed quantile levels. In contrast to before, this transformation addi-

tionally takes into account differences between the compliers-defiers mixture population and the

defiers.

4.2 Multivalued Instruments

Suppose that instead of being binary, the instrument Z takes values in a discrete setZ = {z1, z2, ..., zK}

with 0 ≤ z1 < z2 < ... < zK. The following assumption extends the LQTE model defined by As-

sumption 2 to the case with multivalued instruments.

Assumption 4. The following conditions hold jointly with probability one:

1. Monotonicity: P(Dz ≥ Dz′) = 1 for any values z, z′ ∈ Z , where z > z′.

2. Independence: (U1, U0, {Dz}z∈Z ) is jointly independent of Z

3. Nontrivial assignment: 0 < P(Z = z) < 1 for all z ∈ Z

10 De Chaisemartin (2014a,b) splits the compliers in two groups: the comvivors (cV) and the comfiers (c f ). He
assumes that P(T = cF) = P(T = f ) and Yd|T = cF ∼ Yd|T = f . Under these assumptions, the comfiers cancel with
the compliers and FYd |c− f (y) = FYd |cV

(y).
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4. First-stage: P(D = 1|Z = z) > P(D = 1|Z = z′) for any two values z, z′ ∈ Z , where z > z′.

The corresponding common support assumption reads:

Assumption 5. Yd|T = t is continuously distributed with support Y for all d ∈ {0, 1} and t ∈

{a, n, {czj}K
j=2}.

Under Assumption 4, there are K + 1 types that are characterized by a unique value of the instru-

ment, zk ∈ Z , where the treatment for that type switches from zero to one (Imbens, 2007). I denote

individuals with Dz = 0 for all z ∈ Z as never takers and individuals with Dz = 1 for all z ∈ Z

as always takers. In addition, there are now K− 1 different types of compliers that are indexed by

instrument value where their treatment status switches from zero to one. I denote compliers who

switch between zj−1 and zj by T = czj for j = 2, ..., K. Furthermore, for all types t ∈ {a, n, {czj}K
j=2}

let FYd|t(y) denote the CDF of Yd and let πt denote the proportion of type t.

Under Assumption 4, the data generating process is informative about the fraction of all sub-

populations as well as the distributions of Y1 for always takers and compliers and the distribution

of Y0 for never takers and compliers (Imbens, 2007). In particular, the conditional probabilities

p(d|zk) ≡ P(D = d|Z = zk) can be related to the proportions of types as

p(1|zk) =πa +
K

∑
j=2

πczj
1(zj ≤ zk)

p(0|zk) =πn +
K

∑
j=2

πczj
1(zj > zk).

Moreover, the observed conditional CDFs, FY|D=d,Z=zk
(y), can be related to the potential outcome

CDFs as

FY|D=1,Z=zk
(y) =

πaFY1|a(y) + ∑K
j=2 πczj

FY1|czj
(y)1(zj ≤ zk)

πa + ∑K
j=2 πczj

1(zj ≤ zk)

FY|D=0,Z=zk
(y) =

πnFY0|n(y) + ∑K
j=2 πczj

FY0|czj
(y)1(zj > zk)

πn + ∑K
j=2 πczj

1(zj > zk)
.

Imbens (2007) presents an illuminating discussion of the simple example with K = 3.

I consider IVQR estimands δIVQR(τ) and QIVQR
Y0

(y) that are given by the following moment

equations,

E
((

τ − 1
[
Y ≤ δIVQR(τ)D + QIVQR

Y0
(τ)
])

(1, Z)′
)
= 0. (7)
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It should be noted that the unconditional moment equations (7) are not the only possible moment

restrictions that can be used to estimate δIVQR(τ) and QIVQR
Y0

(y) because the conditional moment

restriction (1) gives rise to infinitely many unconditional moment restrictions. Theorem 6 gener-

alizes Theorem 1 to multivalued instruments.

Theorem 6. Suppose that Assumptions 4 and 5 hold and that the IVQR estimands are given by (7). Then

FIVQR
Y1

(y) =πaFY1|a(y) +
K

∑
j=2

πczj
FY1|czj

(y)P(Z ≥ zj)

+ πnFY0|n
(
Q̃Y0

(
F̃Y1(y)

))
+

K

∑
j=2

πczj
FY0|czj

(
Q̃Y0

(
F̃Y1(y)

))
P(Z < zj)

FIVQR
Y0

(y) =πaFY1|a
(
Q̃Y1

(
F̃Y0(y)

))
+

K

∑
j=2

πczj
FY1|czj

(
Q̃Y1

(
F̃Y0(y)

)) ∑K
k=j zkP(Z = zk)

E(Z)

+ πnFY0|n(y) +
K

∑
j=2

πczj
FY0|czj

(y)
∑

j−1
k=1 zkP(Z = zk)

E(Z)

where

F̃Y1(y) ≡
∑K

j=2 wjπczj
FY1|czj

(y)

∑K
j=2 wjπczj

F̃Y0(y) ≡
∑K

j=2 wjπczj
FY0|czj

(y)

∑K
j=2 wjπczj

with wj =
(

E(Z|Z≥zj)

E(Z) − 1
)

P(Z ≥ zj), Q̃Y1(τ) ≡ F̃−1
Y1

(τ), and Q̃Y0(τ) ≡ F̃−1
Y0

(τ).

Theorem 6 shows that the basic mechanism described in Theorem 1 pertains when Z is multival-

ued. The key functions, F̃Y1(y) and F̃Y0(y) are convex combinations of CDFs for the now K − 1

different compliers. The respective weight of FYd|czj
(y) is determined by two components: the

weighting function wj and the size of the respective compliant subpopulation, πczj
. Note that the

weights wj are strictly positive because E(Z|Z ≥ zj) > E(Z) for j > 1. Moreover, consider the

difference between two adjacent weights:

wj+1 − wj =

(
1−

zj

E(Z)

)
P(Z = zj)

Hence, the weighting function is increasing for zj is smaller than the mean and decreasing for zj

larger than the mean such that complier who switch their treatment status at an instrument value

zj near the mean receive more weight than those who switch further away from the mean. It is

interesting to note that weighting function wj bears similarities to the weights that linear IV gives
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to the LATE for compliers T = czj (e.g., Heckman and Vytlacil, 2005, 2007).

Differently to the before, the IVQR estimands use the generalized rank functions Q̃Y1

(
F̃Y0(·)

)
and Q̃Y0

(
F̃Y1(·)

)
not only for imputing the distributions of Y1 for the always takers and Y0 for

the never takers but also for imputing the distributions of Y1 and Y0 for mixtures of all compliant

subpopulations.

Theorem 7 characterizes the IVQR estimands of the QTE under the generalized LQTE model.

