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Abstract

From 2004 to 2012, the German social health insurance levied a co-payment for the first doctor visit

in a calendar quarter. We develop a new model for estimating the effect of such a co-payment on

the individual number of visits per quarter. The model allows for a one time increase in the otherwise

constant hazard rate determining the timing of doctor visits, and uses a difference-in-differences strategy

to identify the reform effect. The model can be adapted to a situation where the reporting period and

the calendar quarter differ. Using data from the German Socio-Economic Panel, we do not find an effect

of the co-payment on demand for doctor visits.
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1 Introduction

Around 90% of the German population receive their health insurance coverage through the German statu-

tory health insurance system (SHI). Before 2004, the SHI did not require any co-payment for doctor visits,

although prescription drugs were subject to cost sharing for many years. Starting January 1st, 2004, the

insured had to pay a 10 Euro fee for the first visit to a doctor in each calendar quarter (“Praxisgebühr”).

Additional visits in the same quarter were free of charge. Thus the individual out-of-pocket expense became

a non-linear function of utilization, dropping from 10 to 0 Euros after the first doctor visit in a quarter.

Only individuals without any visit to a doctor could avoid paying the quarterly fee. Moreover, the fee

did not apply to those with private health insurance (PHI). On January 1st, 2013, the co-payment was

abolished.

Arguably, the introduction of a co-payment created an incentive to avoid doctor visits in a particular

quarter of the year, at least at the extensive margin, for those close to indifference between consulting or

not consulting a doctor. One therefore would expect that the probability of visiting a doctor at least once

within a quarter should have fallen in the SHI population relative to the unaffected PHI population. By

the same token, one might think that the number of doctor visits for those with at least one visit (the

conditional-on-positives or intensive margin effect) should be unrelated to the co-payment (see Augurzky

et al., 2006, for such a view) although our analysis below will provide reasons why this is not necessarily

the case.

A number of researchers have conducted quantitative evaluations of the effect of that reform on overall

demand and demand at the extensive margin (Augurzky et al., 2006, Schreyögg and Grabka, 2010, Farb-

macher and Winter, 2013). So far, results have been mixed. Augurzky et al. (2006) report a negative and

statistically significant difference-in-differences (DiD) coefficient in a logit model for “any visit”. However,

in their preferred specification they control for individual specific fixed effects, and the co-payment effect
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switches sign and becomes insignificant. Schreyögg and Grabka (2010) estimate a hurdle-at-zero negative

binomial model and find no effect in either part of the model. Farbmacher and Winter (2013) find a

statistically significant 4 percentage point reduction of the probability of any visit.

Our paper makes two main contributions. First, rather than using ad-hoc reduced form count data or

binary response models to estimate the reform effect, we develop a new approach based on a structural

model of health care demand. In our model, individuals are exposed to random health shocks arriving

according to a homogeneous Poisson process. Individuals are myopic and decide at each instance whether

or not to visit a doctor. In the random utility decision model, the out-of-pocket costs for seeing a doctor

drop non-linearly after the first visit, leading to an increased hazard rate for subsequent visits. The model

introduces a dynamic aspect, absent in econometric models used in prior work, where an increased cost of

a first visit has two effects: it becomes more likely that no visit occurs at all; moreover, a first visit, if it

take place, will tend to do so later in the quarter, lowering the overall number of subsequent visits. This

does not require forward looking behavior of agents (which in fact is ruled out by our model).

The second contribution is an internally consistent approach to deal with a discrepancy between calendar

quarter (i.,e., pricing period) and reporting period. This is relevant if one uses survey data such as the

Socio-Economic Panel (SOEP, Wagner et al., 2007) where respondents are asked to state the number

of visits during the three-months period preceeding the day of interview. Usually, the reporting period

overlaps with two calendar quarters, and “reporting-mismatch” arises if, unrecorded in the data and thus

unobserved by the analyst, a visit has taken place between the start of the relevant calendar quarter and

that of the reporting period. In this case, the first visit in the reporting period has an effective price of zero

under treatment, not of 10 Euros, as would always be the case if the reporting period and the calendar

quarter matched perfectly.

