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Optimal Selling Mechanisms under Imperfect Commitment:
Extending to the Multi-Period Case�

Juan I. Beccutiy

Universität Bern - Department of Economics

May, 2014

Abstract

This paper studies the optimal mechanism for a seller (she) that sells, in a sequence of periods,
an indivisible object per period to the same buyer (he). Buyer�s willingness to pay remains
constant along time and is his private information. The seller can commit to the current period
mechanism but not to future ones. Our main result is that a seller cannot do better than posting
a price in every period. We give a complete characterization of the optimal mechanism and
equilibrium payo¤s for every prior. Also, we show that, when agents are arbitrarily patient, the
seller does not learn about buyer�s type except in extreme cases, posting a price equal to the
minimum buyer�s willingness to pay in every period. This result is a reminiscence of the Coase�s
conjecture, where a monopolist cannot exert her monopoly power due to the lack of long-term
commitment.
Keywords: asymmetric information, dynamics, optimal mechanism, imperfect commitment.
JEL codes: D82

1 Introduction

Beccuti (2014) proves that, in a two-period game, price posting is optimal when both players have
the same discount factor but not when they are di¤erent. In this paper, we extend that model to a
�nite number of periods when the discount factor is arbitrarily large and equal for both players.

Intuitively, allowing more than two periods provides a richer environment because the seller can
now engage in a strategy of gradual learning. More formally, continuation values at any moment in
time of a multi-period game may be a non-linear function in the prior for either the buyer or the
seller. Moreover, in a static framework, price posting is an optimal mechanism when value functions
are linear and it is not when they are not linear.1 However, linearity (or piecewise linearity) in the
prior on value functions is not a su¢ cient condition for optimality of price posting in an dynamic
framework as it can be seen in the two-period setting. Then, it is reasonable to conjecture that price
posting might not be optimal in a multi-period game.

We prove two things. First, the seller cannot do better than posting a price in every period as
the selling mechanism without loss of generality. Second, in general along the equilibrium path the

�This paper is part of my Ph.D. dissertation at Universidad Carlos III de Madrid. I thank in particular to Angel
Hernando-Veciana for his advice and encouragement. I also thank to Marco Celentani, Mikhail Drugov, María Angeles
de Frutos, Daniel Garcia, Antoine Loeper, Marc Möller and seminar audiences in seminars at EEA-ESEM 2012 and
Universidad Rovira i Virgili.

yjuan.beccuti@vwi.unibe.ch.
1See Chapter 2 in Börgers (mimeo) or Chapter 2 in Bolton and Dewatripont (2005).
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seller posts a price equal to the minimum buyer willingness to pay, i.e. the maximum competitive
price. Discrimination between types is optimal only when the seller is extremely optimistic about
facing a high-type consumer. In other case, learning, albeit possible, is so costly for the seller that
it is not optimal. When the seller has the possibility of learning, her pro�ts are reduced due to the
strategic behavior of the buyer. We also give a complete characterization of the optimal mechanism
and equilibrium payo¤s for every prior.

As in Coase�s conjecture, the monopolist cannot use a price above the competitive one to discrim-
inate among buyers. Coase (1972) conjectured that a monopolist uses this price from the beginning
when she has a durable good to sell in a �nite numbers of periods. A solution to this conjecture
is renting the durable good. This result implicitly assumes that the monopolist cannot track past
buyer�s decisions. However, in our framework the monopolist cannot commit to ignore the informa-
tion disclosed by the buyer. Our model implies that there is no mechanism that solves the Coase�s
conjecture as a consequence of this lack of commitment.

This has also implications regarding the ratchet e¤ect. In an arbitrary long game and if a discount
factor is not too small, a privately informed buyer knows that in case of revealing his valuation in
the current period he will not get any information rent thereafter (the ratchet e¤ect). Then, the
seller cannot induce him to reveal his information. Schmidt (1993) shows the presence of the ratchet
e¤ect on a repeated bargaining model, producing much pooling in all the equilibria of the game. In
his work, the buyer (who has the bargaining power in his model) o¤ers a price to a seller. As soon
as a price higher than her production cost is accepted (revealing her type) the buyer will not give
her any additional rents. This is true even if the price o¤ered by the buyer in the current period is
not the optimal one for him. Learning process, when it occurs, is always extreme. In our model,
the seller (who has the bargaining power) can o¤er a more complex selling mechanism than price
posting. For example, the seller can propose a menu of contracts such that if the high-type buyer
buys the good in the current period, he is not completely revealing his valuation. In other words, in
the following period the seller will not be certain about facing a high-type buyer. Therefore, she has
to give him rents again if she wants to continue with her learning process. In contrast with Schmidt
(1993), the seller can now propose mechanisms that allow her to learn gradually. Since we prove that
these mechanisms are suboptimal, the seller cannot break the ratchet e¤ect in equilibrium.

Skreta (2005) shows that her results at Skreta (2006) hold for the multi-period case. As we
mentioned for the two-period setting, she studies a di¤erent framework: she considers the durable
good case.

To solve the model we use a dynamic mechanism design approach following the procedure pro-
posed in Bester and Strausz (2001), which provides a modi�ed version of the revelation principle
when there is imperfect commitment.

The rest of the paper is organized as follows. Section 2 provides a general set up of the problem
and reviews the Bester and Strausz (2001) revelation principle for this kind of environment. Section
3 analyzes the problem with two types for any �nite T periods game. Finally, Section 4 concludes.
Those proofs considered relevant for the general understanding of the model are included in the main
text while the rest can be found in the Appendix.

2 General Setup

Let�s consider a multi-period game with r = f1; 2; ::::Tg and T <1, where r is the number of periods
remaining at the beginning of the current period. There is one risk neutral seller (the principal) and
one risk neutral buyer (the agent) facing each other repeatedly. Both players discount the future at
the same rate � 2 (0; 1]. At every period, the seller can produce at zero cost a non-storable object
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that puts for sale to the buyer.2 This buyer has valuation �i for the good, where �i 2 � = f�L; �Hg.
We call �L (�H) the low-type buyer (high-type buyer) and sometimes we denote it by the subscript L
(H). This valuation remains constant over time and is his private information. The initial probability
of facing a high-type buyer is denoted by pH;T+1, and for a low-type buyer by pL;T+1 = 1� pH;T+1.
We refer to this as the prior of the seller.

A mechanism �r in period r speci�es a message set Mr and a decision function yr = (xr; wr),
where xr : Mr ! [0; 1] is the allocation rule and wr : Mr ! R is the payment rule. Then, each
element mr 2 Mr commits the seller to implement the allocation rule xr(mr) and requires for the
buyer the payment wr(mr).

The seller has imperfect commitment. This is, at every period the seller can commit herself to
a mechanism for the current period but not for future ones. So, at the beginning of period r the
seller chooses a mechanism �r 2 � given her prior pH;r+1 about facing a high-type buyer, where
� is the space of mechanisms. Next, the buyer observes �r. His strategy speci�es the probability
qi(mr) with which the agent sends each message mr, where qi :Mr ! [0; 1], for i 2 fL;Hg and that
veri�es

P
mr2Mr

qi(mr) = 1. The buyer can always choose not to participate in the mechanism �r.3

In this case he gets zero instant payo¤s but he can accept future ones. Next, the seller observes mr

and updates her beliefs about facing a high-type buyer. We denote it by pH;r(mr) and is updated
following a mapping pH;r :Mr ! [0; 1]. Beliefs constitute the state variable for the next period, i.e.,
r � 1. In the following, we use pL;r(mr) to indicate 1� pH;r(mr) and pr(mr) to indicate the vector
of posteriors (pL;r(mr); pH;r(mr)) when a message mr is sent.

We denote by vr(mr) and ui;r(mr) to the seller�s and buyer�s instant payo¤, respectively, when
the buyer with valuation �i sends the message mr, i.e.

vr(mr) = wr(mr);

ui;r(mr) = xr(mr)�i � wr(mr);

Vr�1 : [0; 1]
2 ! R and Ui;r�1 : [0; 1]2 ! R represent the continuation values for each player.4

Consequently, given the vector of priors pr+1 � (pL;r+1; pH;r+1), the seller�s problem at period r
is to choose (qr; pr;�r) that maximizes:X

i2�

X
mr2Mr

pi;r+1qi (mr) (vr(mr) + �Vr�1 (pr(mr))) ; (1)

where qr � (qr (mr))mr2Mr
(qr (mr) indicates the vector (qL(mr); qH(mr)) ), and pr � (pr (mr))mr2Mr

,
is subject to the following constraints:

� The buyer�s Incentive Compatibility (ICi;r): the buyer chooses his optimal reporting strategy,
2All our results hold for any constant production cost strictly less than the minimum possible willingness to pay of

the buyer.
3Note that our de�nition of the mechanism requires participation. We take the usual convention that the buyer

can decide whether to participate or not, getting zero payo¤s in the last case. This convention is discussed later, when
we talk about the individual rationality constraint (IR). Alternatively, it is possible to include a message in Mr that
represents no participation.