Theorem 7. Suppose that Assumptions 4 and 5 hold and that the IVQR estimands are given by (7). Then

δIVQR(τ) =δ̃
(

F̃Y0

(
QIVQR

Y0
(τ)
))

= δ̃
(

F̃Y1

(
QIVQR

Y1
(τ)
))

where δ̃(τ) ≡ Q̃Y1(τ)− Q̃Y0(τ).

Under the generalized LQTE assumptions, the transformation of the quantile level adjusts for

differences between the potential outcome distributions of the average compliant subpopulation

and never takers, always takers, and the K− 1 types compliers.

In the appendix (Lemma 2), I present closed form solutions for the IVQR estimands that ac-

commodate arbitrary instruments and/or transformations of instruments g(Z), where g(·) is a

measurable function. These results can be used to extend the analysis in this section in many

interesting directions.

4.3 Covariates

Including a covariates X into the analysis can be desirable for at least three reasons. First, con-

ditioning on a set of covariates may be important to achieve rank similarity as pointed out by

Chernozhukov and Hansen (2005). Second, the instrument may only be valid conditional on ap-

propriate covariates. For example, Chernozhukov and Hansen (2004) assume that 401(k) eligibil-

ity is exogenous conditional on income (and further covariates). Third, even if the instrument and

the rank similarity assumption are unconditionally valid, it might be interesting to consider con-

ditional QTE (see e.g., Firpo (2007) or Frölich and Melly (2013) for a discussion of the differences

between conditional and unconditional QTE).

When covariates are discrete, the previous analysis remains valid conditionally and the anal-

ysis can proceed in subsamples defined by X = x. Alternatively, one can consider fully saturated

models for the conditional quantiles. When X contains continuous elements, the fully saturated

approach is obviously not feasible. In this case, it is common to work with linear-in-parameters

IVQR and LQTE models (e.g., Abadie et al., 2002; Chernozhukov and Hansen, 2006). Such models
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can be interpreted as sieve-approximations to the true potentially nonlinear conditional quantile

function of Yd|X and Yd|X, T = c.11 Because the results obtained in the previous sections are fully

nonparametric, they can be expected to hold approximately. This approximation can be improved

by choosing richer specifications (e.g. through interactions, polynomials, or B-splines).

5 Empirical Applications

In this section, I present two empirical applications. The goal here is to compare the QTE and ATE

estimates of both models and to shed new light on the similarities and differences between both

approaches and, in particular, on the role of the rank similarity assumption underlying the IVQR

model.

5.1 Implementation

Here I briefly discuss the estimation and inference methods used in the empirical applications.

The quantile functions in the IVQR model can be estimated using the inverse quantile regression

procedure outlined in Section 2.1. The corresponding CDFs can be obtained by inverting the

quantile functions. The quantile functions in the LQTE model can be estimated from the weighted

quantile regression described in Section 2.2. The CDFs for the compliers can be obtained by either

inverting the quantile functions or directly using the sample analogues of FY1|c(y) and FY0|c(y):

F̂Y0|c(y) =
p̂(0|0)F̂Y|D=0,Z=0(y)− p̂(0|1)F̂Y|D=0,Z=1(y)

p̂(1|1)− p̂(1|0)

F̂Y1|c(y) =
p̂(1|1)F̂Y|D=1,Z=1(y)− p̂(1|0)F̂Y|D=1,Z=0(y)

p̂(1|1)− p̂(1|0)

Neither of these estimators explicitly imposes monotonicity of the quantile and distribution func-

tions. Nonmonotonicity can arise due either failures of the underlying assumptions or sampling

variation.12 I address this problem by rearranging the original estimates as proposed by Cher-

nozhukov et al. (2010). The rearrangement procedure is easy to implement and has a number of

desirable properties (Chernozhukov et al., 2010).13

11Sieve-estimation of the IVQR model is considered by Su and Hosino (2013). The importance of a flexible specifi-
cation is highlighted for example by Yu (2014, Section 6.2).

12Formal tests for the validity of the underlying assumptions that take sampling variation into account have been
proposed for example by Chernozhukov et al. (2010) and Kitagawa (2014) for the LQTE model.

13Chernozhukov et al. (2010) show that rearranged curve is closer to the original curve in finite samples and that
rearrangement outperforms isotonization procedure in a simulation study designed to match closely the second em-
pirical application. The generic results given by Chernozhukov et al. (2010) provide functional central limit theory for
the rearranged quantile functions, given that a functional central limit theorem applies to the original estimators. This
is the case for the IVQR estimators as discussed in Section 2.1. Moreover, the functional delta method for the bootstrap
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To estimate the average effects in the IVQR model, I use the following trimmed versions of the

formulas in Theorem 3 to avoid the estimation of tail quantiles:

∆̂IVQR ≡
∫ 1−ε

ε
δ̂IVQR(τ)dτ

∆̂IVQR
n ≡

∫ 1−ε

ε
δ̂c
(

F̂Y0|c
(
Q̂Y0|n(τ)

))
dτ

∆̂IVQR
a ≡

∫ 1−ε

ε
δ̂c
(

F̂Y1|c
(
Q̂Y1|a(τ)

))
dτ

for some small constant ε > 0.14 Moreover, I directly estimate the LATE, ∆̂c, using two-stage

least squares instead of averaging over the LQTE. Simulation exercises suggest that trimming

combined with direct estimation of the LATE can substantially improve the numerical accuracy of

the estimates in samples of moderate size.

5.2 JTPA

I consider estimation of the causal effect of JTPA training programs on subsequent earnings. I

use the same data set as Abadie et al. (2002) restricting the analysis to the subsample of men.

As described for example in Bloom et al. (1997) and Abadie et al. (2002), the JTPA was a largely

publicly-funded federal training program that started in October 1983 and lasted up until the late

1990’s. An important part of the JTPA were training programs for the economically disadvantaged

(classroom training, on-the-job training, job search assistance, etc.). The JTPA also included a man-

date for a large-scale randomized training evaluation study that collected data from about 20,000

participants in 16 different sites. Because the assignment (Z) was randomized, it can be used as

an instrument for estimating the causal effect of actual participation in training programs of the

sum of earnings in the 30 month after the random assignment (Y) without further conditioning.

About 38% of the men in the sample, who received a training offer, chose not to participate in

the training program. Only about 1% of the individuals participated in the program despite the

fact that they did not receive an offer, implying that Z satisfies one-sided non-compliance almost

perfectly. For the purpose of illustration, I drop the observations violating this condition from the

sample, which yields a total number of observations of 5,083. Abadie et al. (2002) give additional

information about the dataset and presented descriptive statistics.

One-sided non-compliance rules out the existence of both, always takers and defiers, such that

implies implies validity of the bootstrap for estimating the limiting law of the rearranged curve (Chernozhukov et al.,
2010).

