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Abstract

This paper analyzes the design of innovation contests when the quality of an innovation

depends on the research approach of the supplier, but the best approach is unknown.

Diversity of approaches is beneficial because of the resulting option value. An auction

induces the social optimum, while a fixed-prize tournament induces insufficient diversity.

The optimal contest for the buyer is an augmented fixed-prize tournament, where suppliers

can choose from a set of at most two prizes. This allows the buyer to implement any level

of diversity at the lowest cost.
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The use of contests to procure innovations has a long history, and it is becoming ever

more popular. Recently, private buyers have awarded the Netflix Prize, the Ansari X Prize,

and the InnoCentive prizes. Public agencies have organized, for instance, the DARPA Grand

Challenges, the Lunar Lander Challenge and the EU Vaccine Prize.1 The literature on contest

design deals with the problem of providing incentives for costly innovation effort.2 However,

effort is by no means the only important requirement for a successful innovation. Ex ante,

there are often many potentially optimal approaches to solving an innovation problem. Con-

test design should therefore encourage innovators to take different approaches. In this paper,

we thus ask how contest design influences the diversity of research approaches.

Many practical examples illustrate the importance of the issue. First, the often cited

Longitude Prize of 1714 for a method to determine a ship’s longitude at sea featured two

competing approaches.3 The lunar method was an attempt to use the position of the moon

to calculate the position of the ship. The alternative, ultimately successful, approach relied

on a clock which accurately kept Greenwich time at sea, thus allowing estimation of longi-

tude by comparison with the local time (measured by the position of the sun). Second, when

the Yom Kippur War in 1973 revealed the vulnerability of the US aircraft to Soviet-made

radar-guided missiles, General Dynamics sought to resolve the issue through electronic coun-

termeasures, while McDonnell Douglas, Northrop, and eventually Lockheed, attempted to

build planes with small radar cross-section.4 Third, the EU Vaccine Prize was announced in

2012 with the goal of improving the so-called cold-chain vaccine technology. Interestingly, the

competition rules explicitly stated that diverse innovation approaches were conceivable: "It is

important to note that approaches to be taken by the participants in the competition are not

prescribed and may include alternate formulations, novel packaging and/or transportation

techniques, or significant improvements over existing technologies, amongst others."5 Finally,

the announcement of the 2015 Horizon Prize for better use of antibiotics contains a similar

statement.6

Thus, in many innovation contests both the buyer (the contest designer) and the suppliers

(contestants) are aware that there are multiple conceivable approaches to innovation. Fur-

thermore, none of the participants knows the best approach beforehand. However, after the

suppliers have followed a particular approach, it is often possible to assess the quality of inno-

vations, for instance, by looking at prototypes or detailed descriptions of research projects. In

the following, we will ask whether buyers can and should do more than to appeal to suppliers

to pursue diverse approaches: Can they design institutions in such a way that suppliers have

incentives to provide diversity? And will they benefit from doing so?

Architectural contests share some important properties with innovation contests. A buyer

who thinks about procuring a new building usually does not know what exactly the ideal

building would look like, but once she examines the submitted plans, she can choose the one

she prefers. Guidelines for architectural competitions explicitly recognize the need for diver-

sity. For example, the Royal Institute of British Architects states: “Competitions enable a

1See "Innovation: And the winner is. . . ", The Economist. Aug 5, 2010.
2Section 7 discusses this literature.
3See, e.g., Che and Gale (2003) for a discussion of the Longitude Prize.
4See Paul Crickmore (2003), Nighthawk F-117: Stealth Fighter. Airlife Publishing Ltd.
5European Comission (2012), "Prize Competition Rules." August 28, 2012 (accessed on April 3, 2015).

http://ec.europa.eu/research/health/pdf/prize-competition-rules_en.pdf
6European Commision (2015), "Better use of antibiotics." March 24, 2015 (accessed on April 3, 2015).

http://ec.europa.eu/research/horizonprize/index.cfm?prize=better-use-antibiotics

1



wide variety of approaches to be explored simultaneously with a number of designers.”7 Two

important features are common in innovation contests and architecture contests. First, the

buyer often specifies a fixed prize ex ante. Second, the number of contestants may be large.

There is a tension between these observations and the results of an interesting theoretical lit-

erature that investigates the optimal design of procurement contests.8 This literature focuses

on incentives for efforts rather than for diversity. Most papers conclude that (i) buyers should

use auctions rather than fixed-prize tournaments and (ii) it is optimal for a buyer to invite

only two participants. Our paper argues that neither of these conclusions can be taken for

granted when the diversity of approaches is an issue.

To our knowledge, our paper is the first analysis of the design of innovation contests

with multiple conceivable research approaches. We develop a model with a buyer and several

suppliers. Crucially, the value of an innovation does not depend on effort, but on the difference

between the chosen research approach and an ideal, but initially unknown approach. The

suppliers and the buyer agree about the distribution of the ideal approach. It seems plausible

that the buyer would like to induce the suppliers to choose different approaches to gain from

the resulting option value. This paper studies which contests can induce such diversity. More

broadly, we analyze the consequences of different institutions on buyer payoffs and total

welfare.

In line with the literature on innovation contests, we assume that neither research inputs

nor research outputs are verifiable,9 because they are both difficult to evaluate, and the

relation between them is stochastic. Clearly, this assumption is more palatable in some cases

than in others. For instance, in the 2005 Grand Challenge, DARPA asked participants to build

an unmanned vehicle that could complete a 212 kilometer course in rugged territory as fast as

possible. In principle, DARPA could have rewarded participants according to the exact time

needed to complete the course, a verifiable signal of quality.10 In other contexts, for instance,

when basic research (or architectural style) is considered, more judgment is necessary, and

it is much harder to come up with verifiable measures of quality and, in particular, of the

monetary value of quality differences. In these cases, non-verifiability seems highly plausible.

The lack of verifiability of research activity precludes any kind of contract that could be

implemented by a court, which leads to a hold-up problem. One solution to this problem is

to use what Che and Gale (2003) define as a contest mechanism (or simply contest). Such a

contest prescribes a possible set of prices and commits the buyer to paying the price chosen

by the supplier from which the innovation is procured. Examples are fixed-prize tournaments

as well as auctions with or without reserve price. As argued by Che and Gale (2003), a court

can easily enforce the rules of a contest, since it only needs to verify if the correct price was

paid out to one of the participants. In line with the literature, we focus on contests as means

of procuring innovation.

In our benchmark model, there are two homogeneous suppliers who choose a research

7See Royal Institute of British Architects (2013), "Design competitions guidance for clients." (accessed on

Apr 3, 2015)

http://competitions.architecture.com/requestform.aspx.
8See Section 7 for details on the related literature.
9For an extensive discussion see Che and Gale (2003) and Taylor (1995).
10 Instead, DARPA only used the speed criterion to rank participants (see Sec-

tion 1.6 of the DARPA Grand Challenge Rules (2004, accessed on June 24, 2015).

http://archive.darpa.mil/grandchallenge05/Rules_8oct04.pdf).
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approach, modeled as a point on the unit interval. The distribution of the ideal approach has

a symmetric and single-peaked density. Quality depends linearly on the distance between the

approach taken and the ideal approach. After the buyer has communicated the rules of the

game, the suppliers choose their approaches, and qualities become common knowledge. We

abstract from cost considerations, so as to focus on suppliers’ incentives to diversify.

In the benchmark model, we obtain the following results.11 First, maximizing the expected

total payoffs of buyers and suppliers (henceforth, the social optimum) involves diversity of

approaches. Second, an auction mechanism implements the social optimum. Third, fixed-

prize tournaments do not induce any diversity, but nevertheless yield higher expected buyer

payoffs than auctions. Fourth, the optimal contest for the buyer is an "augmented fixed-prize

tournament", in which the suppliers can choose from at most two prizes; these contests allow

the buyer to finetune the degree of diversification. Finally, for a uniform state distribution,

the fixed-prize tournament maximizes the expected buyer payoffs.

We then provide several extensions, including the following. First, we show that, when the

buyer can charge sufficiently large participation fees, she can implement the social optimum

and appropriate the resulting rents completely. Second, we allow for multiple suppliers. The

social optimum continues to involve diversity, and it can be implemented with an auction.

Fixed-prize tournaments now induce some diversity, but less than socially optimal. However,

as the number of suppliers increases, the difference between fixed-prize tournaments and auc-

tions becomes smaller. The buyer continues to prefer tournaments to auctions. She may

benefit from inviting a large number of suppliers, which is a straightforward implication of

the option value provided by additional suppliers. Third, we consider exogenously heteroge-

neous suppliers, reflecting differences in technology or style (as in the architectural example).

For substantial heterogeneity, active diversification is no longer optimal. Otherwise the main

results carry through: Auctions implement the social optimum; tournaments do not; buyers

nevertheless prefer fixed-prize tournaments unless there are substantial fixed costs or par-

ticipation fees. Moreover, with heterogeneous suppliers, it is possible to analyze the impact

of the revelation of quality information on the incentives of contestants to diversify. Rev-

elation is crucial: Without it, the unique equilibrium of an auction is the one without any

diversification.

The contest metaphor has useful interpretations beyond the procurement context. As we

discuss briefly in the conclusion, our model also applies when suppliers choose products in

the face of uncertain demand by a potentially large number of homogeneous buyers. Contest

design then corresponds to the choice of alternative regulatory institutions. Our approach

shows that unregulated markets provide incentives for suppliers to choose the socially optimal

products, but at the cost of endowing them with ex-post market power. As a result, regulation

may yield higher expected consumer surplus, even though it does not induce the optimal

expected product quality.

In Section 1, we introduce the benchmark model with two homogeneous suppliers. In

Section 2, we introduce innovation contests. In Section 3, we show that an auction induces

the social optimum. Section 4 deals with the optimal design of contests from the buyer’s

perspective, while Section 5 extends the analysis of optimal contests beyond the benchmark

model by considering fixed costs and unconditional transfers. Section 6 presents extensions

11 In addition, we allow for more general distribution functions and transportation costs, and we consider

negotiations, contests with multiple prizes and contests with multiple approaches developed by the same

supplier as alternative procurement institutions.
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of the model. Section 7 discusses our paper in the context of related literature. Section 8

concludes, pointing in particular to the above-mentioned re-interpretation of our model for

a world with many buyers. Short and instructive proofs are in the Appendix. The Online

Appendix (available at https://sites.google.com/site/iletina/did) contains technical notation

and omitted proofs, as well as more details about the extensions.

1 The Benchmark Model

We now describe the assumptions of our benchmark model. Its simple setting brings out the

intuition most clearly. We will see in Section 6 that the main insights are much more general.

A risk-neutral buyer  needs an innovation that two risk-neutral suppliers ( ∈ {1 2})
can provide. Each supplier chooses an approach  ∈ [0 1] at cost  (). The quality  of

the resulting innovation depends on a state  ∈ [0 1], which is distributed with density  (),
and corresponds to an (ex-post) ideal approach. We thus assume that  = Ψ −  (| − |),
where Ψ  0 and  is an increasing function. Unless specified otherwise, we will maintain

assumptions (A1)-(A3) below.

Assumption (A1) The density function  () is (i) symmetric:  (12− ) =  (12 + )

∀ ∈ [0 12], (ii) single-peaked: () ≤ (0) ∀  0  12 and (iii) has full support:

 ()  0 ∀ ∈ [0 1].

Assumption (A2) All approaches have the same fixed costs  () ≡  ≥ 0.

Assumption (A3)  ( ) =  | − | with  ∈ (0Ψ].

Using (A3), we denote the quality resulting from approach  in state  as  ( ) =

Ψ−  | − | for some Ψ  0. Thus quality is bounded below by Ψ−  and bounded above

by Ψ. Though most of the results are more general, we will specify the density function as

follows for some specific results:

Assumption (A1)’ The density function  () is uniform.

When (A1)’ holds, all approaches are equally likely to be ideal and, by (A2), they are

equally costly. Nevertheless, the market participants agree ex ante that the central approach

maximizes expected quality and thus expected total profits.

As we show in the Proposition 18 in the Online Appendix, a vector maximizing social

welfare (∗1 
∗
2) always exists and always features diversity, that is 

∗
1 6= ∗2. Intuitively, without

diversity, the expected minimal distance to the ideal approach can be reduced by arbitrarily

moving one of the two approaches away from the other. Depending on the distribution

of , diversity can be substantial. For instance, when (A1)’ holds, the social optimum is

(∗1 
∗
2) = (14 34).

12

12See Proposition 18 in the online appendix.
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Period 1: Suppliers simultaneously select approaches  ∈ [0 1].
Period 2: The state is realized. All players observe  ∈ [0 1]; thus 1 and 2 become

common knowledge.

Period 3: Suppliers simultaneously choose prices  ∈ P.
Period 4: The buyer observes prices; then she chooses a supplier  ∈ {1 2}. She pays

 to the chosen supplier and 0 to the other supplier.

2 Innovation Contests

The buyer can choose an innovation contest determining the procedure for choosing and re-

munerating suppliers. These contests are closely related to the procurement contests analyzed

by Che and Gale (2003), where suppliers choose efforts rather than approaches.13 In line with

these authors, we assume that neither  nor  is contractible.
14 The environment (Ψ ) of

a contest consists of the utility and cost parameters. For now, we set  = 0, so as to separate

the suppliers’ decisions on which approach to choose from the decision whether to produce.

In Section 5, we allow for positive fixed costs so as to analyze the entry decision.

The buyer chooses a set P of allowable prices (bids), where P is an arbitrary finite union

of closed subintervals of R+.15 We denote the minimum of P as  and the maximum, if it

exists, as  . An innovation contest is the extensive-form game between the buyer and the

suppliers defined by the buyer’s choice of P and the following rules:
The assumption that all players observe  and  is convenient, as it allows us to apply

the subgame perfect equilibrium (SPE). However, the assumption is more restrictive than

necessary. As long as all players can observe qualities, all results still hold with the SPE

replaced by a Perfect Bayesian Equilibrium with suitably specified beliefs.16 Moreover, in the

Subsection 6.2 we modify the observability assumption by imposing that the suppliers have

to submit bids when they choose approaches; thus they cannot observe qualities when they

choose prices.17

The following are examples of innovation contests:

1. P = R+: a procurement auction without reserve price.
2. P = £0  ¤: a procurement auction with reserve price  .

3. P = {}, where  ≥ 0: a fixed-prize tournament (FPT) with  set by the buyer.

4. P = { 0}, where  ≥ 0: an augmented fixed-prize tournament.
13 In Section 6, we will briefly discuss an alternative class of institutions.
14For example, Che and Gale (2003) and Taylor (1995) assume that neither inputs nor outputs of innovative

activity are verifiable. As an example of the verifiability problem, Che and Gale (2003) point to the protracted

battle between John Harrison, the inventor of the marine chronometer, and the Board of Longitude, over

whether his invention met the requirements of the 1714 Longitude Prize. See also references in Taylor (1995).
15Formally, I(R+) :={P ⊆ R+ : P = ∪̄=1[ ] or P = ∪̄=1[ ]∪


+1∞


for  ≤  ∈ R+ ̄ ∈ N}.

16Of course, if the suppliers could develop a design anew, they could achieve a better quality by incorporating

what they have learned. We exclude this possibility and focus on the highest quality that can be produced at

the end of the contest. One justification is that, due to unmodelled dynamic considerations, the good has to

be produced in the current period.
17We cannot pursue this issue with homogeneous suppliers, as we would run into existence problems.
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The first three examples are well-known. The last example will turn out to be a useful

alternative for the buyer. We apply the following tie-breaking rules.

(T1) If suppliers offer the same surplus, the buyer prefers the higher quality one. If both have

the same quality, the tie is randomly broken.

(T2) Given equal monetary payoffs, the suppliers prefer to win the contest.

(T1) and (T2) will be shown to guarantee that the outcomes are robust to infinitesimal

changes in the reward structure.18

3 Implementing the Social Optimum

Proposition 18 in the Online Appendix demonstrates that the social optimum requires at least

some diversity under very general conditions. Moreover, this diversity can be substantial, as

the case of the uniform state distribution shows. We now show that a simple innovation

contest implements the social optimum. We require the following notation:

Notation 1  () ≡ max { ∈ P|  ≤ |(1 )− (2 )|+ }.
The following result formalizes the familiar "asymmetric Bertrand" logic that low-quality

firms choose minimal prices, whereas high-quality firms translate the quality differential into

a price differential.

Lemma 2 The subgame of an innovation contest corresponding to ( ) has an equilibrium

such that  ( ) =  () if  ≥  and  ( ) =  if   . In any SPE of any contest,

 ( ) =  () if  ≥ .

Lemma 2 sharpens the Bertrand logic: The price differential will only fully reflect the

quality differential when this is feasible for the high-quality supplier. In many cases, the

equilibrium described in Lemma 2 is unique.19 Lemma 2 is essential in the following result.

Proposition 3 (i) The auction mechanism (P = R+) implements the social optimum. (ii)
If  is uniform ((A1)’ holds), then any equilibrium of an auction is socially optimal.

The logic of the direct proof that we provide in the Online Appendix is very similar to

the reasoning behind the optimality of Vickrey-Clarke-Groves mechanisms.20 Claim (i) also

follows from the more general results in Lemma 21. Here, we therefore merely explain why

the auction mechanism induces diversity, as required for the social optimum. Intuitively, if

the approaches are identical, the suppliers have the same quality in all states. Hence, by

Lemma 2, subgame equilibrium prices are zero, and suppliers will not earn positive profits. A

deviation to any other approach is thus profitable.