4Continuation values depends on the vector of priors at the beginning of the period. Since there are two types, the
vector of priors is completely determined by the prior about facing a high-type buyer, i.e. pH;r+1. Then, later in the
paper, and with some abuse of notation, continuation values will be represented as depending only in that prior, which
we will denoted as p. We also will denote p(mr) to its posterior after observing mr.
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i.e., X
mr2Mr

qi (mr) (ui;r(mr) + �Ui;r�1 (pr (mr))) � (2)

X
mr2Mr

q0i (mr) (ui;r(mr) + �Ui;r�1 (pr (mr)))

for i 2 fL;Hg ; and for all q0i (mr).

� The buyer�s Individual Rationality (IRi;r): The buyer�s individual rationality constraint has
to be satis�ed for all types to which the seller assigns positive probability:

pi;r+1

" X
mr2Mr

qi (mr) (ui;r(mr) + �Ui;r�1 (pr (mr)))� � �Ui;r�1

#
� 0 (3)

for i 2 fL;Hg ; where �Ui;r�1 is the continuation value when the buyer choose not to participate
in the mechanism �r. Although there is no loss of generality in assuming that the buyer
participates with probability one, we have to warranty that he does not do better staying out.
This implies �Ui;r�1 � 0. We assume �Ui;1 = 0 since it is the less restrictive in (3) and, as we
will show later, this is the case at the optimal contract (given we can assume any belief for the
out-of-equilibrium message).

� And �nally, for each message, the seller�s updated belief pi;r (mr) has to be consistent with
Bayes�rule (BRr) whenever possible:

pi;r (mr)
X
j2�

pj;r+1qj (mr) = pi;r+1qi (mr) : (4)

It follows that the seller�s problem with imperfect commitment is given by:

Vr(pr+1) = Max
fqr;pr;�rg

X
i2�

X
mr2Mr

pi;r+1qi (mt) (vr(mr) + �Vr�1 (pr (mr))) ; (5)

subject to (2)� (4):

We say that the outcome (qr; pr;�r) is incentive feasible if it satis�es (2)-(4) for all �i 2 �.
Additionally, it is incentive e¢ cient if it satis�es (5), i.e. the seller chooses the best outcome among
all of the incentive feasible ones. An optimal mechanism is a mechanism �r that belongs to an
incentive e¢ cient outcome (qr; pr;�r). Finally, (qr; pr;�r) and (q0r; p

0
r;�

0
r) are payo¤s equivalent if
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they leave the seller and the buyer (of every possible type) with the same payo¤s, i.e.X
i2�

X
mr2Mr

pi;r+1qi (mr) (vr(mr) + �Vr�1 (pr (mr))) =X
i2�

X
m0
r2M 0

r

pi;r+1q
0
i

�
m0
r

� �
vr(m

0
r) + �Vr�1

�
p0r
�
m0
r

���
;

X
mr2Mr

qi (mr) (ui;r(mr) + �Ui;r�1 (pr (mr))) =X
m0
r2M 0

r

q0i
�
m0
r

� �
ui;r(m

0
r) + �Ui;r�1

�
p0r
�
m0
r

���
; i 2 fL;Hg :

Following the revelation principle provided by Bester and Strausz (2001) we can restrict to direct
mechanisms. Additionally, as it was explain for the two-period case, posteriors are always determined
by Bayes� rule and it is enough to consider a subset of all possible qr (in particular, qH � qL).
Generalization of these results to the multi-period setting is straightforward.

3 Optimal Selling Mechanism

3.1 Road Map

In this section we solve the seller�s problem at (5), proving that price posting (see Beccuti (2014) for
its de�nition) is the optimal selling mechanism for every period when r > 2.

First, we simplify the problem at (5) as in the two-period case (Lemma 1). We show that ICH;r
and IRL;r are binding at the optimum, that IRH;r is redundant and that ICL;r can be replaced by
a new constraint (SMCr) which is more useful in the analysis.

Second, we de�ne the continuation values when the discount factor is arbitrarily large. Next, we
prove they are well de�ned (Lemma 2 and Lemma 3) and that they have some particular properties
that are going to be useful to solve the seller�s problem (from Lemma 4 to Lemma 7).

Finally, we show that the optimal mechanism follows these continuation values and, at the same
time, that price posting is the optimal selling mechanism (Theorem 1 and Corollary 1).

3.2 Analysis

To solve the seller�s problem at (5), it is useful to simplify it �rst. Next lemma establishes the
equivalence between (5) after simpli�cations of Section 2.1 and a reduced program.

Lemma 1 At any period r, the seller�s problem at (5) is equivalent to

Max
fqr;�rg

X
i2�

X
mr=l;h

pi;r+1qi(mr) [vr (mr) + �Vr�1 (pr (mr))] ; subject to, (6)

IC�H;r : uH;r(h) + �UH;r�1 (pr (h)) = uH;r(l) + �UH;r�1 (pr (l)) ;

IR�L;r : uL;r(l) + �UL;r�1 (pr (l)) = 0;

SMCr : xr(h)� xr(l) �
�

��
[UH;r�1 (pr(l))� UH;r�1 (pr(h))] ; with equality if qL > 0;

BRr : pi;r (mr) =
pi;r+1qi (mr)P

k=L;H

pk;r+1qk (mr)
; mr = l; h;
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xr 2 [0; 1] ; qH > 0; qL < 1; qH � qL:

Proof. Proof for Lemma 2 at Beccuti (2014) can be generalized to the multi-period setting. For
this reason, it is omitted.

The interpretation of (6) is the same than the one for the reduced program in Beccuti (2014).
Since we consider the case with only two types, the vector pr (mr) is completely determined by

pH;r (mr). From now on, and when it is not explicitly indicated in a di¤erent way, we refer as p to
the prior of observing a high-type buyer at period r, and p (mr) to its posterior when a message mr

is sent.
One further simpli�cation is to substitute wr(h) and wr(l) into (6) using IR�L;r and IC

�
H;r. This

is, we substitute

wr(l) = xr(l)�L + �UL;r�1 (pr (l)) ;

wr(h) = (xr(h)� xr(l)) �H + xr(l)�L + �UL;r�1 (pr (l)) + �UH;r�1 (pr (h))� �UH;r�1 (pr (l)) ;

into the seller�s problem and we get:

Max
fqr;xrg

Wr (xr; qr; p; p(mr)) subject to, (7)

SMCr; BRr;

xr 2 [0; 1] ; qH > 0; qL < 1; qH � qL:

where

Wr (xr; qr; p; p(mr)) = xr(l)�L + �H (xr(h)� xr(l)) �H + �UL;r�1 (pr (l)) +
��H [UH;r�1 (p(h))� UH;r�1 (p(l))] + ��HVr�1(p(h)) + �(1� �H)Vr�1(p(l));

and �H is equal to (pqH + (1� p)qL).

3.2.1 Continuation Values

We propose some functions for the seller ~Vr(p) and for the high-type buyer ~Ur(p), de�ning them
recursively. For low-type buyer, we propose a function which is equal to zero for every p. We show
later that they correspond with the equilibrium continuation values.

From Beccuti (2014) let ~Vr(p) and ~Ur(p) equal to Vr(p) and Ur(p) respectively, for periods r = 1
and r = 2. We denote �0 = 0, �1 =

�L
�H
; ��1 =

�L
�H

(denotes the priors at last period that are
the boundaries between semi-separation and separation, and pooling and separation price posting,
respectively)5, �2 =

�L[�H+���]
�H [�L+���]

and ��2 =
�L
�H
(idem for r = 2). Then, let:

~Vr(p) �

8>><>>:
p � � r �qr(p)p

�
�H + � ~Vr�1 (1)

�
+ (1� �qr (p) p) � ~Vr�1 (� r�1)

p 2 [��r ; � r) q�r (p)p
�
�H + � ~Vr�1 (1)

�
+ (1� q�r (p)p) � ~Vr�1

�
��r�1

�
� pq�r (p)�r�1��

p 2 [0; ��r) �L + � ~Vr�1 (p)

;

for all r > 2;

~Ur(p) �

8<:
p � � r (1� �qr(p)p) � ~Ur�1 (� r�1)
p 2 [��r ; � r) (1� q�r (p)p) � ~Ur�1

�
��r�1

�
+ �r�1��

p 2 [0; ��r) �L + � ~Ur�1 (p)

;

for all r > 2; where,

5Notice that there is not a semi-separation price posting in the last period. For mathematical convinience when
conjecturing continuation values, we give it this particular value.
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- � r is the value of p 2 (� r�1; 1) such that �rst two lines of ~Vr(p) coincides and ��r is the value of
p 2

�
��r�1; 1

�
such that last two lines of of ~Vr(p) coincides.6

- qr (p; qL) � p��r�1
p(1��r�1) +

(1�p)qL�r�1
p(1��r�1) 8p 2 (� r�1; 1), i.e., suppose a low-type buyer is sending a

message h with probability qL, then qr (p; qL) is the probability that a high-type buyer sends a
message h such that the seller�s posterior, when she observes a message l, is equal to � r�1.