14In the apllications, I use ε = 0.01.
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the results in Theorem 1 simplify to

FIVQR
Y1

(y) =πcFY1|c(y) + πnFY0|n
(
QY0|c

(
FY1|c(y)

))
FIVQR

Y0
(y) =πcFY0|c(y) + πnFY0|n(y).

Consequently, the IVQR estimand FIVQR
Y0

(y) equals the true potential outcome CDF, FY0(y), irre-

spectively of the validity of the rank similarity assumption so long as the LQTE assumptions hold.

Figure 1 plots potential outcome CDFs for compliers and never takers (panel A) and compares

QTE estimates from the IVQR and the LQTE model (panel B). The estimates from the IVQR model

are obtained from an inverse quantile regression with a grid search over {−2500,−2495, ..., 15000}

and the LQTE are estimated by inverting rearranged versions of the estimated potential outcome

CDFs for the compliers.

[Figure 1 about here.]

Panel A shows that the distributions of earnings absent the treatment, Y0, for compliers and never

takers exhibit substantial differences at the lower quantiles. In contrast, the differences between Y0

and Y1 for the compliers are generally of smaller magnitude and more pronounced at the upper

quantiles. Panel B compares the QTE estimated by both models. The results show a number

of interesting features. First, both model yield qualitatively and quantitatively similar results.

Second, both models indicate substantial heterogeneity in the effect of the training programs at

different quantiles of the earnings distribution. Third, the QTE estimates are overall increasing in

the quantile level ranging from values close or below zero up to 6000 USD.

In Figure 2, I further explore the determinants of the similarities of difference between the

estimates of both models.

[Figure 2 about here.]

Panel A plots the rank function FY0|c
(
QY0|n(·)

)
as the relevant measure of the difference between

FY0|c(y) and FY0|n(y). The pronounced differences at the lower quantiles in 1 (panel A) translates

in the difference between the rank function and the 45-degree line. Moreover, I plot the IVQR

estimate of the QTE for the never takers against the LQTE in panel B. Although qualitatively sim-

ilar, the IVQR model estimates the QTE for the never takers to be smaller than the LQTE at most

quantiles. The reason for this finding is the combination of the the increasing LQTE combined

with the shape of the rank function that suggests that the τ-QTE for the never taker corresponds

to the τ′-LQTE with τ′ > τ. Taken together, Figures 1 and 2 suggest that the small differences be-

tween the estimates of both models can be attributed to the strength of the instrument (first stage:
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p(1|1)− p(1|0) = 0.68), which outweighs the difference between the distributions of Y0 between

never takers and compliers.

Finally, I use the results from Theorem 3 to decompose the IVQR estimand of the ATE into a

convex combination of the LATE for the compliers and the IVQR estimate of the ATE for the never

takers, which corresponds to a weighted average of rank function adjusted LQTE.

∆IVQR︸ ︷︷ ︸
1697.02

= πc︸︷︷︸
0.68

· ∆c︸︷︷︸
1715.956

+ πn︸︷︷︸
0.32

· ∆IVQR
n︸ ︷︷ ︸

1665.76

The LATE estimate is slightly larger than the IVQR estimates for the overall ATE and the ATE for

the never takers. The reason for this finding is displayed in Figure 2 (panel B) showing that the

QTE for the never takers lie below the LQTE at most of the quantiles.

5.3 Veteran Status and Earnings

I consider estimation of the causal effects of Vietnam veteran status D on the distribution of annual

labor earnings, Y. Because veteran status is likely to be endogenous, I follow Angrist (1990) and

use the U.S. draft lottery as an instrument Z that takes the value one if someone was eligible for

draft and zero otherwise. I use the same dataset as Abadie (2002) and Chernozhukov et al. (2010).

The dataset contains information about 11,637 white men, born in 1950–1953, from the Current

Population Surveys of 1979, and 1981–1985; 2461 are Vietnam veterans and 3234 are eligible for

military service. In total, there are 18% always takers, 71% never takers, and 11% compliers.

Abadie (2002) gives more information on the dataset.

Figure 3 (panel A) shows that there is a pronounced difference between the distributions of Y0

for compliers and never takers at the lower quantiles but essentially no difference at higher quan-

tiles as well as between the distributions of Y1 for always takers and compliers. In Figure 3 (panel

B) compares the QTE estimates from the IVQR model to the LQTE estimates. The IVQR estimates

are computed using a grid search over a fine grid of {−10000,−9995, ..., 5000} and the LQTE esti-

mates are obtained from inverting the corresponding CDFs. Some features of the results deserve

comments. Unlike in the JTPA example, there are quantitatively substantive differences between

the estimates of both models at the quantiles below the median and, in particular, at the lowest

quantiles. Yet, both models qualitatively point at a pronounced treatment effect heterogeneity. In

particular, both models yield large negative effects at the lower quantiles of the wage distribution

and small positive impacts at higher quantiles.

[Figure 3 about here.]
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Figure 4 sheds some light on determinants of the these results. Panel A plots the rank functions

function that measure the difference between the CDFs in displayed in Figure 3 (panel A). The

substantive difference between compliers and never takers combined with the substantial effect

heterogeneity in the LQTE translates into a large differences in between the IVQR estimand of

the QTE for never takers and the corresponding LQTE as shown in panel B. Together with the

relatively large fraction of never takers, this finding explains the differences between the estimates

of both models in Figure 3 (panel B).

[Figure 4 about here.]

Finally, I decompose the IVQR estimand of the ATE into a convex combination of the LATE and

the IVQR estimates for never takers and always takers.

∆IVQR︸ ︷︷ ︸
−1458.32

= πc︸︷︷︸
0.11

· ∆c︸︷︷︸
−1277.78

+ πn︸︷︷︸
0.71

· ∆IVQR
n︸ ︷︷ ︸

−1378.42

+ πa︸︷︷︸
0.18

· ∆IVQR
a︸ ︷︷ ︸

−1930.12

The LATE is smaller (in absolute values) than the ATE estimated by the IVQR model. Figure 3

suggests that the results are mainly driven by the large differences at the lower tail quantiles.

6 Conclusion

In this paper, I characterize the treatment effects estimators based on the IVQR model under the

assumptions of the LQTE model. I show that the IVQR model estimates LQTE at transformed

quantile levels. The transformation adjusts for differences between the subpopulation-specific

distributions of Y1 and Y0 that are identified in the LQTE model and the relative size of these

subpopulations. Moreover, the IVQR estimand of the ATE can be expressed as a convex combina-

tion of the LATE and weighted averages of LQTE at transformed quantile levels. Consequently,

differences between the estimates of both models are uniquely determined by two factors: the dif-

ferences between the subpopulation-specific potential outcome distributions and the relative size

of these subpopulations, which depends on the strength of the instrument. The analysis is gener-

alized to incorporate failures of the LQTE monotonicity assumption, non-binary instruments, and

covariates. I illustrate the results with two empirical applications.

I conclude by summarizing the main implications of this paper for applied empirical research.