18For example, in an auction (T1) ensures that the higher quality supplier wins by offering the same surplus

to the seller as his competitor. Even without (T1), the higher quality supplier could ensure that he wins

by offering a slightly higher surplus. Similarly, (T2) will allow us to avoid the consideration of limits in the

discussion of the optimal tournament.
19 If  is convex and sup  ̄ () for all , then  ( ) =  for    in every equilibrium. To see this,

note that, according to the lemma,  =  () =  +  ( ) −  (  ) in any equilibrium. If    , then

player  can choose a slightly higher prize, and he still wins. Hence, this is a profitable deviation.
20See, e.g., Mas-Colell et al. (1995).
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4 The Optimal Contest for the Buyer

The auction mechanism induces the efficient amount of diversity, but leaves rents to the

successful supplier. It will turn out that, because it avoids such rents, a suitable FPT is

preferable for the buyer, even though it does not induce any diversity in a two-player setting.

The remaining results of the section show that the optimal innovation contest for the buyer

is a (possibly augmented) FPT. For the special case of the uniform state distribution, there

are no contests leading to higher buyer payoffs than the FPT with the minimal prize  = 0.

An FPT never induces diversity:

Proposition 4 For any  ≥ 0, the unique equilibrium of an FPT is

(1 2) = (12 12).

The intuition is straightforward. As the size of the prize is independent of quality differ-

ences, the suppliers care only about maximizing the expected winning probability. By (A1),

this requires moving to the center.21 We need further notation:

Notation 5 ∆( ) ≡ |( )−  (  )| is the maximum quality difference given ( ).

By Lemma 2, in any subgame the successful supplier chooses the highest available price

below the sum of the quality differential and the minimum bid in any subgame. We now show

that, for the equilibrium choice of approaches, the bid corresponds exactly to the sum of the

maximum quality differential and the minimum bid. This is also the price paid in all other

states resulting in the maximum quality difference.

Lemma 6 Let 1 ≤ 2. (i) If a contest implements (1 2), then ∆ (1 2) +  ∈ P. (ii) If
 ∈ [0 1] ∪ [2 1], the successful supplier bids  ( ) = ∆ ( ) +  .

Intuitively, (i) if ∆ (1 2) +  ∈ P, suppliers could increase their chances of winning
by small moves towards the approach of the other party, without reducing the price in those

cases where they win. (ii) shows that in all states outside the interval (1 2) the buyer pays

a constant price, reflecting the (maximal) quality difference between the two suppliers.

Lemma 6(i) has an immediate implication.

Corollary 7 In an auction with a reserve price ̄ , the diversity in any (pure strategy) equi-

librium ( ) is bounded by the reserve price: ̄ ≥ ∆( ).

If the maximal quality difference between the two suppliers were above the maximum

feasible bid, the supplier could not charge the buyer for this quality difference. He could

thus choose an approach slightly closer to the competitor to increase the chances of winning

without reducing the price.

Corollary 7 embeds the polar cases treated so far, the auction without reserve price and

the FPT. In an auction without reserve price, suppliers are free to choose the bid and thus

21For  = 0, uniqueness requires the tie-breaking rule (T2). Otherwise, any design choice is an equilibrium.

An alternative justification of the equilibrium (12 12) is that it is the limit of the equilibria for → 0.
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capture the benefits of diversification. This results in optimal diversity. By Corollary 7, reserve

prices limit this possibility: They determine an upper bound on equilibrium diversity. As the

reserve price approaches zero, so does the equilibrium diversity, as for an FPT with prize zero.

Thus, the choice of reserve price involves a tradeoff between efficiency-increasing diversity and

market power for the suppliers. As the next result shows, the buyer never resolves this tradeoff

in favor of efficiency, as she prefers fixed prize tournaments to any auction with or without

reserve price.

Proposition 8 Among all contests where P is convex, the buyer’s payoff is maximal in an

FPT with  = 0.

In auctions with and without reserve price, P is convex. Thus, according to Proposition

8, the buyer prefers the socially inefficient tournament without diversity to the unrestricted

auction inducing socially optimal diversity and to to auctions with reserve price inducing

intermediate levels of diversity. The proof of Proposition 8 relies heavily on the fact that higher

quality suppliers bid the sum of the quality differential and the minimum  whenever available

(Lemma 2). Thus the buyer’s expected payoff is the difference between the expectation of

the minimum quality and the minimum bid. The best she can do is to choose an FPT with

 = 0, because this maximizes the minimum quality and minimizes the minimum bid.

Proposition 8 highlights an important point: Contrary to the case of effort-inducing con-

tests (Che and Gale, 2003), the buyer can never benefit from using auctions in diversity-

inducing contests. Intuitively, while diversity is desirable because of the option value resulting

from different approaches, it also leads to greater quality differences ex post. The resulting

increase in market power eliminates all benefits for the buyer, which has no counterpart in

effort-inducing contests.

We now ask whether the buyer can do even better by using non-convex price sets. The

following implementation result shows how the buyer can use augmented tournaments to

fine-tune diversity.

Proposition 9 Suppose  = ∆(1 2) for some (1 2) such that 0  1 ≤ 12 ≤ 2  1.

In the augmented FPT with P = { 0}, the strategy profiles (1 2 1 ()  2 ()) such that
 ( ) =  if  −  ≥  and 0 otherwise, form an equilibrium.

Thus, the buyer can implement any desired diversity in an augmented FPT with  as

the corresponding maximal quality difference. For instance, to induce the social optimum,

the buyer has to set  = ∆(∗  
∗
 ). The resulting payments to the successful supplier are

as low as possible: In states where the quality difference is maximal, the buyer has to pay

this quality difference, which is the minimum payment consistent with Lemma 6. In all other

states, the buyer pays 0, which is obviously minimal. The flexibility of the augmented FPT

in inducing diversity and the low buyer payments suggest that the optimal contest is in this

class. The following result confirms this intuition.

Proposition 10 The buyer can achieve the highest possible payoff among all innovation con-

test equilibria with an augmented FPT.

Proposition 10 is the central result of this section. Like the class of convex contests

analyzed above, the class of augmented FPTs contains the FPT with  = 0. As the next

result shows, this FPT is the optimal contest if the state distribution is uniform.
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Corollary 11 If (A1)’ holds, the FPT with  = 0 is an optimal contest.

To sum up, the buyer always prefers the optimal FPT to the auction. The class of

augmented FPTs contains her optimal innovation contest. In the special case of the uniform

state distribution, the FPT with  = 0 is optimal.

5 Fixed Costs and Participation Fees

Our analysis without fixed costs and participation fees has identified a conflict between effi-

ciency and rent extraction. We now show to which extent the buyer can resolve this conflict

when there are fixed costs and/or she can charge participation fees. For simplicity, we will

assume (A1)’. Denote with (1 2) =  [max { (1 )   (2 )}] the gross welfare gener-
ated by (1 2). To avoid uninteresting cases, we assume that total net profits are non-negative

even when the suppliers select (1 2) = (12 12).

Assumption (A4)  (12 12) ≥ 2.

Suppose the buyer can charge participation fees of at most  ≥ 0. We do not allow for
discriminatory participation fees. The fee can be negative, corresponding to a subsidy. The

buyer thus chooses a participation fee  ∈ (−∞  ] which is the same for each supplier.22

An innovation contest with participation fees consists of a pair (P ) with an environment
(Ψ   ) that is common knowledge. The rules are as before, with two modifications. First,

when the buyer decides on P, she also fixes . Second, after the buyer has chosen the rules of
the innovation contest, the suppliers decide whether to enter, with an outside option of zero.

Upon entering,  and  are sunk,23 and the suppliers choose their approaches based only on

P, that is, exactly as described in Sections 2-4. The buyer chooses P and  to maximize

her expected payoff, which is equal to the total expected surplus, net of supplier payoffs and

(possibly negative) transfers. Thereby, she indirectly selects the equilibrium levels of 1 and

2 and the functions 1 (· ·) and 2 (· ·), assigning prices to qualities. Compared with Section
2, she also has to take the participation constraints into account.

Proposition 12 Suppose (A1)’ and (A4) hold and let ∗1 ≤ ∗2
(i) If  ≥  (∗1)∆(

∗
  

∗
 ) − , the optimal contest is given by

 =  (∗1)∆(
∗
  

∗
 ) −  and P = {̄ 0} where ̄ = ∆(∗  

∗
 ). In equilibrium,  = ∗ ;

and  = ̄ if and only if  −  ≥ ̄ ( = 1 2;  6= ).

(ii) If    (∗1)∆(
∗
  

∗
 ) −  the optimal contest is given by  =  and P = {̄ 0}

where ̄ = ∆(e 1 − e) for e ∈ (∗  12] defined by  =  (e)∆(e 1 − e) − . In

equilibrium,  = e,  = 1− e, and  = ̄ if and only if  −  ≥ ̄ ( = 1 2;  6= ).

If  ≥  (∗1)∆(
∗
  

∗
 ) − , the maximal participation fee is at least as high as the

expected net profit that each supplier earns in the equilibrium of an augmented tournament

22The assumption on feasible transfers is slightly more restrictive than necessary. First,  does not need to

be finite. Second, the maximal possible subsidy does not need to be infinite. The result holds whenever the

maximal subsidy is at least .
23The participation decision obliges the supplier to produce one design at cost  and to pay participation

fees to the buyer. If participation fees are negative (i.e. if the buyer offers a subsidy), the participation decision

obliges the buyer to pay the subsidy.
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that induces efficient diversity. The buyer uses this augmented tournament, appropriating the

total net surplus by charging the maximal participation fee such that each supplier expects

to break even. If    (∗1)∆(
∗
  

∗
 )−, the buyer charges the maximal participation fee

and only induces enough diversity for suppliers to break even on expectation.24 Again, she

opts for rent extraction rather than efficiency.

Summing up, by Corollary 11, without fixed costs and participation fees, the buyer cannot

use an appropriate choice of P to increase surplus and to capture some of the increase herself.
Participation fees help to capture the surplus increase. Proposition 12 shows that the buyer

optimally induces the amount of diversity which increases the surplus exactly by the amount

that can be captured through the participation fees.

6 Extensions

We now show that our main findings still hold for multiple suppliers, heterogeneous suppliers,

and for general state distribution and distance measures. We also show that the buyer can

potentially do better than in the optimal FPT by not committing to an ex-ante price policy,

but instead relying on ex-post negotiations. On the contrary, FPTs with multiple prizes and

contests where each buyer can submit multiple designs do not improve the outcome.

At this stage, we would also like to mention one natural extension that appears less

tractable. One might want to combine our analysis which focuses on diversity of approaches

with the previous literature that focuses on costly effort. Preliminary considerations suggest

that such a convex combination is not straightforward, and it is not obvious that it would

lead to interesting insights. While we can identify multiple equilibrium candidates as (fairly

intransparent) functions of parameters, verifying that these candidates satisfy second-order

conditions is an arduous task in general. The complications are at least partly due to the fact

that equilibrium existence problems arise with homogeneous suppliers, so that the analysis

has to be carried out in the heterogeneous supplier framework described below, which already

is quite complex in itself. We thus refrained from treating this case.

6.1 Number of Suppliers

In innovation contests there are usually more than two suppliers. For example, there were

49 registered competitors in the EU Vaccine Prize, 12 of which submitted final designs for

evaluation.25 Our main results hold even when there are many suppliers. For simplicity, we

assume that (A1)’ holds.26 The social optimum and the equilibria in the FPT are as follows.

Lemma 13 Suppose there are   3 suppliers and (A1)’, (A2) and (A3) hold.

(i) The social optimum is (∗1  
∗
) = (12 32 52  (2− 1) 2); in particular,

there is no duplication.

(ii) For any  ∈ {1  }, an outcome with  active approaches (1  ) can be supported

in an equilibrium if

24This case contains the results of Proposition 11 as a special case (where  =  = 0).
25European Commision (2014), "German company has won the EU’s  2 million vaccine prize." March 10,

2014 (accessed on April 3, 2015). http://ec.europa.eu/research/health/vaccine-prize_en.html
26We do not consider the case  = 3. In this case, an FPT does not have a pure strategy equilibrium, so

that comparison with the other cases would be difficult.
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Figure 1: Equilibria when  = 6.

The first constellation represents the socially optimal outcome of an auction. The other two

constellations represent two possible outcomes of an FPT.

(a)  ∈ {  ̄}, where ̄ =  − 2 and  = 2 if  is even and  = (+ 1) 2 if  is odd

and

(b) (1  ) = ((12 32 52  (2 − 1) 2)).
Two suppliers choose the extreme approaches 1 and ; each of the intermediate approaches

2  −1 is chosen by one or two suppliers.

Figure 1 illustrates the two previous lemmas for  = 6. In line with Lemma 13(i), the social

optimum (depicted in the first constellation) involves evenly spread approaches. Proposition 24

(i) in the Online Appendix shows that the auction mechanism implements the social optimum.

The two other constellations describing the equilibria of the FPT highlight implications of

Lemma 13(ii), which are stated more generally in Proposition 24 (ii) and (iii) in the Online

Appendix. First, the two most extreme approaches are not as far apart as the most extreme

approaches of the social optimum; in this sense, there is less than optimal diversity. Second,

as ̄  , there is duplication; moreover, this duplication always affects the two most extreme

approaches chosen by the suppliers. Finally, depending on the specific equilibrium, there may

be additional duplication for intermediate approaches.

It is important to note that the difference between the FPT and the social optimum

decreases as the number of suppliers increases.27

Lemma 13 has another simple but important implication when we allow for fixed costs

and transfers: The optimal innovation contest may involve an arbitrarily large number of

suppliers. This differs from several results for the case of contests that merely influence the

suppliers’ efforts, where the optimal number of participants is typically two.

Corollary 14 Suppose the fixed costs are   0 and that (A1)’ holds. Define − () =
max

n
 ∈ N| ≤

√

.
2
√

o
and +() = − ()+1. An innovation contest that maximizes

total net profits is an auction with − () or +() suppliers.

The result is a straightforward implication of the previous results. Lemma 13(i) charac-

terizes the socially optimal allocation, and the auction mechanism implements this allocation.

27As −1 = ( − 1) , and the minimum for  on {  ̄} is , −1 attains its minimum for even  at

 = 2, where it becomes (− 2)  rather than the socially optimal maximal diversity of (− 1) . Hence,
the difference between the actual diversity and the social optimum is bounded above by 1. The argument

for uneven  is analogous.
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Figure 2: Quality from approaches 1 and 2.

(Left panel) The transportation costs correspond to a weighted sum of the length of the

vertical and the horizontal dashed (dotted) line for supplier 1(2). (Right panel) For a given

realization ( ) of the state, supplier 1 is the producer of higher (lower) quality if  is below

(above) some critical value e ().
The condition in the Corollary describes the number of suppliers that optimally balances the

gains from higher expected quality against the losses from higher fixed costs. While the corol-

lary is stated for the socially optimal contest, it is clear that the buyer can also often benefit

from inviting more than two suppliers.

6.2 Heterogeneous Suppliers

The assumption of homogeneous suppliers simplifies the analysis. In many contexts, it is

nevertheless natural to allow for heterogeneity: Suppliers may differ in their approaches to

innovation, because they have different kinds of expertise or research capabilities. Architects

may have different and essentially fixed styles. We now show that the main results hold with

heterogeneous suppliers.

Section D.2 in the Online Appendix introduces the modified set-up and the results in

detail. We suppose that the state space is now a unit square, with elements ( ). The set

of feasible approaches of supplier 1 is the lower edge of the square; the set of supplier 2 is the

upper edge (see Figure 2). We specify the quality functions as

1 (1 ) = Ψ−  −  |1 − | (1)

2 (2 ) = Ψ−  (1− )−  |2 − | (2)

The optimal diversification depends on the ratio  ≡ .
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Proposition 15 (i) Suppose without loss of generality that 1 ≤ 2. Then the social optimum

with heterogeneous suppliers is:

(∗1 
∗
2) =

⎧⎪⎨⎪⎩
¡
1
2
 1
2

¢
if   1³

1
2
 1− 1

2

´
if 1 ≤   2¡

1
4
 3
4

¢
if 2 ≤ 



(ii) An auction weakly implements the social optimum.

The intuition for (i) is simple. Whenever   1, exogenous differences between suppliers

matter more than differences in approaches. The social optimum (which minimizes the ex-

pected horizontal transportation costs) is (1 2) = (12 12). As  increases, so does the

expected value of diversity. The expected quality is maximal for (1 2) = (14 34), which

is the social optimum for homogeneous suppliers. Interestingly, the auction implements the

social optimum even when this does not require diversification.

As for homogeneous suppliers, we can show that fixed-prize tournaments do not induce

any diversification (Proposition 32), but that buyers prefer them to auctions (Proposition

33(i)). Moreover, buyers prefer symmetric auction equilibria to asymmetric auction equilibria

(Proposition 33(ii)).

The modified framework allows us to use the alternative informational assumption that

suppliers cannot observe qualities when they submit bids, which is intractable for homogeneous

suppliers (see Proposition 16). Thus, we can also ask: Should buyers reveal quality information

to suppliers if they are the only ones who observe quality? Information revelation is indeed

essential for the positive result of Proposition 15(ii). To see this, we modify the innovation

contest by assuming that suppliers simultaneously choose research approaches and bids. In

such an auction without information revelation, suppliers thus commit to their bids before

they learn quality. We assume that  is sufficiently low, that is, suppliers are sufficiently

heterogeneous.

