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Designing Innovation Contests for Diversity
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December 21, 2015

Abstract

This paper analyzes the design of innovation contests when the quality of an innovation
depends on the research approach of the supplier, but the best approach is unknown.
Diversity of approaches is desirable because it generates an option value. In our main
model with two suppliers, the buyer optimally uses a bonus tournament, where suppliers
can choose between a low bid and a high bid. This allows the buyer to implement any level
of diversity with the lowest revenue for the suppliers. We also compare other common
contests, in particular, Öxed-prize tournaments and auctions. Like bonus tournaments,
auctions implement the socially optimal diversity, but usually with higher rents for the
suppliers. Fixed-prize tournaments implement insu¢cient diversity, but may nevertheless
be preferred by the buyer to auctions because of lower supplier rents.
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1 Introduction

The use of contests in innovation procurement has a long history, and it is becoming ever
more popular. Recently, private buyers have awarded the Netáix Prize, the Ansari X Prize,
and the InnoCentive prizes. Public agencies have organized, for instance, the DARPA Grand
Challenges, the Lunar Lander Challenge and the EU Vaccine Prize.1 The literature on contest
design mainly focuses on the problem of providing incentives for costly innovation e§ort.2

However, in addition to e§ort, successful innovation also requires that an adequate research
approach is chosen. Ex ante, there are often many conceivable approaches. Developing more
than one of them generates an option value, as the best approach can be selected ex post.
In this paper, we thus ask how contest design ináuences the diversity of research approaches
developed by the contestants.

Many practical examples illustrate the importance of the issue. First, the often cited
Longitude Prize of 1714 for a method to determine a shipís longitude at sea featured two
competing approaches.3 The lunar method was an attempt to use the position of the moon to
calculate the position of the ship. The alternative, ultimately successful, approach relied on a
clock which accurately kept Greenwich time at sea, thus allowing estimation of longitude by
comparison with the local time (measured by the position of the sun). Second, when the Yom
Kippur War in 1973 revealed the vulnerability of US aircraft to Soviet-made radar-guided
missiles, General Dynamics sought to resolve the issue through electronic countermeasures,
while McDonnell Douglas, Northrop, and eventually Lockheed, attempted to build planes with
small radar cross-section.4 Third, the EU Vaccine Prize was announced in 2012 with the goal
of improving the so-called cold-chain vaccine technology. Interestingly, the competition rules
explicitly stated that diverse innovation approaches were conceivable: "It is important to note
that approaches to be taken by the participants in the competition are not prescribed and may
include alternate formulations, novel packaging and/or transportation techniques, or signiÖ-
cant improvements over existing technologies, amongst others."5 Finally, the announcement
of the 2015 Horizon Prize for better use of antibiotics contains a similar statement.6

As illustrated by the examples above, in many innovation contests both the buyer (the
contest designer) and the suppliers (contestants) are aware that there are multiple conceivable
approaches to innovation. Furthermore, none of the participants knows the best approach
beforehand. However, after the suppliers have followed a particular approach, it is often
possible to assess the quality of innovations, for instance, by looking at prototypes or detailed
descriptions of research projects. In the following, we will ask whether buyers can and should
do more than to suggest that suppliers pursue diverse approaches: Can they design contests
in such a way that suppliers have incentives to provide diversity? And will they beneÖt from
doing so?

Architectural contests share some important properties with innovation contests. A buyer
who thinks about procuring a new building usually does not know what exactly the ideal

1See "Innovation: And the winner is. . . ", The Economist. Aug 5, 2010.
2Section 6 discusses this literature.
3See, e.g., Che and Gale (2003) for a discussion of the Longitude Prize.
4See Paul Crickmore (2003), Nighthawk F-117: Stealth Fighter. Airlife Publishing Ltd.
5European Comission (2012), "Prize Competition Rules." August 28, 2012 (accessed on April 3, 2015).

http://ec.europa.eu/research/health/pdf/prize-competition-rules_en.pdf
6European Commision (2015), "Better use of antibiotics." March 24, 2015 (accessed on April 3, 2015).

http://ec.europa.eu/research/horizonprize/index.cfm?prize=better-use-antibiotics
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building would look like, but once she examines the submitted plans, she can choose the
one she prefers. Guidelines for architectural competitions explicitly recognize the need for
diversity. For example, the Royal Institute of British Architects states: ìCompetitions enable
a wide variety of approaches to be explored simultaneously with a number of designers.î7

To our knowledge, we are the Örst to analyze the optimal design of innovation contests
with multiple conceivable research approaches. In our main model, there are two homogeneous
suppliers who decide whether to exert costly research e§orts and which research approach to
choose. The research approach is captured as a point on the unit interval. Crucially, the value
of an innovation depends on the distance between the chosen research approach and an ideal,
but initially unknown approach. The suppliers and the buyer agree about the distribution
of this ideal approach, which has a strictly positive, symmetric and single-peaked density. If
di§erent suppliers try di§erent approaches, this creates an option value for the buyer who can
choose the preferred innovation once uncertainty is resolved.

In line with the literature on innovation contests, we assume that neither research inputs
(approaches) nor research outputs (qualities) are veriÖable, because they are both di¢cult
to evaluate, and the relation between them is stochastic. The lack of veriÖability of research
activity precludes any kind of contract that conditions on research inputs or outputs, and it
motivates the focus on contests.8 The notion of contest design that we use was suggested by
Che and Gale (2003). The buyer prescribes a possible set of prices and commits herself to
paying the price chosen by the supplier from which the innovation is procured. The class of
such contests is very rich.9 Examples include Öxed-prize tournaments (when the price set is
a singleton) as well as auctions (when the price set is the set of non-negative real numbers).
We also allow the buyer to pay subsidies to the suppliers to induce them to participate in
the contest and exert costly research e§ort. Contest design in this setting is the choice of the
allowable price set and the subsidy. After the buyer has communicated the rules of the game,
the suppliers choose their approaches, and qualities become common knowledge. We assume
all approaches are equally costly, so as to focus on suppliersí incentives to diversify.

We show that the optimal contest in this setting is what we call a bonus tournament. In a
bonus tournament, the price set consists of two elements ó a low price and a high (ìbonusî)
price. The crucial feature of these contests is the non-convexity of the price set. We show that,
with a bonus tournament, the buyer can implement essentially any level of diversity. In par-
ticular, a bonus tournament with suitably chosen prices (and possibly a subsidy) implements
the socially optimal diversity. The amount of diversity implemented in a bonus tournament
is determined by the di§erence between the bonus price and the low price. The suppliers
diversify in the hope that their quality advantage over the competitor will be su¢ciently high
that they can bid the bonus price and win even so. At the same time, the bonus tournament
minimizes rent extraction whenever innovations are similar. However, inducing diversity is
costly for the buyer. We show that the optimal contest leads to just enough diversity that
expected supplier revenues are equal to the cost needed to develop the innovation. This will
imply lower diversity than socially optimal, except when research costs are very high. Thus
the buyer resolves a trade-o§ between e¢ciency and rent extraction in favor of the latter.

We then compare several familiar contests against the background of the optimal contest.

7See Royal Institute of British Architects (2013), "Design competitions guidance for clients." (accessed on
Apr 3, 2015); http://competitions.architecture.com/requestform.aspx.