- �qr (p) � p��r�1
p(1��r�1) 8p 2 (� r�1; 1), i.e., the previous probability for the particular case of a low-type

buyer sending a message h with zero probability (qL = 0).

- q�r (p) �
p���r�1

p(1���r�1)
8p 2

�
��r�1; 1

�
, for r > 2 and q�2(�

�
2) = 1:

Next �gure illustrates seller�s value functions, as we shall show later. Intervals p 2
h
0; �L�H

i
;

p 2 [��r ; � r] and p 2 [� r; 1] are linear in p. The interval p 2
h
�L
�H
; ��r

i
is piecewise linear in p. The

�gure also illustrates cuto¤s ��r and � r. These points guarantee that ~Vr(p) is continuous.

Figure 1: Solid-Line: �rst line in de�nition of ~Vr(p); Dash-Line: second line in de�nition of ~Vr(p);
Dot-Line: third line in de�nition of ~Vr(p).

Previous de�nition of ~Vr(p) requires, to be complete, that ��r and � r exist and are unique. The
following two lemmas prove these properties.

Lemma 2 ��r =
�L
�H

Pr�2
i=0

�
��
�H

�i
and veri�es ��r =

�L
�Hq�r (�

�
r)
8r > 1.

Proof. See the Appendix.

Lemma 3 Solution � r exists and it is unique.
6This is, �r is the value of p 2 (�r�1; 1) such that

�qr(p)p
�
�H + � ~Vr�1 (1)

�
+ (1� �qr (p) p) � ~Vr�1 (�r�1) =

q�r (p)p
�
�H + � ~Vr�1 (1)

�
+ (1� q�r (p)p) � ~Vr�1 (��r�1)� pq�r (p)�r�1��;

and ��r is the value of p 2 (��r�1; 1) such that

q�r (p)p
�
�H + � ~Vr�1 (1)

�
+ (1� q�r (p)p) � ~Vr�1 (��r�1)� pq�r (p)�r�1�� = �L + � ~Vr�1 (p) :

Then, points �r and ��r guarantee continuity of ~Vr(p) on p.
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Proof. See the Appendix.

Notice that ��r and � r are increasing in r.
Next, we propose a functional form for our conjecture of the continuation values. The proof is

by induction.

Lemma 4 ~Ur(p) and ~Vr(p) verify:

~Ur(p) = ��

 P
i2
r(p)

�i + I[0;�r)(p)�
r�1

!
;

~Vr(p) = �L
P

i2
r(p)
�i + p�H

P
i2�
r(p)

q̂r�i(p)�
i + �LI[0;�r)(p)�

r�1 + p�HI[�r;1](p)�
r�1;

where

q̂r�i(p) �
�
�qr�i(p) if p � � r
q�r�i(p) o:w:

;


r(p) �
�
i 2 f0; 1; :::; r � 2g : p 2

�
0; ��r�i

�	
;

�
r(p) � fi 2 f0; 1; :::; r � 2g n
r(p)g :

Proof. See the Appendix.

As we will show, the set 
r(p) is the set of periods up to r = 2 in which the seller sells with
probability one no matter the message observed. Its complementary �
r(p) is when this does not
happen. In particular, �
r(p) is the set of periods in which the seller only sells to the high-type buyer
with probability q̂r�i(p).

The next lemma ensures that � r > ��r .

Lemma 5 If � is su¢ ciently closed to 1, then ��r 2 (� r�2; � r�1) 8r > 2:

Proof. See the Appendix.

Besides,

Lemma 6 Suppose Ur�1(p) = ~Ur�1(p) and Vr�1(p) = ~Vr�1(p). If � 2 (��(T ); 1), then either

r�1(p (h)) = 
r�1(p (l)) or 
r�1(p (h)) = 
r�1(p (l))nmax fi 2 
r�1(p (l))g, where �� (T ) is the
unique solution in (0; 1) to �T�2 (1 + �) = 1.

Proof. See the Appendix.

Lemma 6 follows from the facts that ��r is increasing in r and that � is arbitrarily large. The
former implies that 
r(p) is decreasing in p and 
r�1(p (l)) � 
r�1(p (h)) since p (h) � p (l). The
latter implies 
r�1(p (h)) = 
r�1(p (l)) or 
r�1(p (h)) = 
r�1(p (l))nmax fi 2 
r�1(p (l))g in order
to verify the SMC.

De�nition 1 A mechanism at period r induces signi�cant learning when ~Ur�1 (p(l))� ~Ur�1 (p(h)) 6=
0.

As in the two-period setting, we say that a mechanism induces signi�cant learning (from now on,
just learning) when the buyer�s continuation values are di¤erent for each message. This is, learning
becomes relevant when it induces the seller to propose in the future a di¤erent mechanism for each
message observed in the current period. This implies that buyer�s payo¤s are di¤erent for each
message. Notice that this de�nition is with respect to our conjecture on continuation values.

Since p (h) � p (l) and ~Ur(p) is decreasing in p by de�nition, learning means ~Ur�1 (p(l)) >
~Ur�1 (p(h)). We distinguish the following cases of learning and no-learning that correspond with
Lemma 6:
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Lemma 7 Learning can arise in the following cases:

- Learning-a: if 
r�1(p (l)) = 
r�1(p (h)), p (h) � � r�1 and p (l) 2
�
��r�1; � r�1

�
.

- Learning-b: if 
r�1(p (h)) = 
r�1(p (l))nmax fi 2 
r�1(p (l))g and 
r�1(p) = 
r�1(p (h)).

- Learning-c: if 
r�1(p (h)) = 
r�1(p (l))nmax fi 2 
r�1(p (l))g and 
r�1(p) = 
r�1(p (l)).

Besides, if there is no-learning, then 
r�1(p (l)) = 
r�1(p (h)).

Proof. See the Appendix

By application of Lemma 4 and Lemma 7 we have the following remark.

Remark 1 In learning-a ~Ur�1 (p(h)) = 0 and ~Ur�1 (p(l)) = �r�2��. In learning-b and learning-c,
~Ur�1 (p(l))� ~Ur�1 (p(h)) = �

j�� where j = max fi 2 
r�1(p (l))g.

3.2.2 Optimality

Next, we solve the problem at (7) using our conjecture of continuation values and we show that
the optimal solution follows that conjecture. At the same time, we prove that the optimal selling
mechanism is price posting.

Then, the seller�s problem is

Max
fqr;xrg

~Wr (xr; qr; p; p(mr)) subject to, (8)

SMCr; BRr;

xr 2 [0; 1] ; qH > 0; qL < 1; qH > qL:

where

~Wr (xr; qr; p; p(mr)) = xr(l)�L + �H (xr(h)� xr(l)) �H + ��H
h
~Ur�1 (p(h))� ~Ur�1 (p(l))

i
+

+��H ~Vr�1(p(h)) + �(1� �H) ~Vr�1(p(l));

and �H is equal to (pqH + (1� p)qL).
We split (8) into two subproblems. We consider the two variables maximization problem as a

maximization problem in which the seller chooses �rst qr and next xr.7 This is, �xing qr, we maximize
with respect to xr. Since seller�s payo¤ are increasing in xr(h) and the increment of xr(h) relaxes
the SMCr, then the optimal xr(h) is 1. On the other hand, the optimal allocation for message l
depends on �H = pqH + (1� p)qL, i.e. xr(l) = x̂r(l; qr) where

x̂r(l; qr) =

(
0 if �H � �L

�H

� if �H <
�L
�H

; (9)

7We are using the general property Max
fx;yg

f(x; y) =Max
fxg

�
Max
fyg

f(x; y)

�
.
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with � = min
n
1; 1� � ~Ur�1(p(l))�� + �

~Ur�1(p(h))
��

o
when qL = 0,8 and

x̂r(l; qr) = 1� �
~Ur�1 (p (l))

��
+ �

~Ur�1 (p (h))

��
(10)

when qL 6= 0.
Now, we have to solve the seller�s maximization problem with respect to qr, i.e.

max
fqrg

~Wr (x̂r(l; qr); qr; p; p(mr)) ; subject to, (11)

p(h) =
pqH

pqH + (1� p)qL
;

p(l) =
p(1� qH)

p(1� qH) + (1� p)(1� qL)
;

qH 2 (0; 1] ; qL 2 [0; 1) ; qH > qL:

To solve the second subproblem, we di¤erentiate those cases where xr(l) = 0 and where xr(l) 6= 0.

De�nition 2 We say that a mechanism has SMC non-binding if xr(l) = 0 and SMC binding if
xr(l) 6= 0.

