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ALLAIS AT THE HORSE RACE: TESTING MODELS OF
AMBIGUITY AVERSION

FLORIAN SCHNEIDER AND MARTIN SCHONGER

Abstract. Most models of ambiguity aversion satisfy Anscombe-Aumann’s
Monotonicity axiom. This paper proposes a test of Monotonicity, the Allais
Horse Race. It is an adaptation of the Allais paradox to a setting with both
subjective and objective uncertainty. Viewed as a thought experiment, the
Allais Horse Race allows for introspective assessment of Monotonicity. Imple-
menting it as an incentivized experiment, we find that the modal choice of
subjects violates Monotonicity in a specific, intuitive way. Overall, we find
that models of ambiguity aversion that satisfy Monotonicity cannot describe
the behavior of about half of all subjects.

1. Introduction

Since Ellsberg (1961) pioneered the concept of ambiguity aversion, both the-
orists and experimentalists have taken a keen interest in the concept. Ambi-
guity aversion is usually studied in the Anscombe-Aumann (1963) framework.
Anscombe-Aumann proposed a Monotonicity axiom. Monotonicity prescribes,
that if two acts differ only on a single state, then the preference between these
two acts is given by the preference between the lotteries that are assigned to
that state. The descriptive validity of this axiom is the focus of this paper.
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The Monotonicity axiom is widely used in models of ambiguity aversion. In-
deed, apart from basic choice theoretic axioms like Transitivity and Continu-
ity, Monotonicity seems to be the most common axiom models of ambiguity
aversion satisfy. Within the Anscombe-Aumann framework, models of ambi-
guity aversion that satisfy Monotonicity include Multiple priors (Gilboa and
Schmeidler, 1989), Rank-Dependent/Choquet Model (Schmeidler, 1989), Smooth
ambiguity preferences (Klibanoff, Marinacci, and Mukerji, 2005), Variational
preferences (Maccheroni, Marinacci, and Rustichini, 2006), Confidence-function
preferences (Chateauneuf and Faro, 2009), Vector Expected Utility (Siniscalchi,
2009), Uncertainty-averse preferences (Cerreia-Vioglio, Maccheroni, Marinacci,
and Montrucchio, 2011), MBA-preferences (Cerreia-Vioglio, Ghirardato, Mac-
cheroni, Marinacci, and Siniscalchi, 2011), monotone mean-dispersion prefer-
ences (Grant and Polak, 2013), and Hedging preferences (Dean and Ortoleva,
forthcoming). Models that do not satisfy Monotonicity include the Anticipated
utility/Recursive model (Segal, 1987), the related Recursive rank-dependent util-
ity model (Abdellaoui and Zank, 2015), and (non-monotone) mean-dispersion
preferences (Grant and Polak, 2013).

Experimental work on ambiguity aversion has focused on measuring ambiguity
aversion or seeking in different domains (gains, losses), for different likelihoods,
and for different sources of ambiguity1. But we know of no method to test the
Monotonicity axiom, let alone experimental work that actually does so. A study
that like ours tries to distinguish between different models of ambiguity aversion
is Halevy (2007), but that study focuses on the association between ambiguity
aversion and failure to satisfy the axiom of Reduction of compound lotteries.2

This paper provides a thought experiment that is a test of Monotonicity. Our
thought experiment is an adaptation of the classical Allais paradox. Recall that
the Allais paradox is set in a world of purely objective uncertainty, and tests Ex-
pected Utility (specifically the von Neumann-Morgenstern Independence axiom).
1For recent reviews of the experimental literature see Hey (2014); Trautmann and van de Kuilen
(2015)
2Also see Abdellaoui, Klibanoff, and Placido (2015).
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Previous authors3 have adapted the Allais paradox to a setting of purely sub-
jective uncertainty, where it becomes a test of Subjective Expected Utility. We
adapt the Allais paradox to a setting where there are both objective and subjec-
tive sources of uncertainty. The so-modified Allais paradox tests Monotonicity,
and we call it the Allais Horse Race. The Allais Horse Race serves two roles: first
it allows for introspective “testing” of Monotonicity, and second, it paves the way
for the actual experimental test of the descriptive validity of Monotonicity.

We conduct an incentivized experiment implementing the Allais Horse Race.
A real-world lottery is the source of objective uncertainty, while for subjective
uncertainty we use future weather in a foreign city. We find that about half of all
participants violate Monotonicity, and overwhelmingly do so in a specific, non-
random way. The hypothesis that violations are due to random error is easily
and robustly rejected by the data. The specific pattern of violations we find
mirrors the pattern that has been found in experimental investigations of the
Allais paradox. Towards the end of the experiment we confront participants with
the original Allais paradox. It turns out that violating Independence strongly
predicts violating Monotonicity.

To provide some insight into the empirical correlation between violations of
Independence and Monotonicity, theorem 1 establishes that for probabilistically
sophisticated decision-makers, Monotonicity and Independence are equivalent.
This might explain why decision-makers in general tend to either satisfy both
Independence and Monotonicity or violate both. For most decision-makers the
axioms, while not equivalent, are probably similar.

The paper is organized as follows: Section 2 introduces the Allais Horse Race
thought experiment, gives a formal setting, and provides the conditional equiv-
alence of Monotonicity and Independence. Section 3 describes the design of our
actual experiment, and section 4 provides the results. Section 5 concludes.

2. The Allais Horse Race and Monotonicity

2.1. The Allais Horse Race.
3See MacCrimmon and Larsson (1979); Tversky and Kahneman (1992); Wu and Gonzalez
(1999), also the discussion in Wakker (2010), pp. 134f.
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1A : $1Million with certainty.