Assumption (A5):   2
√
2 + 3

When this assumption is violated, in particular for homogeneous suppliers, existence prob-

lems arise in auctions without information revelation. Note, however, that the upper bound

on  does not rule out any of the cases discussed in Proposition 15.28

Proposition 16 For heterogeneous suppliers, an auction without information revelation has

a unique equilibrium. In this equilibrium,( ) = (12 ) for  = 1 2.

The degree of exogenous differentiation  fully determines prices. Moreover, the equilib-

rium involves minimum differentiation. Whenever   1, such an equilibrium is not socially

optimal according to Proposition 15(ii), reflecting inefficiently low expected quality.

28 In particular, Assumption (A5) is consistent with the case  ≥ 2 in which the social optimum is (1 2) =

(14 34), the maximum diversity that can be optimal for any set of parameters.

13



6.3 Generalized distributions and transportation costs

First, we show that the main results from Sections 3 and 4 are neither sensitive to the assump-

tions on the distribution of the optimal approach  nor to the details of the quality function

 ( ). For simplicity, we confine the analysis to the game without transfers or fixed costs.
29

Proposition 34 in the Online Appendix applies to arbitrary state distributions with positive

density and arbitrary quality functions that are decreasing in the distance between a given

approach and the ideal one. It shows that (i) the social optimum still requires diversity of

approaches, (ii) the auction mechanism implements the social optimum; and (iii) in any FPT,

there is no diversity in the unique equilibrium, and both suppliers choose the approach cor-

responding to the median of the state distribution. The result that buyers prefer the optimal

FPT to an auction does not hold under these very general conditions. However, we show in

Proposition 35 in the Online Appendix that it is still valid if we relax only the assumption

on state distributions (A1) or the assumption on quality functions (A3).

6.4 Multiple Prizes

In the 2005 DARPA Grand Challenge, only the winner of the contest was eligible for the prize

($2 million), while the other contestants received nothing. This corresponds to an FPT as

introduced above. However, in the subsequent DARPA contest, known as the 2007 Urban

Challenge, rules specified that not only would the winner receive a prize (which was again $2

million), but the next two participants would also receive prizes ($1 million and $0.5 million).30

In this section, we show that a buyer is worse off in an FPT with two prizes than with a single

prize.31

Clearly, when there are only two suppliers, a second prize has no effect, as the suppliers

would consider it as an unconditional transfer, and the effective prize would be the difference

between the first and the second prize. Hence, as in Section 6.1, we suppose   3. We

assume that (A1)’, (A2) and (A3) hold,  = 0, and that the two prizes are 1  2  0. In

Online Appendix D.4, we prove the following result:

Lemma 17 For any (pure strategy) equilibrium in an FPT with two prizes, there exists an

equilibrium in an FPT with a single prize which makes the buyer strictly better off.

The proof shows that any equilibrium of an FPT with two prizes involves more duplication

than the chosen equilibrium of an FPT with a single prize, which leads to a lower buyer payoff.

This result suggests that multiple prizes do not improve diversity.32

6.5 Multiple Designs by the Same Supplier

We have assumed so far that each supplier can only develop a single approach. However,

in the 2005 DARPA Grand Challenge, vehicles designed by the Red Team from Carnegie

29This game is equivalent to the subgame following entry of both suppliers in the game with arbitrary levels

of transfers and costs.
30See Section 1.4 of the DARPA Urban Challenge Rules (2007) (accessed on June 24, 2015).

http://archive.darpa.mil/grandchallenge/docs/Urban_Challenge_Rules_102707.pdf
31The results can be extended to more than two prizes.
32Of course, there may be reasons outside of the model which would make multiple prizes a desirable choice

for a contest designer. For example, if suppliers are risk averse, providing multiple prizes may be a way of

increasing their expected utility.
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Mellon University took the second and third place. By developing multiple designs, a supplier

internalizes some of the resulting option value. It is thus natural to ask if our results still hold

when suppliers develop multiple approaches. The modified model is analytically intractable,

but a numerical analysis suggest that our main results are robust. We study the cases with

 ∈ {2  5} suppliers, each of which can develop  = 2 approaches, and the case with  = 2

suppliers, each of which can develop  = 3 approaches. We assume that (A1)’, (A2) and

(A3) hold and that  = 0. We also fix values of Ψ and .33

Result 1 If there are  suppliers and each develops  approaches, then: (i) in an auction

there exists an equilibrium which is equivalent to the socially optimal equilibrium of an auction

with  · suppliers, each of which develops one approach. (ii) In an FPT, there exists an

equilibrium which is identical to the maximally duplicative equilibrium of an FPT with  ·
suppliers, each of which develops one approach.

Proposition 24 in Online Appendix D.1 proves that the buyer prefers an FPT to an auction

inducing the socially optimal outcome when there are multiple suppliers and each develops

one approach. Moreover, Result 1 suggests that the case where  suppliers each develop 

approaches corresponds to the case where  ·  suppliers each develop one approach (see

Section 6.1). This suggests that the buyer is better off holding an FPT than an auction also

in the case when suppliers can develop multiple approaches.

6.6 Negotiations

Finally, we suppose that the buyer decides not to commit to a design contest, but instead leaves

the determination of payments to negotiations, which split the surplus of the relationship, i.e.,

the quality differential ∆.34 A share  ∈ (0 1) accrues to the buyer, the remainder to the
successful supplier. This introduces a potential hold-up problem when there are fixed costs. If

the suppliers are not convinced that they will have sufficient bargaining power to break even,

they will not invest. If the suppliers are not deterred from investing, negotiations implement

the social optimum, because they share an important feature with auctions: Suppliers are

rewarded for higher quality relative to the other supplier. The distributional properties depend

on  . Independent of its value, the buyer prefers negotiations to auctions, because the latter

give the entire surplus ∆ to the supplier. Holding an auction thus represents a transfer of

market power from the buyer to the suppliers. For sufficiently high bargaining power of the

buyer, negotiations are preferable to the optimal FPT for the buyer, provided suppliers expect

to break even.

33For details and the code used to obtain numerical results, see Supplementary Material for Section VI.E,

available at https://sites.google.com/site/iletina/did.
34Somewhat relatedly, Ding and Wolfstetter (2011) consider a case where a supplier can choose to bypass

the contest and negotiate with the buyer directly in an environment where innovation quality is obtained by

expending costly effort.
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7 Relation to the Literature

This paper contributes to the literature on optimal contest design, especially the design of

innovation contests. In models of fixed-prize tournaments, Taylor (1995) shows that free entry

is undesirable, and Fullerton and McAfee (1999) show that the optimal number of participants

is two. Fullerton et al. (2002) find that buyers are better off using auctions than fixed-prize

tournaments. In a very general framework, Che and Gale (2003) show that an auction with

two suppliers is the optimal contest. Contrary to the previous literature, our paper focuses

on inducing the suppliers to choose the right approaches rather than to exert as much effort

as possible. We find that it can be optimal for the buyer to invite a large number of suppliers.

Moreover, for any given number of suppliers, we show that the buyer often prefers fixed-prize

tournaments to auctions, even though the latter implement the socially optimal diversity of

research approaches.

While we are not aware of any paper that considers optimal contest design when diversity

plays a role, some authors obtain related results. For instance, Schöttner (2008) considers

two contestants who influence quality stochastically by exerting effort. While she does not

deal directly with optimal contest design, she finds that, for large random shocks, the buyer

prefers to hold a fixed-prize tournament rather than an auction to avoid the market power of

a lucky seller in an auction. In our setting, the correlation of outcomes is endogenous, and

diversity of approaches implies that, whenever one supplier is subject to a negative shock,

the other one will likely be subject to a positive shock. Thereby, diversification generates an

option value which is desirable from a social point of view. However, as we saw above, in an

auction, the option value is often captured by the suppliers and not by the buyer. Thus, the

buyer is better off not inducing diversity through an auction at all.

In Ganuza and Hauk (2006), suppliers choose both an approach to innovation and a

costly effort.35 However, these authors focus on fixed-prize tournaments, while we study the

optimal contest design.36 Erat and Krishnan (2012) study a fixed-prize tournament where

suppliers can choose from a discrete set of approaches.37 Each approach is successful with some

probability that is independent of success or failure of any other approach. The qualities

of successful approaches can vary. The authors find that suppliers cluster on approaches

delivering the highest quality. This result is similar to our result that fixed-prize tournaments

lead to a duplication of approaches in equilibrium. In addition to considering alternative

contests, our model also considers correlated rather than independent qualities; it is thus

meaningful to speak of similar approaches.38

More broadly, our paper is related to the literature on innovation contests with exponential-

bandit experimentation (see Halac, Kartik and Liu (2014) and references therein). In these

35 In Ganuza and Pechlivanos (2000), Ganuza (2007) and Kaplan (2012), the buyer has to choose the design

or alternatively can reveal information about the preferred design.
36More broadly related is Bajari and Tadelis (2001) who do not deal with innovations, but with construction

projects. The issue of the right approach to the problem arises in such settings as well. The supplier obtains

new information during the period when the contract is being executed, which allows him to adapt the original

approach at some cost. Since the relationship is between a buyer and only one supplier, the question of diversity

of approaches does not arise. This is also true for the related work by Arve and Martimort (2015) who study

risk-sharing considerations in the design of contracts with ex-post adaptation.
37See also Terwiesch and Xu (2008) for the effect of number of suppliers when exogeneous random shocks

are large. For empirical evidence see Boudreau, Lacetera and Lakhani (2011).
38See also Konrad (2014) for a variant of Erat and Krishnan’s model where first best is restored if the

tie-breaking is decided via costly competition (for example lobbying) as opposed to randomly.
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models, it is uncertain whether the innovation is feasible. Suppliers participating in the con-

test expend costly effort to learn the state, and they also learn from the experimentation of

their opponents. The goal of the contest is to induce experimentation. However, each supplier

experiments in the same way. In our model, experimentation arises at the industry level for

suitable contests, as the heterogeneity of approaches allows the buyer to pick the best available

choice.

Finally, our paper is related to the literature on policy experimentation. For instance,

Callander and Harstad (2015) show that decentralized policy experimentation yields too much

diversity. In their model, the success probabilities of different experiments are independent,

no matter how similar the policies are. This assumption removes the option value of having

different experiments, which is central in our model. If there existed an ideal policy (in terms

of quality) as in our model, then the option value would have to be traded off against the

benefits of convergence emphasized by Callander and Harstad (2015). It would be interesting

to see whether and how centralization would help to resolve this trade off.

8 Conclusions and Discussion

The ideal approach to solving an innovation procurement problem is usually unknown when

suppliers are asked to choose research approaches. The paper investigates the implications of

this uncertainty for contest design. Under very general conditions, it is socially optimal to

induce suppliers to take diverse research approaches, and the social optimum can be obtained

with an auction mechanism, provided the bidding takes place after qualities are commonly

known. To reduce supplier rents, the buyer nevertheless prefers a fixed-prize tournament that

induces less diversification. In a two-player setting, diversification decreases with the reserve

price in an auction. Moreover, the optimal contest is an augmented fixed prize tournament,

which induces diversity at the lowest possible cost to the buyer.

Our paper offers a rationale for the frequent use of fixed-prize tournaments in complex pro-

curement tasks, as in innovation and architecture. Even though other mechanisms may yield

higher option value and thus higher expected quality, with suitable fixed-prize tournaments

the buyer can extract all rents from the suppliers. This trade-off between efficiency and rent

appropriation vanishes when the buyer can charge sufficiently high participation fees. Then

the buyer can induce the social optimum, and use transfer payments or participation fees to

make sure that the suppliers just break even. Moreover, when the exogenous differentiation

of supplier characteristics is sufficiently pronounced, it may not even be necessary to provide

additional incentives for diversification from a social point of view.

Our model can be used to analyze how institutions affect the incentives of individuals

to experiment in domains where the optimal approach to solving a given problem is not

known. A particularly promising application would be to think of our model as capturing

product choice in markets with a unit mass of homogeneous buyers, each of which has unit

demand. We can then interpret the uncertainty about the ideal state in two ways. First, it

may capture uncertainty about the buyers’ taste. Second, it may capture an "engineering

uncertainty" where the suppliers know what the buyers would like, but are uncertain about

how to achieve this. Either way, the rules of the contest translate directly into a description

of the regulatory constraints in a market environment. For instance, the auction corresponds

to an unregulated market environment where suppliers choose products under uncertainty
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about the preferred product and charge prices once qualities are realized. The fixed prize

tournament can be interpreted as a regulated market where prices are fixed ex ante: The

prize A is then the profit that the firm earns in the market from selling at the regulated

price to a unit mass of consumers. Similarly, auctions with reservation prices have a natural

interpretation as markets where there is a price cap.

Our results suggest that an unregulated market maximizes expected total surplus, whereas

the regulated market maximizes the expected consumer surplus. The unregulated market gives

incentives for firms to diversify, but leaves them with market power. The trade-off resembles

the trade-off between ex-ante incentives and ex-post monopoly power in the innovation liter-

ature. In our case, however, the higher expected quality from the unregulated market does

not result from higher innovation incentives at the individual firm level, but rather from the

higher diversification incentives at the market level. Price caps strike a balance between the

goals of maximizing consumer surplus and total surplus. Augmented FPTs have no obvious

counterpart in reality: They would correspond to a regulated environment where firms can

select between offering two different prices depending on the realized quality levels. Our analy-

sis suggests that, in some markets, such augmented FPTs may even be better for consumers

than full price regulation. These simple considerations clearly have limitations resulting from

the rather special market environment. However, the arguments suggest that the contest

approach may potentially be valuable to analyze product innovations (or product selection)

in market environments. A full analysis of this topic is left for future research.
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9 Appendix: Main Proofs

9.1 Proof of Proposition 4

Using (T1), in an FPT, the expected profit of supplier , given  , is

Π (|) =
½

Pr (| − | ≤ | − |) if  6= 
2 if v = 



Since Pr (| − | ≤ |12− |)  12 for all  6= 12, (1 2) = (12 12) is an equilib-

rium. For uniqueness, suppose an equilibrium with    exists. Then Π (|) =

R (+)2
0

 (). Thus supplier  can increase his expected profit by marginally increasing

, since Π (|)  =  (( + ) 2) 2  0. The argument for    is analogous.

There can be no equilibrium with  =  6= 12, because Π (12|)  2 = Π (|).

9.2 Proof of Lemma 6

(i) The result is trivial for 1 = 2. For 1  2, we show that supplier 1 can profitably

deviate to some 01  1 if ∆ (1 2) +  ∈ P. Before the deviation, by Lemma 2, if

 ∈ [0 1], supplier 1 wins and ()  ∆ (1 2) +  . By continuity, ∃ 01 ∈ (1 2] such
that ()  ∆ (01 2) +   ∆ (1 2) +  . By deviating to 01, supplier 1 wins whenever
  (01 + 2) 2 rather than when   (1 + 2) 2. The set of states in which supplier 1

wins after the deviation thus is a strict superset of the set of states in which the supplier wins

before the deviation. For  ∈ [0 1], the price is unaffected. For  ∈ (1 (01 + 2) 2], the

price is at least as high as before the deviation. Thus, 01 is a profitable deviation by (T2).
(ii) follows directly from Lemmas 2 and 6 (i).

9.3 Proof of Proposition 8

Denote the minimum allowable price with  . If 1 6= 2 in equilibrium, by Proposition 4, the

contest is not an FPT. Suppose that 1  2 By Lemmas 2 and 6, the buyer pays −+ to
the supplier with  ≥  in equilibrium. Thus, for any , the buyer payoff is min{1 2}− .

Hence, the expected payoff of a buyer who induces 1  2 with  is

Π (1 2 ; ) =

Z 1

0

min{ ( )   (  )} ()− 

=

Z 1+2
2

0

2 (2 )  () +

Z 1

1+2
2

1 (1 )  ()− 

Thus

Π

1
=

Z 1

1+2
2

1

1
 ()  0;

Π

2
=

Z 1+2
2

0

2

2
 ()  0.

Thus, the buyer payoff is maximal for 1 = 2 and  = 0. Given 1 = 2, the buyer payoff is

maximal for 1 = 2 = 12, the unique equilibrium of an FPT with  arbitrarily close to 0.

Given (T2), it is an equilibrium for  = 0.
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9.4 Proof of Proposition 9

Sequential rationality of  () follows from Lemma 2. We now show that (1 1 ()) is a best

response of player 1 to (2 2 ()); the argument for player 2 is analogous. For  = 0, only

(1 2) = (12 12) satisfies the above conditions. Thus, the statement for  = 0 follows

from Proposition 4. If 1  2, ∆ (1 2)  0, and the probability that player 1 wins with a

positive prize is  (1). Deviating to 
0
1  1 is not profitable, because the winning probability

falls to  (b1), with b1  1 implicitly defined by  (01 b1)−  (2 b1) = ∆ (1 2)  and the
prize does not rise. It is not profitable to deviate to 001 ∈ (1 e), where e = min (22 − 1 1) ≥
12: For such deviations, ∆ (001  2)  ∆ (e 2) ≤ ∆ (1 2)∀, so that the probability of
winning a positive prize is 0. Finally, if e  1, deviating to 0001 ∈ [e 1] is not profitable, becausee ≥ 12 + 2 − 1 implies 1 − e ≤ 12 − (2 − 1) ≤ 2 − (2 − 1) = 1 and therefore, by

symmetry of the state distribution, 1− (0001 ) ≤ 1− (e) ≤  (1). By analogous arguments,

there are no profitable deviations for supplier 2.