In both cases, it is possible to have learning or no-learning. Since xr(h) = 1 and � is arbitrarily
large, is not possible to have xr(l) = 0 at (10). It follows that the allocation xr(l) = 0 occurs only
when qL = 0 and �H � �L

�H
from (9). On the other hand, xr(l) 6= 0 occurs either when qL = 0 and

�H <
�L
�H
, or when qL 6= 0. In both cases, by (9) or (10), respectively, xr(l) = 1 � �r�1 when there

is learning-a, xr(l) = 1 � �j+1 when there is learning-b or learning-c, and xr(l) = 1 when there is
no-learning.

We can use previous terminology to distinguish eight subcases: SMC non-binding with no-learning
(SMC+NL), SMC non-binding with learning (SMC+L) of cases a, b and c (SMC+La, SMC+Lb and
SMC+Lc), SMC binding with no-learning (SMC*+NL), and SMC binding with learning (SMC*+L)
of cases a, b and c (SMC*+La, SMC*+Lb and SMC*+Lc). Some of them could be empty for
some prior. To analyze each subcase we assume that continuation values have the functional form
proposed at Lemma 4. Next, we prove that the optimal mechanisms give payo¤s that indeed follows
our proposal. We also characterized the optimal mechanism for any prior. This is stated in the
following theorem.

Theorem 1 For any r > 2 and for any � 2 (��(T ); 1) ; the continuation payo¤s associated to the
optimal selling mechanism are such that Ur(p) = ~Ur(p) and Vr(p) = ~Vr(p). The optimal selling
mechanism is characterized by:

8The optimal allocation for next period is

x̂r�1(l; qr�1) =

8><>:
0 if �H;r�1 >

�L
�H

�r�1 if �H;r�1 =
�L
�H

� if �H;r�1 <
�L
�H

with �r�1 2 [0; �] : Bester and Strausz speci�cation allows the possibility of giving to the seller the option, at period r,
of choosing �r�1. Incluiding this action for the seller complicates the model without upsetting our result. We assume
�r�1 = 0. Given this assumption, we can also assume without loss of generality that x̂r(l; qr) = 0 when �H = �L

�H
at

period r.
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- if p � � r, (SMC non-binding with no-learning) satis�es that xr(h) = 1, xr(l) = 0, wr(h) = �H ;
wr(l) = 0, qH = �qr (p), and qL = 0.

- if p 2 [��r ; � r), (SMC non-binding with learning) satis�es that xr(h) = 1, xr(l) = 0, wr(h) =
�H � �r�1��; wr(l) = 0, qH = q�r (p), and qL = 0.

- if p 2 [0; ��r), (SMC binding with no-learning) satis�es that xr(h) = xr(l) = 1, wr(h) = wr(l) = �L,
qH = qL 6= 0.

Proof. We start by assuming that continuation values for period r � 1 are ~Ur�1(p) and ~Vr�1(p)
for high-type buyer and for the seller respectively. We assume zero continuation value for low-type
buyer.

We proceed as follow. First, in each of the following claims we get payo¤s for the optimal
mechanism in each subcase, indicating under which priors the subcase is not empty. These payo¤s
are either linear or piecewise linear in p. Second, we show that SMC+NL and SMC+L give the
same payo¤s at prior p = � r and that the former is steeper than the latter. Third, we show that
SMC*+La, SMC+L and SMC*+NL give the same payo¤s at p = ��r . By slope comparison, we prove
that SMC*+La is either dominated by SMC+L or by SMC*+NL. Finally, SMC*+Lb and SMC*+Lc
are dominated by SMC*+NL.

Claim 1 Optimization of (11) subject to the additional constraint SMC non-binding with no-learning
(SMC+NL) veri�es that

Ur(p) = 0; (12)

Vr(p) = p�H

r�2X
i=0

�i�qr�i(p) + �
r�1p�H ;

with qH = �qr and qL = 0. Moreover, it is de�ned for p � p� where p� = � r�1 + (1� � r�1) �L�H .

Proof of Claim 1. In this case, ~Ur�1 (p(l))� ~Ur�1 (p(h)) = 0 by no-learning and xr(l) = 0 by
non-binding. This allocation implies qL = 0 and �H � �L

�H
from (9), requiring qH � �L

�Hp
. On the other

hand, p (h) = 1 by BRr and, from the functional form of continuation values at Lemma 4, to have
no-learning it must be that p (l) � � r�1, requiring qH � �qr by de�nition of �qr. Hence p � p� where
p� = � r�1 + (1 � � r�1) �L�H . Since p (l) � � r�1 then p (l) > �

�
r�1 and 
r�1(p (h)) = 
r�1(p (l)) = ;.

Using previous information, we can get agent�s continuation values after substituting it in their
functional form at Lemma 4. Plugging them into (11) and after some simpli�cations, the seller
maximizes her payo¤s with qH = �qr (the maximum qH such that p (l) = � r�1), getting (12).

Claim 2 Optimization of (11) subject to the additional constraint SMC non-binding with learning
(SMC+L) veri�es that

Ur(p) = 0; (13)

Vr(p) = p�H

r�2X
i=0

�iq�r�i(p) + �
r�1�L;

with qH = q�r and qL = 0. Moreover, it is de�ned for p � ��r and only learning-a is feasible.

Proof of Claim 2. In this case, ~Ur�1 (p(l)) � ~Ur�1 (p(h)) > 0 by learning and xr(l) = 0 by
non-binding. This implies qL = 0 and �H � �L

�H
from (9), requiring qH � �L

�Hp
. By BRr, p (h) = 1
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(i.e. p (h) > � r�1). Learning-a is the only learning case which is feasible with p (h) > � r�1, i.e.

r�1(p (h)) = 
r�1(p (l) = ; and p (l) 2

�
��r�1; � r�1

�
. Then, qH � q�r by de�nition of q�r , and jointly

with qH � �L
�Hp

, implies that p must be larger or equal to ��r�1 + (1 � ��r�1) �L�H which it turns to be
equal to ��r by Lemma 2. After substituting previous conditions in the functional form of continuation
values at Lemma 4, plugging them into (11) and after some simpli�cations, the seller maximizes her
payo¤s with qH = q�r (the maximum qH such that p (l) = ��r�1), getting (13).

Claim 3 Optimization of (11) subject to the additional constraint SMC binding with no-learning
(SMC*+NL) veri�es that

Ur(p) = �� + � ~Ur�1(p); (14)

Vr(p) = �L + � ~Vr�1(p);

with qH = qL 6= 0.

Proof of Claim 3. In this case, ~Ur�1 (p(l))� ~Ur�1 (p(h)) = 0 and 
r�1(p (l)) = 
r�1(p (h)) by
no-learning. Also, binding with no-learning means xr(l) = 1 either by (9) when qL = 0 and �H <

�L
�H

or by (10) when qL 6= 0.
Since 
r�1(p (l)) = 
r�1(p (h)); operating with the de�nition of seller�s continuation values, we get
that �H ~Vr�1(p (h))+(1� �H) ~Vr�1(p (l)) is equal to ~Vr�1(p).9 Hence, substituting previous conditions
into (11) and after some simpli�cation, we get that payo¤s are equal to (14). The seller can choose
any qH and qL subject to SMC*+NL. In particular, let qH = qL 6= 0 which give ~Vr�1(p (h)) =
~Vr�1(p (l)) = ~Vr�1(p).

Claim 4 Optimization of (11) subject to the additional constraint SMC binding with learning-a
(SMC*+La) veri�es that the seller�s expected payo¤s are bounded above by

�L +
X

i2
r�1(p)
�i+1�L + pqH�H

X
i2�
r�1(p)

�i+1q�r�1�i(p (h))

+ p (1� qH) �H
X

i2�
r�1(p)

�i+1q�r�1�i(p (l)) + �
r�1pqH�H ;

and bounded below by

�L +
X

i2
r�1(p)
�i+1�L + pqH�H

X
i2�
r�1(p)

�i+1�qr�1�i(p (h))

+ p (1� qH) �H
X

i2�
r�1(p)

�i+1�qr�i�1(p (l)) + �
r�1pqH�H :

for the optimal qH such that p (h) � � r�1 and p (l) 2
�
��r�1; � r�1

�
. This mechanism is de�ned for

p � ��r�1. Moreover, when p = ��r seller�s expected payo¤s are equal to (14) with qH = q�r (�
�
r) and

qL = 0.