If one ignores this issue, it is easy to show that a misspecified likelihood function results. Farbmacher and
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Winter (2013) recommend to base estimation on the subset of individuals who were interviewed close to

the end of a calendar quarter. Even if one can treat the interview day as random, this approach takes a

heavy toll in terms of sample size and thus precision. For example, in our data, the number of available

observations drops from 32,888 to 6,236 if the sample is restricted to those interviewed within a ± 10

days-window around the end of a quarter. On the other hand, using our assumptions on the underlying

stochastic process, it becomes possible to derive the correct probability model for mismatched observations,

and thus to employ all available data for estimation. Extensions to allow for unobserved heterogeneity are

available.

Regarding data and identification, this paper largely follows the lead of the prior literature. For example,

Augurzky et al. (2006) employ two waves from the SOEP, 2003 as pre-reform period and 2005 as post-

reform period. The control group consists of people with private health insurance and provides a baseline,

counterfactual pre-and post reform trend in doctor visits. Any deviation from this baseline trend observed

for the treated group (SHI) is then assumed to capture the effect of treatment. Since the co-payment was

stopped in 2013, we can use its abolition as a second DiD experiment, by adding information on doctor

visits from the 2012 and 2013 waves (for the subset of persons interviewed in the second quarter of 2013

or later). Assuming symmetric effects, a joint analysis of the two changes allows us to increase power.

While the main contribution of the paper is the development of a new model of demand for doctor visits

with non-linear pricing, and thus methodological, our results add to the existing evidence regarding the

absence of evidence for a robust effect of the 10-Euro copayment on health care utilization. Perhaps,

household data from the SOEP provide simply too noisy an indicator of utilization, and researchers might

benefit from access to richer information provided by insurance level data, as in Farbmacher et al. (2013).

Or else, there really was no sizeable effect, because the amount was simply too small to be decision-relevant

for most people, because it applied to the first visit only or because, in other cases, there simply was no

choice but to pay the fee, e.g., for the chronically ill.
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2 Modeling the number of doctor visits

In this section, we derive the distribution of the number of visits Y during a fixed time interval (0, T )

representing a calendar quarter (i.e., T = 90 if time is measured in days). Suppose that sickness events

arrive according to a Poisson process with constant rate λ. The total number of sickness events N during

a quarter is then Poisson distributed with mean λT . Let Xj ∈ {0, 1} indicate the individual decision to

visit a doctor (Xj = 1) or not (Xj = 0) at the j’th sickness event. The decision is made by comparing two

utilities, utility u1 with a visit and utility u0 without. Let utility be a function of income y net of the cost

of a visit cj where the cost are allowes to be a function of j. A visit takes place, and Xj = 1, if

u1(y − cj) > u0(y)

and

Pr(Xj = 1) = Pr[u1(y − cj) > u0(y)] = p(y, cj)

With constant cost cj = c̄, the probability of a visit is the same for all sickness events, and the total number

of visits

Y = X1 + . . .+XN (1)

has a compound Poisson distribution with mean λ×p(y, c̄) (Feller, 1977). Under the aforementioned reform,

the first visit during a quarter has a price of c̄ and all subsequent visits are free. Thus, the cost of a visit is

path dependent. For example, the cost for the second sickness event can be written as c2 = c̄×1(X1 = 1),

and

Pr(X2 = 1) = p(y, c̄)× p(y, 0) + (1− p(y, c̄))× p(y, c̄)
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It follows that

Pr(X1 = 1) < Pr(Xj = 1) j = 2, . . . , N

as long as p(y, c̄) < p(y, 0).

The compound Poisson distribution (1) has an alternative representation in terms of an underlying stochas-

tic process. It can be obtained from the number of “renewals” (i.e. completed time spells between visits)

during a fixed time interval if we assume that the number of spells are i.i.d. exponentially distributed with

constant rate λ × p(y, c). In our model, the constant rate assumption no longer applies. The non-linear

pricing model introduces a one-time jump in the hazard rate: λ0 = λ×p(y, c) is the hazard rate for the time

to first visit, and λ1 = λ× p(y, 0) that for the duration between subsequent visits. Under the assumptions

of the model, λ0 < λ1. This “non-stationarity” violates the assumptions of a renewal process and leads to

a new type of count data model.