1B :


$0 Horse 1-11 wins and roulette stops on 1.
$1Million Horse 12-100 wins.
$5Million Horse 1-11 wins and roulette stops on 2-11.

2A :

{
$0 Horse 12-100 wins.
$1Million Horse 1-11 wins.

2B :


$0 Horse 1-11 wins and roulette stops on 1,

or Horse 12-100 wins.
$5Million Horse 1-11 wins and roulette stops on 2-11.

Figure 1. Allais Horse Race

We develop the Allais Horse Race thought experiment to test Monotonicity.
The purpose of the thought experiment is twofold: to help intuition of how strong
Monotonicity is, and to allow for actual experimental tests. As in the classical
Anscombe-Aumann story there is a horse race and a roulette wheel. 100 horses
numbered from 1 to 100 are starting. You do not know the probability that
a particular horse will win. At the same time as the horses are running, the
roulette wheel is spun. The roulette wheel has 11 fields, which are equiprobable
and numbered from 1 to 11. As shown in figure 1 the decision-maker is confronted
with two choice situations, 1 and 2. In each choice situation she has the choice
between two options, A and B. In choice situation 1 an intuitively plausible
choice, in line with the certainty effect (Kahneman and Tversky, 1979), might
be to prefer 1A, which is a million for sure, over 1B, where there is a chance
of not winning anything. In choice situation 2 by contrast in both bets there is
a danger of winning nothing, thus the chance of winning $5 Million in bet 2B
may make that bet more attractive than bet 2A. Such a choice pattern violates
Monotonicity (see observation 1 in the next subsection). It will be helpful to have
a name for this particular choice pattern, let us call these choices the intuitive
paradoxical choice pattern.
Compare the Allais Horse Race to the classical Allais paradox (Allais, 1953),
reproduced in figure 2. Recall that in the Allais paradox all uncertainty is ob-
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IA : $1Million with certainty.

IB :


$0 Roulette stops on 1.
$1Million Roulette stops on 2-90.
$5Million Roulette stops on 91-100.

IIA :

{
$0 Roulette stops on 1-89.
$1Million Roulette stops on 90-100.

IIB :

{
$0 Roulette stops on 1-90.
$5Million Roulette stops on 91-100.

Figure 2. Allais paradox

jective. Thus in the metaphors of the Anscombe-Aumann framework, the Allais
paradox only features a roulette wheel (albeit with more fields), but no horse race.
Since the Allais Horse Race and the Allais paradox only differ in the sources of
uncertainty, a decision-maker who does not distinguish between objective and
subjective uncertainty, i.e. a probabilistically sophisticated one, views them as
the same choice situation (for a more formal statement see p. 8).
Again let us call the pattern of choosing IA over IB, and IIB over IIA the intuitive
paradoxical choice pattern, as it is analogous to the intuitive paradoxical choice
pattern in the Allais Horse Race (choosing 1A over 1B, and 2B over 2A). The
intuitive paradoxical choice pattern is what has often been found in experimental
investigations of the Allais paradox4, and constitutes a violation of Independence.
The next subsection observes that exhibiting the intuitive paradoxical choice
pattern in the Allais Horse Race behavior violates Monotonicity.

2.2. Formal setting. To formally discuss the Monotonicity axiom and its impli-
cations, let us introduce an Anscombe-Aumann framework. There are (monetary)
prizes ω in an interval [ω, ω] ⊂ R. We denote the space of simple probability dis-
tributions over [ω, ω] by P , with generic elements p, q, r, t. A degenerate lottery
puts probability 1 on ω in [ω, ω] and is denoted by σω. There is a (finite or
4See for example Kahneman and Tversky (1979), Conlisk (1989), Burke, Carter, Gominiak, and
Ohl (1996), Fan (2002), and Huck and Müller (2012).
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infinite) set of states S = {..., s, ...}. An act f is a function f : S → P such
that for some finite partition (E1, ..., En, ..., EN) of the state space S, for all n, if
s′, s′′ in En then fs′ = fs′′ . The set of all acts is denoted by L. Generic acts are
f, g, h. Given a partition (E1, ..., En, ..., EN), the act f = [..., fn on En, ...] gives
the lottery fn on event En. An act that yields the same lottery p in each state is
called a constant act, and, slightly abusing notation, is denoted by p when there
is no risk of confusion. Given two acts f and g and a common partition, a new act
can be generated by taking a convex combination of the lotteries obtained in each
event: αf + (1− α) g, where α in (0, 1).5 Throughout we assume that objective
and subjective uncertainty are resolved simultaneously. % is a preference order
on L:

Axiom (Weak order). % is complete, reflexive and transitive.

Anscombe-Aumann(1963) proposed the Monotonicity axiom which they called
“monotonicity in prizes”. Monotonicity requires that if the lottery that an act
assigns to an event is replaced by a preferred lottery, then the new act must be
preferred:

Axiom (Monotonicity). For all constant acts p, q: if p % q, then for any act f
given a partition for f :

[..., fn−1 on En−1, p on En, fn+1 on En+1, ...] %

[..., fn−1 on En−1, q on En, fn+1 on En+1, ...] .

Another version of the Monotonicity axiom is often used in the literature: for
any acts f, g, if fs % gs for all s then f % g. Note that under transitivity the two
versions are equivalent.