Proof of Claim 4. Now ~Ur�1 (p(l))� ~Ur�1 (p(h)) 6= 0 by learning and xr(l) 6= 0 by binding. As
consequence x̂r(l; qr) < 1 from (9) when qL = 0 and �H <

�L
�H
or, from (10) when qL 6= 0. Since we

9No-learning implies that q̂r�1�i(p(h)) and q̂r�1�i(p(l)) are either equal to �qr�1�i(p(h)) and to �qr�1�i(p(l)) respec-
tively, or equal to q�r�1�i(p(h)) and to q

�
r�1�i(p(l)). Then,

�Hp (h) q̂r�1�i(p (h)) + (1� �H)p (l) q̂r�1�i(p (l)) = pq̂r�1�i(p):
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are considering learning-a, 
r�1(p (l)) = 
r�1(p (h)), p (h) � � r�1 and p (l) 2
�
��r�1; � r�1

�
, giving

~Ur�1 (p(h)) = 0 and ~Ur�1 (p(l)) = �r�2��, i.e. xr(l) = 1� �r�1.
By de�nition, p (h) � � r�1 and p (l) 2

�
��r�1; � r�1

�
implies that q̂r�1�i(p(h)) is equal to �qr�1�i (p (h))

and q̂r�1�i(p(l)) to q�r�1�i (p (l)). From 
r�1 (p (l)) = 
r�1 (p (h)) it follows �
r�1 (p (l)) = �
r�1 (p (h))
and 
r�1 (p) = 
r�1 (p (h)). We can get continuation values form Lemma 4, and after substituting
them at (11) and some simpli�cations, the seller has to choose (qH ; qL) to maximize,

�L +
X

i2
r�1(p)
�i+1�L + pqH�H

X
i2�
r�1(p)

�i+1�qr�1�i(p (h)) (15)

+ p (1� qH) �H
X

i2�
r�1(p)

�i+1q�r�1�i(p (l)) + �
r�1pqH�H ;

subject to p (h) � � r�1 , p (l) 2
�
��r�1; � r�1

�
.

Notice that, since p (h) � p � p (l), this mechanism can only be de�ned for p � ��r�1, which implies

r�1(p) = ;.
Since �qr(�) < q�r (�) by de�nition, (15) is bounded above when replacing �qr�1�i(p (h)) by q�r�1�i(p (h)).10
On the other hand, (15) is bounded below when replacing q�r�i�1(p (l)) with �qr�i�1(p (l)).

Moreover, when p = ��r , the seller maximizes (15) choosing qH = q
�
r (�

�
r) (in order to p (l) = �

�
r�1),

and qL = 0 (to get p (h) = 1 while �H <
�L
�H
) making

�L + �L
X

i2�
r�1(��r)

�i+1 + ��r (1� q�r (��r)) �H
X

i2�
r�1(��r)

�i+1
��r�1 � ��r�2�i

��r�1
�
1� ��r�2�i

� + �r�1�L.
Using the relation of ��r with �

�
r�1 implicit in Lemma 2 we get that

�L + �
�
r (1� q�r (��r)) �H

��r�1 � ��r�2�i
��r�1

�
1� ��r�2�i

� = ��r�Hq�r�1�i(��r):
Then, seller�s maximum payo¤s can be written as

�L + �
�
r�H

X
i2�
r�1(��r)

�i+1q�r�1�i(�
�
r) + �

r�1�L:

This last expression is equivalent to seller�s payo¤ at (14) when we replace in it the functional form
of ~Vr�1(��r) from Lemma 4. By the de�nition of ~Vr(p), it is also equal to (13) for p = ��r .

Claim 5 Optimization of (11) subject to the additional constraint SMC binding with learning-b
(SMC*+Lb) veri�es that the seller expected payo¤s are equal to (14) with (qH ; qL) such that qH is

equal to
p���r�j�2
p(1���r�j�2)

+
(1�p)qL��r�j�2
p(1���r�j�2)

, where j = max fi 2 
r�1(p (l))g. This mechanism is de�ned for
p < � r�1.

Proof of Claim 5. ~Ur�1 (p(l)) � ~Ur�1 (p(h)) 6= 0 by learning and xr(l) 6= 0 by binding. As

10To simplify (15) we use

�H;p (h) q̂r�1�i (p (h)) + (1� �H)p (l) q̂r�1�i (p (l)) =

= pqH q̂r�1�i(p (h)) + p (1� qH) q̂r�1�i(p (l))
= pq̂r�1�i(p);
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consequence x̂r(l; qr) < 1 from (9) when qL = 0 and �H <
�L
�H
or, from (10) when qL 6= 0. Since we are

considering learning-b, j
r�1(p (l))j�j
r�1(p (h))j = 1 and 
r�1(p) = 
r�1(p (h)), with p (h) < � r�1
and p (l) < � r�1, giving ~Ur�1 (p(l)) � ~Ur�1 (p(h)) = �j�� where j = max fi 2 
r�1(p (l))g, i.e.
xr(l) = 1� �j+1.
Since � r�1 > p (h) � p (l) and p (h) � p � p (l), this mechanism is de�ned for p < � r�1. Additionally,
� r�1 > p (h) � p (l) implies q̂r�1�i(p(�)) = q�r�1�i (p (�)) by de�nition. Let j to be the larger
i 2 
r�1 (p (l)) ; i.e.
r�1 (p (l)) = f0; 1; :::; jg and �
r�1 (p (l)) = fj + 1; :::; r � 3g. By de�nition

of 
r�1 (p (l)), it must be that p (l) 2
h
��r�2�j ; �

�
r�1�j

�
, and since j
r�1 (p (l))j = j
r�1 (p (h))j+ 1,

p (h) 2
h
��r�1�j ; �

�
r�j

�
with 
r�1 (p (h)) = f0; 1; :::; j � 1g and �
r�1 (p (h)) = fj; j + 1; :::; r � 3g.

Continuation values for r�1 are given by Lemma 4. Substituting continuation values and allocations
at (11) and after some simpli�cations,11 the seller chooses (qH ; qL) to maximize

�L +
X

i2
r�1(p(h))
�L�

i+1 + �j+1

 
pqH �

(1� p)qL��r�j�2
1� ��r�j�2

!
�H +

+ p�H
X

i2�
r�1(p(h))nfjg

q�r�1�i (p) �
i+1 + �L�

r�1

subject to p (h) 2
�
��r�1�j ; �

�
r�j
�
; p (l) 2

�
��r�2�j ; �

�
r�1�j

�
:

These payo¤s are maximized with qH equal to
p���r�j�2
p(1���r�j�2)

+
(1�p)qL��r�j�2
p(1���r�j�2)

(which is the maximum qH

such that p (l) 2
h
��r�2�j ; �

�
r�1�j

�
, i.e. p (l) = ��r�2�j), making

�L + �L
X

i2
r�1(p)
�i+1 + p�H

X
i2�
r�1(p)

q�r�1�i (p) �
i+1 + �L�

r�1:

These payo¤s are equal to the expression at (14) when we replace ~Vr�1(p) by its functional form
de�ned for p < � r at Lemma 4.

Claim 6 Optimization of (11) subject to the additional constraint SMC binding with learning-c
(SMC*+Lb) veri�es that the seller expected payo¤s are equal to

�L + �L
X

i2
r�1(p)nfjg
�i+1 + p�H

X
i2�
r�1(p)[fjg

q�r�1�i (p) �
i+1 + �L�

r�1; (16)

with (qH ; qL) such that qH is equal to
p���r�j�2
p(1���r�j�2)

+
(1�p)qL��r�j�2
p(1���r�j�2)

, where j = fmax i 2 
r�1(p (l))g.
This mechanism is de�ned for p < � r�1.

Proof of Claim 6. ~Ur�1 (p(l)) � ~Ur�1 (p(h)) 6= 0 by learning and xr(l) 6= 0 by binding. As
consequence x̂r(l; qr) < 1 from (9) when qL = 0 and �H <

�L
�H
or, from (10) when qL 6= 0. Since we are

considering learning-c, j
r�1(p (l))j � j
r�1(p (h))j = 1 and 
r�1(p) = 
r�1(p (l)), with p (h) < � r�1
and p (l) < � r�1, giving ~Ur�1 (p(l)) � ~Ur�1 (p(h)) = �j�� where j = max fi 2 
r�1(p (l))g, i.e.
xr(l) = 1� �j+1:
11Notice that

�H;p (h) q
�
r�j�1 (p (h)) = pqH �

(1� p)qL��r�j�2
1� ��r�j�2

:
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Since � r�1 > p (h) � p (l) and p (h) � p � p (l), this mechanism is de�ned for p < � r�1.

Let j to be the larger i 2 
r�1 (p (l)). By de�nition of 
r(p), p (l) 2
h
��r�2�j ; �

�
r�1�j

�
and, since


r�1(p) = 
r�1 (p (l)), also p 2
h
��r�2�j ; �

�
r�1�j

�
. Following the same procedure than in previous

point, seller�s maximum payo¤s are equal to (16).

We have the optimal mechanisms for each subcase. We proceed now to compare them. Notice
that (12) and (13) are linear on p and, that (14), payo¤s at Claim 4 and (16) are piecewise linear in
p with slopes increasing in p.12

Notice that (12) is the functional form at Lemma 4 de�ned for p � � r and (13) the one for p < � r,
i.e. Vr(p) = ~Vr(p) and Ur(p) = ~Ur(p). Then, they follow our de�nition of ~Vr(p) and ~Ur(p) for p � � r
and p 2 [��r ; � r) respectively. By this de�nition, they are equal at p = � r. Finally, (12) is steeper
than (13) due to 1

1��r�1�i �
1

1���r�1�i
. Then, (12) dominates (13) when p � � r and the opposite

when p < � r.