8For an extensive discussion see Che and Gale (2003) and Taylor (1995).
9See Che and Gale (2003) for a detailed discussion.
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Unrestricted auctions induce the social optimum, while auctions with price ceilings induce
lower levels of diversity. The price ceiling determines the amount of diversity. While auctions
can in general implement the same diversity as the optimal bonus tournaments, they always
generate higher revenues for the suppliers. Thus the buyer prefers bonus tournaments to
auctions. Fixed-prize tournaments do not induce any diversity and are therefore less e¢cient
than auctions and optimal bonus tournaments. Nevertheless, for low research costs, the buyer
prefers the ine¢cient Öxed-prize tournaments to the socially e¢cient unrestricted auctions.

We then extend the analysis, and show that, with some caveats, the bonus tournaments
perform well even in more general environments. In particular, we study contests with multiple
suppliers, and contests with more general distributions and quality functions. In addition,
we discuss heterogeneous suppliers, multiple prizes and multiple approaches per supplier.
Under very general conditions, bonus tournaments still induce the social optimum. The
buyer continues to prefer them to Öxed-prize tournaments, even though the latter induce
some diversity (but suboptimal amounts) when there are multiple suppliers. However, when
research costs are su¢ciently high, the buyer may prefer auctions to bonus tournaments.
Moreover, she may beneÖt from inviting a large number of suppliers, which is a straightforward
implication of the option value provided by additional suppliers.

Our analysis has potential applications beyond innovation contests organized by a single
buyer. As we discuss brieáy in the conclusion, our model also applies when suppliers choose
products in the face of uncertain demand by a potentially large number of homogeneous
buyers. Contest design then corresponds to the choice of alternative regulatory institutions.
Our approach shows that unregulated markets provide incentives for suppliers to choose the
socially optimal products, but at the cost of endowing them with ex-post market power. As a
result, regulation may yield higher expected consumer surplus, even though it does not induce
the optimal expected product quality.

In Section 2, we introduce the model. Section 3 deals with the design of optimal contests
for the buyer. Section 4 compares several commonly used contests, such as Öxed-prize tour-
naments and auctions with and without price ceilings. Section 5 presents extensions of the
model. Section 6 discusses the relation of our paper to the literature. Section 7 concludes,
pointing in particular to the above-mentioned re-interpretation of our model for a world with
many buyers. Proofs are in the Appendix.

2 The Model

A risk-neutral buyer B needs an innovation that two risk-neutral suppliers (i 2 f1; 2g) can
provide. Each supplier simultaneously chooses whether to carry out costly research and which
approach vi 2 [0; 1] to pursue. The cost of approach vi is C (vi) $ C % 0. Thus all approaches
are equally costly. The quality qi of the resulting innovation depends on a state ' 2 [0; 1],
which is distributed with density f ('), and corresponds to an (ex-post) ideal approach. We
thus assume that qi = ) & ) (jvi & 'j), where ) > 0 is large enough and ) is an increasing
function.10

Figure 1 illustrates one particular outcome of the model. Suppose that the uncertainty
is given by the distribution f (') and that the suppliers have chosen the approaches v1 and

10! needs to be large enough so that it is worthwhile for the buyer to hold a contest. A simple su¢cient
condition is ! > "(1) + 2C: This assumption is innocuous as none of our results depend on !.
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Figure 1: Illustration of an outcome given v1 and v2 where the ideal approach is '̂.

v2. The quality di§erence between the ideal approach '̂ and vi is proportional to the distance
between vi and '̂ (the dashed line for i = 1, and the horizontal dotted line for supplier i = 2).
Unless speciÖed otherwise, we will maintain assumptions (A1) and (A2) below.

Assumption (A1) The density function f (') is (i) symmetric: f (1=2& ") = f (1=2 + ")
8" 2 [0; 1=2], (ii) single-peaked: f(') ) f('0) 8' < '0 < 1=2, (iii) has full support: f (') > 0
8' 2 [0; 1] and (iv) satisÖes f(x) ) 2f(y) for all x; y 2 [0; 1].

Assumption (A2) ) (jvi & 'j) = b jvi & 'j with b 2 (0;)].

A wide class of distributions satisÖes (A1). For each of these distributions, there is an
approach which has the highest expected quality ex ante, namely the median. Furthermore,
single-peakedness makes it more di¢cult to induce diversity: As there is less mass on ap-
proaches that are further away from the median, contestants will not choose them without
additional incentives. Part (iv) excludes the possibility that some states are much less prob-
able than others, that is, it requires that the amount of uncertainty about the ideal approach
is su¢ciently high. Using (A2), we denote the quality resulting from approach vi in state '
as q (vi; ') = )& b jvi & 'j. Thus quality is bounded below by )& b and bounded above by
).

In this setting, the buyer chooses an innovation contest determining the procedure for
choosing and remunerating suppliers. These contests are closely related to those analyzed
by Che and Gale (2003), where suppliers choose e§orts rather than approaches. In line with
these authors, we assume that neither vi nor qi is contractible.11 The environment (b;); C) of
a contest consists of the utility and cost parameters. The buyer chooses a set P of allowable
prices (bids), where P is an arbitrary Önite union of closed subintervals of R+.12 We denote
the minimum of P as P and the maximum, if it exists, as P . Moreover, the buyer can
o§er subsidies t % 0 to the suppliers. An innovation contest is thus the extensive-form game

11For example, Che and Gale (2003) and Taylor (1995) assume that neither inputs nor outputs of innovative
activity are veriÖable. As an example of the veriÖability problem, Che and Gale (2003) point to the protracted
battle between John Harrison, the inventor of the marine chronometer, and the Board of Longitude, over
whether his invention met the requirements of the 1714 Longitude Prize. See also references in Taylor (1995).
12Formally, P is chosen from I(R+) :=fP $ R+ : P = ["kk=1[ak; bk] or P = ["kk=1[ak; bk] [

!
ak+1;1

"
for

ak ' bk 2 R+; +k 2 Ng.
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between the buyer and the suppliers given by the buyerís choice of fP; tg and the following
rules:

Period 1: Suppliers simultaneously choose whether to engage in research and
they select approaches vi 2 [0; 1].

Period 2: The state is realized. All players observe vi; thus q1 and q2 become
common knowledge.

Period 3: Suppliers simultaneously choose prices pi 2 P.
Period 4: The buyer observes prices; then she chooses a supplier i 2 f1; 2g. She pays

pi + t to the chosen supplier and t to the other supplier.

Importantly, the suppliers receive two types of payments, namely the revenue from the
contest (that is paid only to the successful supplier) and the subsidies paid to both suppliers.
The assumption that all players observe vi and ' is made purely for convenience, as it allows
us to apply the subgame perfect equilibrium (SPE). The assumption is more restrictive than
necessary for the main insights of the analysis. As long as all players can observe qualities,
all results still hold with the SPE replaced by a Perfect Bayesian Equilibrium with suitably
speciÖed beliefs.13 Moreover, we provide an extensive discussion of the case when not even
quality is observable in the working paper (Letina and Schmutzler 2015); which we summarize
brieáy in Section 5.3.1.
The following are examples of innovation contests:

1. P = R+: an auction without a price ceiling.

2. P =
!
0; P

"
: an auction with a price ceiling P .