While not the focus of this paper, it is natural to ask what Monotonicity im-
plies for the representation of preferences. Monotonicity, together with three
basic choice theoretic axioms (Weak order, Mixture-continuity, and First-order
stochastic dominance), ensures that the preference admits a monotone, “state-
wise separable” representation. That is an act can be evaluated by a two-step
procedure: A preference functional evaluates the lottery given in each state. The
5αf + (1− α) g ≡[αf1 + (1− α) g1 on E1, ..., αfN + (1− α) gN on EN ]
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preference functional could for example be expected utility, rank-dependent ex-
pected utility (Quiggin, 1982) or cumulative prospect theory (Tversky and Kah-
neman, 1992). This yields S numbers which are then aggregated by a monotone
function to a single number representing the utility of the act. For a more formal
discussion see the appendix.

Now we can translate the Allais Horse Race into the formal setting. De-
fine the state space to be S = {1, 2, ..., 100}, and partition it into the events
E1 = {1, .., 89} and E2 = {90, .., 100}. The four acts can be written as 1A =

σ1 M, 1B =
[
σ1 M on E1,

(
0; 1

11
, 5 M; 10

11

)
on E2

]
, 2A = [σ0 on E1, σ1 M on E2],

and 2B =
[
σ0 on E1,

(
0; 1

11
, 5 M; 10

11

)
on E2

]
. The following observation tells us

which choice patterns are consistent with Monotonicity:

Observation 1. If % satisfies Weak order and Monotonicity, then:
1A % 1B and 2A % 2B, or, 1B % 1A and 2B % 2A.

The proof, and all other proofs, are in the appendix. Note that Monotonicity
rules out the intuitive paradoxical choice pattern.

2.3. Equivalence of Independence and Monotonicity under probabilistic
sophistication. As argued previously, for a decision-maker who is probabilisti-
cally sophisticated, the Allais paradox and the Allais Horse Race are essentially
the same problem. Behind this insight lies a more general principle, which the-
orem 1 in this subsection develops: for any decision-maker who is probabilisti-
cally sophisticated, the Independence and Monotonicity axioms are equivalent.
Machina and Schmeidler (1992, 1995) provide an axiomatic justification for prob-
abilistic sophistication. A probabilistically sophisticated decision-makers acts as
if she has a unique subjective probability distribution over states, and she treats
objective and subjective probabilities interchangeably:

Axiom (Probabilistic sophistication). There exists a non-atomic6 probability mea-
sure µ such that for all acts f with partition (E1, ..., EN):

f ∼
N∑
i=1

µ(Ei)fi.

6A finitely additive probability measure µ is non-atomic if for every event E with µ [E] > 0 and
every α in [0, 1] there is an event E′ ⊂ E such that µ (E′) = αµ (E).
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The above axiom closely follows the Machina-Schmeidler (1995, p.114) def-
inition of probabilistic sophistication.7 The probabilistic sophistication axiom
neither implies nor is implied by Independence and Monotonicity. Probabilistic
sophistication essentially turns the Allais Horse Race into the Allais paradox.
Assuming that the decision-maker views the states as informationally symmet-
ric, she assigns subjective probabilities of µ (E1) =

89
100

and µ (E2) =
11
100

. Then
the decision-maker is indifferent between each act in the Allais Horse Race and
the corresponding act in the Allais paradox (1A ∼ IA, 1B ∼ IB, 2A ∼ IIA, and
2B ∼ IIB). Before turning to theorem 1, let us state the axioms required:

Axiom (Independence). For all constant acts p, q, and r, and for all α in (0, 1):

p % q ⇒ αp+ (1− α) r % αq + (1− α) r.

Independence applies to objective uncertainty only, thus in the Anscombe-
Aumann framework its domain is the set of constant acts. If one specifies as the
domain the set of all acts, then one gets a stronger independence axiom, which for
clarity we shall refer to as Anscombe-Aumann-Independence (AA-Independence):

Axiom (AA-Independence). For all acts f, g, h, and for all α in (0, 1):

f % g ⇒ αf + (1− α)h % αg + (1− α)h.

The central insight of the theorem is, that, given probabilistic sophistication,
Monotonicity and Independence are equivalent. In addition, given probabilistic
sophistication, Independence implies its stronger sibling AA-Independence:

Theorem 1. If % satisfies Weak order and Probabilistic sophistication then the
following statements are equivalent:

(i) % satisfies Monotonicity.
(ii) % satisfies Independence.
(iii) % satisfies AA-Independence.

We believe that Monotonicity and Independence are similar, and that even
non-probabilistically sophisticated decision-makers will tend to either satisfy or
7Unlike Machina-Schmeidler we require the subjective probability measure to be non-atomic.
Savage (1954) was the first to provide conditions for existence of a non-atomic probability
measure. For several definitions of non-atomic measures, and a brief discussion see Gilboa
(2009, p.107-8).
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violate both axioms. For probabilistic sophistication the similarity peaks in the
form of equivalence.

Incidentally, theorem 1 suggests an alternative axiomatization of subjective ex-
pected utility (SEU). As is well-known (see Fishburn, 1970), substantive axioms
that ensure SEU are AA-Independence together with Monotonicity. The theo-
rem suggests that alternatively, if one assumes probabilistic sophistication, then
adding Monotonicity (or Independence) also yields SEU.