Figure 2: Maximum Seller�s payo¤s. Dash-Line: SMC non-binding with learning; Solid-Line: SMC
non-binding with no-learning.

Payo¤s at (14) have the functional form at Lemma 4 de�ned for p < ��r , i.e. Vr(p) = ~Vr(p) and
Ur(p) = ~Ur(p). Then by the de�nition of ~Vr(p) and ~Ur(p), (14) and (13) are equal at p = ��r . From
Claim 4, (14) and (13) are also equal to seller�s payo¤s under SMC binding with learning-a at p = ��r .

When p 2
�
��r�1; � r

�
, the slope of (14) is bounded above by

Pr�2
i=1 �

i�H
1

(1���r�1�i)
which is lower

than the one of (13), equal to �H 1

(1���r�1)
+
Pr�2
i=1 �

i�H
1

(1���r�1�i)
. When p < ��r�i for i 2 f1; :::; r � 2g

the slope of (14) is decreasing in i.13 Then, the current mechanism dominates the one under SMC
binding with learning when p < ��r and the opposite when p 2 [��r ; � r]. When p > � r, the slope of
(14) is now equal to �H

Pr�2
i=1 �

i 1
(1��r�1�i) + �

r�1�H , which is lower than the one of (12).

12When p 2
�
��r�2�j ; �

�
r�1�j

�
, �
r�1(p) = fj + 1; :::; r � 3g by de�nition. Applying functional form for continuation

values at Lemma6, ~Vr�1(p) at (14) has slope
Pr�3

i=j+1 �
i�H

1
1���r�1�i

. On the other hand, when p 2
�
��r�1�j ; �

�
r�j
�
,

now �
r�1(p) = fj; :::; r � 3g, and ~Vr�1(p) has a larger slope equal to �j�H 1
1���r�1�j

+
Pr�3

i=j+1 �
i�H

1
1���r�1�i

. The same

argument can be used to check that slopes are increasing in p in payo¤s at Claim 4 and at (16).
13When p < ��2, the slope of (14) is zero.
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Figure 3: Maximum Seller�s payo¤s. Dot-Line: SMC binding with no-learning; Dash-Line: SMC
non-binding with learning.

From Claim 4, the upper bound of seller�s payo¤s has a maximum slope equal to

�H

r�3X
i=0

�i+1
1�

1� ��r�2�i
� + �r�1�H ;

when assuming that, in the maximization of (11), the seller could choose qH = 1 such that p (h) �
� r�1, p (l) 2

�
��r�1; � r�1

�
. This slope is lower to the one at (13) which is �H

Pr�2
i=0 �

i 1

(1���r�1�i)
.14 On

the other hand, the lower bound of seller�s payo¤s has a minimum slope equal to

�H

r�3X
i=0

�i+1
1

(1� � r�2�i)
+ �r�1�H ;

when assuming that, in the maximization of (11), the seller could choose qH = 1 such that p (h) �
� r�1 , p (l) 2

�
��r�1; � r�1

�
. This slope is larger than the one of (14) (bounded above by �H

Pr�2
i=1 �

i 1
(1��r�1�i))

when p < ��r . Then, when p > ��r , a mechanism SMC binding with learning-a is dominated by a
mechanism SMC non-binding with learning and, when p < ��r , it is dominated by SMC binding with
no-learning.

Figure 4: Maximum Seller�s payo¤s. SMC binding with learning-a (Dash-Double Dot-Line)
dominated by SMC binding with no-learning (Dot-Line ) and SMC non-binding with learning (

14 1

(1���r�1)
+ �

(1���r�2)
+ :::+ �r�2

(1���1)
> �

(1���r�2)
+ :::+ �r�1 due to 1

(1���r�1)
> 1:
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Dash-Line)

From Claim 5 SMC binding with learning-b gives the same payo¤s than SMC binding with no-
learning. From Claim 6, and SMC binding with learning-c is weakly dominated by SMC binding
with no-learning since payo¤s at (16) are lower than payo¤s at (14) due to pq�r�1�j (p) <

�L
�H
when

p < ��r�1�j by Lemma 2.

Figure 5: SMC binding with no-learning coincides with SMC binding with learning-b for p < � r�1.

Figure 6: Dot-Line: SMC binding with no-learning; Dash-Line: SMC binding with learning-c.

Concluding, the optimal mechanism is a SMC non-binding with no-learning when p � � r, a SMC
non-binding with learning when p 2 [��r ; � r) and a SMC binding with no-learning when p 2 [0; ��r).
Optimal allocations are

xr(h) = 1, xr(l) =
�
0 if p � ��r
1 if p < ��r

:

Optimal payments are obtained by replacing, for each case, allocations and continuation values at
IR�L;r and IC

�
H;r and solving for wr(l) and wr(h),

wr(h) =

8<:
�H if p � � r
�H � �r�1�� if p 2 [��r ; � r)
�L if p < ��r

; wr(l) =

�
0 if p � ��r
�L if p < ��r

:

Notice that low type payo¤s are zero with previous wr(l) given that we assumed zero continuation
values for him.
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The argument of the proof relies on the following: the optimal payo¤s for each subcase are either
linear or piecewise linear functions of p. The upper envelope of these functions only contains SMC
non-binding with no-learning (when p � � r), SMC non-binding with learning-a (p 2 [��r ; � r)) and
SMC binding with no-learning (p 2 [0; ��r)). Then, this upper envelope characterizes the optimal
mechanism for every prior and it is equal to the de�nition of ~Vr(p). It is summarized in Figure 1.

Optimal mechanisms in Theorem 1 are direct mechanisms with allocation xr(l) 2 f0; 1g. We
state in the following corollary that the optimal direct mechanism can be implemented by a price
posting, which is an indirect mechanism. To do that, we propose an alternative outcome (q̂r; p̂r; �̂r)
where �̂r is a price posting mechanism and we check that this outcome is payo¤ equivalent to the
incentive e¢ cient outcome (qr; pr;�r) that solves (6) and contains the optimal selling mechanism
characterized in the theorem. Since the proof is mechanic, we relegate it to the Appendix.

Corollary 1 When r > 2, the optimal selling mechanism can be implemented by a price posting
equal to

i) �H when p � � r, the high-type buyer randomizes and the low-type buyer never buys;
ii) �H � �r�1�� when p 2 [��r ; � r), The high-type buyer always buys and the low-type buyer never

buys and;
iii) �L when p < ��r, both types always buy.

Proof. See the Appendix.
When the seller is optimistic (p � ��r), she o¤ers a price posting that separates types. This

is, only the high-type buyer buys with positive probability. In case of being extremely optimistic
(p � � r), the seller o¤ers a price posting equal to �H . The high-type buyer randomizes and, in case
of not buying, the seller will ask for a price equal to �H in the following period again. Then, she
exploits the buyer extracting all his surplus in every period. This exploiting case corresponds with
SMC non-binding with no-learning. In case of being moderately optimistic (p 2 [��r ; � r)), the seller
o¤ers a price posting equal to �H � �r�1��. Now, the seller is bribing the high-type buyer to induce
him to reveal his type. This bribe is equal to his future discounted losses by being discriminated
in the current period. This bribing case corresponds with SMC non-binding with learning. Finally,
when the seller is pessimistic (p < ��r), she o¤ers a price equal to �L. This is the pooling case, when
both buyer types always buy, which corresponds with SMC binding with no-learning.

3.2.3 Belief�s Dynamic

Figure 7 indicates how beliefs evolve. Starting at an optimistic prior (i.e. p � ��r), the seller�s beliefs
are updated gradually as information is revealed when the buyer does not buy. On the other hand,
when the buyer buys, she quickly learns that she is facing a high-type consumer with certainty.

Starting at p 2
h
�L
�H
; ��r

�
, seller�s beliefs are not updated up to some period r � i where p � ��r�i.

When p < �L
�H
, seller�s beliefs are never updated.
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Figure 7: Belief dynamic under di¤erent priors for T>2 periods.. A full line shows how beliefs
evolve when the buyer buys the good. The dash line is when he does not buy.

4 Concluding Remarks

This paper generalizes the model at Beccuti (2014) for many periods when both players have the
same discount factor. It proves that within this framework the optimal selling procedure is to post
a price in every period. The paper also gives a complete characterization of equilibrium payo¤s.

A natural extension is to study which is the optimal mechanism when discount factors are di¤erent
but close to one.
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5 Appendix

5.1 Proof of Lemma 2

Proof. We proceed by induction.
From initial conditions, ��2 =

�L
�Hq�2 (�

�
2)
.

For r > 2, assume that ��r�1 =
�L

�Hq�r�1(�
�
r�1)

.

