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1 Introduction

Industries and cities all around the world have historically been concentrated along rivers,

since rivers provide means of transportation, food production, energy generation and drink-

ing water. Because of this intensive utilization, many rivers and streams have been and still

are being heavily polluted. Excessive pollution worsens water quality, which reduces eco-

nomic profits and negatively impacts wildlife and human health. One specific characteristic

of rivers is that pollutants discharged into the river are carried downriver. As a consequence,

it is the downstream riparians rather than the polluter himself who bears the negative con-

sequences of the emissions discharged into the river. Moreover, if upstream polluters and

downstream riparians belong to different jurisdictions, polluters may have little incentive to

abate their emissions, because they cannot be held liable for the pollution damage caused

in other jurisdictions.

In this paper, we consider the problem of efficient emission abatement among agents lo-

cated along a river, where upstream emissions cause negative externalities to all down-

stream agents. This setting can be characterized as a cooperative transferable utility game

with two sources of externalities. First, upstream emissions impose negative externalities

on downstream agents. Second, cooperative behavior among a subset of agents (a so-called

coalition) imposes positive externalities upon agents located in between different connected

subsets of this coalition. Due to this second kind of externalities, the core is, in general,

empty. As a consequence, we restrict our attention to the non-cooperative core, i.e. the

set of partitions which consists of one coalition and only singletons otherwise. The non-

cooperative core imposes cost upper bounds for any coalition, which can be interpreted as a

participation constraint that has to be satisfied by any cost distribution to be acceptable to

all agents. In addition, we impose cost lower bounds, which are inspired by the aspiration

welfare principle, i.e. no coalition of agents should have lower costs than it can secure for

itself if all non-members of the coalition would not pollute the river at all. We show that

the downstream incremental distribution, as introduced by Ambec and Sprumont (2002), is

the only distribution simultaneously satisfying the non-cooperative core upper cost bounds

and the aspiration lower cost bounds.

The existing literature on transboundary pollution in river basins mainly focusses on the case

of two jurisdictions. Notable exceptions include Ni and Wang (2007) and Gengenbach et al.

(2010). Ni and Wang (2007) derive cooperative sharing rules for the costs of cleaning a river

from two principles of international water law: Absolute Territorial Sovereignty (ATS) claims

that every jurisdiction has exclusive rights to use the water on its territory, while Unlimited

Territorial Integrity UTI expands these exclusive use rights to all water originating within

and upstream of a respective jurisdiction. They adapt these principles to the case of pollution
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responsibility and derive axioms characterizing the two resulting cost sharing principles.

They also show that these cost-sharing principles correspond to the Shapley value solutions

of the corresponding cost-sharing games. However, Ni and Wang (2007) assume exogenously

given costs for cleaning the river. Thus, they are only concerned with the distribution of

these costs. In contrast, pollution levels in our model are endogenously determined by the

actions of the agents. Thus, we are concerned about finding cost sharing distributions that

are acceptable to all agents and, at the same time, give incentives to choose efficient emission

abatement levels in the first place.

In line with the literature on international environmental agreements, Gengenbach et al.

(2010) model river pollution as a two-stage-cartel-formation game. In the first stage, agents

decide whether to join a coalition, while pollution abatement levels are chosen in the second

stage. In the absence of a supranational authority, abatement levels are in general ineffi-

ciently low, as all agents have an incentive to free ride on the abatement efforts of their

upstream neighbors. Analyzing the formation of stable coalitions they find that the loca-

tion of agents has no impact on coalition stability but rather impacts on environmental

outcomes. In contrast to Gengenbach et al. (2010), we employ a cooperative game setting.

In fact, our paper is most closely related to Ambec and Sprumont (2002) and Ambec and

Ehlers (2008), who apply an axiomatic cooperative game theoretic approach to the efficient

sharing of water along a river basin. In Ambec and Sprumont (2002), agents derive strictly

increasing benefits from water consumption, Ambec and Ehlers (2008) generalize the results

to agents which may exhibit satiation in water consumption. Ambec and Ehlers (2008) show

that the downstream incremental distribution is the only welfare distribution satisfying the

non-cooperative core lower bounds and the aspiration welfare upper bounds. Several other

papers propose alternative sharing rules to the downstream incremental distribution in

settings similar to the one proposed by Ambec and Sprumont (2002). Interpreting the river

sharing problem as a line-graph game, Van den Brink et al. (2007) derive four different

efficient solutions including the downstream incremental distribution by imposing various

properties with respect to deleting edges of the line-graph. However, they do not address

fairness issues and consider non-satiable agents. Allowing for multiple springs and satiable

agents with respect to water consumption, Van den Brink et al. (2012) propose a class

of weighted hierarchical welfare distributions based on the Territorial Integration of all

Basin States (TIBS) principle, which includes the downstream incremental distribution as

a special case. Ansink and Weikard (2012) concentrate on reallocations of the resource

itself instead of the reallocation of welfare by an appropriate transfer scheme. In case of

water scarcity, the agents’ overlapping claims to river water render it a contested resource

similar to a bankruptcy problem. They propose a class of sequential sharing rules based

on bankruptcy theory and compare them to other sharing rules, including the downstream
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incremental distribution. Demange (2004) considers hierarchies without externalities and

shows that the hierarchical outcome satisfies the core bounds for all connected coalitions

for all super-additive cooperative games. However, the hierarchical outcome may violate

core bounds for non-connected coalitions. If the hierarchy is a river, then the hierarchical

outcome corresponds to the counterpart of the downstream incremental distribution.