3. Experimental Design

To find out to what extent the Monotonicity axiom holds empirically we run
an experiment. A second purpose of the experiment is to compare and relate the
prevalence of potential violations of Monotonicity to those of Independence. We
adapt the sources of uncertainty and prizes of the Allais Horse Race as follows:
Rather than a horse race, the source of subjective uncertainty is weather in a
foreign city as in Fox and Tversky (1995). Specifically, we consider the event
that tomorrow’s high temperature in Mexico City is “unexpectedly high”, and
its complement “not unexpectedly high”. We define “unexpectedly high” as 6°
Fahrenheit or more above the current forecast. Participants are told the cur-
rent forecast and are encouraged to check it on an external website, which shows
forecasts and past realizations rounded to integer degrees Fahrenheit. For ob-
jective uncertainty we use a real-world lottery, the evening draw of “Texas Pick
3”. It produces the numbers between 000 and 999 with equal probability. In the
Allais Horse Race we consider the last digit, in the Allais paradox the last two
digits. Thus we slightly modify the objective probabilities in the Allais Horse
Race (10 instead of 11 equiprobable objective events). This simplifies the objec-
tive probabilities for participants, and, in the terminology of Zizzo (2010), non-
deceptively obfuscates the purpose of the experiment to participants as the Allais
Horse Race and the Allais paradox become even less similar. For the non-zero
prizes, rather than the thought experiment amounts of $1 Million and $5 Million
we use $4 and $5.8 With these modifications and partitioning the state space
into the event E = “unexpectedly hot” and its complement EC we get the acts
8Similar proportions of the two non-zero prizes in small-stakes Allais paradox experiments are
used in Fan (2002) and Incekara-Hafalir and Stecher (2012).
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1A*= σ4, 1B* =
[
σ4 on EC ,

(
0; 1

10
, 5; 9

10

)
on E

]
, 2A* =

[
σ0 on EC , σ4 on E

]
,

and 2B* =
[
σ0 on EC ,

(
0; 1

10
, 5; 9

10

)
on E

]
. Figure 3 shows, using the example

of act 1B*, how the acts are displayed to participants (the temperature symbols
are defined and explained to participants). Acts are called “lotteries” throughout
the experiment. Note that observation 1 analogously applies to the acts in the
experiment. In the case of the Allais paradox, the lotteries in the experiment
(IA*, IB*, IIA*, IIB*) differ from the original lotteries (IA, IB, IIA, IIB) only in
the prizes as described above.

Figure 3. Visual representation of act 1B*

Participants were recruited on Amazon Mechanical Turk (AMT). We restricted
participation to U.S. workers. The experiment was conducted using the Qualtrics
Survey Platform, all subjects completed the study within a few hours on the same
day in the second half of 2015. We incentivized participants with a substantial
participation fee and prizes: The median hourly reservation wage on AMT is
$1.389, the experiment was described as taking 10 to 15 minutes with a partici-
pation fee of $0.50, to which in addition prizes from $0 to $5 could be won.

The sequence of the experiment is as follows10: participants are informed about
the study and voluntary consent is obtained, the acts are explained including
links to the external websites of weather.com and Texas Pick 3, followed by three
(non-incentivized) understanding questions. As a further test of participants’
understanding the subsequent screen offers a choice between two acts, where one
act first-order stochastically dominates the other11. On this screen, as well as
9Horton and Chilton (2010)
10A web appendix gives screenshots and a detailed description of the experiment.
11The notion of first-order stochastic dominance used here is the generalization of the standard
notion of first-order stochastic dominance to a setting of objective/subjective uncertainty, see
axiom FOSD, p.22.
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the Allais Horse Race and Allais paradox screens, subjects are given a choice12

between the acts, which are presented in random order. The next two screens
each present an Allais Horse Race choice situation, where the order of the screens
(choice situations) is random. This is followed by the two Allais paradox choice
situations, which are again displayed in random order. Finally, using the reserva-
tion probability method13, participants’ beliefs about the probability of the event
E (“unexpectedly high temperature”) are elicited in an incentivized manner. In
total participants are asked to make nine choices, and the Random Lottery In-
centive (RLI) system is used to make hedging impossible.14

4. Experimental Results

Data from N = 552 participants was collected. Table 1 gives participants’
choices in the Allais Horse Race. Consider the first row of results which concerns
the full sample. Choices in columns two and three do not violate Monotonicity,
choices in columns four and five do. The modal choice of participants violates
Monotonicity in a particular way: 38.8 percent of participants exhibit the in-
tuitive paradoxical choice pattern (choosing 1A* over 1B* but 2B* over 2A*).
Violations of Monotonicity are not random, rather there is an asymmetric pat-
tern, as violations in the opposite way are much rarer with 9.2 percent. Following
Conlisk (1989) and the subsequent literature, we test whether violations are the
result of random, symmetric participant error. We can reject that hypothesis at
all conventional significance levels (Z = 11.06, p-value < 10−28). The remaining
12We use direct choice rather than willingness-to-pay to avoid the preference reversals arising
from loss aversion as discovered by Trautmann, Vieider, and Wakker (2011).
13The reservation probability method is an adaptation of the BDM-mechanism (Becker, De-
groot, and Marschak, 1964). Its advantage is that it does not require correction for the risk
attitude of subjects (Schlag, Tremewan, and van der Weele, 2014). Besides offering incentives
to participants, the reservation probability method has another advantage in an ambiguity
aversion context: asking for a single probability estimate need not be a well-defined question
for subjects who do not form a single subjective prior, but the questions of the reservation
probability method are well-defined even for such subjects. The exact interpretation of the
answer then naturally depends on what model of ambiguity attitudes one assumes. A conser-
vative interpretation is to assume the multiple priors model (Gilboa and Schmeidler, 1989),
then the elicited belief corresponds to the prior that assigns the lowest probability on the event
tomorrow’s temperature is “unexpectedly high”.
14Starmer and Sugden (1991) show that the RLI is empirically valid since participants tend to
bracket narrowly.
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rows repeat the analysis but for different subsamples as a first robustness check.
The second row of results considers only participants who got both test ques-
tions 1 and 2 correct. The third row considers only participants who in addition
satisfy (generalized) first-order stochastic dominance. The remaining rows split
the sample by duration. These different subsamples can be seen as different ways
of restricting attention to subjects who understand the experiment and take it
seriously, an issue about which one may be particularly concerned on AMT. The
picture that emerges is that the distribution of violations is very similar across
subsamples. Table 1 in the appendix (table 5, p.25) finds robustness across fur-
ther subsamples. A more formal test of robustness is provided by the linear
probability model towards the end of this section.