From de�nition of ��r

q�r (�
�
r)�

�
r

�
�H + � ~Vr�1 (1)� �r�1��

�
+ (1� q�r (��r)��r) � ~Vr�1

�
��r�1

�
= �L + � ~Vr�1 (�

�
r) : (17)

Now, let�s de�ne 	r�1 (p) as

	r�1 (p) � q�r�1(p)p
�
�H + � ~Vr�1 (1)

�
+
�
1� q�r�1(p)p

�
� ~Vr�1

�
��r�1

�
� pq�r�1(p)�r�2��; 8p:

Since q�r�1(p) =
(p���r�2)
p(1���r�2)

) q�r�1(1) = 1; and 	r�1 (1) =
�
�H + � ~Vr�2 (1)

�
� �r�2��. By de�nition of

~Vr�1 (p) follows that ~Vr�1 (1) = �H+�
r�1 ~Vr�2 (1). Then, we can write ~Vr�1 (1) as equal to 	r�1 (1)+�

r�2��
and (17) as

q�r (�
�
r)�

�
r (�H + �	r�1 (1)) + (1� q�r (��r)��r) � ~Vr�1

�
��r�1

�
= �L + � ~Vr�1 (�

�
r) ; (18)

where ~Vr�1
�
��r�1

�
and ~Vr�1 (��r) are, by de�nition,

q�r�1(�
�
r�1)�

�
r�1 (	r�1 (1)) +

�
1� q�r�1(��r�1)��r�1

�
� ~Vr�2

�
��r�2

�
;

and

q�r�1(�
�
r)�

�
r (	r�1 (1)) +

�
1� q�r�1(��r)��r

�
� ~Vr�2

�
��r�2

�
;

respectively.
Since q�r (�

�
r)�

�
r+(1� q�r (��r)��r) q�r�1(��r�1)��r�1 is equal to q�r�1(��r)��r and

�
1� q�r�1(��r�1)��r�1

�
(1� q�r (��r)��r)

is equal to
�
1� q�r�1(��r)��r

�
, the LHS of (18) reduces to q�r (�

�
r)�

�
r�H+� ~Vr�1 (�

�
r). As consequence, q

�
r (�

�
r)�

�
r�H =

�L, proving the last part.

Finally, using the de�nition of q�r (�
�
r), then �

�
r =

�L
�H

�
1� ��r�1

�
+ ��r�1. Suppose �

�
r�1 =

�L
�H

Pr�3
i=0

�
��
�H

�i
,

then ��r =
�L
�H

Pr�2
i=0

�
��
�H

�i
.

5.2 Proof of Lemma 3

Proof. From initial conditions, �2 =
�L[�H+���]
�H [�L+���]

and ��2 =
�L
�H
. From de�nition of � r,

�qr(� r)� r

�
�H + � ~Vr�1 (1)

�
+ (1� �qr(� r)� r) � ~Vr�1 (� r�1) = (19)

q�r (� r)� r

�
�H + � ~Vr�1 (1)� �r�1��

�
+ (1� q�r (� r)� r) � ~Vr�1

�
��r�1

�
:

The limit of the LHS at (19) for �3 ! 1 is �H + � ~V2 (1) and the one for the RHS is equal to �H +
� ~V2 (1)� �2��, which is lower than the LHS. On the other hand, the limit for �3 ! �2 is � ~V2 (�2) for LHS and

q�3(�2)�2

�
�H + � ~V2 (1)� �2��

�
+ (1� q�3(�2)�2) � ~V2 (��2) for RHS. From solutions for the two period case we
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know that,

~V2 (�2) = �2�H + ��L;
~V2 (1) = �H + ��H ;
~V2 (�

�
2) = �L + ��L;

so we get that the limit for RHS is larger than the one to the LHS and equal to �2�H + ��L+ �
2�L: Since LHS

and RHS are both continuous, then there exists at least one point such that they are equal. The derivatives
of the LHS and RHS w.r.t. � r are constant then, the solution of (19) for �3 must be unique.

For r > 3, assume that the solution of (19) for � r�1 exists and it is unique.
Taking the limit for the LHS at (19) for � r ! 1, we �nd that it is equal to �H + � ~Vr�1 (1) ; and the one

for RHS is �H + � ~Vr�1 (1)� �r�1��. Notice, that the limit for the LHS is larger than the one for RHS.
On the other hand, taking the limit of the LHS at (19) for � r ! � r�1, we get � ~Vr�1 (� r�1). For the

RHS we get q�r (� r�1)� r�1
�
�H + � ~Vr�1 (1)� �r�1��

�
+ (1� q�r (� r�1)� r�1) � ~Vr�1

�
��r�1

�
, which follows the

de�nition of ~Vr (p) for p 2 [��r ; � r) when p = � r�1, i.e. ~Vr (� r�1). As ~Vr (p) is increasing in r, the limit for
� r ! � r�1 of the LHS is now lower than the limit of the RHS.

Since LHS and RHS are both continuous, then there exists at least one point such that they are equal.
The derivatives of the LHS and RHS w.r.t. � r are constant then, the solution of (19) for � r must be unique.

5.3 Proof of Lemma 4

Proof. Suppose p � � r. De�nitions of continuation values for this range of beliefs

~Vr(p) = �qr(p)p
�
�H + � ~Vr�1 (1)

�
+ (1� �qr(p)p) � ~Vr�1 (� r�1) ;

~Ur(p) = (1� �qr(p)p) � ~Ur�1 (� r�1) :

Applying the functional form to ~Vr�1 (1), ~Vr�1 (� r�1) and ~Ur�1 (� r�1),

~Vr�1 (1) = �H

r�2X
i=0

�i;

~Vr�1 (� r�1) = � r�1�H

r�3X
i=0

�i�qr�1�i(� r�1) + �
r�2� r�1�H ;

~Ur�1 (� r�1) = 0:

Plugging them into ~Vr(p) and ~Ur(p) , and after some operations,

~Vr(p) = �qr(p)p�H + �qr(p)pt�1�H

r�2X
i=1

�i + (1� �qr(p)p) � r�1�H
r�2X
i=1

�i�qr�i(� r�1) + �
r�1p�H :

~Ur (p) = 0:

For ~Vr(p), since �qr(p)p+ (1� �qr(p)p) � r�1�qr�i(� r�1) = p�qr�i(p), then we can write it as

~Vr(p) = �qr(p)p�H + p�H

r�2X
i=1

�i�qr�i(p) + �
r�1p�H :

Both, ~Vr(p) and ~Ur(p), follow the functional form for p � � r, with 
r(p) = ?.
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Suppose p 2 [��r ; � r). Now, from de�nitions of continuation values,

~Vr(p) = q�r (p)p
�
�H + � ~Vr�1 (1)

�
+ (1� q�r (p)p) � ~Vr�1

�
��r�1

�
� pq�r (p)�r�1��;

~Ur(p) = (1� q�r (p)p) � ~Ur�1
�
��r�1

�
+ �r�1��:

Again, applying the functional form to ~Vr�1 (1), ~Vr�1
�
��r�1

�
and and ~Ur�1

�
��r�1

�
~Vr�1 (1) = �H

r�2X
i=0

�i;

~Vr�1
�
��r�1

�
= ��r�1�H

r�3X
i=0

�iq�r�1�i(�
�
r�1) + �

r�2�L;

~Ur�1
�
��r�1

�
= �r�2��:

Plugging them into ~Vr(p) and ~Ur(p) , and using q�r (p)p+ (1� q�r (p)p) ��r�1q�r�i(��r�1) = pq�r�i(p); we get,

~Vr(p) = q
�
r (p)p�H + p�H

r�2X
i=1

�iq�r�i(p) + �
r�1�L;

~Ur(p) = �
r�1��;

following the functional forms of continuation values for p 2 [��r ; � r), again with with 
r(p) = ?.
Finally, suppose p < ��r . From de�nitions of continuation values,

~Vr(p) = �L + � ~Vr�1 (p) ;
~Ur (p) = �L + � ~Ur�1 (p) :

Applying the functional form to ~Vr�1(p) and ~Ur�1 (p),

~Vr�1 (p) = �L
X

i2
r�1(p)

�i + p�H
X

i2�
r�1(p)

q̂r�1�i(p)�
i + �r�2�L;

~Ur�1 (p) = ��
X

i2
r�1(p)

�i + �r�2��;

and plugging them into ~Vr(p) and ~Ur (p),

~Vr(p) = �L
X

i2
r(p)

�i + p�H
X

i2�
r(p)

q̂r�i(p)�
i + �r�1�L;

~Ur (p) = ��
X

i2
r(p)

�i + �r�1��;

following the functional form of continuation values for p < ��r .