2.1 The distribution of the number of visits

Given the above assumptions, the time of the first visit t has an exponential distribution with rate λ0,

whereas the number of further visits during the quarter between t and T is Poisson distributed with rate

λ1, Y (t, T ) ∼ Poisson(λ1(T − t)). Therefore, for k ≥ 1, the total number of visits during a quarter has

probability function

Pr[Y (0, T ) = k] =

∫ T

0

exp(−λ1(T − t))[λ1(T − t)]k−1

(k − 1)!
λ0 exp(−λ0t)dt . (2)

where a first visit occurs between 0 and T , if at all, and we integrate over all these possible times.

If we could observe t, we would directly estimate the parameters using the terms under the integral,

Pr(Y = k − 1|t, t < T ;λ1) and f(t;λ0). Our model applies to the case, where t is unobserved, as is
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typically the case in general purpose household or health surveys where just the number, and not the

times, of visits is recorded.

Note that the time of first visit is not a choice variable in our model. It results from the interplay between a

stochastic sickness arrival process (which is unaffected by the co-payment) and a utility maximizing choice

that trades off the instantaneous health benefit of a visit with its monetary cost. One can show (see e.g.

Janardan, 1980, or Baetschmann and Winkelmann, 2014) that the integral (2) has a closed form solution,

and the probability function is given by

f(y;λ0, λ1) =
λ0λ

y−1
1 exp(−λ0T )

(λ1 − λ0)y

1−
y−1∑
j=0

exp(−(λ1T − λ0T ))(λ1T − λ0T )j

j!

 y = 1, 2, . . . (3)

and f(0;λ0, λ1) = exp(−λ0T ). The model will be referred to as “dynamic hurdle” model, and we write

f(y;λ0, λ1) = DHurdle(y;λ0, λ1). If λ0 = λ1, it can be shown that (3) simplifies to the probability function

of the Poisson distribution.

2.2 Interpretation of parameters

The parameters of the model have a straightforward interpretation. λ0 is the hazard rate for the first

visit (or “stage 0” hazard), λ1 the hazard rate for subsequent visits (or “stage 1” hazard). For instance,

parameterizing λ0 = exp(x′β0), where x is a (k × 1) vector of covariates and β0 a conformable vector of

regression parameters, β0j∆xj is the approximate relative change in λ0 associated with a small change in

xj . In the context of two-part or zero-inflated models, β0 and β1 are often denoted as “extensive margin”

and “intensive margin” effects, respectively.

The mean of the model has generic form

E(Y (0, T )) = Pr(y > 0) + Et[EY (t, T )], 0 ≤ t ≤ T
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Since EY (t, T ) = λ1(T − t), where T − t is the time from the first visit to the end of the calendar quarter,

the intensive margin effect depends not only on λ1 but on the expected duration of stage 1, and thus on

λ0, as well. In the model, a co-payment for the first visit means that it tends to happen later, leaving less

time for accumulating further visits. It is therefore not the case that the number of visits after the first

visit is unaffected by the co-payment as long as λ1 is unchanged.

Using properties of the Poisson and exponential distributions, we obtain the following closed form expres-

sion for the mean:

E(Y ;λ0, λ1) = λ1T + (1− λ1/λ0)[1− exp(−λ0T )] (4)

As required, the expected value of the distribution reduces to the Poisson mean when λ0 = λ1. The

expected value is greater than λ1 when λ0 > λ1, and smaller otherwise. A relative small value of λ0 is an

indication of “zero-inflation”, or “extra-zeros”, relative to the Poisson model, a situation encountered in

many count data applications (Mullahy, 1986).

2.3 Discussion

The implied model for the first visit is identical to that used in a class of hurdle count data models

introduced by Mullahy (1986). The probability function of the fixed hurdle model is given by

Pr(Y = y|x) =


p0(λ0) for y = 0

(1− p0(λ0))
f(y;λ1)

1− f(0;λ1)
for y ≥ 1

where f(y;λ1) denotes the probability function of a standard count data model, e.g., Poisson or negative

binomial distribution, and p0(λ0) is a complementary log-log model. Pohlmeier and Ulrich (1995) argue that

such a hurdle model can be appropriate for modelling the demand for health care. In their interpretation,
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the first contact decision for a general practitioner often triggers a number of re-appointments or referrals

to specialists that are subject to a different mechanism and thus a different λ.

The standard hurdle model is not derived from an underlying stochastic process, however. It treats λ0

and λ1 as unrelated parameters that can be separately estimated. It ignores the random timing of the

first visit, and thus the effect of λ0 on the length of the period for which visits have a zero co-payment.