Table 1. Violations of Monotonicity (in percent)

Satisfy Violate

1A*2A* 1B*2B* 1A*2B* 1B*2A* Conl.-Z N
Full sample 36.8 15.2 38.8 9.2 11.06 552
Robustness in subsamples:
Testq. 1-2 correct 36.7 14.7 39.7 8.9 10.24 436
Testq. 1-2 correct & FOSD 35.3 17.2 38.1 9.4 8.33 331
Duration 1. quartile 37.0 14.5 39.9 8.7 5.85 138
Duration 2. quartile 36.2 14.5 38.4 10.9 4.99 138
Duration 3. quartile 36.2 14.5 39.1 10.1 5.31 138
Duration 4. quartile 37.7 17.4 37.7 7.2 5.97 138

A similar pattern emerges in the Allais paradox (table 2): 35.3 percent of par-
ticipants exhibit the intuitive paradoxical choice pattern (choosing IA* over IB*
while choosing IIB* over IIA*).15 Conlisk’s test rejects the hypothesis that this
violation is due to random, symmetric error (Z= 6.92, p-value < 10−10). Again re-
sults are robust across subsamples, table 6 in the appendix (p.26) offers even more
robustness checks by subsample yielding the same conclusion. Roughly speaking
violations of Independence have similar prevalance as violations of Monotonicity,
15Other incentivized, small-stakes Allais experiments find similar results , e.g 27.2% for that
cell in Fan (2002).
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in both cases about half the subjects violate the axioms, and in both cases the
violations display the same asymmetric pattern.

Table 2. Violations of Independence (in percent)

Satisfy Violate

IA*IIA* IB*IIB* IA*IIB* IB*IIA* Conl.-Z N
Full sample 23.0 26.4 35.3 15.2 6.92 552
Robustness in subsamples:
Testq. 1-2 correct 24.5 24.8 35.3 15.4 6.09 436
Testq. 1-2 correct & FOSD 23.9 25.7 32.9 17.5 4.04 331
Duration 1. quartile 21.7 28.3 37.7 12.3 4.50 138
Duration 2. quartile 21.7 21.7 39.1 17.4 3.54 138
Duration 3. quartile 21.7 29.0 34.1 15.2 3.26 138
Duration 4. quartile 26.8 26.8 30.4 15.9 2.55 138

Violations of Monotonicity and Independence are related: The probability for
a participant to violate Monotonicity with the intuitive paradoxical choice pat-
tern is 31.7 percent conditional on not violating Independence with the intuitive
paradoxical choice pattern, but it rises to 51.8 percent conditional on violating
Independence with the intuitive paradoxical choice pattern. Table 3 provides a
fuller picture of the relationship: The full sample is partitioned into the four
possible choice patterns in the Allais paradox, each row in the table corresponds
to a pattern. The table entries give the fraction of participants exhibiting a par-

Table 3. Relationship between Independence and Monotonicity

Satisfy Violate

1A*2A* 1B*2B* 1A*2B* 1B*2A* Conl.-Z N

Satisfy
IA*IIA* 52.0 3.9 37.0 7.1 5.67 127
IB*IIB* 21.2 36.3 29.5 13.0 3.14 146

Violate
IA*IIB* 43.6 3.6 51.8 1.0 13.60 195
IB*IIA* 25.0 22.6 27.4 25.0 0.30 84

ticular Allais Horse Race behavior among each of these subsamples. Note that
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for each particular behavior in the Allais paradox the modal choice is the analo-
gous behavior in the Allais Horse Race (except for the last and smallest group,
the opposite of the intuitive paradoxical choice pattern). This is striking since
the questions are presented screens apart, the order in which the acts and choice
situations appear is random, and the questions are substantially different.

Table 4. Linear Probability Model

(1) (2) (3)

Allais IB*IIA* -0.0963 -0.0969 -0.0783
(0.0651) (0.0658) (0.0660)

Allais IA*IIB* 0.148∗∗∗ 0.149∗∗∗ 0.158∗∗∗
(0.0560) (0.0563) (0.0559)

Allais IB*IIB* -0.0756 -0.0764 -0.0770
(0.0573) (0.0588) (0.0588)

Testq. 1 correct -0.0124 -0.0178
(0.0587) (0.0569)

Testq. 2 correct 0.0476 0.0367
(0.0732) (0.0732)

Testq. 3 correct -0.0125 -0.0112
(0.0422) (0.0428)

Satisfy FOSD 0.0116 0.0218
(0.0469) (0.0475)

Duration (min.) -0.00427 -0.00501
(0.00316) (0.00323)

Belief ≤ 10% 0.0481 0.0576
(0.0503) (0.0514)

Belief > 10% 0.0181 0.0428
(0.0582) (0.0580)

_cons 0.370∗∗∗ 0.353∗∗∗ 0.324∗∗
(0.0430) (0.0997) (0.146)

N 552 552 552
R-sq 0.0435 0.0486 0.0954
Ind. Contr. No No Yes

Dependent variable: Binary variable of intuitive paradoxical choice pattern (1A*2B*).
Heteroskedasticity-consistent standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01.
Omitted category: Allais IA*IIA*. Individual controls: gender, age, income, education,
employment status, and ownership of stocks.
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To investigate the questions of robustness of the results, and predictors of
violations of Monotonicity further, table 4 provides a linear probability model16.
The dependent variable is a binary variable which takes the value 1 iff a subject
exhibits the intuitive paradoxical choice pattern in the Allais Horse Race. In
all our specifications exhibiting the intuitive paradoxical choice pattern in the
Allais paradox increases the likelihood of exhibiting the analogous pattern in the
Allais Horse Race by about 15 percentage points compared to the baseline of
choosing IA* and IIA*. That coefficient is significant at the 1 percent level in all
specifications.