First, comparisons of both models are fundamentally uninformative about the validity of the rank

similarity assumption. Second, the sensitivity of the IVQR estimates to deviations from the rank

similarity assumption is a decreasing function of the fraction of compliers. Third, even in the
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absence of the underlying assumptions, the IVQR model captures particular causal effects so long

as the LQTE assumptions hold. Forth, the IVQR estimates have a number of desirable properties

under the LQTE assumptions. In particular, the estimates preserve sign and monotonicity of the

LQTE estimates whenever these properties are invariant across quantile levels.
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Point Identification under the LQTE Assumption

The moment conditions (5) point identify the IVQR estimands under additional full rank condi-

tions. Here I show LQTE assumptions are sufficient for these full rank conditions. The results in

this section are related to Yu (2014) as I discuss in further detail at the end of this section.

To state the result, some additional notation is required. I keep the notation as close as possi-

ble to Chernozhukov and Hansen (2005) and Chernozhukov and Hansen (2013). Define q(d) ≡

QIVQR
Yd

(τ). The function q(·) can be represented by a vector of its values q = (q(0), q(1))′. For a

vector y = (y0, y1)
′, define the vector of moment equations Π(y) as

Π(y) ≡ (P(Y ≤ yD|Z = 0)− τ, P(Y ≤ yD|Z = 1)− τ)′

where yD = (1− D) · y0 + D · y1. q is said to be identified in some parameters space, L, if y = q

is the only solution to Π(y) = 0 among all y ∈ L. Here, I show that the LQTE assumptions

imply the simple sufficient condition for Theorem 2 in Chernozhukov and Hansen (2013).15 These

conditions are (Chernozhukov and Hansen, 2013, Comment 3.1 and Appendix A.4.):

fY,D|Z(y, D = 1|Z = 1)
fY,D|Z(y, D = 0|Z = 1)

>
fY,D|Z(y, D = 1|Z = 0)
fY,D|Z(y, D = 0|Z = 0)

for all y = (y0, y1) ∈ L, (8)

and

fY,D|Z(y, D = 1|Z = 1) > 0, fY,D|Z(y, D = 0|Z = 0) > 0 for all y = (y0, y1) ∈ L. (9)

where the parameter space L is defined as either L = q + C (a cube centered at q), or L = (q +

C) ∩ H (the intersection of that cube with the halfspace H).

I now show that Assumptions 2 and 3 imply conditions (8) and (9). First, note that Assumption

2 implies

fY,D|Z(y, D = 1|Z = 1)− fY,D|Z(y, D = 1|Z = 0) = πc fY1|c(y)

fY,D|Z(y, D = 0|Z = 0)− fY,D|Z(y, D = 0|Z = 1) = πc fY0|c(y)

where fYd|c(y) denotes the probability densitiy function of Yd for the compliers. Consequently,

πc fY1|c(y) and πc fY0|c(y) must be nonnegative. This observations dates back to Imbens and Rubin

(1997) and can be used to construct tests for the LQTE assumptions (e.g., Kitagawa, 2014). By

15Theorem 2 in Chernozhukov and Hansen (2013) is a generalization of the corresponding Theorem 2 in Cher-
nozhukov and Hansen (2005).
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Assumptions 2 and 3, πc fY1|c(y) > 0 and πc fY0|c(y) > 0 for all y ∈ Y . Hence,

fY,D|Z(y, D = 1|Z = 1) > fY,D|Z(y, D = 1|Z = 0)

fY,D|Z(y, D = 0|Z = 0) > fY,D|Z(y, D = 0|Z = 1)

Combining both inequalities implies condition (8). Condition (9) follows directly from Assump-

tions 2 and 3.

The result here is related to the result in Section 6.1 of Yu (2014), who shows that in the MTE

framework, the sufficient condition (8) is fulfilled if p(1|1) > p(1|0) (which corresponds to As-

sumption 4.4 and generalizes Assumption 2.4 in my paper). This assumption implies the existence

of compliers, which is the essential element for the arguments of this section.
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Auxilliary Results

This section contains two auxiliary lemmas that provide closed form solutions for the IVQR esti-

mands with binary and general instruments.

Lemma 1. Suppose that 0 < P(Z = 1) < 1 and that

F̃Y1(y) ≡
p(1|1)FY|D=1,Z=1(y)− p(1|0)FY|D=1,Z=0(y)

p(1|1)− p(1|0)

F̃Y0(y) ≡
p(0|0)FY|D=0,Z=0(y)− p(0|1)FY|D=0,Z=1(y)

p(1|1)− p(1|0)

are strictly increasing and well-defined CDFs. Then: (i)

QIVQR
Y1

(
FIVQR

Y0
(y)
)
= Q̃Y1

(
F̃Y0(y)

)
QIVQR

Y0

(
FIVQR

Y1
(y)
)
= Q̃Y0

(
F̃Y1(y)

)
and (ii)

FIVQR
Y1

(y) = (p(1|1)− p(1|0))F̃Y1(y) + p(1|0)FY|D=1,Z=0(y) + p(0|1)FY|D=0,Z=1
(
Q̃Y0

(
F̃Y1(y)

))
FIVQR

Y0
(y) = (p(1|1)− p(1|0))F̃Y0(y) + p(0|1)FY|D=0,Z=1(y) + p(1|0)FY|D=1,Z=0

(
Q̃Y1

(
F̃Y0(y)

))
where Q̃Y0(y) = F̃−1

Y0
(y) and Q̃Y1(y) = F̃−1

Y1
(y).

Lemma 1 can be deduced from the more general result in Lemma 2, but it is instructive to give a

direct proof to illustrate the mechanics behind the main results.

Proof of Lemma 1.
Part (i) The moment conditions of the IVQR model read:

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

1
)
= 0

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

Z
)
= 0

By the law of iterated expectations,

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

1
)
=E

(
τ − 1

[
Y ≤ QIVQR

YD
(τ)
]
|Z = 1

)
P(Z = 1)

+ E
(

τ − 1
[
Y ≤ QIVQR

YD
(τ)
]
|Z = 0

)
P(Z = 0) = 0

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

Z
)
=E

(
τ − 1

[
Y ≤ QIVQR

YD
(τ)
]
|Z = 1

)
P(Z = 1) = 0.

Because 0 < P(Z = 1) < 1 by assumption, QIVQR
YD

solves

E
(

τ − 1
[
Y ≤ QIVQR

YD
(τ)
]
|Z = 0

)
=0

E
(

τ − 1
[
Y ≤ QIVQR

YD
(τ)
]
|Z = 1

)
=0.
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By the law of iterated expectation,

E
(

τ − 1
[
Y ≤ QIVQR

Y1
(τ)
]
|D = 1, Z = 1

)
p(1|1) + E

(
τ − 1

[
Y ≤ QIVQR

Y0
(τ)
]
|D = 0, Z = 1

)
p(0|1) = 0

E
(

τ − 1
[
Y ≤ QIVQR

Y1
(τ)
]
|D = 1, Z = 0

)
p(1|0) + E

(
τ − 1

[
Y ≤ QIVQR

Y0
(τ)
]
|D = 0, Z = 0

)
p(0|0) = 0.