9.5 Proof of Proposition 10

We provide a sketch of the proof here. The complete proof is in the Online Appendix. The

result follows from two lemmas. First we show that approaches maximizing buyer’s payoffs

satisfy 0  1 ≤ 1
2
≤ 2  1. Hence by Proposition 9, they can be implemented with an

augmented FPT. To prove this claim, we show that 1 ≤ 1
2
≤ 2 must hold in any equilibrium,

as otherwise the supplier with the lower winning probability can profitably deviate to the

uncontested half of [0 1]. 0  1 ≤ 2  1 must hold since approaches on the boundary

are socially inefficient, and the buyer can either match or increase the total payoff without

increasing the transfers to the suppliers. The second lemma shows that a suitable augmented

FTP implements (1  

2 ) at the lowest expected cost for the buyer, hence maximizing the

buyer payoff. The intuition for this follows from Lemma 6, as the payments are minimal in

each state.
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APPENDIX

FOR ONLINE PUBLICATION

Designing Institutions for Diversity

Igor Letina and Armin Schmutzler

In this appendix we provide proofs which were omitted from the main text, as well as

some additional results and discussion related to the extensions. The supplementary material

is organized according to the section of the main text to which it relates.

A Supplementary Material for Section 3

A.1 Notation

We introduce the following notation:

1.  (1 2| 1 2) ∈ {1 2} is the approach that maximizes  − .
39

2.  (  |  ) is the profit that supplier  earns with prices 1 and 2, conditional on

qualities 1 and 2, assuming that the buyer selects

 (1 2 1 2).

3.  ( ) ∈ P [Ψ−Ψ]2 is the price strategy function.40

4. Π (    ) is the expectation over  (  |  ) when suppliers

choose 1, 2, 1 () and 2 (), where the expectation is taken over all pairs of qual-

ity realizations for given (1 2).

A subgame-perfect equilibrium of the innovation contest given by P consists of supplier

strategies  = ( ) ∈ [0 1]×P [Ψ−Ψ]2 and buyer strategies  ∈ {1 2}(P
2×[Ψ−Ψ])2 such

that:

(DC1)  =  (sequential rationality of the buyer).

(DC2)  ( ( )   (  )|  ) ≥  (
0
  (  ) | ) for all

0 ∈ P,( ) ∈ [Ψ− Ψ]2 (sequential rationality of supplier )

(DC3) Π (    ( )   (  )) ≥ Π (0   e ( )   (  )) for all 0 ∈ [0 1] and alle ( ) ∈ P [Ψ−Ψ]×[Ψ−Ψ] (optimal approach of supplier ).
39When 1 − 1 = 2 − 2, we appeal to tie-breaking rule (T1) below.
40For sets  and  ,   is the set of all mappings from  to  .
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A.2 The Social Optimum

We start with the simple result that the social optimum involves diversity (Proposition 18(i)).

We then provide an equally straightforward characterization of the social optimum for a wide

class of state distributions (Proposition 18(ii)). Finally, we turn towards the implementation

result for auction (Proposition 3), preceded by the auxilliary result on pricing in subgames

(Lemma 2).

As the costs of each approach are the same, the social optimum (∗1 
∗
2) must maximize

the expected maximal quality  [max { (1 )   (2 )}] or, equivalently, minimize the ex-
pected distance to the ideal approach,

 [min { |1 − |   |2 − |}]. With only one potential supplier , the optimal approach

would correspond to  = 12, as this maximizes the expected quality. With two suppliers,

the optimization needs to take into account the option value generated by having different

choices once qualities have been observed. The next result shows that it is always optimal to

have at least some diversification, and that the required diversification can be substantial.

Proposition 18 (i) A social optimum (∗1 
∗
2) exists and satisfies 

∗
1 6= ∗2.

(ii) If (12)  2(0), then the unique social optimum with 1 ≤ 2 is characterized by

 (∗1) = 14 and  (∗2) = 34 and thus 
∗
2 = 1 − ∗1. In particular, if (A1)’ holds, then the

social optima are (∗1 
∗
2) = (14 34) and (34 14).

To understand (i), suppose that both suppliers choose the same approach. Starting from

such a situation, suppose one of the suppliers, say, supplier 1, chooses an arbitrary alternative

approach, whereas the other supplier continues to choose the same one. After this modifica-

tion, the minimal distance decreases for a non-degenerate set of ideal states. There can be

no  where the expected minimal distance increases, as the initial choice of supplier 2 is still

available. (ii) gives a sufficient condition for the approaches to be symmetric around 12. The

condition states that the ideal state distribution is sufficiently dispersed.41

A.2.1 Proof of Proposition 18

(i) Suppose, without loss of generality, that 1 ≤ 2. The social welfare function is given by

 (1 2) =
R 1
0
max{(1 ) (2 )} (). Hence

41The condition guarantees that the expected quality is a strictly concave function of the approaches. It is

thus more restrictive than necessary. A simple necessary condition for the optimum to satisfy  (∗1) = 14

and  (∗2) = 34 is (12)  2(∗1); otherwise the objective function is not even locally concave. Moreover,
this condition turns out to be necessary for the existence of a social optimum with ∗2 = 1− ∗1 . It is simple to
provide examples where (12)  2(∗1) is violated. For instance, consider the kinked distribution defined by
the density

 () =


06 if  ∈ [0 045) ∪ (05 1]
46 if  ∈ [045 055] .
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 (1 2) = Ψ− 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝


1Z

0

(1 − )  () +

(1+2)2Z

1

( − 1)  ()+


2Z

(1+2)2

(2 − )  () +

1Z

2

( − 2)  ()

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This is a continuous function with a compact domain, hence it attains the maximum. To

prove ∗1 6= ∗2, note that

 (1 2)

1
=  (−2 (

1
) +  ((

1
+ 2) 2)) (3)

 (1 2)

2
=  (1− 2 (2) +  ((1 + 2) 2)) . (4)

(3) and (4) imply that there are no boundary optima. To see this, first note that
 (02)

1


0∀2  0 and
 (11)

2
 0∀1  1. Moreover (1 2) = (0 0) and (1 1) are both dominated

by (12 12). Thus, the optimum must satisfy

−2 (1) +  ((1 + 2) 2) = 0 (5)

1− 2 (2) +  ((1 + 2) 2) = 0 (6)

Together these conditions imply  (∗2) = 12 +  (∗1) and thus 
∗
1 6= ∗2.

(ii) For 1 ∈ [0 12], let  (1) = −1
¡
 (1) +

1
2

¢
. −1 is well-defined because of (A1)(iii).

Inserting 2 =  (1) in (5) and (6), the first-order conditions hold for (1 2) = (1  (1)) if

1 = −1
µ
 ((1 +  (1)) 2)

2

¶
 (7)

(7) has at least one solution ∗1 ∈ (0 12). This holds because both sides of (7) are strictly
increasing, and the r.h.s. is positive for 1 = 0 and strictly less than 12 for 1 = 12. Now

consider (∗1 
∗
2) = (∗1  (

∗
1)) such that  (

∗
1) = 14 and  (∗2) = 34. Thus  (∗2) =

 (∗1) + 12. Moreover, symmetry implies 
∗
1 + ∗2 = 1 and thus the r.h.s. of (7) is 

−1 ¡1
4

¢
,

so that the first-order condition holds for (∗1 
∗
2).

Finally, consider the Hessian matrix

 =

"
2
21

2
12

2
12

2
22

#

=

∙ −2 (1) + 1
2
 ((1 + 2) 2)

1
2
 ((1 + 2) 2)

1
2
 ((1 + 2) 2) −2 (2) + 1

2
 ((1 + 2) 2)

¸
.

First,  is negative definite at (∗1 
∗
2) if and only if  (12)  2 (∗1). To see this, note

that  (∗1) =  (∗2) and  ((∗1 + ∗2) 2) =  (12). Hence,

−2 (∗1) +
1

2
 ((∗1 + ∗2) 2) = −2 (∗1) +

1

2
 (12)  0⇔  (12)  4 (∗1) 
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In addition,

|| = 4 (∗1)  (∗2)− ( (∗1) +  (∗2))  ((
∗
1 + ∗2) 2) = 4 (

∗
1)
2 − 2 (∗1)  (12) .

This condition holds if and only if  (12)  2 (∗1).
Second,  is negative definite ∀ (1 2) if  (12)  2 (0). To see this, note that  () is

minimized at  = 0 and maximized at  = 12. Hence,  (12)  2 (0)  4 (0) implies

−2 () + 1
2


µ
1 + 2

2

¶
≤ −2 (0) + 1

2


µ
1

2

¶
 0 ∀ ∈ {1 2} .

and

|| =  (1)

µ
2 (2)− 

µ
1 + 2

2

¶¶
+  (2)

µ
2 (1)− 

µ
1 + 2

2

¶¶
 0.

Therefore,  (12)  2 (0) is a sufficient condition for (∗1 
∗
2) to be the unique global opti-

mum. The statement for the uniform distribution follows.

A.3 Implementation of the Social Optimum

A.3.1 Proof of Lemma 2

Consider the equilibrium for the subgame defined by (1 2 ) and the resulting quality

vector (1 2). If 1 = 2, the standard Bertrand logic implies that ( ()   ()) = ( )

is the unique equilibrium. Now suppose    . Clearly, the suggested strategy profile is a

subgame equilibrium. To see that  must bid  () in equilibrium, first suppose    (). If

   +  ( ) −  (  ), player  wins. By setting  =  () ≤  +  ( ) −  (  ),

player  can ensure that he wins, which is a profitable deviation by (T2). If    () and

 ≤ +  ( )−  (  ), player  wins. By setting  =  , player  can profitably deviate.

If    (), player  can deviate upwards to  (). He then still wins by (T1), and profits

are higher.

A.3.2 Proof of Proposition 3

We use the following notation:

Notation 19 Π (| ) = Π (    ), when () and  () are the subgame equilibria as

in Lemma 2

We now proceed with the proof.

(i) By Lemma 2, the unique equilibrium of the pricing subgame induced by 1 and 2 is

 = max { −   0} for   ∈ {1 2};  6= . Suppose that an auction does not implement the

social optimum (∗1 
∗
2). Then, for some , there exists ̄ 6= ∗ such that Π(̄|∗ )  Π(∗ |∗ ).

Let Θ ( ) = { ∈ [0 1]|  ( ) ≥  (  )} and Θ− ( ) = [0 1] \ Θ ( ). Thus

Π(̄|∗ )  Π(∗ |∗ ) if and only ifZ
Θ(̄∗ )

¡
 (̄ )− 

¡
∗  

¢¢
 () 

Z
Θ(∗ 

∗
 )

¡
 (∗  )− 

¡
∗  

¢¢
 () ,
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or equivalently Z
Θ(̄∗ )

¡
 (̄ )− 

¡
∗  

¢¢
 () +

Z 1

0


¡
∗  

¢
 () Z

Θ(∗ 
∗
 )

¡
 (∗  )− 

¡
∗  

¢¢
 () +

Z 1

0


¡
∗  

¢
 ()

Splitting [0 1] into Θ

³
̄ 

∗


´
and Θ−

³
̄ 

∗


´
in the first line and into

Θ

³
∗  

∗


´
and Θ−

³
∗  

∗


´
in the second line and simplifying, this is equivalent withZ

Θ(̄∗ )
 (̄ )  () +

Z
Θ−(̄∗ )


¡
∗  

¢
 () Z

Θ(∗ 
∗
 )
 (∗  )  () +

Z
Θ−(∗ 

∗
 )

¡
∗  

¢
 () .

and thus Z 1

0

max{(̄ ) (∗  )} () 
Z 1

0

max{(∗  ) (∗  )} () ,

contradicting optimality of (∗1 
∗
2).

(ii) By Lemma 2, the unique equilibrium of the pricing subgame is  = max{ −   0}
for   ∈ {1 2}. This immediately implies that there is no equilibrium of the auction with

1 = 2. Suppose that 1  2 in an auction equilibrium. Given the equilibrium pricing, we

can write the expected profits as follows

Π1 (1|2) =

Z 1+2
2

0

( (1 )−  (2 ))  ()

=

Z 1

0

 (2 − 1)  +

Z 1+2
2

1

 (1 + 2 − 2) 

Π2 (2|1) =

Z 1

1+2
2

( (2 )−  (1 ))  ()

=

Z 2

1+2
2

 (2 − 1 − 2)  +

Z 1

2

 (2 − 1) 

The FOCs for an interior equilibrium are thus

Π1 (1|2)
1

= 

Ã
−
Z 1

0

 +

Z 1+2
2

1



!

= 

µ
−2 (1) + 

µ
1 + 2

2

¶¶
= 0
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Π2 (2|1)
1

= 

Ã
−
Z 2

1+2
2

 +

Z 1

2



!

= 

µ
−2 (2) + +

µ
1 + 2

2

¶
+ 1

¶
= 0

Using (A1)’, the two conditions are equivalent to

−21 + 1 + 2

2
= 0 = −22 + 1 + 2

2
+ 1.

The unique solution to the above system is (1 2) = (14 34), which is the social optimum

(see Proposition 18). This solution also satisfies the second-order conditions. Boundary

solutions clearly do not exist.

A.4 General Implementation of the Social Optimum

We prove, in a general setting, that a mechanism which i) selects the highest quality ex-post

and ii) transfers a positive fraction of the difference between best and second-best quality to

the winner always implements the socially optimal choice of approaches.

Let  = {1  } be the set of suppliers. Let  ⊆ R be a compact and convex set of
possible approaches. Let Θ ⊆ R be a compact and convex set of possible supplier charac-

teristics. The actual supplier characteristics 1   ∈ Θ are commonly known. Let the

ideal approach  ∈  and the ideal supplier characteristic  ∈ Θ be distributed according

to continuous probability density functions  () and  (), respectively, with corresponding

cumulative distribution functions  and . For any combination of  and , and any ( ),

the quality of supplier  is given by the function ( ( )) := e ( (| − |)   (| − |))
where  and  are differentiable functions satisfying 0  0, 0  0, and  is a differen-

tiable function satisfying   0 and   0. Here,  (·) is the reduction in quality
due to suboptimal supplier characteristic and and  (·) is the reduction in quality due to a
suboptimal approach. Let   and  be continuous functions.

Let the vector of approaches be v = [1  ]. Then the expected social welfare is given

by  (v) =
R


R
Θ
max∈ {( ( ))}  Denote with Θ̃(v ) ⊆ Θ the set of states 

for which supplier  offers the highest quality. Ties are broken so that the demand is assigned

to the supplier with a lower index.42 Thus, Θ̃(v ) ∩ Θ̃(v ) = ∅ for any  6=  and

∪Θ̃(v ) = Θ.

Definition 20 In the context just described, a procurement institution is a game as follows:

The suppliers simultaneously select approaches  ∈ [0 1]. Then the buyer selects a supplier
 ∈  . When choosing his approach, the selected supplier correctly anticipates a transfer

payment  (q−) conditional on being selected; the transfer is zero otherwise.

A procurement institution is thus sufficiently general to encompass innovation contests

and negotiations as discussed in this paper.

42This tie breaking assumption is different from the one made in baseline model, where given equal qualities

and prices, the ties are broken randomly. This is done in order to simplify the definition of sets Θ̃. The tie

breaking is immaterial in this case since, in the institution we will consider, all suppliers make positive profits

in expectation, while the transfer when qualities are equal are zero. Hence, incentives do not change regardless

of the tie breaking rule.
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A.4.1 An Implementation Result

Lemma 21 is a statement on the SPE of a procurement institution as defined above.

Lemma 21 Any procurement institution that always selects the ex-post optimal quality and

uses the transfer rule

 (q−) = 

µ
 −max

 6=
{}

¶
(8)

if   max 6= {} for all  ∈  ,and  (q−) = 0 otherwise, (weakly) implements the

social optimum for any   0.

Proof. Step 1:  has a maximum ∗ ∈  .

  is compact and  is continuous. Thus, a maximum exists.

Step 2: v∗ is an equilibrium of the game defined by the proposed procurement institution.

Suppose not. Then, there exists  ∈  such that

Π(|v∗−) =
Z


Z
Θ̃(v

∗
−)



µ
(| )−max

 6=
©
(

∗
 | )

ª¶
  (9)Z



Z
Θ̃(

∗
 v

∗
−)



µ
(

∗
 | )−max

 6=
©
(

∗
 | )

ª¶
 = Π(

∗
 |v∗−).

Multiply by 1 and add the maximum expected quality of suppliers other than  to both

sides: Z


Z
Θ̃(v

∗
−)

(| ) − max
 6=

©
(

∗
 | )

ª


+

Z


Z
Θ

max
 6=

©
(

∗
 | )

ª
 

Z


Z
Θ̃(

∗
 v

∗
−)

(
∗
 | )

−max
 6=

©
(

∗
 | )

ª
 +

Z


Z
Θ

max
 6=

©
(

∗
 | )

ª


We can choose to split the set Θ in a convenient way:Z


Z
Θ̃(v

∗
−)

(| )−max
 6=

©
(

∗
 | )

ª
 +Z



Z
Θ̃(v

∗
−)

max
 6=

©
(

∗
 | )

ª
 +Z



Z
Θ̃−(v∗−)

max
 6=

©
(

∗
 | )

ª
 Z



Z
Θ̃(

∗
 v

∗
−)

(
∗
 | )−max

 6=
©
(

∗
 | )

ª
 +Z



Z
Θ̃(

∗
 v

∗
−)

max
 6=

©
(

∗
 | )

ª
 +Z



Z
Θ̃−(∗ v

∗
−)

max
 6=

©
(

∗
 | )

ª

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Simplifying, we obtain: Z


Z
Θ̃(v

∗
−)

(| ) +Z


Z
Θ̃−(v∗−)

max
 6=

©
(

∗
 | )

ª
 Z



Z
Θ̃(

∗
 v

∗
−)

(
∗
 | ) +Z



Z
Θ̃−(∗ v

∗
−)

max
 6=

©
(

∗
 | )

ª


By definition of Θ̃ we have:Z


Z
Θ

max

½
(| )max

 6=
©
(

∗
 | )

ª¾
  (10)Z



Z
Θ

max

½
(

∗
 | )max

 6=
©
(

∗
 | )

ª¾


Thus 
¡
v

∗
−
¢
 

¡
∗ v

∗
−
¢
, contradicting the optimality of v∗

B Supplementary Material for Section 4

We now provide the details of Proposition 10, which states that the optimal contest in the

baseline model is an augmented FPT. Morover, we supply the calculations for the case of the

uniform distribution (Corollary 11).