5. Conclusion

Data collected in this paper challenges models of ambiguity aversion that as-
sume Anscombe-Aumann’s Monotonicity axiom. About half of all our experi-
mental subjects exhibit behavior at odds with the predictions of such models.
The Monotonicity axiom is, apart from basic choice theoretic axioms, the most
common assumption in models of ambiguity aversion. Monotonicity says that if
the lottery that an act assigns to a particular state is replaced by a preferred
lottery then the new act must be preferred to the original one. From the perspec-
tive of the representation of preferences, Monotonicity implies that the preference
admits a monotone, state-wise separable representation.

This paper introduces the Allais Horse Race, which is a modification of the
famous Allais paradox. In the Allais paradox all uncertainty is objective, the
modification consists of making some but not all of the uncertainty subjective.
Thereby the experiment ceases to be a test of Independence, and instead becomes
a test of Monotonicity.

Theorem 1 relates the Monotonicity and Independence axioms, by establishing
that for probabilistically sophisticated decision-makers the two axioms are equiva-
lent. We think of Monotonicity as the cousin of Independence in the world of sub-
jective/objective uncertainty. Even decision-makers who are not probabilistically
sophisticated probably view the axioms as related. Our experimental evidence
confirms this intuition: First, violations of Independence and Monotonicity are
of similar prevalence, being exhibited by about one in two participants. Second,
16Employing a logit rather than a linear probability model yields essentially the same results.
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violations of Independence and Monotonicity are related, violating Independence
is a strong predictor of violating Monotonicity.

The Allais paradox challenged the descriptive accuracy of Independence in
a setting of objective uncertainty, leading to the development of new positive
theories (e.g. Gul, 1991) which replace Independence by weaker axioms such as
Betweenness (see Chew, 1983 and Dekel, 1986). The Allais Horse Race tests
Monotonicity, and the evidence collected on its basis in this paper shows that
models that assume Monotonicity are not rich enough to describe modal subject
behavior.
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Appendix A: Proofs

To better distinguish constant acts from lotteries, we denote the act that yields
the lottery p ∈ P in all states by [p] ∈ L.

Proof of observation 1: Observation 1 is equivalent to the following statement:
If % satisfies Weak order and Monotonicity, then (i) 1A � 1B implies 2A % 2B,
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(ii) 1B � 1A implies 2B % 2A, (iii) 2A � 2B implies 1A % 1B, and (iv) 2B �
2A implies 1B % 1A.
Proof of (i): First, observe that 1A � 1B implies [σ1 M] �

[(
0; 1

11
, 5 M; 10

11

)]
,

as otherwise we would have
[(
0; 1

11
, 5 M; 10

11

)]
% [σ1 M] which by Monotonicity

would mean that 1B % 1A, a contradiction. Second, by Monotonicity, [σ1 M] �[(
0; 1

11
, 5 M; 10

11

)]
implies 2A % 2B.

The proofs of (ii) - (iv) are analogous.�

Proof of theorem 1: (iii) trivially implies (ii), thus it suffices to show that (ii)
implies (i), and (i) implies (iii). (ii) implies (i): Consider two constant acts [p] , [q]
with [p] % [q]. We have to show that for any act h

[..., hn−1 on En−1, p on En, hn+1 on En+1, ...] %

[..., hn−1 on En−1, q on En, hn+1 on En+1, ...] .

By probabilistic sophistication there exists a probability measure µ such that:

[..., hn−1 on En−1, p on En, hn+1 on En+1, ...] ∼

[
µ(En)p+

∑
i 6=n

µ(Ei)hi

]
.

The latter is a constant act that can be seen as a mixture of two constant acts,
putting weight µ(En) on p and weight 1−µ(En) on

∑
i6=n µ(Ei)hi

1−µ(En)
. By an analogous

argument we have

[..., hn−1 on En−1, q on En, hn+1 on En+1, ...] ∼[
µ(En)q + (1− µ (En))

∑
i 6=n µ(Ei)hi

1− µ (En)

]
.

Now note that by Independence[
µ(En)p+ (1− µ (En))

∑
i 6=n µ(Ei)hi

1− µ (En)

]
%

[
µ(En)q + (1− µ (En))

∑
i 6=n µ(Ei)hi

1− µ (En)

]
.

(i) implies (iii): Consider three acts f, g, h with f % g and any α ∈ (0, 1).
Consider a common partition (E1, ..., EN). By probabilistic sophistication there
exists a non-atomic probability measure µ such that f ∼

[∑N
i=1 µ(Ei)fi

]
, g ∼[∑N

i=1 µ(Ei)gi

]
and h ∼

[∑N
i=1 µ(Ei)hi

]
. As µ is non-atomic, there exists an

event E ⊂ S s.t. µ(E) = α.
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First, note that by Monotonicity:[
N∑
i=1

µ(Ei)fi on E,
N∑
i=1

µ(Ei)hi on S\E

]
%

[
N∑
i=1

µ(Ei)gi on E,
N∑
i=1

µ(Ei)hi on S\E

]
.