Our paper can be interpreted as a generalization of the results of Ambec and Ehlers (2008) to

commodities with public good properties. While water consumption is a purely private good,

emission abatement exhibits public good characteristics, as it imposes negative externalities

on all downstream agents. These additional externalities impose non-trivial complications

for proving that the downstream incremental distribution satisfies the non-cooperative cost

upper bounds and the aspiration cost lower bounds in the formulation of our river pollution

model.

2 A River Sharing Model with Downstream Pollution Externalities

Consider a set of agents N = {1, ...., n}, which are located along a river. Without loss of

generality, agents are numbered from upstream to downstream, i.e. i < j indicates that

agent j is located downriver of agent i. We follow Ambec and Sprumont (2002) and Ambec

and Ehlers (2008) in defining the set of agents preceding agent i by Pi = {1, ..., i}, with the

strict predecessors of agent i indicated as Pi\i = {1, ..., i−1}. Analogously, the set of agents

following agent i is defined by Fi = {i, ..., n}, where Fi\i = {i + 1, ..., n} denotes the set of

agents strictly located downriver of agent i.

Each agent i along the river produces gross emissions in exogenously given amount ei. An

agent i may choose to abate the amount xi with 0 ≤ xi ≤ ei, the costs of which are given

by the strictly increasing, twice differentiable and strictly convex abatement cost function

ci(xi). Without loss of generality, we assume that abating nothing induces no abatement

costs, i.e. ci(0) = 0. Net emissions ei − xi are passed into the river where they accumulate

and are carried along its course. Assuming that net emissions of agent i are discharged into

the river after agent i’s but before agent i + 1’s location, and that there is no pollution at

the rivers’ source, the ambient pollution level qi at the location of agent i is given by the

sum of net emissions of all strict predecessors of agent i:

qi =
∑

j∈Pi\i

γji(ej − xj) , ∀ i ∈ N . (1)

with 0 < γji ≤ 1. γji represents the assimilative capacity of the river, i.e. what fraction of the

net emissions released by agent j actually reach agent i. As the vector of abatement efforts
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x = (x1, . . . , xn), together with the vector of exogenously given emissions e = (e1, . . . , en),

fully determine the vector of ambient pollution levels, we shall often write the ambient

pollution levels as a function of the vector x:

q(x) =
(
q1(x), . . . , qn(x)

)
. (2)

The ambient pollution level qi causes damage costs to agent i, the amount of which is given

by the increasing, twice differentiable and convex damage cost function di(qi). Thus, the net

emissions ei − xi released by agent i induce negative externalities for all downriver agents

j > i, but not for agent i himself or all upstream agents j < i.

The total costs ki agent i faces are the sum of abatement and damage costs:

ki(xi, qi) = di(qi) + ci(xi) . (3)

A river sharing problem is characterized by (N, e, c, d), where c = (c1, . . . , cn) and d =

(d1, . . . , dn) denote the vectors of abatement and damage cost functions. Given a river

sharing problem, the distribution of total costs ki among all agents i is determined by the

emission abatement allocation x. Our assumptions about the accumulation of emissions

along the river, as described in the previous paragraph, imply the following proposition.

Proposition 1 (No abatement is dominant strategy)

Given a river sharing problem (N, e, c, d) and for given emission abatement levels of all

agents j ∈ N\i it is a dominant strategy for agent i not to abate at all, i.e. xi = 0.

Proof: The damage costs of agent i only depend on qi which are not influenced by xi. As

costs ci are strictly increasing in the amount of emission abatement xi, given qi, total costs

are minimized by setting xi = 0. �

Proposition 1 states that agents who only consider their own total costs will never abate.

In particular, this implies that if the river sharing problem (N, e, c, d) is considered to be

a non-cooperative game among the agents i ∈ N , the unique Nash equilibrium is given by

x̂i = 0 for all i ∈ N (no matter whether agents are considered to decide sequentially or

simultaneously). However, this outcome is, in general, inefficient. In particular, if we assume

that money transfers between agents are possible and agents have unbounded resources for

such transfers, the efficient emission abatement allocation x⋆ minimizes the sum of total

costs ki among all agents. The following proposition establishes that such an allocation

exists and is also unique.
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Proposition 2 (Existence and uniqueness of efficient allocation)

Given a river sharing problem (N, e, c, d) there exists a unique vector x⋆ which is the solution

to the following constrained minimization problem:

min
{xi}n

i=1

n∑

i=1

ki

(
xi, qi(x)

)
subject to (4a)

qi(x) =
∑

j∈Pi\i

γji(ej − xj) , ∀ i ∈ N , (4b)

0 ≤ xi ≤ ei , ∀ i ∈ N . (4c)

Proof: Existence and uniqueness follow directly from the strict convexity of the total costs

functions ki(xi, qi). �

Let ti denote the money payments. We impose
∑n

i=1 ti = 0 and define agent i’s after transfer

costs zi as:

zi = ki(xi, qi) + ti . (5)

Obviously, any vector z = (z1, . . . , zn) with
∑n

i=1 zi =
∑n

i=1 ki

(

x⋆
i , qi(x

⋆)
)

is an efficient cost

distribution, as it implies a unique vector of transfer payments ti = zi − ki

(

x⋆
i , qi(x

⋆)
)

with
∑N

i=1 ti = 0 (no waste of money) and achieves the cost minimum
∑N

i=1 ki

(

x⋆
i , qi(x

⋆)
)

. In

the following, we call any efficient cost distribution a river sharing agreement. The main

problem will be which one to choose among this infinite set.