In a fixed hurdle model, conditional-on-positives expressions such as Pr(Y = y|Y > 0, x) or E(Y |Y > 0, x)

depend on λ1 only, not on λ0. It therefore rules out spill-over effects and cannot address path dependence

generated by non-linear pricing.

By contrast, the dynamic hurdle model (3) naturally accounts for the timing of the first visit. The co-

payment leads to a lower stage 0 rate and decreases the expected time available for subsequent visits.

Although the timing of the first visit is unobserved, the corresponding count data model can be derived

under the maintained assumptions. In the application below, we provide results for both fixed and dynamic

hurdle models. While we argue that the dynamic model is a-priori preferable, it is of course possible that

the underlying assumptions justifying the model are not satisfied in this particular application.

2.4 Identifying the effect of a co-payment on demand

In general, the two rates of the model can be expressed as functions of a number of exogenous factors x,

such as prior health status, income, gender, employment status and the like. Suppose that λi0 = exp(x′iβ0)

and λi1 = exp(x′iβ1). The above model suggests that with non-linear pricing, λi0 < λi1, and thus

exp(x′i(β0 − β1)) < 1 for all i

However, attributing any such difference in rates to the existence of a co-payment for the first visit requires

the absence of other explanations. But there are a number of factors that can rationalize a low initial
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rate and a higher one thereafter, perhaps the leading one being explored in the aforementioned paper

by Pohlmeier and Ulrich (1995), where visits occur in clusters and a first visit is followed by additional

appointments for a given sickness spell. Thus a better identification strategy uses difference-in-differences.

Specifically, the co-payment did apply between 2004 and 2012 for those covered by SHI. Privately insured

people were not affected and can serve as control group. We consider the following hazard rate specification:

λit,j = exp(θt,j + β1,j SHIi + β2,j COPAYit + x′itγj) j = 0, 1, t = 2003, 2005, 2011, 2013

where θt,j are year dummies (2003 is dropped) and COPAYit is a dummy variable equal to one if the person

is covered by SHI and the year is either 2005 or 2011, and else equal to zero. Thus, COPAYit = 1 indicates

active treatment, and β2,0 is the extensive margin treatment effect under the “parallel trends assumption”.

This assumption implies that the counterfactual hazard rate for a first visit for the SHI population in the

absence of a co-payment is equal to the actual SHI rate when no co-payment was in place (e.g., in 2003)

multiplied by the appropriate trend growth factor obtained from the PHI population (e.g., exp(θ2005,0)).

Similarly, one could formulate a DiD effect for the (second) hazard rate for further visits, λit,1. This offers

a kind of placebo test, as, within the above model, the reform did not change the incentives conditional

on a first visit, and no effect should therefore be observed (i.e., the null hypothesis H0 : β2,1 = 0 should

not be rejected). There are good reasons not to put too much weight on such a test, though. First,

there was a concurrent increase in the co-payments for prescription drugs on January 1, 2004, and we

know from previous research that such out-of-pocket expenses tend to reduce the number of doctor visits

as well (Winkelmann, 2004). Second, a referral from the first doctor was needed in order to receive free

consultations by further doctors (or specialists) introducing an additional element to the overall costs (here

in terms of time and effort).
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2.5 Dealing with mismatch

The empirical analysis is based on information from the GSOEP on the number of visits “during the

previous three months”. Since interviews typically do not take place at the end of a calendar quarter,

the reporting period overlaps with two calendar quarters. As noted by Farbmacher and Winter (2013) the

standard models are invalid in this case. By contrast, our model prescribes a method to deal with mismatch

in a theory consistent way, owing to the derivation of the dynamic hurdle model from an underlying

stochastic process, which the standard hurdle model lacks. Consider a reporting period (0 + r, T + r) that

differs from the calendar quarter (0, T ) (e.g., T = 90 if time is measured in days). r ∈ (0, T ] is a known

value in our data, since the day of the interview is recorded. Suppose a person gets interviewed on May

1st in a year. In this case, the relevant calendar quarter started on April 1st, r = 30, and the reporting

period covers the final two months of the 2nd quarter and the first month of the 3rd quarter.