B.0.2 Proof of Proposition 10

The statement of the proposition follows from two lemmas. First we show that approaches

maximizing buyer’s payoffs can be implemented with an augmented FPT. Next, we show that

an appropriately chosen augmented FTP does so at the lowest expected cost for the buyer,

hence maximizing the buyer payoff.

Lemma 22 If
¡
1  


2  1 2

¢
is an innovation contest equilibrium that maximizes the buyer’s

expected payoffs, then 0  1 ≤ 1
2
≤ 2  1.

We prove this lemma in two steps.

Step 1: If
¡
1  


2  


1  


2

¢
is a contest equilibrium maximizing buyer’s expected payoff where

w.l.o.g. 1 ≤ 2 , then 1 ≤ 12 ≤ 2 .

Proof : We will show that 1 ≤ 12 ≤ 2 must hold in any contest equilibrium. Sup-

pose that 1 ≤ 2  12 The case that 12  1 ≤ 2 follows analogously. Let 1 2 be

the associated pricing strategies. Then, the expected profit of supplier 1 is Π1 (1 2) =R 1+2
2

0 1 (1 ()  2 ())  (). Consider the deviation 
0
1 = 22−1  1 with the same pric-

ing function. Supplier 1 now wins whenever   (2 + 01) 2. We can write the expected
profit as Π1 (

0
1 2) =

R 22
0
1
+2
2

1 (1 ()  2 ())  () +
R 1
22

1 (1 ()  2 ()) . Clearly,
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(1 + 2) 2 = 22 − 01+2
2
. Moreover, for all 0 ∈ [0 (1 + 2) 2], there exists a unique 

00 ∈
[(01 + 2) 2 22] such that  (1 

0) −  (2 
0) =  (1 

00) −  (2 
00) and  (0) ≤  (00).

Thus
R 1+2

2

0 1 (1 ()  2 ())  () ≤R 22
0
1
+2
2

1 (1 ()  2 ())  (). Hence, Π1 (1 2) ≤ Π1 (01 2) and 01 leads to strictly higher
probability of winning, hence 01 is a profitable deviation.

43 Thus, 1 ≤ 12 ≤ 2 must hold

in any equilibrium; in particular, therefore 1 ≤ 12 ≤ 2 .

Step 2: If
¡
1  


2  


1  


2

¢
is a contest equilibrium maximizing the buyer’s payoff, then 0 

  1 for  ∈ {1 2}.
Proof : By Step 1, we know that 1 ≤ 12 ≤ 2 . Suppose 


1 = 0 and 2 = 1. By

single-peakedness (A1), 1 = 2 = 12 results in weakly higher social welfare than
¡
1  


2

¢
.

As this outcome can be implemented with  = 0, the buyer would be strictly better off in an

FPT with  = 0 than in any contest implementing 1 = 0 and 2 = 1 where the suppliers

earn positive profits. Finally, observe that 1 = 0 and 

2 = 1 cannot be implemented so that

the suppliers earn zero profits, as the suppliers could increase their probability of winning by

deviating to the interior, which by (T2) would be a profitable deviation.

Next, suppose 1 = 0 and 2  1 (the case that 1  0 and 2 = 1 follows analo-

gously). Since 
¡
1  


2

¢
1

¯̄
1 =0

=  ((1 + 2) 2)  0, there exists some ̄  0 such

that 
¡
 2

¢
 

¡
0 2

¢
for every  ∈ (0 ̄). If supplier 1 earns Π1

¡
0 2  


1  


2

¢
= 0

in the contest implementing 1 = 0 and 2  1, then he could increase his probability

of winning by deviating to the interior, which by (T2) would be a profitable deviation.

Therefore Π1
¡
0 2  


1  


2

¢
 0. Hence there exists  ∈ (0 ̄) such that  ()∆ ¡ 2 ¢ ≤

Π1
¡
0 2  


1  


2

¢
. Thus, an augmented FPT with  = {∆ ¡ 2 ¢  0} implements 1 = ,

2 = 2 , thereby increasing social welfare and decreases total transfers (transfers to supplier

2 decrease by Lemma 2). Therefore, this augmented FPT increases the buyer’s payoff, which

is a contradiction.

Lemma 23 If
¡
1  


2  


1  


2

¢
is an equilibrium of a contest maximizing the buyer’s payoff,

then it can be implemented by a contest with  = { 0}.

Proof: From Proposition 9 and the lemma above, we know that the augmented FPT

with  = ∆
¡
1  


2

¢
implements

¡
1  


2

¢
. It remains to be shown that the buyer cannot

implement
¡
1  


2

¢
with lower prices with any other contest. To see this, note that by

Lemmas 2 and 6, in any contest that implements
¡
1  


2

¢
the price paid by the buyer is

exactly ∆(1  

2 ) +  if  ∈ [0 1 ] ∪ [2  1], and the transfer is at least 0 if  ∈

¡
1  


2

¢
.

On the other hand, in the augmented FTP with  = ∆
¡
1  


2

¢
, the price paid by the buyer

is exactly ∆(1  

2 ) if  ∈ [0 1 ] ∪ [2  1], and the price is 0 if  ∈

¡
1  


2

¢
. Therefore, no

other design contest that implements
¡
1  


2

¢
can do so with lower expected prices than the

augmented FTP with  = ∆
¡
1  


2

¢
.

B.0.3 Proof of Corollary 11

Suppose not. Then, by Proposition 10, there exists an   0 such that P = { 0} induces an
equilibrium 1  2 for which the buyer payoff is greater than in the FPT with equilibrium

1 = 2 = 12 and  = 0.

43Given the tie-breaking rule T2, this is even true for  = 0.
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Step 1: The total surplus for 01 = 02 = 0 ≡ (1 + 2) 2 is weakly greater than the buyer

surplus in the outcome (1 2) of the augmented contest with P = { 0}.
Proof. For any  ∈ [0 1] ∪ [2 1], the buyer surplus in the contest with P = { 0} is
min{1 (1 )  2 (2 )} while the total surplus for 01 = 02 is given by  (0 ).44 For any
 ∈ [0 1],  (1 )   (0 )  2 (2 ). For any  ∈ [2 1],  (1 )   (0 )   (2 ).

Thus for any  ∈ [0 1] ∪ [2 1] the total surplus for 01 = 02 is strictly greater than the
buyer surplus in the outcome (1 2) of the augmented contest. It thus suffices to show that

the expected buyer surplus from states  ∈ (1 2) with P = { 0} equals the expected
total surplus from these states for (01 

0
2) with 01 = 02. The expected buyer surplus from

states  ∈ (1 0) is given by
R 0
1
 (1 )  with  = { 0}; and the expected total surplus

is given by
R 0
1
 (0 )  for (01 

0
2) with 01 = 02. Hence,

R 0
1
 (1 )  =

R 0
1
 (0 ) .

By a similar argument, the expected buyer surplus from states  ∈ (0 2) for P = { 0}
is identical to the expected total surplus from these states when a (01 

0
2) with 01 = 02 is

implemented.

Step 2: The buyer surplus in the FPT with 1 = 2 = 12 is (weakly) greater than the total

surplus that can be obtained by a (01 
0
2) with 01 = 02 = 0 ≡ (1 + 2) 2.

Proof. In an FPT with  = 0, buyer surplus and total surplus are equal. If 0 = 1
2
, the

result holds with equality. If 0 6= 1
2
, the inequality is strict, since the total surplus, assuming

01 = 02, is maximized for 
0
1 = 02 = 12.

C Supplementary Material for Section 5

The maximization problem for the buyer is to choose (1 2 1 2P ) ∈ [0 1]2×P [Ψ−Ψ]2×
I (R+)× (−∞  ] so as to maximize

 (1 2)−Π1 (1 2 1 2)−Π2 (1 2 1 2) + 2

such that, for all  ∈ {1 2} and  6=  (D1)-(D3) hold and

Π (    )− −  ≥ 0 for all   ∈ {1 2} and  6= . (11)

C.0.4 Proof of Proposition 12

We will prove the two cases in turn.

(i) Suppose  ≥  (∗1)∆ (
∗
1 

∗
2)−. From Proposition 10 we know that for the proposed

P = {̄ 0}, (∗1 ∗2) emerges in equilibrium, with the pricing strategies 1 and 2 given by

Proposition 10. The buyer’s payoff in the proposed equilibrium, net of uncontingent transfers,

is

 (∗1 
∗
2)−Π1 (∗1 ∗2 1 2)−Π2 (∗1 ∗2 1 2) + 2 (12)

= (∗1 
∗
2)− 2 (∗1)∆ (∗1 ∗2) + 2 ( (∗1)∆ (∗1 ∗2)− ) = (∗1 

∗
2)− 2

This is the highest payoff that the buyer can achieve without violating the suppliers’ partici-

pation constraints.

44 It is not necessary for this statement that (01 
0
2) can actually be implemented by an innovation contest.

31



(ii) Suppose    (∗1)∆ (
∗
1 

∗
2) −  The proof for this case relies on the fact that

implementation with minimal expected contingent payments uses augmented tournaments.

It shows that
¡
1  


2

¢
must satisfy 1 + 2 = 1. Among all the augmented tournaments

implementing (1 2) with 1 ≤ 2 and 1 + 2 = 1, the buyer has highest expected payoffs

at (12 12), whereas the supplier payoffs are single-peaked at (1 2) = (
∗
1 

∗
2), the welfare

optimum. Using these facts, the proof shows that the buyer always chooses the minimal

value of the non-contingent transfer , and she just implements enough diversity so that the

suppliers (who benefit from some diversity) break even on expectation.

Step 1: The outcome of an optimal contest can be implemented by P = { 0} for some  ≥ 0.
First, 1 ≤ 2  12 cannot hold in any contest equilibrium. This follows directly from

(ii) Step 1 in the proof of Proposition 10.

Second, if the contest maximizes the buyer’s payoff, then 0    1 for  ∈ {1 2}.
By an argument as in Step (ii) of the proof of Proposition 10, for any contest implementing

 ∈ {0 1}, there always exists an augmented FPT which weakly increases the total surplus
and strictly increases the buyer’s surplus. Thus, the buyer can use this FPT with suitable

unconditional transfers to make the suppliers equally well off as in any contest implementing

 ∈ {0 1}, while increasing own payoff.
Thus, the optimal outcome for the buyer satisfies 0  1 ≤ 12 ≤ 2  1. By Proposition

10, there exists  = { 0} which maximizes buyer payoff conditional on implementing 1 and
2 . As the buyer can always transfer part of her own payoff to the suppliers via the uncondi-

tional transfers, any feasible combination of payoffs of the buyer and suppliers which can be

obtained in a contest that implements 1 and 

2 can also be obtained in an augmented FPT

with appropriately chosen unconditional transfer .

Step 2: In an optimal contest 1 + 2 = 1.

Consider any (1 2) such that 1 + 2  1. We show that (1 2) 6=
¡
1  


2

¢
; the

case 1 + 2  1 follows analogously. By Step 1, the optimal outcome can be implemented

by some P = { 0}. The equilibrium values of  are zero whenever  ∈ (1 2). Hence,
the participation constraint for supplier 1 implies that  (1)  −  ≥ ; thus 1 + 2  1

implies (1−  (2))  −   . Now suppose the buyer implements (1 +  2 + )  where 

is sufficiently small. We know that (1 +  2 + ) can also be implemented with  = { 0}.
Thus, we can write the buyer’s expected payoffs as

Π () = (1 +  2 + )−  (1 + ) − (1−  (2 + )) + 2

for  ≥ 0. Thus
Π ()


=  (1 +  2 + ) − +  =  (1 +  2 + ) .

Maximizing social welfare is equivalent to minimizing the expected distance

 (1 +  2 + ) =

Z 1+

0

(1 + − )  +

Z 1+2
2

+

1+

( − 1 − ) 

+

Z 2+

1+2
2

+

(2 + − )  +

Z 1

2+

( − 2 − ) .
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The first order condition is

 (1 +  2 + )


=

Z 1+

0

 −
Z 1+2

2
+

1+

 +

Z 2+

1+2
2

+

 −
Z 1

2+



=  (1 + )− (1−  (2 + )) = 1 + 2 − 1 + 2,

which is always negative for small enough . Thus  (1 +  2 + ) increases in  for suffi-

ciently small , while the total expected supplier profits and transfers are independent of .

If the participation constraints are satisfied, then expected buyer profits are thus strictly in-

creasing in . Finally, the participation constraints hold, because  (1 + ) − ≥  (1) −
and there exists  small enough such that (1−  (2 + )) −  ≥ .

Step 3: For the innovation contest inducing an equilibrium (1 2) such that 1+2 = 1 with

the highest expected payoffs for the buyer, supplier profits are increasing in 1 for 1 ∈ (0 ∗1)
and decreasing for 1 ∈ (∗1 12)

For such a contest, the successful supplier earns  = ∆ (1 2) =  (1− 21) for  ∈ [0 ∗1]
and 0 otherwise. Thus, the expected profit of supplier 1 in such a contest isΠ1 (1 1− 1 1 2) =

1 (1− 21). Since ∗1 = 14, the result follows.
Step 4: For 2 = 1 − 1 and  ≥ 0, the expected buyer payoff when (1 +  2 − ) is

implemented with an augmented FPT, Π (1 +  2 −  1 2), increases in .

For any  ∈ [0 1 + ], the buyer’s payoff equals 2 (2 −  ), which increases in . For

any  ∈ (1 +  12], the buyer’s payoff equals 1 (1 +  ) which also increases in . By

similar arguments, the buyer’s payoff increases for any  ∈ (12 2−] and any  ∈ (2− 1].
Step 5: 1 ≥ ∗1.

Consider (1 2) such that 1  ∗1 and 2 = 1− 1. By Step 4, moving from (1 2) to

(∗1 
∗
2) the buyer could increase her payoff while by Step 3 the participation constraint would

remain satisfied.

Step 6: For 2 = 1− 1, 1  ∗1 and  ≥ 0,  (1 +  2 − ) decreases in .

Using the same argument as in Step 2, the derivative of the expected distance is

 (1 +  2 − )


=

Z 1+

0

 −
Z 1+2

2

1+

 −
Z 2−

1+2
2

 +

Z 1

2−


= 1− 2 ( (2 − )−  (1 + ))  0

Since the derivative is positive, the total expected distance increases in , and the total

expected surplus decreases.

Step 7: It is optimal for the buyer to set  =  .

Suppose that a buyer implements (1 2) and    . By implementing (1 −  1− 2 + ),

she could increase total surplus by Step 6. By choosing a suitable 0   the payoffs of the

suppliers would remain the same. Thus, the objective function of the buyer would strictly

increase.

Step 8: The optimal
¡
1  


2

¢
for the buyer satisfies  = 

¡
1
¢
∆
¡
1  


2

¢− and 2 =

1− 1 .

By Step 7,  is fixed at  =  . In the augmented tournament which implements any

(1 1− 1) at minimal costs for the buyer, the supplier earns  (1)∆ (1 1− 1). Thus, for

any 01  1 ≥ ∗1, the participation constraint is not met if (
0
1 1− 01) is implemented. For
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any 01  1, the expected buyer payoffs decrease by Step 4 for fixed , and since  is already

at the lower bound, the objective function decreases.

Step 9: P = {̄ 0} where ̄ = ∆
¡
1  1− 1

¢
.

By Step 1, this contest implements
¡
1  1− 1

¢
given in Step 8. Using the arguments in

Proposition 10, it does so at the lowest possible expected costs to the buyer.

D Supplementary Material for Section 6

In this section, we provide precise statements and proofs of the results summarized in Sections

6.1-6.4 and 6.6. For the details of the numerical analysis in Section 6.5, we refer the reader to

Supplementary Material for Section VI.E, available at https://sites.google.com/site/iletina/did.

D.1 Proofs from Subsection 6.1

We first provide results on the implication of different mechanisms in the n-player setting. All

proofs follow below.

Proposition 24 Suppose there are   3 suppliers and (A1)’, (A2) and (A3) hold.

(i) The auction mechanism implements the social optimum.

(ii) In any equilibrium v =
¡
1   




¢
of an FPT, there is duplication of approaches, and

the maximal diversity is smaller than in the social optimum, that is,

max
∈

 −min
∈

  max
∈

∗ −min
∈

∗ .

(iii) For any number of active approaches in an FPT, there exists an equilibrium inducing

this number of active approaches which the buyer prefers to the socially optimal equilibrium

induced by an auction.