3. P = fAg, where A % 0: a Öxed-prize tournament (FPT).

4. P = fA; ag, where A > a % 0: a bonus tournament.

The Örst three examples are well-known. The last example will turn out to be a useful
alternative for the buyer.

To Önish the description of the contests, we require several further conventions. First, we
apply the following tie-breaking rules, which can be interpreted as second-order lexicographic
preference for winning and for higher quality.

(T1) (Preference for quality) If suppliers o§er the same surplus, the buyer prefers the higher
quality one. If both have the same quality, the tie is randomly broken.

(T2) (Preference for winning) Given equal monetary payo§s, the suppliers prefer to partici-
pate in the contest rather than to stay out and to win the contest rather than not.

(T1) and (T2) guarantee that the outcomes are robust to inÖnitesimal changes in the
reward structure.

Second, we assume that, in cases where only one supplier decides to participate, the contest
is called o§ and players obtain zero overall payo§.

Third, we will conÖne our analysis to the case of pure-strategy equilibria for simplicity.
Finally, unless otherwise mentioned, we will assume without loss of generality that v1 ) v2.
13This follows from the fact that suppliersí bidding behavior will only depend on the observed qualities.
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3 The Optimal Contest for the Buyer

In this section, we characterize the optimal contest for the buyer. We start with some aux-
iliary results. These results characterize the social optimum, and they deal with the pricing
subgames.

3.1 Auxiliary Results

We introduce the following terminology which applies when both suppliers participate. For
(v1; v2) 2 [0; 1]2, the (expected) total surplus is ST (v1; v2) $ E# [max fq (v1; ') ; q (v2; ')g] &
2C. The social optimum is (v!1; v

!
2) $ argmax(v1;v2)2[0;1]2 ST (v1; v2). For (v1; v2), implemented

as an equilibrium of a contest (P; t), S(P;t)i (v1; v2), the (expected) surplus of supplier i in an
equilibrium, is the sum of the expected revenue and the subsidies, net of research costs. The
(expected) buyer surplus, S(P;t)B (v1; v2), is expected quality minus the expected revenues and
subsidies of the suppliers. We usually drop the superscript (P; t) when there is no danger of
confusion.

As the costs of each approach are the same, the social optimum (v!1; v
!
2) maximizes the ex-

pected maximal quality E# [max fq (v1; ') ; q (v2; ')g] or, equivalently, minimizes the expected
minimal distance to the ideal approach, E# [min f) (jv1 & 'j) ; ) (jv2 & 'j)g]. With only one
potential supplier i, the optimal approach would correspond to vi = 1=2, as this maximizes
the expected quality. With two suppliers, the optimization needs to take into account the
option value generated by having di§erent choices once qualities have been observed. It is
always socially optimal to have at least some diversiÖcation. This simple but important ob-
servation holds without the restrictions on distributions coming from (A1), as long as there is
any uncertainty about the ideal approach. The intuition is simple: Starting from a situation
with identical approaches, suppose one of the suppliers chooses an arbitrary alternative ap-
proach, whereas the other supplier continues to choose the same one. After this modiÖcation,
the minimal distance decreases for a set of ideal states with positive measure. There can be
no ' for which the expected minimal distance to the best approach increases, as the initial
approach is still available. The following result provides a sharper characterization of the
social optimum:

Lemma 1 The unique social optimum with v!1 ) v
!
2 satisÖes F (v

!
1) = 1=4 and F (v

!
2) = 3=4

and thus v!2 = 1& v
!
1.

Hence v!1 and v
!
2 are symmetric around 1=2. The result relies on (A1(iv)), which states that

the ideal state distribution is su¢ciently dispersed.14 Moreover, the comparative statics of
optimal diversity are straightforward: The more the state distribution is concentrated around

14The condition guarantees that the expected quality is a strictly concave function of the approaches. It is
thus more restrictive than necessary. A simple necessary condition for the optimum to satisfy F (v!1) = 1=4
and F (v!2) = 3=4 is f(1=2) < 2f(v

!
1); otherwise the objective function is not even locally concave. Moreover,

this condition turns out to be necessary for the existence of a social optimum with v!2 = 1* v!1 . It is simple to
provide examples where f(1=2) < 2f(v!1) is violated. For instance, consider the kinked distribution deÖned by
the density

f (.) =

#
0:6 if . 2 [0; 0:45) [ (0:5; 1]
4:6 if . 2 [0:45; 0:55] .
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the median, the smaller the optimal diversity (v!2 & v
!
1). Research costs, however, have no

ináuence on the optimal diversity.
We now characterize the equilibria of the pricing subgames, using the following notation:

Notation 1 p (') $ max fp 2 Pj p ) jq(v1; ')& q(v2; ')j+ Pg.

The following result is closely related to the familiar "asymmetric Bertrand" logic that
ine¢cient Örms choose minimal prices, whereas e¢cient Örms translate their e¢ciency advan-
tage into a price di§erential.15

Lemma 2 The subgame of an innovation contest corresponding to (qi; qj) has an equilibrium
such that pi (qi; qj) = p (') if qi % qj and pi (qi; qj) = P if qi < qj. In any SPE of any contest,
pi (qi; qj) = p (') if qi % qj.

Lemma 2 sharpens the Bertrand logic: The price di§erential will only fully reáect the
quality di§erential when such pricing is feasible for the high-quality supplier. In many cases,
the equilibrium described in Lemma 2 is unique.16 We need further notation:

Notation 2 5q(vi; vj) $ jq(vi; vi)& q (vj ; vi)j is the maximum quality di§erence given (vi; vj).

By Lemma 2, in any subgame the successful supplier chooses the highest available price
below the sum of the quality di§erential and the minimum bid. We now sharpen this result
for subgames following equilibrium choices (v1; v2).

Lemma 3 Let v1 ) v2. (i) If a contest implements (v1; v2), then 5q (v1; v2) + P 2 P. (ii) If
' 2 [0; v1] [ [v2; 1], the successful supplier bids pi (qi; qj) = 5q (vi; vj) + P .

Lemma 3 is a key result. It shows that the amount of diversity that any contest can
implement is limited by the highest price that the contest allows. Intuitively, (i) if5q (v1; v2)+
P =2 P, suppliers could increase their chances of winning by small moves towards the approach
of the other party, without reducing the price in those cases where they win. (ii) shows that in
all states outside the interval (v1; v2) the buyer pays a constant price, reáecting the (maximal)
quality di§erence between the two suppliers. Therefore, to implement any (v1; v2), a buyer
has to pay at least 5q (v1; v2) (F (v1) + 1& F (v2)) in expectation to the suppliers.
15The adequacy of pure-strategy equilibria in asymmetric Bertrand games has received some attention,

in particular, but not only, because they tend to involve weakly dominated strategies (see Blume 2003 and
Kartik 2011). In our setting, these issues are resolved by the appeal to the "preference for quality" (T1) and
"preference for winning" (T2). In some of our contests (in particular, in auctions with and without price
ceilings), constructions as in Blume (2003) and Kartik (2011) exist, where the low-quality Örm mixes over a
small interval of prices.