3 Coalitions and Cost Upper Bounds

A non-empty subset of agents S ⊂ N is called a coalition if the agents of S choose their

emission abatements such as to minimize the sum of total costs among all coalition mem-

bers. Denoting by minS and maxS the most upstream, respectively the most downstream

member of coalition S, the coalition S is connected or consecutive if all agents j with

minS < j < maxS are also members of the coalition S.

We define the secure costs v(S) of a coalition S as the minimum value of the sum of the

total costs ki over all members of the coalition:

v(S) =
∑

i∈S

ki

(
xv

i (S), qi(x
v
i (S))

)
, (6)
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where xv(S) =
(
xv

1(S), . . . , xv
n(S)

)
denotes the solution to

min
{xi}i∈S

∑

i∈S

ki

(
xi(S), qi(x(S))

)
subject to (7a)

qi(x) =
∑

j∈Pi\i

γji(ej − xj) , ∀ i ∈ N , (7b)

0 ≤ xi ≤ ei , ∀ i ∈ S , (7c)

xj given , ∀ j /∈ S . (7d)

It is obvious from the above definition that both the allocation of abatement efforts xv(S)

and the secure costs v(S) of the coalition S depend, in general, on the behavior of the agents

not belonging to the coalition S. As an example, consider the coalition S = {k, . . . , n}. In

particular the pollution level qk (but also the pollution levels qi with i > k) depends on

the amount of emission abatement undertaken by the agents i with i < k. According to

Proposition 1, if these agents i < k only minimize their own sum of abatement and damage

costs, they would not abate at all, implying a pollution level of qk =
∑

j∈Pk\k γjkej. If

however, the agents 1 to k − 1 form a coalition T and minimize their joint total costs, they

will, in general, choose xj > 0 for at least some j ∈ 1, . . . , k−1. This implies a pollution level

of qk <
∑

j∈Pk\k γjkej which reduces the minimal costs v(S) coalition S can secure for itself.

Thus, analogously to Ambec and Ehlers (2008), cooperation exerts a positive externality on

the coalition S.

In the following, we restrict our attention to the non-cooperative core, i.e. we assume that

all non-members of a coalition S behave non-cooperatively, which according to Proposition

1 implies that they do not abate at all. Then, condition (7d) is replaced by xj = 0 for all

j /∈ S, and the secure costs v(S) of a coalition S are well defined and unique (as the resulting

optimization problem is a subproblem of the one analyzed in Proposition 2). The reason is

like in Ambec and Ehlers (2008): the structure of the river sharing problem (N, e, c, d), as

described in detail in Section 2, is such that only the non-cooperative core is guaranteed to

be non-empty.

Like Ambec and Ehlers (2008), we impose the secure costs as the participation constraint of

any coalition S. A coalition S will only agree to a river sharing agreement if it is not worse

off than without the agreement. Thus, a river sharing agreement should at most assign the

secure costs v(S) to any coalition S as otherwise the coalition would block the agreement

knowing that it can achieve at least v(S) on its own. Hence, v(S) defines cost upper bounds

for any coalition S a river sharing agreement must satisfy in order not to be blocked.
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4 Cost Lower Bounds

Ambec and Ehlers (2008) also impose welfare upper bounds that are inspired by the un-

limited territorial integrity (UTI) doctrine. In case of water consumption, UTI claims that

all agents are entitled to consume the full stream of water originating upstream from their

location and, thus, have a legitimate claim to the corresponding welfare level such a con-

sumption generates. As such claims are, in general, incompatible if water is scarce, Ambec

and Sprumont (2002) and Ambec and Ehlers (2008) interpret them as welfare upper bounds

agents may legitimately aspire to.

The straightforward translation of these aspiration welfare upper bounds to the case of our

river pollution model is to define the minimal costs a coalition S can ensure if all non-

members of the coalition would abate all their emissions, and thus, not pollute the river at

all. Formally, these cost lower bounds a(S) are given by:

a(S) =
∑

i∈S

ki

(
xa

i (S), qi(x
a
i (S))

)
, (8)

where xa(S) =
(
xa

1(S), . . . , xa
n(S)

)
denotes the solution to

min
{xi}i∈S

∑

i∈S

ki(xi(S), qi(x(S))) subject to (9a)

qi(x) =
∑

j∈Pi\i

γji(ej − xj) , ∀ i ∈ N , (9b)

0 ≤ xi ≤ ei , ∀ i ∈ S , (9c)

xj = ej , ∀ j /∈ S . (9d)

The cost lower bounds a(S) can be interpreted as a fairness condition: no coalition S should

enjoy lower costs than the costs it could secure itself if all non-members of the coalition

would not pollute the river at all.