— — — Figure 1 about here — — —

This situation is illustrated in Figure 1, where visits are reported for periods B and C, whereas the calendar

quarter includes A and B. In this case, the probability of no visit is the product of the probability of no

visit in C times the probability of no visit in B, which in turn depends on whether or not a visit has taken

place in A. In our model, the probability of a pre-reporting period visit is Pr(YA > 0) = 1 − exp(−λ0r),

and therefore,

Pr(YB = 0) = (1− exp(−λ0r)) exp(−λ1(T − r)) + exp(−λ0r) exp(−λ0(T − r)) (5)

and

Pr(YB+C = 0) = Pr(YB = 0)× exp(−λ0r) (6)
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where Pr(YB = 0) is defined in (5). Ignoring mismatch would lead one to assume a different probability

expression, in this case exp(−λ0T ), and thus a misspecified model.

The expressions get more complex for Y ≥ 1. The total number of events in the reporting period, Y , is

then given by the sum Y = YB + YC , and

Pr(Y = k) =
k∑

s=0

Pr(YB = s) Pr(YC = k − s) (7)

This equation requires independence between two quarters which is guaranteed under the assumptions of

the model. The assumption of full independence can be relaxed: independence conditional on observed or

unobserved caracteristics (e.g. a common log-normally distributed unobserved heterogeneity term) would

be sufficient.

Equation (7) depends on two probabilities. The second probability is easy to establish since Pr(YC =

k − s) = DHurdle(k − s;λ0, λ1, r). The first probability is a mixture of two distributions:

1. There has been at least one visit in A, i.e., the arrival time of the first event, t, predates r. In this

case, counts in period B follow a Poisson distribution with mean λ1(T − r).

2. The arrival time of the first event exceeds r. In this case, counts in period B follow a dynamic hurdle

model with parameters λ0, λ1, and T − r.

Combining terms,

Pr(YB = s) = (1− exp(−λ0r))× Poisson(s;λ1(T − r)) + exp(−λ0r)×DHurdle(s;λ0, λ1, T − r)

Substituting these expressions into (7), it is clear that

Pr(YA+B = k) = Pr[Y (0, T ) = k] 6= Pr(YB+C = k) = Pr[Y (r, T + r) = k]
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and the model is far from stationary (unless λ0 = λ1, of course). The key point is that the standard model

assumes observation period and calendar quarter to be identical. If the two diverge, it is not clear whether

the hazard of the observation period starts at λ0 or at λ1, since we do not know, whether or not an event

has already taken place in the previous quarter.

As a corollary, all standard models used in the previous literature on first-visit co-payment effects (probit,

logit and hurdle count models) are misspecified, and thus inconsistent when applied to a sample from

survey data with mismatched reporting period. For consistent parameter estimation, one can use a subset

of observations for which reporting period and calendar quarter are roughly aligned. It would be better,

though, to estimate a model, such as the one derived here, that explicitly accounts for mismatch and allows

for fully efficient maximum likelihood estimation using the entire sample.

3 Data and Results

Data have been extracted from the Socio-Economic Panel (SOEP) that is made available by DIW Berlin.

Four years are used, 2003, 2005, 2011 and 2013 and the analysis is restricted to individuals between the

ages of 20 and 60. We don’t impose a balanced panel, nor do we make the assumption of independence

of observations across time. This affects the way standard errors should be computed, as we use clustered

standard errors throughout. We consider two samples: The “restricted sample” includes all persons, who

were interviewed within ±10 days to the end of a calendar quarter. There are 6,236 such observations. In

the restricted sample, the average distance to the nearest end-of-quarter is around 5 days. The second, the

“full sample”, includes all persons regardless of their time of interview. There are 32,888 such observations,

and thus more than five times as many as in the restricted sample. The average distance to the nearest

end-of-quarter in the full sample is about 24 days.
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— — — Table 1 about here — — —

Table 1 reports means (and their standard errors) of variables employed in the estimation, separately for

treatment group (SHI) and control group (PHI) and the two samples. Civil servants are excluded from

the analysis due to their non-standard insurance arrangement. Selection into PHI is primarily based on

income, as is evident in Table 1, where the mean log household income of PHI individuals is 0.5 above that

of SHI individuals (in the full sample), corresponding to a 65 percent income difference. PHI individuals

are also older on average (by about 3 years), more educated (by about 2 years) and more likely to be

male. The regression analyses control for these factors, but the differences still raise the question of the

comparability of the two groups, and hence of the validity of the parallel trends assumption underlying the

DiD identification strategy. A formal test of this assumption was conducted by Farbmacher and Winter

(2013), using the same kind of data from the SOEP, and they could not reject the null-hypothesis of parallel

trends during the pre-treatment years.