Rewriting both equations using the definition of conditional CDFs yields

p(1|1)FY|D=1,Z=1

(
QIVQR

Y1
(τ)
)
+ p(0|1)FY|D=0,Z=1

(
QIVQR

Y0
(τ)
)
= τ (10)

p(1|0)FY|D=1,Z=0

(
QIVQR

Y1
(τ)
)
+ p(0|0)FY|D=0,Z=0

(
QIVQR

Y0
(τ)
)
= τ. (11)

Equating equations (10) and (11) and rearranging terms gives

p(1|1)FY|D=1,Z=1

(
QIVQR

Y1
(τ)
)
− p(1|0)FY|D=1,Z=0

(
QIVQR

Y1
(τ)
)
=

p(0|0)FY|D=0,Z=0

(
QIVQR

Y0
(τ)
)
− p(0|1)FY|D=0,Z=1

(
QIVQR

Y0
(τ)
)

.

Dividing by p(1|1)− p(1|0) on both sides, we have

F̃Y1

(
QIVQR

Y1
(τ)
)
= F̃Y0

(
QIVQR

Y0
(τ)
)

by definition of F̃Yd (y) and Q̃Yd (τ). Because F̃Y1 (y) and F̃Y0 (y) are strictly increasing and well-defined, we can apply
Q̃Y1 (y) ≡ F̃−1

Y1
(y) on both sides:

QIVQR
Y1

(τ) = Q̃Y1

(
F̃Y0

(
QIVQR

Y0
(τ)
))

Finally, note that FIVQR
Y0

(y) is strictly increasing by our assumption that F̃Y1 (y) and F̃Y0 (y) are strictly increasing and

well-defined. Hence, we can substitute τ = FIVQR
Y0

(y) to obtain

QIVQR
Y1

(
FIVQR

Y0
(y)
)
= Q̃Y1

(
F̃Y0 (y)

)
which implies that QIVQR

Y0

(
FIVQR

Y1
(y)
)
= Q̃Y0

(
F̃Y1 (y)

)
. This completes the proof of part (i).

Part (ii): Consider equation (10). Substituting τ = FIVQR
Y1

(y) and and adding and subtracting p(1|0)FY|D=1,Z=0(y)
yields:

FIVQR
Y1

(y) =(p(1|1)− p(1|0))F̃Y1 (y) + p(1|0)FY|D=1,Z=0(y) + p(0|1)FY|D=0,Z=1

(
QIVQR

Y0

(
FIVQR

Y1
(y)
))

Similar arguments applied to equation (11) yield:

FIVQR
Y0

(y) =(p(1|1)− p(1|0))F̃Y0 (y) + p(0|1)FY|D=0,Z=1(y) + p(1|0)FY|D=1,Z=0

(
QIVQR

Y1

(
FIVQR

Y0
(y)
))

The result in part (ii) of the Lemma now follows from the results in part (i).

I now present general closed form solutions for the IVQR moment conditions that can be used

to characterize the IVQR model under more general setups than those considered in the main text.

I consider the following IVQR moment equations,

E
((

τ − 1
[
Y ≤ δIVQR(τ)D + QIVQR

Y0
(τ)
])

g(Z)
)
= 0,

where Z is a general instrument and g(Z) ≡ (g1(Z), g2(Z))′ is a measurable function, where g0(Z)

and g1(Z) are linearly independent and E(g(Z)) 6= 0. Let fZ(z) be the density function of Z if Z
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is continuous and fZ(z) = P(Z = z) if Z is discrete.

Lemma 2. Suppose that fZ(z) > 0 for all z ∈ Z and that

F̃Y1(y) ≡
E
(

FY|D=1,Z (y) p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
E
(

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
F̃Y0(y) ≡

E
(

FY|D=0,Z (y) p(0|Z)
(

g1(Z)
E(g1(Z)) −

g2(Z)
E(g2(Z))

))
E
(

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
are strictly increasing and well-defined. Then: (i)

QIVQR
Y1

(
FIVQR

Y0
(y)
)
= Q̃Y1

(
F̃Y0(y)

)
QIVQR

Y0

(
FIVQR

Y1
(y)
)
= Q̃Y0

(
F̃Y1(y)

)
and (ii)

FIVQR
Y1

(y) =
E
(

g1(Z)
(

FY|D=1,Z (y) p(1|Z) + FY|D=0,Z
(
Q̃Y0

(
F̃Y1(y)

))
p(0|Z)

))
E(g1(Z))

FIVQR
Y0

(y) =
E
(

g2(Z)
(

FY|D=1,Z
(
Q̃Y1

(
F̃Y0(y)

))
p(1|Z) + FY|D=0,Z (y) p(0|Z)

))
E(g2(Z))

where Q̃Y0(y) = F̃−1
Y0

(y) and Q̃Y1(y) = F̃−1
Y1

(y).

Proof of Lemma 2.
Part (i): The moment equations of the IVQR model read

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

g1(Z)
)
= 0

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

g2(Z)
)
= 0.

By the law of iterated expectations,

E
(

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

g1(Z)|Z
))

E
(

E
((

τ − 1
[
Y ≤ QIVQR

YD
(τ)
])

g2(Z)|Z
))

Expressing both equations in terms of conditional CDFs, we have

E
(

g1(Z)FY|Z
(

QIVQR
YD

(τ)
))

= E(g1(Z))τ

E
(

g2(Z)FY|Z
(

QIVQR
YD

(τ)
))

= E(g2(Z))τ

By the law of iterated expectations, we get

E
(

g1(Z)
(

FY|D=1,Z

(
QIVQR

Y1
(τ)
)

p(1|Z) + FY|D=0,Z

(
QIVQR

Y0
(τ)
)

p(0|Z)
))

= E(g1(Z))τ (12)

E
(

g2(Z)
(

FY|D=1,Z

(
QIVQR

Y1
(τ)
)

p(1|Z) + FY|D=0,Z

(
QIVQR

Y0
(τ)
)

p(0|Z)
))

= E(g2(Z))τ (13)

32



Equating both equations and rearranging terms, we obtain

E

(
FY|D=1,Z

(
QIVQR

Y1
(τ)
)

p(1|Z)
(

g2(Z)
E(g2(Z))

− g1(Z)
E(g1(Z))

))
=

E

(
FY|D=0,Z

(
QIVQR

Y0
(τ)
)

p(0|Z)
(

g1(Z)
E(g1(Z))

− g2(Z)
E(g2(Z))

))