D.1.1 Proof of Lemma 13(i)

By Proposition 24 (i), ∗ 6= ∗ for all  6=  ∈ {1  }. Thus

 (v) =

Z 1+2
2

0

1 (1 )  +

−1X
=2

Z ++1
2

−1+
2

 ( )  +

Z 1

−1+
2

 ( ) 

The maximum of this function exists and it obviously does not involve corner solutions. Hence,

it is given by first order conditions. The first order conditions are given by

 (v)

1
= −1 + 

2 − 1

2
= 0 (13)

 (v)


= − − −1

2
+ 

+1 − 

2
= 0 (14)

for  ∈ {2  − 1}
 (v)


= − − −1

2
+  (1− ) = 0 (15)

(14) can be rearranged to give −−1 = +1− ≡ ∆ for  = 2  −1. (13) and (15) give
1 = 1− = ∆2. Inserting these equations into 1+(2 − 1)++( − −1)+(1− ) =

1 gives ∆ = 1

. Thus, 1 =

1
2
and  =

1
2
+ −1


= 2−1

2
for  ∈ {2  }.
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D.1.2 Proof of Lemma 13(ii)

Step 1: In any equilibrium of the FPT, 1 = 2 and −1 = . This implies that there are

at most ̄ = − 2 active approaches.
Suppose 1  2. Then the expected profit of supplier 1 is 

1+2
2
. For 01 = 1+ ,   0,

such that 01  2 the expected profit is 
01+2
2

 1+2
2
. A similar argument holds for

−1  .

Step 2: No approach is developed by more than two suppliers in any equilibrium of the FPT.

This implies there are at least  ≥ 2 active approaches.

Suppose there are  suppliers developing the same approach. The expected profit of each

of those suppliers is
³ e´, for some probability e . However, a sufficiently small deviation

in at least one direction for any of those suppliers yields a payoff of at least
³ e2´ ³ e´ for any  ≥ 3

Step 3: Suppose  is even and  = 2. Then any choice of 1   as in Lemma 13 is an

equilibrium.

In the suggested equilibria, the active approaches are equidistant, and, by Step 2, two

suppliers supply each approach. Also, 1 = 1 and 2 = 1 − 1. For any 1    2,

−−1 = 2. Simple calculations show that any of the active approaches offers the highest
quality with probability 2 so that each supplier has a payoff of Π = . Deviating to

any other active approach leads to payoff of 23; hence it is not profitable. A deviation

to [0 1) or (2 1] results in a winning probability strictly lower than 1, so this is not a

profitable deviation either. Finally, consider a deviation to  ∈ (−1 ),  ∈ {2  2}.
The deviating supplier wins if and only if  is in the set [

+−1
2

 +
2
], so that the winning

probability is 1 and this is also not a profitable deviation.

Step 4: Now let   2. Then any choice of 1   as in Lemma 13 is an equilibrium.

Arguing as in Step 3, any of the active approaches offers the highest quality with prob-

ability 1, so that if there are two suppliers using an approach, each of them wins with

probability 12, and if there is only one supplier using this approach, he wins with prob-

ability 1. Consider a supplier who wins with probability 12. By the same argument

as in Step 3, if he deviates to [0 1) or ( 1], he wins with probability strictly lower than

12. Deviating to any approach in some interval ( +1);  ∈ {1   − 1}, he wins with
probability 12; hence such a deviation is not profitable either. If he deviates to any active

approach, he wins with a probability of at most 12. Thus, such suppliers do not have prof-

itable deviations. Finally consider a deviation by a supplier who is the only one to develop

some , where 1    . Any deviation to [0 −1] or [+1 1] leads to strictly lower pay-
offs, by the same argument as above. For any approach  ∈ (−1 +1), he wins whenever
 ∈ [+−1

2

++1

2
], so that the winning probability is

++1
2
− +−1

2
=

+1−−1
2

= 1.

Hence, this is not a profitable deviation either.

D.1.3 Proof of Proposition 24

(i) This follows as a corollary to Lemma 21 below.

(ii) Let v = [1  ] be the vector of approaches, ordered so that 1 ≤  ≤ . For

the first claim, by Lemma 13 there is duplication in any FPT. We prove the second claim in

several steps. For any supplier , let  


( 


) be the probability that supplier  wins and,
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in addition,    (  ). Let 
 =  


+  


be the total probability that supplier 

wins.

Step 1: If suppliers  and  are both using the same approaches or the same as some supplier

 6=  , then  


=  


= 



= 



in any equilibrium.

Suppose first that  


6=  


for some supplier  using the same approach as another

one. Suppose that  


  


(the opposite case is analogous). Then, a deviation to

 −  for some sufficiently small   0 leads to a winning probability of 2 


  


+

 


,45 which is a profitable deviation. Next, suppose that  


 



(the opposite case

is analogous). Then, a deviation of player  to  −  for sufficiently small   0 leads to a

winning probability of 2



  


+  


,46 which is a profitable deviation.

Step 2: In any equilibrium of an FPT with  suppliers,  1 =  2 = −1 =  ≥ 1
2(−2) .

By Lemma 13, all extreme approaches are duplicate. The three equalities thus follow from

Step 1. Suppose that the inequality does not hold. Then  1+ 2+−1+  2
−2 which

in turn implies that
P−2

=3 
 ≥ −4

−2 . But then there exist at least one  ∈ {3   − 2}
such that   ≥ 1

−2 . A deviation by any supplier 1 2  − 1 or  to  would give him the

probability of winning of at least 1
2(−2) , which would be a profitable deviation.

Step 3: Any equilibrium of an FPT with  suppliers satisfies max 

 −min  ≤ −3

−2 .

Suppose not. As
2(−2)−1
2(−2) − 2−1

2(−2) =
−3
−2 , there exists an equilibrium of an FPT such that

either max 

 

2(−2)−1
2(−2) or min 


  2−1

2(−2) or both. If max 

 

2(−2)−1
2(−2) , then Step 1

implies   1
2(−2) , which is impossible by Step 2. If min 


  2−1

2(−2) , then  1  1
2(−2) by

Step 1, which is again impossible by Step 2.

Step 4: The socially optimal diversity is greater than −3
−2 .

This follows directly from Lemma 13.

Step 3 and Step 4 immediately imply the result.

(iii) Any number of active approaches  ∈ ©  ª can be implemented in an equilibrium
of an FPT where active approaches are equidistant, given as in Lemma 13(iib). Since the buyer

payoff in an FPT is the best available quality, her payoff in these equilibria decreases as the

number of active approaches decreases. We will show that even in an equilibrium of an FPT

satisfying the condition in Lemma 13(iib) with the minimum number of active approaches, the

buyer has higher expected payoff than in an auction which implements the socially optimal

outcome. The buyer’s payoff in an equilibrium of an FPT satisfying the condition in Lemma

13(iib) when  is odd and  = (+ 1) 2 is the same as if 0 =  + 1 and 0 =  = 02.
Moreover, the buyer’s payoff is strictly greater in an auction with 0 suppliers than in an
auction with with  suppliers. Hence, if the buyer prefers the FPT equilibrium to the auction

equilibrium with (even) 0, she will also prefer FPT equilibrium to the auction equilibrium

with (odd) . Thus, it is sufficient to look at  even and  = 2.

Lemma 13 implies ∗ = (2 − 1) 2 for  ∈ {1  }, and Lemma 13 implies  =

(2− 1)  for  ∈ {1  2}. First suppose  ≤ 1. Since
∗1+

∗
2

2
= 1


, the highest quality

approach in the auction is ∗1. Arguing as in Lemma 2 for the case of two suppliers, the
equilibrium price corresponds to the difference between the highest and the second-highest

quality. The net payoff of the buyer for  ≤ 1 is thus  (
∗
2 )   (1 ) which is the same

45The winning probability is approximately 2 


if  = min{1  }
46The winning probability is approximately 2 


if  = min{1  }
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as the payoff in an FPT. Similar arguments holds for  ≥ . Now suppose  ∈ (1 ). Let
the highest available quality in the auction correspond to ∗ . Then  ∈

³
∗
−1+

∗


2

∗

+∗

+1

2

´
.

We distinguish two cases.

Case 1:  is even. In the FPT, the highest quality corresponds to
∗
−1+

∗


2
= −1


= 2.

If  ∈
³
∗
−1+

∗


2
 ∗
´
, the buyer payoff in the auction is provided by ∗−1. Since

¡
 − 2

¢ −¡
 − ∗−1

¢
= −12, at each state in this interval the buyer payoff corresponds to a quality

which is lower in the auction than in the FPT by 2. If  ∈
³
∗ 

∗

+∗

+1

2

´
, the buyer payoff

in the auction corresponds to a quality determined by ∗+1. Note that 
∗
+1−− ¡ − 2

¢
=

∗+1 + 2 − 2 = 4−1
2
− 2  −12 for all  

∗

+∗

+1

2
. Hence, the loss from the auction

if  ∈
³
∗
−1+

∗


2
 ∗
´
is larger than the gain if  ∈

³
∗ 

∗

+∗

+1

2

´
. Thus, the expected buyer

payoff if  ∈
³
∗
−1+

∗


2

∗

+∗

+1

2

´
is larger in the FPT than in the auction whenever  is even.

Case 2:  is odd. In the FPT, the buyer payoff corresponds to the quality of the approach
∗

+∗

+1

2
= 


= (+1)2. Using an analogous argument as in Case 1, we can show that for all

 ∈
³


∗

+∗

+1

2

´
, the buyer payoff in the FPT is 2 higher than in the auction. For all

 ∈
³
∗
−1+

∗


2
 

´
, the auction provides higher buyer payoff, but by less than 2

Combining Cases 1 and 2, the expected buyer payoff conditional on  ∈ (1 ) is higher
in the FPT than in the auction. Thus, over the whole domain of , the FPT also provides

higher expected buyer payoff.

D.1.4 Proof of Corollary 14

According to Lemma 13, the social optimum is given by the choices ∗ = (2 − 1) 2 ( ∈
{1  }) The average quality in the social optimum is thus Ψ− 4. Therefore the social

surplus is Ψ − 4 − . The maximum of this expression in R+ is  =
√
2
√
. By

concavity of the objective function, the optimal choice of  ∈ N is thus given by − () or
+(). According to Proposition 24, the social optimum for any given number of players can

be implemented with an auction.

D.2 Proofs from Subsection 6.2

D.2.1 The Set-Up

We modify the set-up of Section 1 as follows.

(H1) The ideal state  = ( ) is distributed uniformly on Φ = [0 1]× [0 1] ⊂ R2.
(H2) Supplier  can choose an approach  = ( − 1) from  = [0 1]×{− 1} ⊂ [0 1]×[0 1].

Thus we can think of the set of possible approaches of each supplier as embedded into the

state space, with the set of supplier 1 corresponding to the lower edge and the set of supplier

2 corresponding to the upper edge (see Figure 2). Hence, the approach of a supplier depends

on its identity as well as on its active choice. When we focus on the latter, we can identify

a supplier’s approach with the first (horizontal) coordinate . For  = ( − 1),  = 1 2
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 = ( ) and suitable constants Ψ,  ≥ 0 and   0, we specify the quality function as

 ( ) = Ψ−  |− 1− |−  | − |. Thus
1 (1 ) = Ψ−  −  |1 − | (16)

2 (2 ) = Ψ−  (1− )−  |2 − | (17)

Hence, for each approach ( − 1), there is one state ( = ( − 1)) under which this
approach yields maximal quality, and this maximal quality is the same for all approaches,

given as Ψ. Moreover,  captures the degree of exogenous differentiation between suppliers:

For 1 = 2 = , it measures the maximum possible difference in willingness-to-pay between

( 0) and ( 1).  = 0 corresponds to the benchmark case of homogeneous suppliers. As

before, the parameter  captures the degree to which the supplier can affect quality by choosing

different approaches. To emphasize the dependence of each supplier’s quality on the realization

of the state, we often drop  and write  ( ) ≡  (  ).

D.2.2 Notation and Preliminary Results

We first provide some definitions and simple results concerning states and relative qualities.

Figure 2 helps to understand the following notation. Essentially, for each  ∈ [0 1], (i)
describes the value of  for which quality levels of both suppliers are the same and, for each

 ∈ [0 1], (ii) describes the value of  for which quality levels are the same. The slightly more
complicated formulations in the notation below account for the fact that, for some values of

 (), there may be no value of  ∈ [0 1] ( ∈ [0 1]) for which qualities are identical, in which
case an adequate boundary solution is required.

Notation: Suppose (1 2) are such that 1 ≤ 2.

(i) For  ∈ [0 1], e () is the value of  that is minimal with the property that there exists

no   e () such that 2  1.

(ii) For  ∈ [0 1], e () is the value of  that is minimal with the property that there exists

no   e () such that 2  1.

In all states of the world ( ) with   e () or   e () buyers prefer to choose supplier
1 if they pay the same price in both cases.

Whenever e () takes a value in (0 1), then it can also be defined by the simple requirement
that 1

³
e ()´ = 2

³
e ()´. Though we suppress this in the notation, e () and e ()

also depend on 1 and 2. Note the following identities:

For  ∈ [0 1], e () ≡ e1 = ( 1
2
+

(2−1)
2

if 1
2
+

(2−1)
2

 1

1 if 1
2
+

(2−1)
2

≥ 1 . (18)

For  ∈ [1 2],

e2 () =
⎧⎪⎨⎪⎩

0 if 1
2
+

(2+1−2)
2

≤ 0
1
2
+

(2+1−2)
2

if 0  1
2
+

(2+1−2)
2

 1

1 if 1
2
+

(2+1−2)
2

≥ 1
, (19)

For  ∈ [2 1], e () ≡ e3 = ( 0 if 1
2
− (2−1)

2
≤ 0

1
2
− (2−1)

2
if 0  1

2
− (2−1)

2

. (20)
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Figure 3: Interior and boundary values for conditional demand.

Whenever e () ∈ (0 1), then it can also be defined by the simple requirement that 1 (e ()  ) =
2 (e ()  ). Hence e () = 1 + 2

2
+



2
(1− 2) (21)

We will frequently use the following results.

Lemma 25 (i) If there exists  ∈ [0 1] such that e () ∈ (0 1), then e1 = 1 and e3 = 0.
(ii) Suppose e1 = 1 and e3 = 0. Then 1 ≤ e (1)  e (0) ≤ 2.

(iii) There exists  ∈ [0 1] such that e () ∈ (0 1) if and only if 2 − 1 ≥ .

Proof. (i) First note that from (18) and (20) that the conditions for e1 and e3 to take
boundary values are identical. Thus, if one is at the boundary, so is the other. Furthermore,e2 lies between e1 and e3. Hence, the result follows.
(ii) If e1 = 1, then 1 ≤ e (1). If e3 = 0, then e (0) ≤ 2. e (1)  e (0) follows directly from
(21) for   0.

(iii) This follows directly from (i) and (18) and (20).

For later use of Lemma 25, we refer to the regions where 2 − 1() ≥  as R1 and

R2, respectively. Figure 3 illustrates Lemma 25(iii). For parameter values ,  such that

 = 02, it depicts the choices of 1 and 2 for which e () ∈ (0 1) for some .47
D.2.3 Proof of Proposition 15

Statement (ii) follows from Lemma 21. We prove statement (i) below.

Step 1: Social welfare and its derivatives

The social planner chooses (1 2) to maximize social welfare,

 (1 2) =

Z 1

0

Z 1

0

max{Ψ−  − |1 − |Ψ− (1− )− |2 − |}.
47The figure does not restrict attention to 1 ≤ 2.
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We will show below that for each parameter value there is a unique local maximizer of the

social welfare function. By Lemma 25, the social planner can choose (1 2) so that e1 ande3 are both interior (R1) or so that not neither e1 nor e3 is interior (R2). We will consider
the two cases in Steps 1.1 and 1.2, respectively. Assume w.l.o.g. that 1 ≤ 2.

Step 1.1 : Social welfare in R1

Denoting the restriction of the social welfare function to R1 as  1, we obtain

 1(1 2) =Z 1

0

ÃZ ̂1

0

(Ψ−  − (1 − ))  +

Z 1

̂1

(Ψ− (1− )− (2 − )) 

!


+

Z 2

1

ÃZ ̂2()

0

(Ψ−  − ( − 1))  +

Z 1

̂2()

(Ψ− (1− )− (2 − )) 

!


+

Z 1

2

ÃZ ̂3

0

(Ψ−  − ( − 1))  +

Z 1

̂3

(Ψ− (1− )− ( − 2)) 

!


Using (18)-(20), the first order conditions are:

 1

1
= 

− 21 + 1 − 2 + 21 + 22 − 212
2

= 0 (22)

 1

2
= 

− 22 − 1 + 2 − 21 − 22 + 212

2
= 0 (23)

The second order conditions hold globally.

Step 1.2 : Social welfare in R2

Lemma 25(ii) implies that 1 ≤ e (1) ≤ e (0) ≤ 2 in this case. Denoting the restriction of

the social welfare function to R2 as  2, we obtain

 2(1 2) =Z 1

0

µZ 1

0

(Ψ−  − (1 − )) 

¶
 +

Z (1)
1

µZ 1

0

(Ψ−  − ( − 1)) 

¶


+

Z (0)
(1)

ÃZ ̂2()

0

(Ψ−  − ( − 1))  +

Z 1

̂2()

(Ψ− (1− )− (2 − )) 

!


+

Z 2

(0)
µZ 1

0

(Ψ− (1− )− (2 − )) 

¶


+

Z 1

2

µZ 1

0

(Ψ− (1− )− ( − 2)) 

¶


Using (18)-(20),the first order conditions are:

 2

1
=

1

2
2 − 3

2
1 = 0 (24)

 2

2
= +

1

2
1 − 3

2
2 = 0 (25)

The second order conditions hold globally.
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Step 1.3 : Social welfare is continuous at the regime boundary between R1 and R2.