5.4 Proof of Lemma 5

Proof. We �rst show that ��r = � r�18r � 2, when � = 1:
We proceed by induction. The result is direct for r = 2 since by de�nition ��2 =

�L
�H

and �1 = �L
�H
. It

follows that q�3 (p) = �q2 (p) by their de�nition.
For r > 2, suppose ��r�i = � r�1�i 8i 2 f1; :::; r � 2g, then, from their de�nitions it must be q�r+1�i (p) =

�qr�i (p). Additionally, from de�nitions of � r and ~Vr(p), applying Lemma 4 and after some simpli�cations, we
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get

� r�1�H

r�3X
i=0

�i
�
�qr�1�i (� r�1)� q�r�1�i (� r�1)

�
= �r�2�L � �r�2� r�1�H : (20)

This expression, when � = 1, and using that q�r+1�i (p) = �qr�i (p) (due to ��r�i = � r�1�i by assumption)
becomes � r�1�qr�1(� r�1) = �L

�H
. From Lemma 2, ��rq

�
r (�

�
r) =

�L
�H
, and since q�r (p) = �qr�1(p) (due to ��r�1 = � r�2

for i = 1 by assumption), it follows that ��r = � r�1.
Now, let�s consider the case � ! 1.
Again, we proceed by induction. For r = 2, ��2 = �1 =

�L
�H

and �0 = 0 from initial conditions. For r = 3,

��3 =
�L
�H

�
1 + ��

�H

�
from Lemma 2 and �2 =

�L[�H+���]
�H [�L+���]

from initial conditions. Value of �2 is larger than ��3
for � < 1. It follows that q�4 (p) > �q3 (p) by their de�nition.

For r > 2, we �rst show that @�r�1
@� < 0. Suppose ��r�i < � r�1�i 8i 2 f1; :::; r � 2g, then q�r�1�i (p) >

�qr�2�i (p) from their de�nitions. Let�s also assume that @�r�1�i@� < 0 8i 2 f1; :::; r � 2g.
Expression (20) can be written as

� r�1�H

 
1�

r�3X
i=0

�i�r+2
�
q�r�1�i (� r�1)� �qr�1�i (� r�1)

�!
� �L = 0:

LHS is a function of �, � r�1 and � r�1�i.15 Let�s call it F (�; � r�1; � r�1�i), and let�s apply the implicit function
theorem, i.e.

@� r�1
@�

=
�@F
@� �

@F
@�r�2�i

@�r�2�i
@�

@F
@�r�1

:

As (i� r + 2) < 0 8i 2 f0; :::; r � 3g then @F
@� > 0. Also, @F

@�r�2�i
< 0 (due to @�qr�1�i(�r�1)

@�r�2�i
< 0) and,

since @�r�2�i
@� < 0 by assumption, then the numerator is negative. On the other hand, @F

@�r�1
> 0 (i.e. the

denominator is positive) because, �rst 
1�

r�3X
i=0

�i�r+2
�
q�r�1�i (� r�1)� �qr�1�i (� r�1)

�!

has to be positive to have (20) equal to zero (� r�1 for r > 2, �H , and �L are all positive) and, second

@q�r�1�i (� r�1)

@� r�1
� @�qr�1�i (� r�1)

@� r�1
< 0;

by de�nitions of q�r and �qr, and using the assumption �
�
r�1�i < � r�2�i and that �

�
r�2�i < �

�
r�1�i from Lemma

2. It follows that @�r�1@� < 0.
As ��r = � r�1 when � = 1, then �

�
r 2 (� r�2; � r�1) when � ! 1 by continuity.

5.5 Proof of Lemma 6

Proof. Since p (h) � p � p (l), and since 
r(p) is increasing in p by de�nition, it follows that j
r�1(p (h))j �
j
r�1(p (l))j.

When qL 6= 0, the SMCt is binding and as consequence xr(l) = 1 + �
~Ur�1(p(h))

�� � � ~Ur�1(p(l))�� .
Using the functional forms for continuation values,

xt(l) = 1�
P

i2
r�1(p(l))n
r�1(p(h)) �
i � �r�1I(p(l);p(h)](� r�1):

15Although we do not write it explicitely, �r�1 and �r�1�i depends on �. By de�nition, �qr�i (�r�1) depends on
�r�1�i(�). On the other hand, q�r�1�i (�r�1) depends on �

�
r�1�i which does not change with �.
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In order to keep xr(l) � 0, 
r�1(p (l))n
r�1(p (h)) = ; when I(p(l);p(h)](� r�1) is equal 1, and at most 1
when I(p(l);p(h)](� r�1) is equal 0. Then, j
r�1(p (l))n
r�1(p (h))j � 1.

When qL = 0, the allocation for low type message can also be xr(l) = 0 (�H >
�L
�H
) or xr(l) = 1 (�H <

�L
�H
).

Under xr(l) = 0 (xr(l) = 1) it must be that j
r�1(p (l))n
r�1(p (h))j � 1 (j
r�1(p (h))j = j
r�1(p (l))j),
otherwise the di¤erence between the continuation values for each message violates the SMCr. To restore the

SMCr and make it binding, xr(l) = 1 + �
~Ur�1(p(h))

�� � � ~Ur�1(p(l))�� which is the case explained above.
To see that 
r�1(p (l))n
r�1(p (h)) = max i 2 
r�1(p (l)) when j
r�1(p (l))n
r�1(p (h))j = 1, let 
r�1(p (l)) =

f0; 1; :::; jg, 
r�1(p (h)) = f0; 1; :::; kg with k � j for j; k 2 f0; 1; :::; r � 2g. Then, it must be that k = j � 1
and 
r�1(p (l))n
r�1(p (h)) = j. Otherwise j
r�1(p (l))n
r�1(p (h))j > 1.

5.6 Proof of Lemma 7

Proof. The proof is by application of Lemma 4 for each case.
When 
r�1(p (l)) = 
r�1(p (h)), learning is possible only if p (h) � � r�1 and p (l) 2

�
��r�1; � r�1

�
. If

p (h) � � r�1 and p (l) � � r�1 we are in no-learnin·g. If p (h) < � r�1 either 
r�1(p (l)) 6= 
r�1(p (h))
(contradiction) or 
r�1(p (l)) = 
r�1(p (h)) with ~Ur�1 (p(l)) = ~Ur�1 (p(h)) and we are in no-learnin·g again.

When 
r�1(p (h)) = 
r�1(p (l))nmax fi 2 
r�1(p (l))g (i.e. j
r�1(p (l))j � j
r�1(p (h))j = 1), we have
~Ur�1 (p(l)) > ~Ur�1 (p(h)). Since p (h) � p � p (l) and j
r�1 (p (l))j � j
r�1 (p (h))j = 1, the set 
r�1(p) must
equal to 
r�1 (p (h)) or to 
r�1 (p (l)) : In both cases, it must be p (h) < � r�1 and p (l) < � r�1. Otherwise,
since � 2 (��(T ); 1), the SMCr does not hold for any xr(l) 2 [0; 1].

If j
r�1(p (l))j � j
r�1(p (h))j > 0, then ~Ur�1 (p(l)) � ~Ur�1 (p(h)) 6= 0. Hence, in order to have no-
learning, it must be that 
r�1(p (l)) = 
r�1(p (h)). Additionally, it must be either p (h) ; p (l) 2 [� r�1; 1], or
p (h) ; p (l) 2 [0; � r�1) : Otherwise, ~Ur�1 (p(l))� ~Ur�1 (p(h)) 6= 0.

5.7 Proof of Corollary 1

Proof. Consider a message set Mr with two possible messages f"take� it"; "leave� it"g ; a mechanism with
an allocation given by

xr(mr) =

�
1 if mr = take� it;
0 if mr = leave� it;

; mr 2Mr;

probabilities of observing each message de�ned by

q̂i(take� it) � qixr(h) + (1� qi)xr(l);
q̂i(leave� it) � 1� q̂i(take� it);

and the posteriors of facing a high-type buyer when observing "take � it", p̂(take � it), and the one when
observing "leave� it", p̂(leave� it), are given by Baye�s rule.

When p < ��r the optimal direct selling mechanism has allocations xr(h) = xr(l) = 1, then, by de�nition,
q̂H(take � it) = 1, q̂L(take � it) = 1 and p̂(take � it) = p. It follows that continuation values with the price
posting are equal than under the direct mechanisms, i.e. Ui;r�1(p̂(take�it)) = Ui;r�1(p(h)) for both types and
Vr�1(p̂(take� it)) = Vr�1(p(h)). Using a price ŵr(take� it) = �L, also instant payo¤s under both mechanisms
are equal for every player.

When p � ��r the optimal direct selling mechanism has payments wr(h) = �H and wr(l) = 0, or wr(h) =
�H � �r�1�� and wr(l) = 0; with allocations xr(h) = 1 and xr(l) = 0. It follows that, q̂H(take � it) = qH
and q̂L(take � it) = qL and p̂(take � it) = p(h) and p̂(leave � it) = p(l). Again, continuation values are
equal for both mechanisms, i.e. Ui;r�1(p̂(take � it)) = Ui;r�1(p(h)), Ui;r�1(p̂(leave � it)) = Ui;r�1(p(l)),
Vr�1(p̂(take � it)) = Vr�1(p(h)) and Vr�1(p̂(leave � it)) = Vr�1(p(l)). Using ŵr(take � it) = wr(h), also
instant payo¤s under both mechanisms are equal for every player.

Then, for every prior, it is possible to implement an outcome (q̂r; p̂r; �̂r); where �̂r is a price posting
mechanism, which is payo¤ equivalent to the incentive e¢ cient outcome (qr; pr;�r) that solves (6)
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