Dividing both equations by E
(

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
(which is non-zero by assumption) yields

E
(

FY|D=1,Z

(
QIVQR

Y1
(τ)
)

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
E
(

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

)) =

E
(

FY|D=0,Z

(
QIVQR

Y0
(τ)
)

p(0|Z)
(

g1(Z)
E(g1(Z)) −

g2(Z)
E(g2(Z))

))
E
(

p(1|Z)
(

g2(Z)
E(g2(Z)) −

g1(Z)
E(g1(Z))

))
The result in part (i) now follows from the same arguments as in the proof of part (i) of Lemma 1.
Part (ii): The proof of part (ii) follows directly from the result in part (i) after substituting τ = FIVQR

Y1
(y) in equation (12)

and FIVQR
Y0

(y) in equation (13).
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Proofs of the Main Results

Proof of Theorem 1.
By Assumption 2, we have that 0 < P(Z = 1) < 1. Moreover, Assumptions 2 and 3 imply that F̃Y1 (y) = FY1|c(y) and
F̃Y0 (y) = FY0|c(y) are both well-defined and strictly increasing. Hence, by Lemma by Lemma 1,

FIVQR
Y1

(y) = (p(1|1)− p(1|0))F̃Y1 (y) + p(1|0)FY|D=1,Z=0(y) + p(0|1)FY|D=0,Z=1
(
Q̃Y0

(
F̃Y1 (y)

))
FIVQR

Y0
(y) = (p(1|1)− p(1|0))F̃Y0 (y) + p(0|1)FY|D=0,Z=1(y) + p(1|0)FY|D=1,Z=0

(
Q̃Y1

(
F̃Y0 (y)

))
The result in Theorem 1 now follows from the results in Imbens and Rubin (1997) discussed at the beginning of Section
3 in the main text.

Proof of Theorem 2.
By Assumption 2, we have that 0 < P(Z = 1) < 1. Moreover, Assumptions 2 and 3 imply that F̃Y1 (y) = FY1|c(y) and
F̃Y0 (y) = FY0|c(y) are both well-defined and strictly increasing. Hence, the results of Lemma 1 apply. To prove the first

claim, note that under Assumption 2, part (i) of Lemma 1 implies FY1|c
(

QIVQR
Y1

(τ)
)
= FY0|c

(
QIVQR

Y0
(τ)
)

. Applying

QY1|c(τ) on both sides yields QIVQR
Y1

(τ) = QY1|c
(

FY0|c
(

QIVQR
Y0

(τ)
))

(because QY1|c(τ) is strictly increasing in τ). Next,
consider

δIVQR(τ) ≡ QIVQR
Y1

(τ)−QIVQR
Y0

(τ)

= QY1|c
(

FY0|c
(

QIVQR
Y0

(τ)
))
−QIVQR

Y0
(τ)

= QY1|c
(

FY0|c
(

QIVQR
Y0

(τ)
))
−QY0|c

(
FY0|c

(
QIVQR

Y0
(τ)
))

= δc

(
FY0|c

(
QIVQR

Y0
(τ)
))

= δc

(
FY1|c

(
QIVQR

Y1
(τ)
))

,

where the third equality follows from QY0|c
(

FY0|c(y)
)
= y because QY0|c and FY0|c(y) are strictly increasing; the forth

equality is by definition; and the fifth equality follows directly from FY1|c
(

QIVQR
Y1

(τ)
)
= FY0|c

(
QIVQR

Y0
(τ)
)

. This proves
the first claim. To prove the second and the third claim, note that

FIVQR
Y1|n (y) = FY0|n

(
QY0|c

(
FY1|c(y)

))
, and FIVQR

Y0|a (y) = FY1|a
(

QY1|c
(

FY0|c(y)
))

implies that

QIVQR
Y1|n (τ) = QY1|c

(
FY0|c

(
QY0|n(τ)

))
, and QIVQR

Y0|a (τ) = QY0|c
(

FY1|c
(

QY1|a(τ)
))

.

The proof of both claims now follows from similar arguments as the proof of the first claim.

Proof of Theorem 3.
The result in Theorem 3 follows immediately from Theorems 1 and 2 and the relationship between the QTEs and the
ATE: ∆ =

∫ 1
0 δ(τ)dτ.

Proof of Theorem 4.
Under Assumptions 2.2 - 2.4, p(d|z) and FY|D=d,Z=z(y) can be related to the fractions and potential outcome CDFs of
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the four different types T ∈ {a, n, c, f } as (e.g., Huber, 2014):

p(1|1) =πa + πc

p(1|0) =πa + π f

p(0|1) =πn + π f

p(0|0) =πn + πn

FY|D=1,Z=1(y) =
πa

πa + πc
FY1|a(y) +

πc

πa + πc
FY1|c(y)

FY|D=1,Z=0(y) =
πa

πa + π f
FY1|a(y) +

π f

πa + π f
FY1| f (y)

FY|D=0,Z=1(y) =
πn

πn + π f
FY0|n(y) +

π f

πn + π f
FY0| f (y)

FY|D=0,Z=0(y) =
πn

πn + πc
FY0|n(y) +

πc

πn + πc
FY0|c(y)

By Assumption 2.3, we have that 0 < P(Z = 1) < 1. Moreover, by assumption FY1|c− f (y) and FY0|c− f (y) are strictly
increasing and well-defined. Thus, the results from Lemma 1 apply. Substituting the above expressions in part (ii) of
Lemma 1 completes the proof.

Proof of Theorem 5.
By Assumption 2.3, we have that 0 < P(Z = 1) < 1. Moreover, by assumption FY1|c− f (y) and FY0|c− f (y) are strictly
increasing and well-defined. Thus, the results from Lemma 1 apply. Under Assumption 2.2 - 2.4, part (i) of Lemma 1
implies FY1|c− f

(
QIVQR

Y1
(τ)
)
= FY0|c− f

(
QIVQR

Y0
(τ)
)

. The proof of the theorem now follows from similar arguments as
in the proof of Theorem 2.