16 If P is convex and supP > +p (.) for all ., then pi (qi; qj) = P for qi < qj in every equilibrium. To see this,
note that, according to Lemma 2, pi = p (.) = P + q (vi; .) * q (vj ; .) in any equilibrium. If pj > P , then
player i can choose a slightly higher prize, and he still wins. Hence, this is a proÖtable deviation.
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3.2 Characterizing the Optimum

We now turn to our main results. Before identifying the optimal contest for the buyer, we
Örst show that bonus tournaments can implement a wide range of allocations.

Proposition 1 Suppose A = 5q(v1; v2) for some (v1; v2) such that 0 < v1 ) 1=2 ) v2 < 1.
In the bonus tournament with P = fA; 0g and su¢ciently high subsidies, the strategy proÖles
(v1; v2; p1 () ; p2 ()) such that pi (qi; qj) = A if qi&qj % A and 0 otherwise, form an equilibrium.
In particular, the social optimum can be implemented as an equilibrium of a bonus tournament.

Thus, the buyer can implement any desired diversity in a bonus tournament with A as the
corresponding maximal quality di§erence. For instance, to induce the social optimum, the
buyer has to set A = 5q(v!i ; v

!
j ). The bonus tournament is thus a áexible instrument with

which the buyer can Öne-tune diversity with low supplier revenues. This suggests that the
optimal contest is in this class. However, this intuition is incomplete, as it does not account
for subsidies. We now show that it is nevertheless always optimal for the buyer to use bonus
tournaments. However, she will not always implement the social optimum.

Theorem 1 (i) The buyer optimum can be implemented with a suitable bonus tournament
(fA; 0g; t) where the suppliers break even on expectation.
(ii) If C % F (v!1)5q(v

!
i ; v

!
j ), the optimal contest for the buyer is a bonus tournament that

implements (v!1; v
!
2) with t = C & F (v

!
1)5q(v

!
i ; v

!
j ) % 0 and A = 5q(v

!
i ; v

!
j ).

(iii) If C < F (v!1)5q(v
!
i ; v

!
j ), the optimal contest for the buyer is a bonus tournament that

implements (evi; 1 & evi) with t = 0 and A = 5q(evi; 1 & evi), where evi = max[0;1=2] vi s.t.
C = F (vi)5q(vi; 1& vi).

Whereas (i) only states the optimality of bonus tournaments, (ii) and (iii) specify the
details for the two di§erent parameter regions. When research costs are high enough and
quality di§erences in the social optimum are low, the buyer implements the social optimum.
Otherwise, the buyer induces just enough diversity that the suppliers break even. In any event,
the suppliers earn zero surplus. Contrary to the social optimum, the amount of diversity in the
buyer optimum thus depends on the research cost parameter as long as C < F (v!1)5q(v

!
i ; v

!
j ):

As C increases, diversity increases from 0 to the social optimum. In addition, the more
concentrated the state distribution is, the smaller the di§erence between v!2 and v

!
1 is and thus

the smaller the di§erence between the socially optimal diversity and the optimal diversity for
the buyer.

The desirable incentive properties of bonus tournaments stem from the non-convexity of
the price set. From Lemma 3 we know that in any contest implementing (v1; v2), the price
5q(v1; v2)+P has to be in the price set. This Öxes the price that the buyer has to pay in any
state of the world when the quality di§erence is maximal. What contest design can achieve,
then, is to reduce prices paid in those states of the world when ' 2 (v1; v2), implying that
the quality di§erence is not maximal. With a bonus tournament (A; a), the buyer commits
herself not to pay prices between a and A in these states: Even though the quality di§erence
is greater than a, she only pays a. Setting a = 0 clearly minimizes the revenues of the sellers.
The only remaining question is how much diversity the buyer optimally induces. Through the
option value it generates, diversity can increase e¢ciency. However, it is costly for the buyer
to induce. The theorem shows that whenever there is a tradeo§ between e¢ciency and rent
extraction, the buyer sacriÖces e¢ciency.
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Even when subsidies are not feasible, the buyer can still implement the same outcome as
with subsidies unless research costs are too high. For C ) F (v!1)5q(v

!
i ; v

!
j ), this is evident, as

the bonus tournament in Theorem 1(iii) does not require subsidies. For higher research costs
the buyer can increase the low price a in order to make sure that the participation constraints
of the buyers hold.

Proposition 2 Suppose that (A1) and (A2) hold and that the buyer cannot use subsidies.
If F (v!1)5q(v

!
i ; v

!
j ) < C ) F (v!2)5q(v

!
i ; v

!
j ), the buyer surplus is maximized by the bonus

tournament implementing (v!1; v
!
2) with P =fA; ag; where A = 2C + 5q(v!i ; v

!
j )=2 and a =

2C &5q(v!i ; v
!
j )=2.

The low positive price is a substitute for subsidies. However, for C > F (v!2)5q(v
!
i ; v

!
j ),

the di§erence between prices A and a is small relative to the absolute size of the price a. As
a becomes very large in absolute terms, sellers are willing to sacriÖce winning the bonus price
in order to increase their probability of winning the low price.

The buyer can increase her surplus if she is allowed to charge entry fees e > 0. She
would charge such fees only if C < F (v!1)5q(v

!
i ; v

!
j ), in which case the optimal fee e

! satisÖes
C + e! = F (v!1)5q(v

!
i ; v

!
j ).

17 With or without entry fees, the buyer thus designs the contest
so that the suppliers exactly break even on expectation.

4 Auctions and Fixed Prize Tournaments

In Section 3.2, we characterized the optimal contest. We now study two other types of contests
that are discussed in the literature, namely auctions and Öxed prize tournaments. Auctions
generally have good incentive properties; for example, auctions are the optimal contest in the
setting of Che and Gale (2003). On the other hand, Öxed prize tournaments are commonly
used in innovation contests. Next, we examine how these contests perform in our setting,
where the choice of research approaches is important.

Proposition 3 (i) For any t such that the suppliersí participation constraints are met, the
auction mechanism (P = R+) implements the social optimum. (ii) For any A % 2C, the
unique equilibrium of an FPT (P = fAg) implements (v1; v2) = (1=2; 1=2). (iii) Whenever
C < F (v!1)5q(v

!
i ; v

!
j ), the buyer prefers the ine¢cient FPT to the e¢cient auction.

Proposition 3(i) states that the auction induces the e¢cient amount of diversity. It is
intuitively clear that an auction implements some diversity: With identical approaches, no
supplier will earn a positive revenue. Any move away from the other supplier will lead to
quality advantages in a measurable set of states and thereby to positive expected revenues.
Auctions implement the socially e¢cient outcome because they align the externalities of the
choice of an approach vi with the private beneÖts. For example, Öx some v2 and consider a
marginal change of v1. Such a change generates externalities only in the states of the world for
which the quality of supplier 1 is greater than the quality of supplier 2. Furthermore, the size of
the externality is exactly the change in the quality di§erence. Since supplier 1 wins the auction
only when his quality is higher and he bids exactly the quality di§erence, the private incentives
and the externalities are aligned. While we prove Proposition 3(i) directly in Appendix 8.4, an

17 If the buyer is limited to setting fees below e!, she will charge the maximum allowable fee.
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analogous result also applies for more general state distributions and quality functions and for
arbitrary numbers of suppliers. It also holds when suppliers are heterogeneous. Appendix 8.7
provides a statement and proof of such a general implementation result for the social optimum.
This result extends beyond auctions to any type of institution that gives the chosen supplier
a positive share of the quality di§erence to the next-best alternative.