5 The Downstream Incremental Distribution

Like in Ambec and Sprumont (2002) and Ambec and Ehlers (2008), there is a connection

between the non-cooperative core upper bounds v(S) and the cost lower bounds a(S): For

the coalition of all predecessors of agent i they coincide, i.e. v(Pi) = a(Pi). Thus, for any

coalition of predecessors Pi it is clear that the only river sharing agreement satisfying both

the cost upper and cost lower bounds is the so called downstream incremental distribution
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(DID) defined by

z⋆
i = v(Pi) − v(Pi\i) , ∀ i ∈ N . (10)

The DID assigns every agent his marginal contribution to the coalition composed of his

predecessors along the river. As a consequence, the DID is the only candidate for a river

sharing agreement that at the same time satisfies the non-cooperative core upper bounds

v(S) and the cost lower bounds a(S) for any coalition S. The following theorem establishes

that the DID, in fact, satisfies the non-cooperative core upper bounds v(S) and the cost

lower bounds a(S) for any coalition S.

Theorem 1 (Only DID satisfies cost upper and lower bounds)

The downstream incremental distribution (DID) z⋆ is the only river sharing agreement sat-

isfying the non-cooperative core upper bounds v(S) and the cost lower bounds a(S) for any

coalition S.

Proof: The proof is split into three parts. In the first part, we show that the DID satisfies

the non-cooperative core upper bounds for any coalition S. In part two, we proof that the

DID also satisfies the cost lower bounds for any coalition S and, finally, in the third part,

we show that any river sharing agreement that satisfies the cost upper and lower bounds

for an arbitrary coalition S is identical to the DID.

We proof that the DID satisfies the non-cooperative core upper bounds for any coalition

S by induction. The idea is that any coalition S can be created from the grand coalition

N by consecutively deleting all non-members mj ∈ {m1, . . . , mz} of S starting with the

most downstream agent mz. This procedure creates a sequence of intermediate coalitions

N = Sz, Sz−1, . . . , S1, S. We show that the DID satisfies the core upper bounds for any

intermediate coalition Sj, j ∈ 1, . . . , z and also for S.

For the first part of the proof we need the following proposition, the proof of which is given

in the Appendix.

Proposition 3

For any T ⊂ N with minT > j and any j ∈ N the following inequality holds:

v(Pmj
∪ T ) − v(Pmj

\mj ∪ T ) ≤ v(Pmj
) − v(Pmj

\mj) . (11)

For the grand coalition N = Sz, the non-cooperative core upper bounds are satisfied. Now,

suppose the DID satisfies the non-cooperative core upper bounds for some intermediate
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coalition Sj, i.e.

∑

i∈Sj

z⋆
i ≤ v(Sj) . (12)

We generate the intermediate coalition Sj−1 by deleting the non-member mj from the inter-

mediate coalition Sj. By construction the intermediate coalition Sj−1 consists of all strict

predecessors of agent mj and all agents i > mj who belong to the coalition S. Rearranging

inequality (12) and applying the definition of the DID implies

∑

i∈Sj−1

z⋆
i ≤ v(Sj) − z⋆

mj
= v(Sj) − v(Pmj

) + v(Pmj
\mj) . (13)

We have to show that the DID satisfies the non-cooperative core upper bounds for the

intermediate coalition Sj−1, i.e.

∑

i∈Sj−1

z⋆
i ≤ v(Sj) − v(Pmj

) + v(Pmj
\mj) ≤ v(Sj−1) . (14)

Rearranging this inequality yields

v(Sj) − v(Sj−1) ≤ v(Pmj
) − v(Pmj

\mj) . (15)

If the coalition S does not have any members i > mj , then the inequality is trivially satisfied

as then Sj = Pmj
and Sj−1 = Pmj

\mj . Otherwise, define the set T consisting of all members

i of the coalition S with i > mj . Then, Sj = Pmj
∪ T and Sj−1 = Pmj

\mj ∪ T and by virtue

of Proposition 3, inequality (15) holds.

For the second part of the proof, the following proposition is needed

Proposition 4

For any S ⊂ T ⊂ N and i /∈ S, T the following inequality holds:

a(S ∪ i) − a(S) ≤ a(T ∪ i) − a(T ). (16)

The proof of Proposition 4 is given in the Appendix.

To show that the DID satisfies the cost lower bounds for any coalition S, we employ v(Pi) =

a(Pi) to rewrite the definition of the DID:

z⋆
i = v(Pi) − v(Pi\i) = a(Pi) − a(Pi\i) . (17)

9



Summing up over all agents i ∈ S and employing Proposition 4 yields

∑

i∈S

z⋆
i =

∑

i∈S

a(Pi) − a(Pi\i) ≥
∑

i∈S

a(Pi ∩ S) − a(Pi\i ∩ S) . (18)

The right hand side of the inequality simplifies to

∑

i∈S

a(Pi ∩ S) − a(Pi\i ∩ S) = a(PminS) + a({PminS , PminS + 1}) − a({PminS}) + ...

+ a({PminS , ..., PmaxS}) − a({PminS , ..., PmaxS − 1})

= a({PminS , ..., PmaxS}) = a(S) .

(19)

Thus, we obtain

∑

i∈S

z⋆
i = a(Pi) − a(Pi\i) ≥

∑

i∈S

a(Pi ∩ S) − a(Pi\i ∩ S) = a(S) , (20)

which proofs that the DID satisfies the cost lower bounds for any coalition S:

∑

i∈S

z⋆
i ≥ a(S) . (21)

Finally, we proof that the DID is the only river sharing agreement that simultaneously

satisfies the cost upper and lower bounds for any coalition S. Therefore, we have to show

that whenever a river sharing agreement z satisfies both the cost upper and lower bounds,

then for each agent i it holds that zi = z⋆
i . Again, the proof is by induction.