Proof of Theorem 6.
By Assumption 4, we have that 0 < P(Z = z) < 1 for all z ∈ Z . Hence, to apply the results in Lemma 2, one needs
to show that F̃Y1 (y) and F̃Y0 (y) are strictly increasing and well-defined. It is helpful to split the proof into four steps.
In step 1, I present the implications of Assumption 4 for observed conditional probabilities and CDFs. In step 2, I use
these implications to express F̃Y1 (y) and F̃Y0 (y) as functions of potential outcome CDFs for the K + 1 subpopulation.
Step 3 verifies that F̃Y1 (y) and F̃Y0 (y) (and hence their inverses) are well-defined and strictly increasing. Finally, step 4
uses the Lemma 2 to prove the results in the theorem.
Step 1: Recall that Assumption 4 implies that the conditional CDFs FY|D=d,Z=zk

can be written as the sum of the potential
outcome distributions of different types:

FY|D=1,Z=zk
(y) =

πaFY1|a(y) + ∑K
j=2 πczj

FY1|czj
(y)1(zj ≤ zk)

πa + ∑K
j=2 πczj

1(zj ≤ zk)

FY|D=0,Z=zk
(y) =

πnFY0|n(y) + ∑K
j=2 πczj

FY0|czj
(y)1(zj > zk)

πn + ∑K
j=2 πczj

1(zj > zk)

Moreover, the conditional probabilities p(1|zk) and p(0|zk) can be expressed as sums of type-specific fractions:

p(1|zk) =πa +
K

∑
j=2

πczj
1(zj ≤ zk)

p(0|zk) =πn +
K

∑
j=2

πczj
1(zj > zk)
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Step 2: This step expresses F̃Y1 (y) and F̃Y0 (y) given by Lemma 2 under Assumptions 4. Consider

F̃Y1 (y) =
∑K

k=1 FY|D=1,Z=zk
(y) p(1|zk)P(Z = zk)

(
zk

E(Z) − 1
)

∑K
k=1 p(1|zk)P(Z = zk)

(
zk

E(Z) − 1
)

=
∑K

k=1

(
πaFY1|a(y) + ∑K

j=2 πczj
FY1|czj

(y)1(zj ≤ zk)
)

P(Z = zk)
(

zk
E(Z) − 1

)
∑K

k=1

(
πa + ∑K

j=2 πczj
1(zj ≤ zk)

)
P(Z = zk)

(
zk

E(Z) − 1
)

=
∑K

k=1 ∑K
j=2 πczj

FY1|czj
(y)1(zj ≤ zk)P(Z = zk)

(
zk

E(Z) − 1
)

∑K
k=1 ∑K

j=2 πczj
1(zj ≤ zk)P(Z = zk)

(
zk

E(Z) − 1
)

=
∑K

j=2 πczj
FY1|czj

(y)∑K
k=1 1(zj ≤ zk)P(Z = zk)

(
zk

E(Z) − 1
)

∑K
j=2 πczj

∑K
k=1 1(zj ≤ zk)P(Z = zk)

(
zk

E(Z) − 1
)

=
∑K

j=2 πczj
FY1|czj

(y)
(

∑K
k=j zk P(Z=zk)

E(Z) − P(Z ≥ zj)

)
∑K

j=2 πczj

(
∑K

k=j zk P(Z=zk)

E(Z) − P(Z ≥ zj)

)

=
∑K

j=2 wjπczj
FY1|czj

(y)

∑K
j=2 wjπczj

,

where the first equality follows from Lemma 2 spezialized to the setup of the theorem; the second equality is by step 1;
the third equality follows from expanding the numerator and denominator and noting that πaFY1|a(y)(E(Z)/E(Z)−
1) = πa(E(Z)/E(Z) − 1) = 0; the fourth equality is by changing the order of summation; and the fifth equality is
because

wj ≡
∑K

k=j zkP(Z = zk)

E(Z)
− P(Z ≥ zj)

=
E(Z|Z ≥ zj)P(Z ≥ zj)

E(Z)
− P(Z ≥ zj)

=

(
E(Z|Z ≥ zj)

E(Z)
− 1

)
P(Z ≥ zj).

36



Similarly, consider

F̃Y0 (y) =
∑K

k=1 FY|D=0,Z=zk
(y) p(0|zk)P(Z = zk)

(
1− zk

E(Z)

)
∑K

k=1 p(1|zk)P(Z = zk)
(

zk
E(Z) − 1

)
=

∑K
k=1

(
πnFY0|n(y) + ∑K

j=2 πczj
FY0|czj

(y)1(zj > zk)
)

P(Z = zk)
(

1− zk
E(Z)

)
∑K

k=1

(
πn + ∑K

j=2 πczj
1(zj > zk)

)
P(Z = zk)

(
zk

E(Z) − 1
)

=
∑K

k=1 ∑K
j=2 πczj

FY0|czj
(y)1(zj > zk)P(Z = zk)

(
1− zk

E(Z)

)
∑K

k=1 ∑K
j=2 πczj

1(zj > zk)P(Z = zk)
(

zk
E(Z) − 1

)
=

∑K
j=2 πczj

FY0|czj
(y)∑K

k=1 1(zj > zk)P(Z = zk)
(

1− zk
E(Z)

)
∑K

j=2 πczj
∑K

k=1 1(zj > zk)P(Z = zk)
(

zk
E(Z) − 1

)

=
∑K

j=2 πczj
FY0|czj

(y)
(

P(Z < zj)−
∑

j−1
k=1 zk P(Z=zk)

E(Z)

)
∑K

j=2 πczj

(
∑K

k=j zk P(Z=zk)

E(Z) − P(Z ≥ zj)

)

=
∑K

j=2 wjπczj
FY0|czj

(y)

∑K
j=2 πczj

wj
,

where the last equality is because

P(Z < zj)−
∑

j−1
k=1 zkP(Z = zk)

E(Z)
=

E(Z)−∑
j−1
k=1 zkP(Z = zk)

E(Z)
− (1− P(Z < zj))

=
∑K

k=j zkP(Z = zk)

E(Z)
− P(Z ≥ zj)

=

(
E(Z|Z ≥ zj)

E(Z)
− 1

)
P(Z ≥ zj)

≡wj.

Step 3: This step verifies that F̃Y1 (y) and F̃Y0 (y) are well-defined and strictly increasing under the assumptions of
the theorem. Consider first the numerators of F̃Y1 (y) and F̃Y0 (y). By Assumptions 4 and 5, we have that πczj

> 0,
FY1|czj

(y) > 0, and FY0|czj
(y) > 0. Furthermore, because z > 0 for all z ∈ Z , we have

wj ≡P(Z ≥ zj)

(
E(Z|Z ≥ zj)

E(Z)
− 1

)
> 0.