Inserting 2 = 1 +  in  1 and  2 shows that these functions are identical at the

regime boundary.

Step 2: Whenever   , (1 2) = (12 12) is a global maximum.

(1 2) = (12 12) solves the system of first order conditions (22) and (23). If   ,

2 − 1  

holds ∀ (1 2) ∈ [0 1] × [0 1]. Thus (12 12) is a global maximum if it

maximizes  1 on the set of all (1 2) such that 2 ≤ 1 and 1 ≤ 2. As (12 12) satisfies

the FOC and  1 is globally concave, the result follows.

Step 3: Whenever  ≤   2, (1 2) = (2 1− 2) is a global maximum.

(1 2) = (2 1− 2) solves the system of first order conditions (24) and (25).

(2 1− 2) satisfies 1 ≤ 2 if and only if  ≤ . e1 and e2 are interior by Lemma
25(iii) if and only if 2 − 1  , which is equivalent to   2.  1 is globally concave in

R1, so that (2 1− 2) is a maximum on this subset. The remainder of the proof of this

step shows that, given the parameter restriction   2, the best design vector on R2 must

lie on the boundary 2 − 1 = , so that, by continuity, it yields lower expected welfare

than the proposed optimum. To see that 2 − 1 = , first note that by the conditions

derived in Step 1.2, the only candidate for an equilibrium that is in the interior of the set of

all (1 2) for which 2 − 1 ≥  is (1 2) = (14 34). Given the parameter restriction

  2, however, this candidate violates 2 − 1 ≥ . Next, it is straightforward to show

that  2

1
 0 for 1 = 0 and  2

2
 0 for 2 = 1 and 1  1. Thus, the maximal value of

 = 2 on the regime where 2− 1 ≥  cannot be obtained on these boundaries. It must

therefore lie on the boundary where 2 − 1 =  (see Figure 3).

Step 4: Whenever  ≥ 2, the global maximum is (14 34).

The candidate optimum satisfies 2 − 1 ≥  for  ≥ 2, so that  2 applies by Lemma

25(iii). (14 34) is the unique point where the first-order conditions for  2 hold. As the

second-order conditions hold globally in R2, (14 34) is the unique maximizer of  2 in this

regime. Now consider the alternative of choosing designs such that 2 − 1  , so that

Step 1.1 applies. The first order conditions are (22) and (23). For  ≥ 2, this system has no

interior solutions. Next, we show that the constrained maximization problem

(12)
1  (i) 2 − 1  ; (ii) 1 ≤ 2 (iii) 1 ≥ 0; (iv) 2 ≤ 1 (26)

has no solutions for which 1 = 0 or 2 = 1. For 1 = 0, (22) implies that
1

1
= 

−2+22
2



0 for 2 = 2 − 1 ≤ . For 2 = 1, (23) implies that
 1

2
= 

−+1−21
2

 0 for 1− 1 =

2 − 1 ≤ . Next consider the diagonal 1 = 2 Along this diagonal, 
1 is increasing for

1  12 and decreasing for 1  12. Therefore, the constrained maximum on this diagonal

is obtained at (1 2) = (12 12). Simple but tedious calculations show that  1(1
2
 1
2
) =

1
4
Ψ− 1

4
− 1

4
, whereas, in the suggested optimum,  2(1

4
 3
4
) = 1

24

¡
22 − 6+ 32 + 18Ψ¢.

As a result,  2(1
4
 3
4
)− 1(1

2
 1
2
) = 1

24

¡
22 − 6+ 32 + 18Ψ¢. This expression is positive

for  = 2 and increasing in  for  = 2; hence, it is everywhere positive. Thus, the suggested

deviation is not profitable either.

D.2.4 Proof of Proposition 16

Part 1: Preliminary Remarks We first introduce some notation and results that help

us to identify the candidate equilibrium. Like the notation introduced in Section D.2.2, this
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notation is useful to identify critical state values for which the buyer is indifferent between

the two suppliers (with the proviso that the notation captures boundary values in cases where

no such critical states exist).

We suppose w.l.o.g. that 1 ≤ 2.

Notation (i) In an auction without information revelation, for  ∈ [0 1], b () is the value
of  that is minimal with the property that there exists no   b () such that 2−2  1−1
(ii) In auction without information revelation, for  ∈ [0 1], b () is the value of  that is

minimal with the property that there exists no   b () such that 2 − 2  1 − 1
We suppress the dependence of b () and b () on designs and prices. We obtain:
If  ∈ [0 1],

b () ≡ b1 =
⎧⎪⎨⎪⎩

0 if 1
2
+ 2−1

2
+

(2−1)
2

≤ 0
1
2
+ 2−1

2
+

(2−1)
2

if 0  1
2
+ 2−1

2
+

(2−1)
2

 1

1 if 1
2
+ 2−1

2
+

(2−1)
2

≥ 1
(27)

If  ∈ [1 2],

b () ≡ b2 () =
⎧⎪⎨⎪⎩

0 if 1
2
+ 2−1

2
+

(2+1−2)
2

≤ 0
1
2
+ 2−1

2
+

(2+1−2)
2

if 0  1
2
+ 2−1

2
+

(2+1−2)
2

 1

1 if 1
2
+ 2−1

2
+

(2+1−2)
2

≥ 1
(28)

If  ∈ [2 1],

b () ≡ b3 =
⎧⎪⎨⎪⎩

0 if 1
2
+ 2−1

2
− (2−1)

2
≤ 0

1
2
+ 2−1

2
− (2−1)

2
if 0  1

2
+ 2−1

2
− (2−1)

2
 1

1 if 1
2
+ 2−1

2
− (2−1)

2
≥ 1

(29)

Moreover, note that, when b () ∈ (0 1), it solves 1 ( )− 1 = 2 ( )− 2. Thus, for

the candidate equilibrium choice of player 1 (1 1) = (12 ),

b () =  (1− 2) + 2 − 1 +  (2 + 1)

2
(30)

We can use (27)-(29) to obtain the probability that the design of supplier 1 is chosen by

the buyer as

 (1 1 2 2) =

1Z
0

b1 + 2Z
1

b2 ()  + 1Z
2

b3. (31)

If b ∈ (0 1) for all  = 1 2 3, therefore, (27)-(29) imply
 (1 1 2 2) =

+ 2 − 1 +  (1 − 2) + 
¡
22 − 21

¢
2

. (32)
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Part 2: The candidate equilibrium It is straightforward to show that ( ) = (12 )

for  = 1 2 is the only strategy profile for which b1, b2 and b3 take interior values, and
first- and second-order conditions hold. From (27)-(29), b1, b2 and b3 take interior values
(b1 = b2 = b3 = 12) for this equilibrium candidate. Using Π1 = 1 (1 1 2 2) and

Π2 = 2 (1−  (1 1 2 2)), (32) implies

Π


=

− 2
2

.

Thus, for any   0, Π = 0 holds if and only if  = 12. Also using (32), it follows

that, for  = 1 2,  6= ,

Π


=

− 2 +  +  − 2 −  + 2

2
.

Substituting  =  = 12 into this expression gives the first-order conditions

Π


= − 2 +  = 0. (33)

These two conditions can only be satisfied simultaneously if 1 = 2 = . The second-order

conditions clearly hold for 1 = 2 =  and 1 = 2 = 12. Finally, there can be no equilibrium

where either 1 or 2 takes boundary values. To see this, it suffices to note that 1 = 0 cannot

arise in equilibrium because Π = 2  0.

Part 3: No profitable deviations The remainder of the proof proceeds by showing that

there are no profitable deviations. By symmetry, it suffices to consider deviations of player 2

such that 2 ≥ 12.
We first note that, for 1 = 12 and 1 = , (27)-(29) imply the following relation between

the deviation choices 2 and 2 and the values of b1 and b3.
BC1 b1 = 0 if and only if 2 ≤ −2 + 2.

BC2 b1 = 1 if and only if 2 ≥ −2 + 2+ 2.

BC3 b3 = 0 if and only if 2 ≤ 2 − 2.

BC4 b3 = 1 if and only if 2 ≥ 2 + 2− 2

The following general observations are helpful:

BC5 At 2 = 05, 2 + 2− 2 = −2 + 2+ 2 and 2 − 2 = −2 + 2 = 0

BC6 At 2 = 05 + , −2 + 2+ 2 = 2 − 2

BC7 For 2  05, 2  −2 + 2 (so that b1  0) and 2 + 2− 2  −2 + 2+ 2

BC8 For 2  05, 2 + 2− 2  max {−2 + 2−2 + 2+ 2 2 − 2}
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Figure 4: Deviation regions in the beauty contest.

Table 1: Type-B regions in the beauty contest
2 ≤ −2 + 2+ 2 2  −2 + 2+ 2

2 ≥ 2 − 2 Region B1 Region B3

2  2 − 2 Region B2 Region B4

As a result of (BC7), there is no feasible deviation with 2 ≥ 1 = 12 and b1 = 0.

Also, by (BC7) b1 ∈ (0 1) implies that b3 = 0 or b3 ∈ (0 1). b1 = 1 is compatible withb3 = 0, b3 ∈ (0 1) and b3 = 1. The set of conceivable deviations can thus be divided into

five parameter regions which correspond to the possible combinations of b1 = 0, b1 ∈ (0 1),b1 = 1 and b3 = 0, b3 ∈ (0 1), b3 = 1. Figure 4 shows these regions for  = 01 and  = 05.

Note, however, from (BC6) that Region B4 disappears if 2 ≥ .

We distinguish between those deviations where b3 = 1 and those where b3  1.
Definition 26 (i) A type-A deviation satisfies 2 ≥ 2 + 2− 2.

(ii) Type B-deviations satisfy 2  2 + 2− 2

Type A deviations are obviously non-profitable.

Lemma 27 There exist no profitable type-A deviations.

Proof. For a Type-A deviation, ̂3 = 1 and thus, by BC 7, ̂1 = 1. Thus the probability

that supplier 2 wins is equal to 0, hence the expected profits are 0. Thus this cannot be a

profitable deviation.

We have to analyze Type B-deviations more carefully. In Table 1 (and Figure 4), we

distinguish between four subregions:

We now consider Type-B deviations into each of the regions 1-4. As an important pre-

liminary remark, note that the deviation profits are continuous at the boundary between the

different regions.
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Lemma 28 There exist no profitable deviations into region B1.

Proof. In the interior of B1, b ∈ (0 1) for all  = 1 2 3 by (27)-(29). Thus, we can apply

(32). There exists no critical point of the deviation profit in the interior of B1. For  = ,

 = 12, the solution to the first-order conditions (33) for  is  for arbitrary values of

  0 and the solution for  is 12 for  = . Moreover, the second-order conditions hold

globally. Thus, deviation profits are globally concave in region B1 and they are maximized at

the candidate equilibrium. Therefore, there are no profitable deviations into region B1.

Lemma 29 There exist no profitable type-B deviations into region B2.

Proof. In region B2, ̂3 = 0 Thus, the probability that supplier 2 wins is given by:

1−  (1 1 2 2) =

1Z
0

³
1− ̂1

´
 +

(0)Z
1

³
1− ̂2 ()

´
 + (1− b (0))

=
−4222 − 42 − 422 − 422 + 32+ 32 − 822

32


and the expected profit of supplier 2 from the deviation is

Π2 (1 1 2 2) = 2
−4222 − 42 − 422 − 422 + 32+ 32 − 822

32


Therefore



2
Π2 =

−4222 − 82 − 1222 − 422 + 32+ 32 − 1622
32



2
Π2 = −2 (+ 22 + 22)

8
 0

Thus there will exist no maximum in the interior of region B2, and 2 is strictly increasing

towards the left boundary, which is the boundary to region B1. We have already seen that

there are no profitable deviations into region B1 and, in particular, no deviations to its

boundary with B2. By continuity of the deviation profits, therefore, there are no profitable

deviations to B2.

Lemma 30 There exist no profitable deviations of supplier 2 into region B3.

Proof. We first consider the interior of region B3. We shall prove the following two state-

ments:

(i) Deviation profits have a local maximum in the interior of region B3 if and only if  ∈
((3210) 5).

(ii) A deviation to this local maximum from the proposed equilibrium is never profitable.

(i) The derivatives of the deviation profits of supplier 2 are

Π2
2

= (34)

162 + 24− 72 + 82 (22 − 3− 4) + 1222 + 2
¡
202 − 16¢− 12222

32
(35)

Π2
2

=
2 (−4+ 5+ 22 − 62)

8
(36)
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There are four solutions to the system of first order conditions:

2 = 0 2 =
1

2
(−4+ )

2 =
4+ 

6
 2 =

8− 4
9

2 = 2+


2
 2 = 1

2 = 0 2 =
1

6
(4+ 7)

For 2 = 0, expected profits are zero, hence the deviation is not be profitable. Of the remaining

two solutions, only (2 2) =
¡
8−4
9

 4+
6

¢
satisfies the second-order conditions and is thus a

candidate for a local maximum in the interior of Region B3. It remains to be shown that it

satisfies the four conditions (a) 2 ≤ 1, (b) 2  2 + 2 − 2, (c) 2  2 − 2 and (d)

2  −2 + 2+ 2.

Conditions (a) and (b) hold without any parameter restrictions (except   0 and   0). (c)

holds if and only if   5; (d) holds if and only if   16
5
.

(ii) The expected profits in the locally optimal deviation described in (i) are (4+ )3 324

as opposed to 2 for the equilibrium choices ∗2 
∗
2. Hence, the deviation is not profitable if

and only if

Π2 (
∗
2 

∗
2; 

∗
1 

∗
1)−Π2 (̄2 ̄2; 

∗
1 

∗
1) = −

643 − 1142+ 122 + 3

324
≥ 0

We show that the function () = 643 − 1142 + 122 + 3 is negative for  ∈ [32
10
 5],

for any value of   0. First, 00() = 24 + 6  0. Hence the function is convex. Second,

(32
10
)  0 and (5)  0, thus it is negative for all values of  ∈ [32

10
 5] and consequently

there are no profitable deviations for these values of .

We thus have proven statements (i) and (ii). It remains to be shown that there are no

profitable deviations to the two boundaries of region B3 belonging to the set.

There is no profitable deviation into the subregion of B3 where 2 = 2 − 2

This is the boundary between B3 and region B4. Simple calculations show that this boundary

is non-degenerate if and only if 2 ≤ .48 It consists of all points
¡
1
2
+ 2


 2
¢
for which

2 ∈ [ 2]. The first-order condition for the maximal profit on this line is



2
Π2

µ
2 2 =

1

2
+

2


; 1 1

¶
=

+ − 42
2



For  ∈ [2 3] the expected profit on the boundary is maximized by setting 2 = , while

for   3 it is maximized by the unique solution to the first order condition: 2 = (+ ) 4

Next, we compare the expected profits. For  ∈ [2 3], the maximum deviation profit is

given by

Π2

µ
2 =  2 =

1

2
+




; 1 1

¶
=



2

− 




48Recall from (BC6) that for 2  , the intersection point between the lines defining the lower boundary of

region B3 is no longer in the interval [0 1].
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Since (− )   1, the expected deviation profit is never larger than the equilibrium profit

2. For   3 the maximum deviation profit is given by

Π2

µ
̄2 =

+ 

4
 ̄2 =

+ 3

4
; 1 1

¶
=
(+ )2

16

and the difference between equilibrium and deviation profits is

Π2 (
∗
2 

∗
2; 

∗
1 

∗
1)−Π2 (̄2 ̄2; 

∗
1 

∗
1) =

6− 2 − 2

16


Thus, the deviation profits are larger than the equilibrium profits if and only if   
¡
2
√
2 + 3

¢
,

which is never true by Assumption 1.

There is no profitable deviation of player 2 for which 2 = 1.

Simple calculations show that (2 2) is in Region B3 for 2 = 1 if and only if 2 ∈
[2 2+ 2]. Evaluating 

2
Π2 at 2 = 1 yields the first-order condition

162 + 8− 322 + 2 − 82 + 1222 = 0.

This equation has two solutions 2 = 2 + 2 and 2 = 23 + 6. The first point is a

local minimum. Thus consider 2 = 23 + 6. It is in the interval [2 2 + 2] only if

2 ≤ . Using (36), 
2

Π2  0 for (2 2) = (1 23 + 6). Hence, this point cannot be

an optimal deviation either. If 2  , the maximum expected profit in the intersection of

region B3 and the line 2 = 1 is achieved at (2 2) = (1 2). The expected profit is

Π2 (̄2 ̄2; 1 1) =


4




2
.

Thus this is never a profitable deviation.

Lemma 31 There exist no profitable deviation of player 2 into region B4.

Proof. In this region, ̂3 = 0 and ̂1 = 1. The probability that supplier 2 wins is thus given

by

1−  (1 1 2 2) =

(0)Z
(1)

³
1− ̂2 ()

´
 + (1− (0)) =

2+ 3− 22 − 22
4



and the expected profit of supplier 2 from the deviation is

Π2 (1 1 2 2) = 2
2+ 3− 22 − 22

4


As 
2

Π2  0, there can be no point in Region B4 which yields higher deviation profits

than the best deviation in the remaining part of Region B.
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Part 4: Uniqueness We have already seen in Part 2 that the candidate equilibrium is the

only equilibrium for which the b are interior for  = 1 2 3. It remains to be shown that there
are no equilibria where not all b are interior. We distinguish between four cases.
Step 1: No equilibria where b1 = 1 and b3 = 0

Using (30), we obtain

b(0) =
 (1 + 2) + 2 − 1 + 

2
(37)

b(1) =
 (1 + 2) + 2 − 1 − 

2
. (38)

The expected payoff of player 1 is thus 1 = 1 (b(0) + (b(1)− b(0)) 2) and therefore
1 = 1

 (1 + 2) + 2 − 1

2
.