Similar to Ambec and Ehlers (2008), for agent 1, any river sharing agreement z fulfilling

both constraints satisfies v({1}) ≥ z1 ≥ a({1}). As v({1}) = a({1}) this implies z1 = z⋆
1 .

Now, suppose that zi = z⋆
i holds for all agents i upstream of some agent j, i.e. i ≤ j < n.

Summing up over all i ∈ Pj , we obtain

∑

i∈Pj

zi =
∑

i∈Pj

z⋆
i = v(Pj) . (22)

As v(Pj+1) = a(Pj+1) and because any river sharing agreement z satisfies both the cost

upper and lower bounds,
∑

i∈Pj+1
zi = v(Pj+1) = a(Pj+1) has to hold. Hence,

zj+1 =
∑

i∈Pj+1

zi −
∑

i∈Pj

zi = v(Pj+1) − v(Pj) = z⋆
j+1. (23)

Therefore, the cost distribution z is identical to the DID. �
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Theorem 1 is the exact counterpart to Theorem 1 of Ambec and Ehlers (2008). However, it is

neither obvious nor straightforward to prove that the DID is the only distribution satisfying

the cost upper and lower bounds in case of our river pollution model. The main challenge in

Ambec and Ehlers (2008) arose from the fact that cooperation among agents impose positive

externalities on any coalition S. As a consequence, the welfare level a coalition could secure

for itself crucially depends on the partition of all non-members. The same is true for our

river pollution model. Cooperative behavior among non-members of a coalition S induces,

in general, positive abatement levels, which benefits the members of the coalition.

In contrast to Ambec and Sprumont (2002) and Ambec and Ehlers (2008), however, the

decision variable in our model is emission abatement not water consumption. While water

consumption only benefits the consumer and, thus, is a purely private commodity, emission

abatement is not. In fact, in our model emission abatement does not benefit the abat-

ing agent but only all downstream agents, as it reduces the river’s downstream pollution

level. Thus, emission abatement imposes positive downstream externalities, i.e. pollution

abatement is a commodity with public good properties. This is also reflected in the agents’

welfare: agents’ welfare in the water consumption models of Ambec and Sprumont (2002)

and Ambec and Ehlers (2008) is simply given by some benefit function bi(xi) which depends

on the water consumption xi of agent i. In our model, the costs agent i faces consist of two

parts: first, the abatement costs ci(xi), which only depend on the emission abatement of

agent i and, second, the damage cost function di(qi) depending on the pollution level qi,

which itself is a function of the emission abatement levels of all upstream agents.

6 Discussion and Extensions

The model detailed in Section 2 relies on a number of assumptions which can be relaxed

without impairing the statement of Theorem 1. First, we assumed that there is no initial

pollution at the source of the river and that the net emissions of agent i do not harm

agent i himself but only all downstream agents. As a consequence, agent 1 does not face

any pollution and the specification of agent 1’s damage function d1 is optional. The first

assumption simplified the specification of the pollution level qi, while the latter assumption

implied that in the non-cooperative Nash equilibrium no agent would abate at all. However,

the proof of Theorem 1 does not draw on these assumptions and would still be valid if the

pollution level agent i faces would be defined as

qi = q0 +
∑

j∈Pi

γji(ej − xj) , (24)

where q0 denotes an initial pollution level at the source of the river.

11



Second, we framed the model as a pollution abatement model. Obviously, emissions and the

corresponding pollution levels are prime examples for downstream externalities, yet there

are many other contexts to which our model is applicable. As an example, think of the case

of flooding. Then, ei corresponds to the water discharges from the territory of agent i into

the river and xi denotes the amount of water agent i withdraws from the stream (e.g. by

the controlled flooding of designated flooding areas) and qi is the amount of excess water

at agent i’s location. In this interpretation it would also be reasonable to assume that the

water withdrawn xi is not limited by the discharge ei but could sum up to the total amount

of excess water in the river basin, i.e.

0 ≤ xi ≤ qi . (25)

These modifications would also not impact on the validity of Theorem 1.

Third, particularly in case of flood protection, agents may have different means of protection.

While the withdrawal of water induces costs to agent i and benefits all his downstream

agents, there are other protection techniques which are purely private goods. As an example,

consider that agent i could build a levee that protects the own territory from flooding, but

does not induce any positive externalities to the downstream agents. Then, the damage

to agent i does not only depend on the total amount of water qi but also on the agent’s

investment into private damage protection mi, i.e. di = di(qi, mi). Assuming that an interior

solution is optimal, i.e. m⋆
i > 0, the optimal level of private protection m⋆

i (qi) is given by

the solution of the first order condition

∂di(qi, mi)

∂mi

= 0 . (26)

Thus, we can re-write di(qi, mi) as di

(
qi, m⋆

i (qi)
)
. Whenever these newly specified damage

functions di

(
qi, m⋆

i (qi)
)

are increasing, twice differentiable and convex in qi, we are back at

the model specification introduced in Section 2.