Proposition 3(ii) states that an FPT induces no diversity at all. We will provide a
proof of the result under more general conditions (Proposition 5(ii) below). The intuition
for the absence of diversity is straightforward. As the size of the prize is independent of
quality di§erences in an FPT, the suppliers care only about maximizing the expected winning
probability. By (A1), this requires moving to the center. In particular, there is no diversity.

As to (iii), even though an auction implements the social optimum, it leaves rents to the
successful supplier whenever research costs are low enough. Because it avoids such rents, the
buyer may prefer to use a suitable FPT. This trade-o§ between e¢ciency and rent extraction
also shows up when analyzing the price ceiling in auctions.

Corollary 1 An outcome (vi; vj) that is implemented in an auction with price ceiling 6P
satisÖes 5q(vi; vj) ) 6P . Thus diversity is bounded by the price ceiling.

If the maximal quality di§erence between the two suppliers were above the maximum
feasible bid, the supplier could not charge the buyer for this quality di§erence. He could
thus choose an approach slightly closer to the competitor to increase his chances of winning
without reducing the price.

Corollary 1 embeds the auction without price ceiling and the FPT as polar cases. In
an auction without price ceiling, suppliers are free to choose the bid and thus capture the
beneÖts of diversiÖcation. This results in optimal diversity. By Corollary 1, price ceilings
limit this possibility: They determine an upper bound on equilibrium diversity. A reduction
in the price ceiling leads to lower equilibrium diversity. Thus, the choice of the price ceiling
involves a trade-o§ between e¢ciency-increasing diversity and market power for the suppliers.
Consistent with the logic of Theorem 1(iii) and Proposition 3(ii), the following result shows
that the buyer never resolves the trade-o§ in favor of e¢ciency when costs are low.

Proposition 4 Let C = 0. Among all contests where P is convex, the buyerís surplus is
maximal in an FPT with A = 0.

The proof of Proposition 4 relies heavily on the fact that higher quality suppliers bid the
sum of the quality di§erential and the minimum P whenever available (Lemma 2). Thus
the buyer surplus is the di§erence between the expectation of the minimum quality and the
minimum bid. Her best choice is an FPT with A = 0, because this maximizes the minimum
quality and minimizes the minimum bid.

5 Extensions

In this section, we extend the model in several directions and study the robustness of our
main results. We show that, with more general distributions and quality functions and with
multiple suppliers, bonus tournaments still have desirable properties. Very generally, bonus
tournaments are still preferable to FPTs, and they still implement the social optimum with

10



the lowest revenues. However, they may require higher subsidies than alternative contests.
For instance, auctions may implement the social optimum with lower supplier surplus than
bonus tournaments when research costs are high or when the number of suppliers is large.
We also brieáy sketch several other extensions.

5.1 Generalized distributions and quality functions.

In this subsection, we still assume that there only two suppliers, but we generalize the as-
sumptions as follows:
Assumption (A1)í The density function f (') is (i) symmetric and (ii) has full support:
f (') > 0 8' 2 [0; 1].
Assumption (A2)í )(jvi & 'j) is increasing and continuous.

Thus, we relax the requirements that the distribution be single-peaked and relatively áat
and that the distance function be linear.

Lemmas 2, 3 and Proposition 1 also hold under the relaxed assumptions (A1)í and (A2)í.
The proofs are analogous and are therefore omitted here. As a result, the main contests that
we previously dealt with have the same properties as before:

Proposition 5 Suppose that (A1)í and (A2)í hold. Then, (i) the bonus tournament (P =
f5q(v!1; v

!
2); 0g) and the auction mechanism (P = R+) implement the social optimum with

appropriate t % 0. Moreover, (ii) in any FPT (P = fAg for A % 2C), the unique equilibrium
is such that v1 = v2 and F (vi) = 1=2 for i = 1; 2.

The rankings between the contests are similar to the benchmark model of Section 2. How-
ever, there are cases where the buyer prefers auctions to bonus tournaments. Intuitively,
bonus tournaments still implement the social optimum with the lowest possible supplier rev-
enue: The price is zero except for ' ) v1 and for ' % v2, in which case the price just
compensates for the quality di§erence to the second-best supplier. However, for high research
costs, the subsidies required for break-even can be so much lower with auctions that the buyer
prefers auctions to bonus tournaments. This reáects the fact that, in auctions, the revenues
of the di§erent suppliers are more similar than for bonus tournaments, so that subsidies for
which all suppliers break even involve less rents for the suppliers whose expected revenues are
highest.18 The following result clariÖes the circumstances under which bonus tournaments
are preferable even so.

Proposition 6 Suppose that (A1)í, and (A2)í hold. Then, (i) the buyer strictly prefers a
suitable bonus tournament to the FPT whenever C > 0. (ii) The buyer weakly prefers a
suitable bonus tournament to the auction if at least one of the following conditions holds:
(a) C ) min fF (v!1)5q (v

!
1; v

!
2) , (1& F (v

!
2))5q (v

!
1; v

!
2)g, (b) v

!
1 + v

!
2 = 1, or (c) f (') is

single-peaked. Whenever (a) holds, the preference is strict.

According to (i), a suitable bonus tournament is still always preferable to an FPT in the
more general set-up. Together, the conditions in (ii) show that a suitable bonus tournament
dominates an auction under quite general conditions: Counterexamples require that research
costs are high, that the social optimum is not symmetric and that f (') is not single-peaked.

18This issue obviously does not arise when di§erentiated subsidies are possible.
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5.2 Number of Suppliers

In innovation contests there are usually more than two suppliers. For example, there were
49 registered competitors in the EU Vaccine Prize, 12 of which submitted Önal designs for
evaluation.19 We therefore now deal with the possibility that there are many suppliers. For
simplicity, we assume that the distribution of ideal states is uniform.

Assumption (A1)î f (') = 1 8' 2 [0; 1].

With this assumption, we can characterize the social optimum and the equilibria of the
main contests previously discussed. Though most results also apply to the case n = 3, an
FPT does not have a pure strategy equilibrium in this case. To allow for simple formulations,
we conÖne ourselves to n > 3.

Lemma 4 Suppose there are n > 3 suppliers and (A1)î and (A2) hold.
(i) The social optimum is (v!1; :::; v

!
n) = (1=2n; 3=2n; 5=2n; :::; (2n& 1) =2n).

(ii) The social optimum can be implemented with a bonus tournament where P = fb=n; 0g
and t = C or with an auction with appropriate t % 0.
(iii) In any equilibrium of an FPT with n suppliers, there is duplication, and the amount
of diversity is ine¢ciently low. As n increases, the di§erence between the socially optimal
diversity and the minimal diversity in any FPT equilibrium converges to zero.

Figure 2 illustrates the result for n = 6. In line with Lemma 4(i), there is no duplication
in the social optimum, and the approaches are evenly spread. The buyer can implement
the social optimum with a bonus tournament or an auction. The two other constellations
describing the equilibria of the FPT highlight implications of Lemma 4(iii). First, the two
most extreme approaches are not as far apart as the most extreme approaches of the social
optimum; in this sense, there is less than optimal diversity. Second, there is duplication.20

Lemma 4 allows us to compare di§erent institutions.