Second, by applying probabilistic sophistication twice we obtain:[∑N
i=1 µ(Ei)fi on E,

∑N
i=1 µ(Ei)hi on S\E

]
∼[

α
∑N

i=1 µ(Ei)fi + (1− α)
∑N

i=1 µ(Ei)hi

]
∼

αf + (1− α)h,

and, similarly,
[∑N

i=1 µ(Ei)gi on E,
∑N

i=1 µ(Ei)hi on S\E
]
∼ αg + (1− α)h.�

Appendix B: Characterizing Models Satisfying Monotonicity

We restrict attention to finite state spaces S = {1, ..., s, ..., S}. The following
observation connects the form of the representation with Monotonicity:

Observation 2. If % can be represented by V (U ◦ f), where U : P → R is a
preference functional, and V : U (P)S → R is a strictly monotone17 function,
then % satisfies Monotonicity.

Proof. For any two constant acts [p] , [q], with [p] % [q], since V (U ◦ f) represents
% we have V (U(p), ..., U(p)) ≥ V (U(q), ..., U(q)). As V is strictly monotone:
U (p) ≥ U (q). As V is monotone, for all acts h :

V (..., U(hs−1), U(p), U(hs+1) , ...) ≥ V (..., U(hs−1), U(q), U(hs+1), ...)

thus [..., hs−1, p, hs+1, ...] % [..., hs−1 , q, hs+1, ...] . �

We call representations of the form described in observation 2 monotone and
state-wise separable. A state-wise separable representation evaluates an act by
first taking a preference functional U of the roulette lottery obtained in each
state, and then aggregating across states using a real-valued, monotone function
V . The observation raises the question whether the reverse is also true, that
is whether Monotonicity guarantees that the preference will admit a monotone,
17We say that V is strictly monotone if for all x, y in U (P)S : If there is no s sucht that ys > xs,
then V (x) ≥ V (y); and if xs > ys for all s, then V (x) > V (y).
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state-wise separable representation. Theorem 2 establishes that Monotonicity to-
gether with three basic choice theoretic axioms implies existence of a monotone,
state-wise separable representation. The three basic choice theoretic axioms are
Weak order, Mixture-continuity, and first-order stochastic dominance as appro-
priately generalized to the Anscombe-Aumann setting18.

Axiom (Mixture-continuity). For all acts f, g, h: if f � g � h, then there exists
α in (0, 1) such that g ∼ αf + (1− α)h.

Axiom (FOSD). For all acts f, g: if for all states s, fs first-order stochastically
dominates gs then f % g, with strict preference whenever there is strict dominance
in all states.

The three basic choice theoretic axioms ensure existence of a representation:

Lemma 1. % satisfies the axioms Weak order, Mixture-continuity, and FOSD if
and only if, there exists a mixture-continuous19, strictly monotonic20 preference
functional W : L = PS → R representing %.

Proof. First, we construct W : For all acts f , by FOSD we have: [σω] % f % [σω].
Consider the set

A (f) = {α ∈ [0, 1] : f ∼ α [σω] + (1− α) [σω]} .

By Mixture-continuity this set is non-empty, by the strict part of FOSD it has
at most one element. Thus we can define W : PS → [0, 1] by W (f) = A (f).
Second, we show that W represents %: For all acts f and g by FOSD:

W (f) ≥ W (g)⇔ W (f) [σω] + (1−W (f)) [σω] % W (g) [σω] + (1−W (g)) [σω] .

By definition of W we have

f ∼ W (f) [σω] + (1−W (f)) [σω] , and g ∼ W (g) [σω] + (1−W (g)) [σω] .

18The axiom we give here is a slight weakening of the FOSD-Axiom in Machina and Schmeidler
(1995).
19Given a convex set C (in P , L, or an Euclidean space), we say that a function φ : C → R
is mixture-continuous if for all c, c′ in C with φ (c) < φ (c′): For all φ0 in (φ (c) , φ (c′)), there
exists α in (0, 1) such that φ0 = φ (αc+ (1− α) c′).
20We say that a preference functionalW over L is strictly monotonic ifW (f) ≥W (g) whenever
for all s fs first-order stochastically dominates gs, with strict inequality if the dominance is strict
on all s.
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Therefore,

W (f) [σω] + (1−W (f)) [σω] % W (g) [σω] + (1−W (g)) [σω]⇔ f % g.

Third, W is monotone as % satisfies FOSD.
Fourth,W is mixture-continuous: Consider two acts f, g withW (g) < W (f) and
W0 in (W (g) ,W (f)). By definition of W : W0 = W (W0 [σω] + (1−W0) [σω]).
By Mixture-continuity of %, there exists α in (0, 1) such that αf + (1− α) g ∼
W0 [σω] + (1−W0) [σω], and thus W (αf + (1− α) g) = W0 .
That the representation implies the axioms is trivial. �

As the lemma showed the three basic choice theoretic axioms guarantee ex-
istence of a representation, adding the Monotonicity axiom makes sure that a
monotone and state-wise separable representation exists:

Theorem 2. % satisfies the axioms Weak order, Mixture-continuity, FOSD and
Monotonicity, if and only if there exists a mixture-continuous21, strictly mono-
tonic22 preference functional U : P → R, and a mixture-continuous, strictly
monotone function V : U (P)S → R, such that V (U ◦ f) represents %.