This immediately shows that 1/ 1  0, ruling out all equilibria with 1  2 whereb1 = 1 and b3 = 0 before and after the increase. By (27) and (29), a strategy profile with

1 = 2 cannot satisfy b1 = 1 and b3 = 0.
Now consider a strategy profile such that b3 = 0, but b3 becomes interior after a marginal
increase of 1, while b1 = 1. After the marginal increase, the winning probability of player 2
in a situation where b3 ∈ (0 1) and b1 = 1 is 2 = ³1− b3´ ((1− 2) + (2 − b(1)) 2). Using
(30) and (38),

b3 =
+ 2 − 1 −  (2 − 1)

2
(39)

2 − b(1) =
 (2 − 1)− 2 + 1 + 

2
(40)

we immediately obtain

2 =

µ
1− + 2 − 1 −  (2 − 1)

2

¶µ
1− 2 +

µ
 (2 − 1)− 2 + 1 + 

4

¶¶
Thus, 1 = 1 (1− 2) and

1

1
=

1

4
(+ 2+ 1 − 2 − 1 − 2) .

Using (39), b3 = 0 implies 1 − 2 =  −  (2 − 1). Hence 1
1

=
1
2
(+ − 2)  0. Thus, there is no equilibrium such that b1 = 1 and b3 = 0 and b3 = 0 is

interior after a marginal increase of 1.

Step 2: No equilibria where b1 ∈ (0 1) and b3 = 0
The winning probability of player 1 in a situation where b1 ∈ (0 1) and b3 = 0 is 1 =b11 + (b(0)− 1) 2. From (37),

b(0)− 1 =
+ 2 − 1 +  (2 − 1)

2
.
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From this and (27), we can calculate player 2’s profits as

2 = 2 (1− 1) =

∙
1− (+ 2 − 1 +  (2 − 1))

µ
1

2
+
1

4

¶¸
and thus

2

2
= −2

µ
1

2
+
1

4

¶
 0

Hence, there can be neither an interior best response of player 2 nor a best response at

2 = 1. Thus, there is no equilibrium of the type described.

Step 3: No equilibria where b1 = 1 and b3 ∈ (0 1)
This is the same situation as in Step 2, with the roles of suppliers 1 and 2 reversed. Thus,

the same arguments show that there can be no such equilibrium.

Step 4: No equilibria where b1 = 1 and b3 = 1 (or with b1 = 0 and b3 = 0)
In such an equilibrium, one supplier  earns a positive profit, whereas the other supplier

(supplier ) does not. Supplier  can always deviate and imitate supplier . As a result, both

suppliers will share the profit, so that the deviation is profitable.

D.2.5 Fixed Prize Tournaments

Now consider the FPT for some arbitrary  ≥ 0.

Proposition 32 An FPT with heterogeneous suppliers has a unique equilibrium. In this

equilibrium 1 = 2 = 12.

As in the auction without revelation of quality information, minimum differentiation arises

in equilibrium for any value of the prize. Thus, the suppliers choose the same approach in

the tournament as in the auction without information revelation. The optimal FPT for the

buyer has  = 0 (or  = 2 if fixed costs are taken into account). We do not provide the

proof, since it follows the one of Proposition 16 (in the Online Appendix) closely. The analysis

is considerably simpler, however: Only 1 and 2 need to be determined, whereas 1 and 2
can be replaced by . Moreover, the structure of conceivable deviations is much simpler, as

only one-dimensional deviations are feasible.

D.2.6 Buyer Payoffs in Auctions and Fixed-Prize Tournaments

As in the case of homogeneous suppliers, when there are no fixed costs and the buyer cannot

use transfers, she is better off not inducing diversification.

Proposition 33 Suppose suppliers are heterogeneous.

(i) The expected payoff of a buyer in any asymmetric equilibrium of an auction without a

reserve price and with full information revelation is lower than in the (symmetric) equilibrium

of the optimal FPT.

(ii) The expected payoff of a buyer in any asymmetric equilibrium of an auction without a

reserve price and with full information revelation is lower than in the symmetric equilibrium

of the auction.
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We omit the proof, as the intuition is exactly as for the case of homogeneous suppliers,

relying on the fact that buyers always have to pay the quality differential resulting from

diversity.

D.3 Proofs from Subsection 6.3

We now prove the claim from Section 6.3 that the main results from Sections 3 and 4 are

neither sensitive to the assumptions on the distribution of the optimal approach  nor to the

exact nature of the quality reduction from suboptimal approaches. For simplicity, we confine

the analysis to the game without transfers or fixed costs. This game is equivalent to the

subgame following entry of both suppliers in the game with arbitrary levels of transfers and

costs. We relax assumptions (A1) and (A3) as follows.

Assumption (A1)”  ()  0 ∀  0.

Assumption (A3)’  ( ) = Ψ−  (| − |) where 0  0.

Note that (A1)” dispenses with the assumption that the distribution is symmetric and

single-peaked, while (A3)’ dispenses with the linearity assumption. Thus, we allow for arbi-

trary distributions of the state with positive density, and quality is an arbitrary decreasing

function of the distance between a given approach and the ideal one.

Proposition 34 Suppose that (A1)”, (A2) and (A3)’ hold. Then, (i) the social optimum

satisfies ∗1 6= ∗2; (ii) the auction mechanism (P = R+) implements the social optimum; and
(iii) in any FPT (P = {} for some  ≥ 0) the unique equilibrium is such that 1 = 2 and

 () = 12 for  = 1 2.

Proof. Step 1: ∗1 6= ∗2.The proof is identical to the proof of Proposition 18.
Step 2: The auction mechanism ( = R+) implements the social optimum.
This follows from Lemma 21 below.

Step 3: The unique equilibrium in an FPT is such that 1 = 2 and  () = 12 for  = 1 2.

First, we show that the suggested (1 2) emerges as an equilibrium. Denote the prize with

. Let  be such that  () = 12. Since  is everywhere positive, such a  is unique. Now

if supplier  ∈ {1 2} plays  =  , his expected profit is Π (|) = 2. For any    the

expected profit is Π (|) =  (( + ) 2)  2. Similarly, for any    the expected

profit is Π (|) =  (1−  (( + ) 2))  2. Thus,  =  is an equilibrium. Second,

0 = 0 is an equilibrium only if  (0) = 12. Suppose not. Then, a supplier  can profitably
deviate to  such that  () = 12, since his expected profit will be Π (|)  2. Third,

 6=  is never an equilibrium. Suppose it was. Let 1  2. Then, the expected profit of

supplier 1 is Π1 (1|2) =  ((1 + 2) 2), while deviating to (1 + 2) 2 leads to a payoff

of  ((1 + 32) 4)   ((1 + 2) 2).

The result that the buyer prefers the optimal tournament to an auction requires somewhat

stronger conditions. Proposition 8 can be generalized either by relaxing the assumption on

the distribution of ideal approaches or by relaxing the assumption on quality reduction from

non-ideal approaches, but not both simultaneously.

Proposition 35 Suppose that (i) (A1)”, (A2) and (A3) or (ii) (A1), (A2) and (A3)’ hold.

Then the buyer prefers the optimal FPT (P =0) to an auction.
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Proof. (i) Let 1  2 be the outcome of an auction. Since, by Lemma 2, the buyer

pays the quality difference in equilibrium, the buyer payoff, is the lower quality in each

state. That is, for all  ∈ [0 (1 + 2) 2], the buyer payoff is equal to  (2 ), and it

is equal to  (1 ) everywhere else. For any (01 
0
2) with 01 = 02 = (1 + 2) 2, total

expected payoffs are  ((1 + 2) 2 )  min ( (1 )   (2 )), which is higher than the

expected buyer payoff for 1  2. For all outcomes where 01 = 02 = 0, the expected total
profit is Π (

0) =
R 0
0
 (0 )  () +

R 1
0  (

0 )  (). The derivative is Π (
0) 0 =

−0 (0) + 0(1 −  (0)). Since 0 =  by (A3), the expected total payoff among all (01 
0
2)

with 01 = 02 is maximized for 
0 such that  (0) = 12. From Proposition 34 we know this is

the outcome of an FPT, and that she can appropriate the entire surplus. Thus, her payoff is

higher than the total surplus at (01 
0
2) with 01 = 02 = (1 + 2) 2 and thus higher than her

expected payoff at 1  2.

(ii) By (A1),  () is symmetric, unimodal and everywhere positive, and  is as in (A3)’. The

argument is as in Step 1, except that

Π
¡
0
¢
0 =

Z 0

0

−0 ¡0 − 
¢
 () +

Z 1

0
0
¡
 − 0

¢
 () 

Suppose 0  12. For every 0 ∈ [0 0), there exist 00 = 20 − 0 ∈ (0 20], such that
0 (0 − 0) = 0 (00 − 0). Since 0  12, by unimodality and symmetry of  , we ob-

tain  (0) ≤  (00), which implies
R 0
0
−0 (0 − )  () +

R 20
0  ( − 0)  () ≥ 0. SinceR 1

20  ( − 0)  ()  0, it follows that

Π (
0) 0  0. Similar argument shows that Π (0) 0  0 if 0  12 and Π (0) 0 =

0 if 0 = 12. Hence, among the class of approaches such that 0 = 0 the buyer profit is max-
imized for 0 = 0 = 12. By symmetry,  (12) = 12, so that this outcome is implemented
in an FPT.

D.4 Proofs from Subsection 6.4

This section provides the proof of Lemma 17 from Section 6.4. Suppose that there are 

suppliers and that assumptions (A1)’, (A2) and (A3) hold. Consider an FPT with two prizes

1  2  0, where the supplier with the highest quality receives 1 and the supplier with

the second-highest quality receives 2.
49 For notational convenience, suppose that 1 ≤ 2 ≤

· · · ≤ . We first provide an intermediate result.

Lemma 36 If 1 2      is an equilibrium of an FPT with two prizes, then 1 = 2 = 3
and −2 = −1 = .

Proof. We will prove that 1 = 2 = 3. The other claim follows by an analogous argument.

Step 1: 1 = 2. Suppose not. Then 1  2. Thus, the expected profit of supplier 1 is

Π1 (1|−1) = 1 + 2

2
1 +

3 − 2

2
2

Therefore, a deviation to any 01 ∈ (1 2) increases the probability of winning the first prize,
while not affecting the probability of winning the second prize. Hence, it is profitable.

49Ties are broken randomly, with equal chance of winning for each firm with the respective quality.
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Step 2: 1 = 2  3 = 4 cannot be an equilibrium. Denote with 
1
 the probability

that supplier  wins the first prize when   . Analogously define the probabilities of

winning when the state is greater than the chosen approach and the probabilities of winning

the second prize. By random tie breaking we have 
11
1 = 

21
2 = 

12
1 = 

22
2 and


11
1 = 

21
2 = 

12
1 = 

22
2 . We will show that 

11
1 = 

11
1 . Suppose that this was

not true. First, suppose 
11
1  

11
1 . Then, there exist  

0 00  0 arbitrarily small such
that a deviation 01 = 1 −  leads to expected profits

Π1
¡
01|−1

¢
= 2

³

11
1 − 0

´
1 + 2

³

11
1 − 00

´
2

For sufficiently small  this constitutes a profitable deviation. The case 
11
1  

11
1 follows

by an analogous argument, but the incentives to deviate are even stronger.

Now suppose that 
11
1 = 

11
1 and 1 = 2  3 = 4. We will show that this

cannot be an equilibrium. In the proposed equilibrium 
11
1 = 12 and 

11
1 + 

11
1 =


12
1 + 

12
1 = 1. Hence, the expected profit is

Π1 (1|−1) = 11 + 12

For any deviation 01 ∈ (2 3) the probability of winning the first prize is

01 + 3

2
− 01 + 2

2
=

3 − 2

2
= 1

where the last equality follows from 
11
1 = 

11
1 . Using 3 = 4, the probability of winning

the second prize is
2 + 01
2

 1

thus it follows that Π1 (
0
1|−1)  Π1 (1|−1).

Step 3: 1 = 2  3  4 cannot be an equilibrium. The expected profit of supplier 1 is

Π1 (1|−1) = 1

2
1 +

3 − 1

4
1 +

3 + 1

4
2 +

4 − 3

4
2 (41)

Consider a deviation to 01 ∈ (1 3). The expected profit is

Π1
¡
01|−1

¢
=

3 − 1

2
1 +

01 + 1

2
2 +

4 − 3

2
2

If Π1 (
0
1|−1)  Π1 (1|−1), then this is a profitable deviation. If Π1 (01|−1) ≤ Π1 (1|−1)

is equivalent with

1

2
1 − 3 − 1

4
1 +

3 − 1

4
2 − 01

2
2 − 4 − 3

4
2 ≥ 0 (42)

But consider in that case a deviation to 001 = 1 −  for small positive . The expected profit

is

Π1
¡
001 |−1

¢
=

001 + 1

2
1 +

3 − 1

2
2
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and lim→0Π1 (001 |−1) = 11 +
3−1
2

2. Together with (41), this implies

lim
→0
Π1
¡
001 |−1

¢−Π1 (1|−1) = 1

2
1 +

3 − 1

4
2 − 3 − 1

4
1 − 1

2
2 − 4 − 3

4
2

Since 01  1, (42) implies lim→0Π1 (001 |−1) − Π1 (1|−1)  0. Hence, there always exists

  0 small enough such that Π1 (
00
1 |−1)−Π1 (1|−1)  0.

The lemma implies that the maximal number of active approaches in an FPT with two

prizes is − 4. By Lemma 13(ii), an FPT with a single prize implements an equilibrium with

 − 2 active approaches. By Lemma 13(i), it is possible to implement the socially optimal
allocation with −2 approaches in an FPT with a single prize. Implementing this equilibrium
in a single-prize FPT, where the prize size is the sum of the two prizes in an FPT with two

prizes, strictly increases the total payoff. On the other hand, the payoff of the sellers remains

the same, as the total size of the fixed prize remains the same. Hence, the expected buyer

payoff strictly increases.

D.5 Supplementary Material for Subsection 6.6

In this subsection, we provide a more detailed version of the discussion in Section 6.6, with

slightly more emphasis on the formalism.

We have seen in Sections 3 and 4 that the buyer can induce the social optimum with an

auction, but the optimal innovation contest from her own perspective nevertheless is an FPT

(possibly augmented). In the following, we therefore ask whether alternative procurement

institutions might help the buyer to increase her expected payoffs by inducing diversity.

A commonly held assumption in the literature on innovation contests is that the buyer

is a monopsonist with complete market power. Hence, without the expectation of receiving

sufficiently high transfers, suppliers would not invest in developing innovations, as the buyer

would appropriate the entire surplus ex post. In innovation contests, the buyer commits to

paying one of the prices selected by the suppliers. It is exactly this commitment that resolves

the hold-up problem. In this section, we consider the case when the buyer does not commit

to a pricing rule ex ante. Ignoring the participation constraint for a moment, we show that ex

post price negotiations implement the socially optimal equilibrium for any bargaining power

that the buyer holds. Moreover, as long as the participation constraint holds, abstaining from

commitment can have favorable effects on the buyer’s expected payoffs.

More formally, the environment of a negotiation is a tuple (Ψ ). The only difference to

the environment for an innovation contest is an additional parameter  ∈ (0 1) capturing the
bargaining power of the buyer. As noted before,  = 1 would be equivalent to the environment

where the buyer is a monopsonist, as in the preceding section. On the other hand,  = 0 would

be equivalent to a situation where the buyer commits to an auction without reserve price. The

negotiation is characterized by an allocation mapping  : (1 2) 7→ ({1 2}  1 2) assigning
to each quality vector a selected supplier and potentially quality-dependent payments from

the buyer to the suppliers. We think of this function as mapping the quality vectors onto the

equilibrium payoffs of an unmodelled negotiation game N .
We make the following assumptions on this negotiation game:

1. In equilibrium, the buyer selects the high-quality supplier.
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2. The payments are such that the buyer obtains an exogenously determined fraction 

of the additional surplus ∆ generated by the high-quality supplier, and this supplier

receives the remaining fraction 1 −  . Here  is a black box parameter capturing the

bargaining power of the buyer.

Ignoring fixed costs and transfers, negotiations thus determine payoffs as

 (1 2) = ∆ +min{1 2} (43)

for the buyer and

Π (1 2) =

½
(1− )∆ if   

0 if  ≤ 
(44)

for the supplier.

These assumptions are consistent with the understanding that quality is observable, but

not verifiable: We can think of  and Π as equilibrium payoffs in an unmodelled negotiation

game with full information about parameters that are relevant to the division of the surplus,

but it is not necessary that a court can observe payoffs. The following result is an immediate

implication of Lemma 21.

Corollary 37 Price negotiations (weakly) implement the social optimum

(∗1 
∗
2).

The distributional properties depend on  , which is exogenous. No matter what  is,

however, the buyer always prefers negotiations to auctions, because of the outside option of

going back to the alternative supplier. In this sense, holding an auction represents a transfer

of market power from the buyer to the suppliers. Clearly, for sufficiently high bargaining

power of the buyer, negotiations are preferable to the optimal FPT for the buyer. Of course,

the anticipated bargaining power of the buyer has to remain sufficiently low that the suppliers

expect to break even.
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