Proposition 7 Suppose there are n > 3 suppliers and (A1)î and (A2) hold.
(i) The buyer prefers to implement the social optimum with a bonus tournament rather than
an auction if and only if C < (n& 1) b=2n3.
(ii) The buyer strictly prefers the bonus tournament (b=n; 0) to any FPT for n > 4; she is
indi§erent for n = 4.

Proposition 7(i) contrasts with the case n = 2, for which the buyer always prefers bonus
tournaments to auctions under assumptions (A1) and (A2), which include uniform state dis-
tributions and linear quality functions. The intuition is essentially the same as for the case
of two suppliers with generalized distributions: While the bonus tournament implements the
social optimum with lower supplier revenues than the auction, it may require higher subsidies.
Proposition 7(ii) generalizes the corresponding result for the benchmark model, with a small
qualiÖcation for n = 4.

19European Commision (2014), "German company has won the EUís e 2 million vaccine prize." March 10,
2014 (accessed on April 3, 2015). http://ec.europa.eu/research/health/vaccine-prize_en.html
20The remaining features of the depicted FPT hold in a class of FPT equilibria given in Lemma 8 in Appendix

8.6: The two most extreme approaches are always chosen by two suppliers. Moreover, depending on the speciÖc
equilibrium, there may be additional duplication for intermediate approaches.
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Figure 2: Equilibria when n = 6.

Lemma 4 has another simple but important implication: It may be socially optimal to
invite a large number of suppliers. This di§ers from the case of contests that merely ináuence
the suppliersí e§orts: Several papers show that, in those settings, the optimal number of
participants is typically two.

Corollary 2 Suppose research costs are C > 0 and that (A1)î holds. DeÖne n% (C) =

max
n
n 2 Nj 2 ) n )

p
b
.
2
p
C
o
and n+(C) = n% (C) + 1. Auctions or bonus tournament

with n% (C) or n+(C) suppliers maximize total surplus in the set of all contests with an
arbitrary number of suppliers.

Corollary 2 is a straightforward implication of the previous results. Lemma 4(i) char-
acterizes the socially optimal allocation for given n, and auctions and bonus tournaments
implement this allocation. Corollary 2 describes the number of suppliers that optimally bal-
ances the gains from higher expected quality against the losses from higher research costs.
While the corollary is stated for the socially optimal contest, it is simple to show that the
buyer can also often beneÖt from inviting more than two suppliers.

5.3 Other Extensions

We now discuss to which extent several other extensions of the set-up are feasible. We
deal with heterogeneous suppliers, multiple prizes and multiple research approaches of each
supplier. In particular, the Örst issue is treated in much more detail in the working paper
(Letina and Schmutzler 2015).

5.3.1 Heterogeneous Suppliers

The assumption of homogeneous suppliers simpliÖes the analysis. In many contexts, it is
nevertheless natural to allow for exogenous heterogeneity: Suppliers may di§er with respect
to expertise or research capabilities. Architects may have di§erent and essentially Öxed styles.
In Letina and Schmutzler (2015), we extend the model to allow for such exogenous hetero-
geneity. To this end, we consider a two-dimensional state space to capture both exogenous
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and endogenous heterogeneity. We focus on uniform state distributions and the case C = 0.
We show that the social optimum only involves diversiÖcation if exogenous heterogeneity is
not too strong. As in the case of homogeneous suppliers with low research costs, however,
Öxed-prize tournaments do not induce any diversiÖcation, but buyers prefer them to auctions.

The framework with heterogeneous suppliers has an additional advantage: For su¢ciently
heterogeneous buyers, the modiÖed framework allows us to use the alternative informational
assumption that suppliers cannot observe qualities when they submit bids, which is intractable
for homogeneous suppliers. We show that there is no diversiÖcation in this equilibrium for an
auction.

5.3.2 Fixed-Prize Tournaments with Multiple Prizes

In the 2005 DARPA Grand Challenge, only the winner of the contest was eligible for the prize
($2 million), while the other contestants received nothing. This corresponds to an FPT as
introduced above. However, in the subsequent DARPA contest, known as the 2007 Urban
Challenge, rules speciÖed that not only would the winner receive a prize (which was again $2
million), but the next two participants would also receive prizes ($1 million and $0.5 million).21

While a full analysis is beyond the scope of this paper, we can show that a buyer is worse o§
in an FPT with two prizes than with a single prize.22 The following result shows that the
buyer has nothing to gain from using multiple prizes.

Lemma 5 Suppose that n > 3 and that (A1)î and (A2) hold. Further, suppose that t is
su¢ciently large, and that the two prizes are A1 > A2 > 0. For any equilibrium in an FPT
with two prizes, there exists an equilibrium in an FPT with a single prize which makes the
buyer strictly better o§.

Clearly, when there are only two suppliers, a second prize has no e§ect, as the suppliers
would consider it as a pure subsidy, and the e§ective prize would be the di§erence between
the Örst and the second prize. The proof of Lemma 5 shows that any equilibrium of an FPT
with two prizes involves more duplication than the chosen equilibrium of an FPT with a single
prize, which leads to a lower buyer surplus. This result suggests that multiple prizes do not
improve diversity.23

5.3.3 Multiple Designs by the Same Supplier

We have assumed so far that each supplier can only develop a single approach. However, in
the 2005 DARPA Grand Challenge, vehicles designed by the Red Team from Carnegie Mellon
University took the second and third place. By developing multiple designs, a supplier inter-
nalizes some of the resulting option value. It is thus natural to allow for multiple approaches
of di§erent suppliers. The modiÖed model is analytically intractable, but a numerical analysis
suggest that our main results are robust. We study the cases with n 2 f2; :::; 5g suppliers,
21See Section 1.4 of the DARPA Urban Challenge Rules (2007) (accessed on June 24, 2015).

http://archive.darpa.mil/grandchallenge/docs/Urban_Challenge_Rules_102707.pdf
22The results can be extended to more than two prizes.
23Of course, there may be reasons outside of the model which would make multiple prizes a desirable choice

for a contest designer. For example, if suppliers are risk averse, providing multiple prizes may be a way of
increasing their expected utility.
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each of which can develop m = 2 approaches, and the case with n = 2 suppliers, each of which
can develop m = 3 approaches. We assume that (A1)î and (A2) hold and that C = 0. We
also Öx values of ) and b.24

Numerical Result: If there are n suppliers and each develops m approaches, then: (i)
Both a bonus tournament and an auction implement the socially optimum described in Lemma
4(i), with n replaced ny n -m. (ii) In an FPT, there exists an equilibrium which is identical to
the maximally duplicative equilibrium of an FPT with n -m suppliers, each of which develops
one approach.

The notion of a maximally duplicative equilibrium refers to Lemma 8 in Appendix 8.6:
There, we consider a class of equilibria where maximal duplication occurs when each active
research approach is chosen by two suppliers. While the analysis is clearly incomplete, the
numerical result suggests that the case where n suppliers each develop m approaches can be
analyzed using the framework where n -m suppliers each develop one approach (see Section
5.2).