Proof. i) The axioms imply the representation:
First we construct U and V . Using theW from lemma 1, we define U : P → [0, 1]

by:
U (p) ≡ W ([p]) ,

and V : [0, 1]S → [0, 1] by:

V (x1, ..., xS) ≡ W ([x1σω + (1− x1)σω, ..., xSσω + (1− xS)σω]) .

To show that W represents, we prove that (given Monotonicity) W (f) and
V (U ◦ f) are identical. That is for all acts f : W (f) = V (U (f1) , ..., U(fS)).
Observe that it suffices to show that for all acts f :

W (f) [σω] + (1−W (f)) [σω] ∼

V (U (f1) , ..., U(fS)) [σω] + (1− V (U (f1) , ..., U(fS))) [σω]

21Given a convex set C (in P , L, or an Euclidean space), we say that a function φ : C → R
is mixture-continuous if for all c, c′ in C with φ (c) < φ (c′): For all φ0 in (φ (c) , φ (c′)), there
exists α in (0, 1) such that φ0 = φ (αc+ (1− α) c′) .
22We say that U is strictly monotonic if U (p) ≥ U (q) whenever p first-order stochastically
dominates q, with strict inequality in the case of strict dominance.
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as it implies, by (the strict part of) FOSD, W (f) = V (U (f1) , ..., U(fS)).
By construction of W :

W (f) [σω] + (1−W (f)) [σω] ∼ f .

Observe that by definition of U , for all lotteries fs:
[fs] ∼ U (fs) [σω] + (1− U (fs)) [σω], and use Monotonicity to get:

f ∼ [U (f1)σω + (1− U (f1))σω, ..., U (fS)σω + (1− U (fS))σω].

Finally, by definition of V :

V (U (f1) , ..., U(fS)) [σω] + (1− V (U (f1) , ..., U(fS))) [σω] ∼

[U(f1)σω + (1− U(f1))σω, ..., U(fS)σω + (1− U(fS))σω] .

AsW is mixture-continuous and strictly monotonic, U is mixture-continuous and
strictly monotonic, and V is mixture-continuous and strictly monotone.
(ii) The representation implies the axioms:
According to lemma 1, % satisfies the axioms Weak order, Mixture-continuity
and FOSD. According to observation 2, % satisfies Monotonicity. �

Note that many models of ambiguity aversion that admit a state-wise sepa-
rable representation assume expected utility regarding objective uncertainty, i.e.
U (p) =

∑
ω∈[ω,ω]:p(ω)6=0

p (ω)u (ω). Adding the Independence axiom in theorem 2

yields this form (compare Trautmann and Wakker 2015, p.9).
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Appendix C: Experimental results

Table 5. Robustness Checks Allais Horse Race
Satisfy Violate

1A*2A* 1B*2B* 1A*2B* 1B*2A* Conl.-Z N
Full Sample 36.8 15.2 38.8 9.2 11.06 552
Testq. 1 correct 37.1 14.9 38.9 9.1 10.25 463
Testq. 2 correct 37.1 14.8 39.3 8.8 10.97 501
Testq. 3 correct 38.4 14.5 38.7 8.5 8.71 318
Testq. 1-2 correct 36.7 14.7 39.7 8.9 10.24 436
Testq. 1-3 correct 37.6 14.5 40.5 7.4 8.44 242
Satisfy FOSD 35.2 17.0 38.7 9.1 9.41 395
Testq. 1-2 correct & FOSD 35.3 17.2 38.1 9.4 8.33 331
Testq. 1-3 correct & FOSD 35.6 17.5 37.9 9.0 6.15 177
Duration 1. quartile 37.0 14.5 39.9 8.7 5.85 138
Duration 2. quartile 36.2 14.5 38.4 10.9 4.99 138
Duration 3. quartile 36.2 14.5 39.1 10.1 5.31 138
Duration 4. quartile 37.7 17.4 37.7 7.2 5.97 138
4. q.; Testq. 1-2 cor. & FOSD 34.0 20.2 37.2 8.5 4.52 94
4. q.; Testq. 1-3 cor. & FOSD 35.3 21.6 37.3 5.9 3.84 51
Belief ≤ 10% 35.8 16.9 39.8 7.5 8.46 254
Belief > 10% 37.2 14.3 37.2 11.3 6.10 231
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Table 6. Robustness Checks Allais Paradox
Satisfy Violate

IA*IIA* IB*IIB* IA*IIB* IB*IIA* Conl.-Z N
Full Sample 23.0 26.4 35.3 15.2 6.92 552
Testq. 1 correct 23.8 25.3 35.4 15.6 6.23 463
Testq. 2 correct 24.4 25.3 35.3 15.0 6.70 501
Testq. 3 correct 25.2 21.7 37.4 15.7 5.55 318
Testq. 1-2 correct 24.5 24.8 35.3 15.4 6.09 436
Testq. 1-3 correct 28.9 17.8 36.8 16.5 4.48 242
Satisfy FOSD 23.0 26.1 33.9 17.0 4.86 395
Testq. 1-2 correct & FOSD 23.9 25.7 32.9 17.5 4.04 331
Testq. 1-3 correct & FOSD 28.8 17.5 33.9 19.8 2.61 177
Duration 1. quartile 21.7 28.3 37.7 12.3 4.50 138
Duration 2. quartile 21.7 21.7 39.1 17.4 3.54 138
Duration 3. quartile 21.7 29.0 34.1 15.2 3.26 138
Duration 4. quartile 26.8 26.8 30.4 15.9 2.55 138
4. q.; Testq. 1-2 cor. & FOSD 25.5 29.8 26.6 18.1 1.24 94
4. q.; Testq. 1-3 cor. & FOSD 29.4 23.5 29.4 17.6 1.23 51
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