The bottom panel of Table 1 splits the two samples further into two subsamples, the treatment years 2005

and 2011, and the non-treatment years 2003 and 2013 and shows for each group the average number of

visits as well as the share with at least one visit. The non-treatment sample is somewhat smaller. The

reason is that we had to drop all respondents who were surveyed during the first quarter of 2013, because

their reporting period overlapped with the abolition of the co-payment by January 1st, 2013.

In terms of mean utilization, and using the full sample, we find that the SHI reported on average about

0.05 (or 2.5 percent) more visits in years without the co-payment in place than in years with co-payment.

However, a similar trend is observed for the PHI individuals, who report about 0.1 fewer visits on average,

so that the naive DiD effect, based on means only, is close to zero. A somewhat noisier picture emerges

for the restricted sample, where the size of the control population (417 in treatment years and 310 in

non-treatment years) leads to considerably more sampling uncertainty. If we look at the probability of
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any visit instead – the extensive margin – not much is found either. The probability actually increases

somewhat for SHI individuals in years where the co-payment is in place. Of course, it would be premature

to dismiss the possibility of a treatment effect based on this descriptive evidence alone.

3.1 Baseline result

In a next step, we estimated the fixed and dynamic hurdle Poisson models with a full set of control

variables. The upper half of Table 2 shows the results. In terms of overall fit, the simple Poisson model

is clearly inferior to the two-part generalizations that introduce different parameters for the utilization

(yes/no) decision and for the intensity of use. The dynamic hurdle model leads to a substantially higher

loglikelihood value relative to the fixed hurdle model (-12,690.4 as compared to -13,252.4).

Recall that λ0 is the hazard rate for the time to a first visit. The probability of no visit is then equal to

the survivor rate exp(−λ0). Harzard rate and survivor rate are inversely related, i.e., factors increasing

the hazard rate lower the probability of no visit, and vice versa. With the exponential parameterization,

the displayed coefficients indicate the predicted approximate relative change in the hazard rate associated

with a unit change in the associated regressor. The exact relative change is obtained by applying the

transformation exp(β̂j) − 1. For instance, according to the dynamic hurdle model, the hazard rate for a

first visit for men is (exp(−0.357)− 1)× 100 = 30 percent below that of women.

— — — Table 2 about here — — —

There are some interesting asymmetries between first-visit hazard (λ0) and that of subsequent visits (λ1).

For instance, income has no effect on the former, but a statistically significant negative effect on the latter,

where a 10 percent increase in income is predicted to reduce the hazard rate for each further doctor visit

by 1.5 percent. A similar pattern holds for unemployment. Individuals with disabilities have higher hazard
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rates in both states, and thus a higher predicted number of doctor visits, than individuals without.

The statistically insignificant point estimate of the treatment effect corresponds to a 1.6 percent reduction

in the hazard rate for the first visit. The standard error is large, so sizeable positive or negative effects

cannot be ruled out either, the data simply do not have sufficient power to tell. The effect on the stage 1

hazard (were a narrow interpretation of the model would predict none) is positive and relatively large, but

again, the standard error is large and the coefficient is statistically insignificant as well.

3.2 Adding unobserved heterogeneity

All models can be extended to allow for unobserved heterogeneity, for instance by adding a multiplicative

random effect to the exponential rates:

λ̃i = exp(x′iβ)ui

Here, ui captures individual level differences in the demand for doctor visits, for example due to differences

in latent health. In the context of our dynamic hurdle model, it seems reasonable to assume that the

two rates for the first and for subsequent visits are multiplied by the same factor. Moreover, we will

assume that the heterogeneity term is the same for repeated observations on the same individual, and thus

λ̃it = exp(x′itβ)ui.

The models discussed in Section 2 now hold conditional on ui. To take the models to the data, the ui term

has to be eliminated from the likelihood function by taking expectations. Specifically, suppose that lnui is

normally distributed, independently of xi, with mean −0.5σ2 and variance σ2. Then ui is lognormal with

E(ui) = 1 and Var(ui) = exp(σ2)− 1. The marginal likelihood has no closed-form solution, but it can be

numerically approximated using Gauss-Hermite quadrature.
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The lower part of Table 2 provides estimation results for the three models with log-normal unobserved

heterogeneity. In the case of the fixed hurdle model, heterogeneity is introduced only for the conditional-

on-positives part, and the λ0 estimates are thus identical to those in Table 2. Clearly, the improvements

over the models without unobserved heterogeneity are large and statistically significant across the board.