6 Relation to the Literature

This paper contributes to the literature on optimal contest design, especially the design of
innovation contests. The existing design literature focuses exclusively on e§ort incentives. In
models of Öxed-prize tournaments, Taylor (1995) shows that free entry is undesirable, and
Fullerton and McAfee (1999) show that the optimal number of participants is two. Fullerton
et al. (2002) Önd that buyers are better o§ with auctions rather than Öxed-prize tournaments.
In a very general framework, Che and Gale (2003) show that an auction with two suppliers is
the optimal contest. Contrary to the previous literature, our paper focuses on the suppliersí
choice of research approaches rather than only on e§ort levels. We characterize the optimal
contests in such settings, highlighting in particular the useful role of bonus tournaments.

This paper extends our working paper (Letina and Schmutzler, 2015). In particular, we
now characterize the optimal contest under more general conditions. Compared with the
working paper, we focus more on the natural case that research costs are positive. We also
clarify how the availability of subsidies and entry fees ináuences the optimal design. Finally,
we extend the analysis of bonus tournaments beyond the benchmark model. Due to these
extensions, we Önd a wide range of circumstances where auctions outperform Öxed prize
tournaments, and we clarify the relative merits of auctions and bonus tournaments.

Letina (2015) also studies the diversity of approaches to innovation, but the objects of
analysis and the employed models are very di§erent. He focuses on a market context, and he
deals with comparative statics rather than optimal design. In particular, the paper Önds that
a merger decreases the diversity of approaches to innovation.

While we are not aware of any other paper that considers optimal contest design when
diversity plays a role, some authors compare contests in related, but di§erent settings. In
Ganuza and Hauk (2006), suppliers choose both an approach to innovation and a costly
e§ort.25 However, these authors focus exclusively on Öxed-prize tournaments, while we study

24For details and the code used to obtain numerical results, see Supplementary Material for Section 5.3.3,
available at https://sites.google.com/site/iletina.
25 In Ganuza and Pechlivanos (2000), Ganuza (2007) and Kaplan (2012), the buyer has to choose the design

or alternatively can reveal information about the preferred design.
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the optimal contest design. Erat and Krishnan (2012) analyze a Öxed-prize tournament where
suppliers can choose from a discrete set of approaches.26 The authors Önd that suppliers
cluster on approaches delivering the highest quality. This result is related to our result that
there is duplication of approaches in the equilibria of Öxed-prize tournaments. In addition to
allowing for alternative contests, our model also considers correlated rather than independent
qualities; it is thus meaningful to speak of similar approaches.27 Schˆttner (2008) considers
two contestants who ináuence quality stochastically by exerting e§ort. She Önds that, for large
random shocks, the buyer prefers to hold a Öxed-prize tournament rather than an auction to
avoid the market power of a lucky seller in an auction. This resembles the trade-o§ underlying
our Proposition 3. However, her analysis does not speak to optimal design and the role of
bonus tournaments. It also does not address the setting with n > 3 suppliers.28

Our paper is also related to the literature on innovation contests with exponential-bandit
experimentation (see Halac, Kartik and Liu (2014) and references therein). In these models, it
is uncertain whether the innovation is feasible. Suppliers participating in the contest expend
costly e§ort to learn the state, and they also learn from the experimentation of their opponents.
The goal of the contest is to induce experimentation. However, each supplier experiments in
the same way. In our model, experimentation arises at the industry level for suitable contests,
as the heterogeneity of approaches allows the buyer to pick the best available choice.

More broadly, our paper is related to the literature on policy experimentation. For in-
stance, Callander and Harstad (2015) show that decentralized policy experimentation yields
too much diversity. In their model, the success probabilities of di§erent experiments are inde-
pendent, no matter how similar the policies are. This assumption removes the option value of
having di§erent experiments, which is central to our model. If there existed an ideal policy (in
terms of quality) as in our model, then the option value would have to be traded o§ against the
beneÖts of convergence emphasized by Callander and Harstad (2015). It would be interesting
to see whether and how centralization would help to resolve this trade o§. In a related setting,
Bonatti and Rantakari (2015) consider a setting where two agents choose which project to
develop. To successfully develop a project, an agent exerts e§ort until a success occurs. For
a successful project to be adopted (and yield a positive payo§) both agents have to consent
to the adoption. By assumption, the agents have opposite preferences over the set of projects.
The agents have an incentive to pursue extreme projects (which they like the most) but the
veto power of the other agent forces them to compromise. As in Callander and Harstad (2015)
the success of one approach is unrelated to the success of any other approach. This removes
the option value of diversity that we identify in our paper.

26See also Terwiesch and Xu (2008) for the e§ect of number of suppliers when exogeneous random shocks
are large. For empirical evidence see Boudreau, Lacetera and Lakhani (2011).
27See also Konrad (2014) for a variant of Erat and Krishnanís model where Örst best is restored if the

tie-breaking is decided via costly competition (for example lobbying) as opposed to randomly.
28More broadly related is Bajari and Tadelis (2001) who do not deal with innovations, but with construction

projects. The issue of the right approach to the problem arises in such settings as well. The supplier obtains
new information during the period when the contract is being executed, which allows him to adapt the original
approach at some cost. Since the relationship is between a buyer and only one supplier, the question of diversity
of approaches does not arise. This is also true for the related work by Arve and Martimort (2015) who study
risk-sharing considerations in the design of contracts with ex-post adaptation.
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7 Conclusions and Discussion

The ideal approach to solving an innovation problem is usually unknown to suppliers and buy-
ers. Our paper investigates the implications of this uncertainty for contest design. Under very
general conditions, it is socially optimal for suppliers to take diverse research approaches, and
the social optimum can be obtained with both bonus tournaments and auction mechanisms.
Inducing diversity of approaches to innovation is costly for the buyer. To reduce supplier
rents, she may therefore want to induce suboptimal diversiÖcation. Bonus tournaments are
in the set of optimal contests under quite general conditions. The di§erence between the
bonus and the low price provides incentives for sellers to diversify, which allows the buyer to
Öne-tune the amount of diversity induced. At the same time, bonus tournaments minimize
the power of suppliers to exploit their quality advantage. The non-convexity of the price set
is decisive for this feature.

Beyond innovation contests, our model can be used to analyze how institutions a§ect the
incentives for experimentation when the optimal approach to solving a given problem is not
known. A particularly promising application would be to think of our model as capturing
product choice in markets with a unit mass of homogeneous buyers, each of which has unit
demand. We can then interpret the uncertainty about the ideal state in two ways. First,
it may reáect uncertainty about the buyersí taste. Second, it may capture an "engineering
uncertainty" where the suppliers know what the buyers would like, but are uncertain about
how to achieve this. Either way, the rules of the contest translate directly into a description
of the regulatory constraints in a market environment. For instance, the auction corresponds
to an unregulated market environment where suppliers choose products under uncertainty
about the preferred product and charge prices once qualities are realized. The Öxed prize
tournament can be interpreted as a regulated market where prices are Öxed ex ante: The
prize is then the proÖt that the Örm earns in the market from selling at the regulated price to
a unit mass of consumers. Similarly, auctions with price ceilings have a natural interpretation
as regulated markets with price caps.