7 Conclusion

We showed that the main result of Ambec and Ehlers (2008) that the downstream incre-

mental distribution is the only welfare distribution that satisfied the non-cooperative core

bounds and the aspiration welfare bounds simultaneously, can be generalized to the case

of commodities with public good characteristics. Like their water consumption model, our

river pollution problem is a cooperative game with externalities, since cooperation among

non-members imposes a positive externality to the members of any coalition S. However,

12



our model comprises an additional source of externalities because the emissions discharged

into the river induce negative externalities on all downstream agents. In addition, our results

are robust to various extensions of our baseline model.
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Appendix

Proof of proposition 3:

Set Sj = Pmj
∪ T and Sj−1 = Pmj\mj

∪ T . Let us parameterize the damage functions for

agents j > mj with a parameter α ∈ [0, ∞). Due to this parametrization, the secure costs

v(Sj−1, α) of the intermediate coalitions Sj−1 now depend on the parameter α and amount

to

v(Sj−1, α) =
∑

i∈Pmj
\mj

ki(x
v(Sj−1, α)) +

∑

i∈Fmj
\mj∩S

ci(x
v(Sj−1, α))+

α ·
∑

i∈Fmj
\mj ∩S

di(qi(x
v(Sj−1, α))).

(A.1)

Furthermore, inequality (11) changes to

v(Sj , α) − v(Sj−1, α) ≤ v(Pmj
) − v(Pmj

\mj) ∀α ∈ [0, ∞). (A.2)

By showing that (A.2) holds for all α ∈ [0, ∞], then it holds, in particular, for α = 1 and

inequality (11) is satisfied.

Thus, in a next step, we show that inequality (A.2) holds for all α ∈ [0, ∞]. For α = 0, we

have v(Sj , 0) = v(Pmj
) and v(Sj−1, 0) = v(Pmj

\mj), therefore inequality (A.2) holds with

equality. For all other α, we differentiate inequality (A.2) with respect to α, i.e.

∂v(Sj , α)

∂α
−

∂v(Sj−1, α)

∂α
≤ 0.

Hence, we partially differentiate v(Sj, α) with respect to α and apply the envelope theorem,

i.e.

∂v(Sj , α)

∂α
=

∂v(xv(Sj , α), α)

∂α
+

∂v(xv(Sj , α), α)

∂x(Sj , α)
︸ ︷︷ ︸

0

∂x(Sj, α)

∂α

=
∂v(xv(Sj , α), α)

∂α

=
∑

i∈Fmj
\mj ∩Sj

di(qi(x
v(Sj , α)))

(A.3)
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and analogously,

∂v(Sj−1, α)

∂α
=

∂v(xv(Sj−1, α), α)

∂α

=
∑

i∈Fmj
\mj∩Sj−1

di(qi(x
v(Sj−1, α))).

Hence, inequality (A.3) can be rewritten to

∑

i∈Fmj
\mj∩Sj

di(qi(x
v(Sj), α)) ≤

∑

i∈Fmj
\mj∩Sj−1

di(qi(x
v(Sj−1, α))). (A.4)

Clearly, this inequality is satisfied whenever

∑

l∈Pk

xv
l (Sj−1, α) ≤

∑

l∈Pk

xv
l (Sj , α), ∀k ∈ Sj−1, Sj , (A.5)

which is stated in the following lemma.

Lemma 1

For any agent k ∈ S, T the following inequality is satisfied

∑

l∈Pk

xv
l (Sj−1, α) ≤

∑

l∈Pk

xv
l (Sj , α), ∀k ∈ Sj−1, Sj . (A.6)

Proof of Lemma 1

Consider two coalitions S and T = S∪m and an agent m /∈ S. Given this notation, inequality

(A.6) changes to

∑

j∈Pk∩S

xv
j (S, α) ≤

∑

j∈Pk∩T

xv
j (T, α), ∀k ∈ S, T.

Let us proof Lemma 1 by contradiction, i.e. assume that

∑

j∈Pk∩T

xv
l (T, α) <

∑

j∈Pk∩S

xv
l (S, α). (A.7)
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According to the parameterized minimization problem, the following first order conditions

have to be satisfied

c′
i(xi) ≤

∑

j∈Fi\i∩T ∩Pm

d′
j(qj(xj)) + α

∑

j∈Fm\m∩T

d′
j(qj(xj))

≤
∑

j∈Fi\i∩T ∩Pm

d′
j




∑

k∈Pj\j

γkjek −
∑

k∈Pj\j∩T

γkjxk





+ α ·
∑

j∈Fm\m∩T

d′
j




∑

k∈Pj\j

γkjek −
∑

k∈Pj\j∩T

γkjxk



 , ∀i ∈ T,

(A.8)

and

c′
i(xi) ≤

∑

j∈Fi\i∩S∩Pm\m

d′
j(qj(xj)) + α

∑

j∈Fm\m∩S

d′
j(qj(xj))

≤
∑

j∈Fi\i∩S∩Pm\m

d′
j




∑

k∈Pj\j

γkjek −
∑

k∈Pj\j∩S

γkjxk





+ α
∑

j∈Fm\m∩S

d′
j




∑

k∈Pj\j

γkjek −
∑

k∈Pj\j∩S

γkjxk



 , ∀i ∈ S

(A.9)

Due to assumption (A.7), the right hand side of (A.8) for i ∈ T is higher than the right

hand side of (A.9) for i ∈ S. This implies c′
i(xi(T )) ≥ c′

i(xi(S)) for all agents i ∈ S, T and

thus, due to the characteristics of the cost function ci(.), xv
i (T ) ≥ xv

i (S), ∀i. This, however,

implies

∑

j∈Pk∩T

xj(T ) >
∑

j∈Pk∩S

xj(S).