Unobserved heterogeneity changes the log-likelihood ordering of the three models, the fixed hurdle model

having the highest log-likelihood in this case.

Point estimates for the important predictors of health care utilization, i.e., unemployment, disability and

gender, are rather stable, regardless of whether unobserved heterogeneity is allowed for or not. The

estimates for the reform effect remain statistically insignificant. Note that our specification imposes that

the introduction and the abolition of the co-payment have the same effect size (and opposite sign), an

assumption, that may be too restrictive. By 2012, many insured, in particular younger ones, had switched

to new types of SHI contracts that offered co-payment waivers in return for joining a primary care model.

We therefore estimated all models using the introduction sample only (2003 and 2005, results are available

on request) but all substantive conclusions remain unchanged.

3.3 Full sample results

We also estimated the adjusted dynamic hurdle model, as discussed in Section 2.5, for the entire sample, in

this case based on 32,888 observations. Otherwise, the specification remained unchanged. Results shown

here are for the specification witout unobserved heterogeneity. For the first visit, or stage 0, we obtained

the log of the predicted hazard (with standard errors in parentheses):

ln λ̂it,0 = 0.037
(.045)

COPAYit + 0.598
(.029)

Disabilityit − 0.353
(.017)

Malei + other terms
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The standard errors decrease roughly with the root of the sample size, compared the results presented in

Table 2, and there is the expected efficiency gain from using the larger sample. The point estimates are in

line with previous results. Again, no statistically significant reform effect is found.

For the stage 1 hazard, we get

ln λ̂it,1 = −0.041
(.081)

COPAYit + 0.537
(.040)

Disabilityit − 0.068
(.029)

Malei + other terms

The finding of a large and about evenly distributed disability effect remains robust, as does the pattern

that men have a substantially lower stage 0 hazard than women, whereas their stage 1 hazard does not

differ much.

4 Concluding remarks

This paper introduced a simple econometric model of health care demand under non-linear pricing, based

on a Poisson process for the arrival of sickness events. In the model, a co-payment for the first visit during

a calendar quarter potentially lowers the hazard rate for the first visit, leaving the subsequent hazard for

further visits unchanged. The model was applied to an evaluation of a German health care reform of

2004 when a co-payment of 10 Euros was introduced for those covered by statutory health insurance. The

co-payment was again abolished in 2013. In none of our various specifications, with or without unobserved

heterogeneity and with or without reporting mismatch, did we find statistically significant effect of the

co-payment on the number of doctor visits.

While the results thus are in line with those of two earlier studies by Augurzky et al. (2006) and Schreyögg

and Grabka (2010) who also found no effect of the co-payment on utilization, the new methodological

approach of this paper offers a number of additional insights that might prove useful for future research
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in related contexts. For instance, the perspective of a stochastic process is useful to understand that any

changes to the first hazard likely also affects the distribution of additional visits, simply because it changes

the time left in the quarter to accumulate such visits.

Second, the approach also points towards a theory consistent way to derive the likelihood of mismatched

observations, i.e., observations for which reporting period and calendar quarter do not coincide. Such an

approach avoids a loss of information incurred by limiting the sample to people interviewed at the end

of a calendar quarter, and thus increases power. Of course, such data problems could also be addressed

by using data from insurance claims rather than survey data. However, such claim data have their own

problems. First, they usually include only a very limited set of socio-economic control variabels, precluding

certain types of analyses. Furthermore, they often do not allow for a DiD analysis, as it is unlikely that a

useful control group can be established in a given claims dataset.