Hence, the numerators of F̃Y1 (y) and F̃Y0 (y) are positive. Furthermore, FY1|czj
(y) and FY0|czj

(y) are strictly increasing by

Assumption 4. It follows that both numerators are also strictly increasing. Hence, for F̃Y1 (y) and F̃Y0 (y) to be strictly
increasing and well-defined, we must show that the denominator is non-zero and positive. This follows directly from
πczj

> 0 and wj > 0 for j = 2, ..., K as shown before. We conclude that F̃Y1 (y) and F̃Y0 (y) are well-defined and strictly
increasing.
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Step 4: This step expresses FIVQR
Y1

(y) and FIVQR
Y0

(y) given by Lemma 2 under Assumption 4. Consider,

FIVQR
Y1

(y) =
K

∑
k=1

FY|D=1,Z=zk
(y) p(1|zk)P(Z = zk)

+
K

∑
k=1

FY|D=0,Z=zk

(
Q̃Y0

(
F̃Y1 (y)

))
p(0|zk)P(Z = zk)

=
K

∑
k=1

πaFY1|a(y) +
K

∑
j=2

πczj
FY1|czj

(y)1(zj ≤ zk)

 P(Z = zk)

+
K

∑
k=1

πnFY0|n
(
Q̃Y0

(
F̃Y1 (y)

))
+

K

∑
j=2

πczj
FY0|czj

(
Q̃Y0

(
F̃Y1 (y)

))
1(zj > zk)

 P(Z = zk)

=πaFY1|a(y) +
K

∑
k=1

K

∑
j=2

πczj
FY1|czj

(y)1(zj ≤ zk)P(Z = zk)

+ πnFY0|n
(
Q̃Y0

(
F̃Y1 (y)

))
+

K

∑
k=1

K

∑
j=2

πczj
FY0|czj

(
Q̃Y0

(
F̃Y1 (y)

))
1(zj > zk)P(Z = zk)

=πaFY1|a(y) +
K

∑
j=2

πczj
FY1|czj

(y)
K

∑
k=1

1(zj ≤ zk)P(Z = zk)

+ πnFY0|n
(
Q̃Y0

(
F̃Y1 (y)

))
+

K

∑
j=2

πczj
FY0|czj

(
Q̃Y0

(
F̃Y1 (y)

)) K

∑
k=1

1(zj > zk)P(Z = zk)

=πaFY1|a(y) +
K

∑
j=2

πczj
FY1|czj

(y)P(Z ≥ zj)

+ πnFY0|n
(
Q̃Y0

(
F̃Y1 (y)

))
+

K

∑
j=2

πczj
FY0|czj

(
Q̃Y0

(
F̃Y1 (y)

))
P(Z < zj)

where the first equality follows from Lemma 2 specialized to the setup of the theorem, the second equality is by step
1; the third equality follows from expanding terms; and the fourth equality is by changing the order of summation.
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Similarly, consider

FIVQR
Y0

(y) =
1

E(Z)

K

∑
k=1

FY|D=1,Z=zk

(
Q̃Y1

(
F̃Y0 (y)

))
p(1|zk)zkP(Z = zk)

+
1

E(Z)

K

∑
k=1

FY|D=0,Z=zk
(y) p(0|zk)zkP(Z = zk)

=
1

E(Z)

K

∑
k=1

πaFY1|a
(
Q̃Y1

(
F̃Y0 (y)

))
+

K

∑
j=2

πczj
FY1|czj

(
Q̃Y1

(
F̃Y0 (y)

))
1(zj ≤ zk)

 zkP(Z = zk)

+
1

E(Z)

K

∑
k=1

πnFY0|n(y) +
K

∑
j=2

πczj
FY0|czj

(y)1(zj > zk)

 p(0|zk)zkP(Z = zk)

=πaFY1|a
(
Q̃Y1

(
F̃Y0 (y)

))
+

1
E(Z)

K

∑
k=1

K

∑
j=2

πczj
FY1|czj

(
Q̃Y1

(
F̃Y0 (y)

))
1(zj ≤ zk)zkP(Z = zk)

+ πnFY0|n(y) +
1

E(Z)

K

∑
k=1

K

∑
j=2

πczj
FY0|czj

(y)1(zj > zk)zkP(Z = zk)

=πaFY1|a
(
Q̃Y1

(
F̃Y0 (y)

))
+

1
E(Z)

K

∑
j=2

πczj
FY1|czj

(
Q̃Y1

(
F̃Y0 (y)

)) K

∑
k=1

1(zj ≤ zk)zkP(Z = zk)

+ πnFY0|n(y) +
1

E(Z)

K

∑
j=2

πczj
FY0|czj

(y)
K

∑
k=1

1(zj > zk)zkP(Z = zk)

=πaFY1|a
(
Q̃Y1

(
F̃Y0 (y)

))
+

K

∑
j=2

πczj
FY1|czj

(
Q̃Y1

(
F̃Y0 (y)

)) ∑K
k=j zkP(Z = zk)

E(Z)

+ πnFY0|n(y) +
K

∑
j=2

πczj
FY0|czj

(y)
∑

j−1
k=1 zkP(Z = zk)

E(Z)

This completes the proof of the theorem.

Proof of Theorem 7.
By Assumption 4, we have that 0 < P(Z = z) < 1 for all z ∈ Z . Moreover, I show in step 3 of the proof of Theorem 6
that F̃Y1 (y) and F̃Y0 (y) are strictly increasing under the Assumptions 4 and 5. Therefore, it follows from Lemma 2 that
QIVQR

Y1

(
FIVQR

Y0
(y)
)
= Q̃Y1

(
G̃Y0 (y)

)
. The proof of the result now follows from identical arguments as in the proof of

Theorem 2.

39



Figures

0 10000 30000 50000 70000

0.
2

0.
4

0.
6

0.
8

1.
0

Earnings

P
ro

ba
bi

lit
y

A − Cumulative Distribution Functions

Y_0 compliers
Y_1 compliers
Y_0 never takers

0.2 0.4 0.6 0.8

0
10

00
20

00
30

00
40

00
50

00
60

00

Quantile index

E
ar

ni
ng

s

B − Quantile Treatment Effects I

LQTE compliers
IVQR QTE

Figure 1: The number of observations is 5,083. The left panel shows estimated CDFs for the
different subpopulations. The right panel contains estimates of the QTE form the IVQR model
and the LQTE model. The QTE are computed over τ = {0.05, 0.06, ..., 0.95}.
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Figure 2: The number of observations is 5,083. The left panel plots the estimated rank functions
and the right panel compares the LQTE estimates with the IVQR estimates for the never takers.
All estimates are computed over τ = {0.05, 0.06, ..., 0.95}.
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Figure 3: The number of observations is 11,637. The left panel shows estimated CDFs for the
different subpopulations. The right panel contains estimates of the QTE form the IVQR model
and the LQTE model. The QTE are computed over τ = {0.05, 0.06, ..., 0.95}.
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Figure 4: The number of observations is 11,637. The left panel plots the estimated rank functions
and the right panel compares the LQTE estimates with the IVQR estimates for the never takers
and the always takers. All estimates are computed over τ = {0.05, 0.06, ..., 0.95}.

43


	wp_wuethrich.pdf
	Introduction
	Setup and Models
	The IVQR Model
	The LQTE Model
	Comments on the Difference between both Models

	IVQR Estimands under the LQTE Framework
	Setup
	Point Identification under the LQTE Assumptions
	Cummulative Distribution Functions
	Quantile Treatment Effects
	Average Treatment Effects

	Generalizations
	LQTE Assumptions without Monotonicity
	Multivalued Instruments
	Covariates

	Empirical Applications
	Implementation
	JTPA
	Veteran Status and Earnings

	Conclusion