Therefore, by contradiction, inequality
∑

j∈Pk∩S xj(S) >
∑

j∈Pk∩S xj(T ) cannot hold.

Hence, given Lemma 1, inequality (A.2) is satisfied for all α ∈ [0, ∞], thus also for α = 1

implying that inequality (11) holds for the coalition Sj−1. By induction, inequality (11)

holds for all intermediate coalitions Sj, j = 1, ..., z with S1 = S, therefore the DID is stable

for all non-consecutive coalitions S.

Proof of proposition 4

For the proof of Proposition 4 the following lemma is required.

Lemma 2

For any two coalitions S, T , the following relationships among the abatement levels of an
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agent j ∈ T, S hold

xa
j (T ∪ i) ≥ xa

j (S ∪ i) ≥ xa
j (S) and xa

j (T ∪ i) ≥ xa
j (T ).

Proof of Lemma 2

It suffices to show that these inequalities hold for two coalitions S, T , with T = S ∪ t,

t ∈ N\S. Let us first establish that xa
j (G ∪ i) ≥ xa

j (G) for all coalitions G = T, S. The first

order conditions for an agent j ∈ G respectively j ∈ G ∪ i read

c′
j(xj) ≤

∑

k∈Fj\j∩G∪i

d′
k(

∑

m∈Pk\k∩G∪i

γmk(em − xm)) (A.10)

respectively

c′
j(xj) ≤

∑

k∈Fj\j∩G

d′
k(

∑

m∈Pk\k∩G

γmk(em − xm)). (A.11)

The right hand side of the first order condition in (A.10) is either larger than the right hand

side of (A.11), if j ≤ i, or equal to it, if j > i. Thus, xa
j (G ∪ i) ≥ xa

j (G), ∀j ∈ G, G ∪ i and

G = T, S. Due to T ∪ i = S ∪ i ∪ t, it follows that xa
j (T ∪ i) ≥ xa

j (S ∪ i).

Recall inequality (16) in Proposition 4. We restate the two differences in the inequality

in the following way

a(T ∪ i) − a(T ) = ki(x
a
i (T ∪ i)) +

∑

j∈T

kj(xa
j (T ∪ i)) − kj(xa

j (T ))

= ki(x
a
i (T ∪ i)) +

∑

j∈T \S

kj(xa
j (T ∪ i)) − kj(xa

j (T )) +

∑

j∈S

kj(xa
j (T ∪ i)) − kj(xa

j (T ))

and

a(S ∪ i) − a(S) = ki(x
a
i (S ∪ i)) +

∑

j∈S

kj(xa
j (S ∪ i)) − kj(xa

j (S)).

17



Thus, by rearranging and using the above expressions, inequality (16) can expressed as

ki(x
a
i (T ∪ i)) − ki(x

a
i (S ∪ i)) +

∑

j∈T \S

kj(xa
j (T ∪ i)) − kj(xa

j (T ))+

∑

j∈S

kj(xa
j (T ∪ i)) − kj(xa

j (T )) +
∑

j∈S

kj(xa
j (S)) − kj(xa

j (S ∪ i)) ≥ 0.
(A.12)

To proof that inequality (A.12) is satisfied, we divide the terms into three groups I, II, III

as represented in the following

∑

j∈S

kj(xa
j (T ∪ i)) − kj(xa

j (T )) +
∑

j∈S

kj(xa
j (S)) − kj(xa

j (S ∪ i))

︸ ︷︷ ︸

I

+

∑

j∈T \S

kj(xa
j (T ∪ i)) − kj(xa

j (T ))

︸ ︷︷ ︸

II

+ ki(x
a
i (T ∪ i)) − ki(x

a
i (S ∪ i))

︸ ︷︷ ︸

III

≥ 0.
(A.13)

In the three lemmas presented below, we will show that for all subgroups I, II, III we have

I, II, III ≥ 0. As a result, we conclude that inequality (A.12) holds.

Lemma 3

Given the terms in subgroup I of (A.13), it holds that I ≥ 0, i.e.

∑

j∈S

kj(xa
j (T ∪ i)) − kj(xa

j (T )) +
∑

j∈S

kj(xa
j (S)) − kj(xa

j (S ∪ i)) ≥ 0. (A.14)

Proof of Lemma 3

Let us rewrite inequality (A.14) by splitting it into cost and damage functions, i.e.

∑

j∈S

cj(xa
j (T ∪ i)) − cj(xa

j (T )) + cj(xa
j (S)) − cj(xa

j (S ∪ i))

+
∑

j∈S

dj(qj(x
a
j (T ∪ i))) − dj(qj(x

a
j (T ))) + dj(qj(xa

j (S))) − dj(qj(x
a
j (S ∪ i))) ≥ 0.