The models discussed in this paper should be useful in a number of other applications as well. For instance,

in order to reduce absenteeism, firms have started to offer bonuses to workers with zero sick leave days per

year. Depending on how the details of such schemes are designed, they may imply that the first absence is

rather costly (the loss of the bonus) whereas subsequent absences have much lower cost. Similar non-linear

pricing schemes can be observed for re-offenses in the context of fare dodging, were fines usually increase

after the first offense. Moreover, this paper contributes to the literature on zero-inflated count data that

are often encountered in health economic applications, adding a new, alternative model to the existing

toolkit.
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Figure 1. Mismatch between reporting period and calendar quarter.
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Table 1. Descriptive statistics by insurance status for restricted and full sample

(Means, cluster robust standard errors in parentheses)

Restricted Sample Full Sample

PHI SHI PHI SHI

Co-payment (yes/no) 0 0.580 0 0.577

(0.006) (0.002)

Distance to nearest end-of-quarter 4.642 5.254 23.721 23.811

(0.115) (0.043) (0.224) (0.079)

Age 44.281 40.899 43.890 41.004

(0.418) (0.162) (0.226) (0.090)

Male (yes/no) 0.597 0.452 0.614 0.447

(0.021) (0.008) (0.012) (0.004)

Years of schooling 14.096 12.032 14.148 11.969

(0.124) (0.038) (0.071) (0.022)

Disability (yes/no) 0.045 0.069 0.043 0.074

(0.008) (0.004) (0.004) (0.002)

Log net household income 10.954 10.490 10.962 10.466

(0.025) (0.009) (0.014) (0.005)

N 727 5509 3725 29163

Years with co-payment (2005,2011)

Number of doctor visits 1.830 2.048 1.902 2.072

(0.135) (0.051) (0.067) (0.024)

Any visit (yes/no) 0.607 0.643 0.603 0.652

(0.025) (0.009) (0.011) (0.004)

N 417 3197 2096 16833

Years without co-payment (2003,2013)

Number of doctor visits 2.216 2.039 1.988 2.123

(0.197) (0.061) (0.076) (0.028)

Any visit (yes/no) 0.619 0.638 0.622 0.649

(0.027) (0.010) (0.012) (0.004)

N 310 2312 1629 12330

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

PHI: private health insurance; SHI: social health insurance
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Table 2. Poisson and hurdle models of health care utilization, restricted sample (N=6,236)

Poisson Fixed Hurdle Dynamic Hurdle

λ λ0 λ1 λ0 λ1

without unobserved heterogeneity

SHI -0.196 0.007 -0.234 0.079 -0.447

(0.094) (0.082) (0.093) (0.076) (0.169)

Co-payment (yes/no) 0.158 0.041 0.150 -0.016 0.297

(0.119) (0.104) (0.123) (0.098) (0.209)

Unemployment (yes/no) 0.329 -0.014 0.369 -0.079 0.567

(0.080) (0.078) (0.076) (0.068) (0.122)

Disability (yes/no) 0.823 0.817 0.535 0.654 0.563

(0.055) (0.075) (0.054) (0.060) (0.086)

Male (yes/no) -0.330 -0.380 -0.146 -0.357 -0.105

(0.038) (0.036) (0.039) (0.033) (0.061)

Log net household income -0.105 -0.053 -0.091 -0.025 -0.145

(0.032) (0.030) (0.033) (0.028) (0.054)

Log likelihood -14,781.7 -13,252.4 -12,690.4

with unobserved heterogeneity

SHI -0.263 0.007 -0.241 0.104 -0.363

(0.105) (0.082) (0.095) (0.103) (0.155)

Co-payment (yes/no) 0.275 0.041 0.175 -0.016 0.244

(0.134) (0.104) (0.138) (0.131) (0.191)

Unemployment (yes/no) 0.288 -0.014 0.271 -0.119 0.542

(0.093) (0.078) (0.095) (0.093) (0.117)

Disability (yes/no) 0.772 0.817 0.613 0.794 0.584

(0.069) (0.075) (0.089) (0.080) (0.079)

Male (yes/no) -0.335 -0.380 -0.185 -0.421 -0.150

(0.038) (0.036) (0.045) (0.044) (0.056)

Log net household income -0.090 -0.053 -0.106 -0.043 -0.111

(0.032) (0.030) (0.032) (0.037) (0.049)

ln(σ) -0.002 -0.296 -0.517

(0.020) (0.024) (0.023)

Log likelihood -11,976.5 -11,781.3 -11,833.6

Source: Socio-Economic Panel (SOEP), version 26, doi:10.5684/soep.v26

Dependent variable: Number of doctor visits

All models include three year dummies, a constant, a quadratic in age and level of schooling.

Standard errors in parentheses are clustered at the individual level.
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