We proof the inequality above graphically. Due to the convexity of both the damage and

cost functions of each agent j ∈ S and due to the relationships xa
j (T ∪i) ≥ xa

j (S ∪i) ≥ xa
j (S)

and xa
j (T ∪ i) ≥ xa

j (T ) established in Lemma 2, for each agent j it holds that

cj(xa
j (T ∪ i)) − cj(xa

j (S ∪ i)) = m, m ≥ 0

cj(x
a
j (S)) − cj(x

a
j (T )) = n, n ≤ 0,
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Figure 1: Cost functions
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Figure 2: Damage cost functions

with |m| ≥ |n| as depicted1 in Figure 1. Similarly,

dj(qj(x
a
j (T ∪ i))) − dj(qj(xa

j (S ∪ i))) = m, m ≤ 0

dj(qj(xa
j (S))) − dj(qj(x

a
j (T ))) = n, n ≥ 0, ∀j

with |n| ≥ |m| as depicted in Figure 2. Thus, we conclude that inequality (A.14) holds.

Lemma 4

Given the terms in subgroup II of (A.13), it holds that II ≥ 0, i.e.

∑

j∈T \S

kj(xa
j (T ∪ i)) − kj(xa

j (T )) ≥ 0. (A.15)

1 As no general relationship can be established for x
a
j (T ) and x

a(S ∪ i), both cases are depicted in the
Figures 1 and 2.
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Proof of Lemma 4

The following first order conditions have to be satisfied

c′
j(xj(T )) ≤

∑

k∈Fj\j∩T

d′
k




∑

t∈Pk\k∩T

γtk(et − xt(T ))



 , ∀j ∈ T, (A.16)

and

c′
j(xj(T ∪ i)) ≤

∑

k∈Fj\j∩T ∪i

d′
k




∑

t∈Pk\k∩T

γtket + γikei − γtkxt(T ) −
∑

t∈Pk\k∩T ∪i

γtk∆xt



 , ∀j ∈ T ∪ i,

(A.17)

with
∑

t∈Pk\k∩T ∪i γtk∆xt =
∑

t∈Pk\k∩T ∪i γtkxa
j (T ∪ i) −

∑

t∈Pk\k∩T γtkxa
t (T ).

As xa
j (T ∪ i) ≥ xa

j (T ) derived in Lemma 2, the right hand side of inequality (A.17) has to

be larger than the right hand side of (A.16). In order for this to be satisfied, the following

needs to hold

γikei ≥
∑

t∈Pk\k∩T ∪i

γtk∆xt =
∑

t∈Pk\k∩T ∪i

γtkxa
j (T ∪ i) −

∑

t∈Pk\k∩T

γtkxa
t (T ).

Consequently,

dj




∑

k∈Pj\j∩(T ∪i)

γkj(ej − xa
j (T ∪ i))



 ≥ dj




∑

k∈Pj\j∩T

γkj(ej − xa
j (T ))



 , ∀j ∈ T.

(A.18)

In addition, due to xa
j (T ∪ i) ≥ xa

j (T ) and ci(xi) increasing and convex, we have cj(xa
j (T ∪

i)) ≥ cj(xa
j (T )). Combining this with (A.18) implies kj(x

a
j (T ∪ i)) ≥ kj(xa

j (T )). Summing

up over all j ∈ T \S yields the desired inequality (A.15).

Lemma 5

Given the terms in subgroup III of (A.13), it holds that III ≥ 0, i.e.

ki(x
a
i (T ∪ i)) − ki(x

a
i (S ∪ i)) ≥ 0.

Proof of Lemma 5

Recall that for each j ∈ S ∪ i, the following first order condition must hold

c′
j(xj(S ∪ i)) ≤

∑

k∈Fj\j∩S∪i

d′
k




∑

t∈Pk\k∩S∪i

γtk(et − xt(S ∪ i))



 . (A.19)
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Similarly, for each j ∈ T ∪ i it must hold that

c′
j(xj(T ∪ i)) ≤

∑

k∈Fj\j∩T ∪i

d′
k(

∑

t∈Pk\k∩S∪i

γtket +
∑

t∈Pk\k∩T \S

γtket

−
∑

t∈Pk\k∩S∪i

γtkxt(S ∪ i) −
∑

t∈Pk\k∩T ∪i

γtk∆xt).
(A.20)

Given that xa
j (T ∪ i) ≥ xa

j (S ∪ i) derived in Lemma 2, the left hand side of inequality (A.20)

is larger than the left hand side of inequality (A.19). Consequently, it has to hold that

∑

t∈Pk\k∩T \S

γtket ≥
∑

t∈Pk\k∩T ∪i

γtk∆xt =
∑

t∈Pk\k∩T ∪i

γtkxa
t (T ∪ i) −

∑

t∈Pk\k∩S∪i

γtkxa
t (S ∪ i).

The agents j ∈ T ∪ i do not abate more than the additional pollution flow passing through

their region compared to what they would optimally abate if they belong to the smaller

coalition S ∪ i. As a result,

di




∑

j∈Pi\i∩T ∪i

γji(ej − xa
j (T ∪ i))



 ≥ di




∑

j∈Pi\i∩S∪i

γji(ej − xa
j (S ∪ i))



 . (A.21)

In addition, as xa
j (T ∪ i) ≥ xa

j (S ∪ i) ∀j derived in Lemma 2 and ci(xi) is increasing and

convex, we have

ci(x
a
i (T ∪ i)) ≥ ci(x

a
i (S ∪ i)). (A.22)

Combining (A.21) with (A.22) implies

ki(xi(T ∪ i)) ≥ ki(xi(S ∪ i)).

Proposition 4 then follows from combining Lemmas 3, 4 and 5.
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