Our results suggest that an unregulated market maximizes expected total surplus, whereas
a regulated market maximizes the expected consumer surplus. The unregulated market gives
incentives for Örms to diversify, but leaves them with market power. The trade-o§ resembles
the one between ex-ante incentives and ex-post monopoly power in the innovation literature.
In our case, however, the higher expected quality from the unregulated market does not re-
sult from higher innovation incentives at the individual Örm level, but rather from the higher
diversiÖcation incentives at the market level. Price caps strike a balance between the goals
of maximizing consumer surplus and total surplus. Bonus tournaments would correspond
to a regulated environment where Örms can select between o§ering two di§erent prices de-
pending on the realized quality levels. Our analysis suggests that, in some markets, such
bonus tournaments may even be better for consumers than full price regulation. These simple
considerations clearly have limitations resulting from the rather special market environment.
However, the arguments suggest that the contest approach may potentially be valuable to
analyze product innovations (or product selection) in market environments. A full analysis of
this topic is left for future research.
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8 Appendix

8.1 Basics

In the following, we introduce some notation that we use throughout the Appendix. We also
formulate the restrictions implied by subgame perfection.

8.1.1 Notation

We consistently use subscripts B for buyers, i = 1; 2 for suppliers and T for "total" (buyers
plus suppliers). Superscripts such as fpt for Öxed-price tournament, bt for bonus tournament
or a for auction refer to the contest P under consideration. We will drop these superscripts
whenever there is no danger of confusion.

1. pi (qi; qj) 2 P [*%b;*]
2

is a price strategy function.29

2. >i (pi; pj j qi; qj) is the realized revenue that supplier i earns with prices p1 and p2, con-
ditional on qualities q1 and q2, assuming that the buyer chooses the i sequentially ra-
tionally, i.e., the i that maximizes qi & pi in contest P.30

3. b9i (vi; vj ; pi; pj) is the expectation over >i (pi; pj j qi; qj) when suppliers choose v1, v2,
p1 () and p2 (), where the expectation is taken over all pairs of quality realizations for
given (v1; v2).

4. 9Pi (vi; vj) = b9i (vi; vj ; pi; pj), where pi() and pj () are the subgame equilibria for the
contest P as in Lemma 2, is the (expected) revenue of supplier i.

5. SPi (vi; vj) = 9
P
i (vi; vj) + t& C is the (expected) surplus of supplier i.

6. SPB (vi; vj) = E# [max fq (v1; ') ; q (v2; ')g]&9
P
1 (vi; vj)&9

P
2 (vi; vj)&2t is the (expected)

surplus of the buyer.

8.1.2 Subgame-Perfect Equilibrium

A subgame-perfect equilibrium of the innovation contest given by P consists of supplier strate-
gies si = (vi; pi) 2 [0; 1]. P [*%b;*]

2
and buyer strategies @ 2 fv1; v2g(P&[*%b;*])

2

such that:

(DC1) @1 and v2 are sequentially rational.

(DC2) >i (pi (qi; qj) ; pj (qj ; qi)j qi; qj) % >i (p0i; pj (qj ; qi) jqi; qj) for all p
0
i 2 P,(qi; qj) 2 [)& b;)]

2

(sequential rationality of supplier i)

(DC3) b9i (vi; vj ; pi (qi; qj) ; pj (qj ; qi)) % b9i (v0i; vj ; epi (qi; qj) ; pj (qj ; qi)) for all v0i 2 [0; 1] and all
epi (qi; qj) 2 P [*%b;*]&[*%b;*] (best-response condition for supplier i).

29For sets X and Y , Y X is the set of all mappings from X to Y .
30When q1 * p1 = q2 * p2, we appeal to tie-breaking rule (T1) below.
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8.2 Proofs of Auxiliary Results (Section 3.1)

8.2.1 Proof of Lemma 1

Suppose, without loss of generality, that v1 ) v2. The total surplus is

ST (v1; v2)& 2C =

Z 1

0
maxfq(v1; '); q(v2; ')gdF (')& 2C =

)& b

0

BBBBBBBB@

v1Z

0

(v1 & ') dF (') +

(v1+v2)=2Z

v1

(' & v1) dF (')+

v2Z

(v1+v2)=2

(v2 & ') dF (') +
1Z

v2

(' & v2) dF (')

1

CCCCCCCCA

& 2C.

This is a continuous function with a compact domain, hence it attains the maximum. Note
that

@ST (v1; v2)

@v1
= b (&2F (v1) + F ((v1 + v2) =2)) (1)

@ST (v1; v2)

@v2
= b (1& 2F (v2) + F ((v1 + v2) =2)) . (2)

(1) and (2) imply that there are no boundary optima. To see this, Örst note that @ST (0;v2)@v1
>

08v2 > 0 and
@ST (v1;1)

@v2
< 08v1 < 1. Moreover (v1; v2) = (0; 0) and (1; 1) are both dominated

by (1=2; 1=2). Thus, the optimum must satisfy

&2F (v1) + F ((v1 + v2) =2) = 0 (3)

1& 2F (v2) + F ((v1 + v2) =2) = 0: (4)

Together these conditions imply F (v!2) = 1=2 + F (v
!
1).

For v1 2 [0; 1=2], let g (v1) = F%1
/
F (v1) +

1
2

0
. F%1 is well-deÖned because of (A1)(iii).

Inserting v2 = g (v1) in (3) and (4), the Örst-order conditions hold for (v1; v2) = (v1; g (v1)) if

v1 = F
%1
1
F ((v1 + g (v1)) =2)

2

2
: (5)

(5) has at least one solution v!1 2 (0; 1=2). This holds because both sides of (5) are strictly
increasing, and the r.h.s. is positive for v1 = 0 and strictly less than 1=2 for v1 = 1=2. Now
consider (v!1; v

!
2) = (v!1; g (v

!
1)) such that F (v

!
1) = 1=4 and F (v!2) = 3=4. Thus F (v!2) =

F (v!1) + 1=2. Moreover, symmetry implies v
!
1 + v

!
2 = 1 and thus the r.h.s. of (5) is F

%1 /1
4

0
,

so that the Örst-order condition holds for (v!1; v
!
2).

Finally, consider the Hessian matrix

H =

2

4
@2ST
@v21

@2ST
@v1@v2

@2ST
@v1@v2

@2ST
@v22

3

5

=

7
&2f (v1) + 1

2f ((v1 + v2) =2)
1
2f ((v1 + v2) =2)

1
2f ((v1 + v2) =2) &2f (v2) + 1

2f ((v1 + v2) =2)

8
.
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First, H is negative deÖnite at (v!1; v
!
2) if and only if f (1=2) < 2f (v

!
1). To see this, note

that f (v!1) = f (v
!
2) and f ((v

!
1 + v

!
2) =2) = f (1=2). Hence,

&2f (v!1) +
1

2
f ((v!1 + v

!
2) =2) = &2f (v

!
1) +

1

2
f (1=2) < 0, f (1=2) < 4f (v!1) :

In addition,

jHj = 4f (v!1) f (v
!
2)& (f (v

!
1) + f (v

!
2)) f ((v

!
1 + v

!
2) =2) = 4f (v

!
1)
2 & 2f (v!1) f (1=2) .

This condition holds if and only if f (1=2) < 2f (v!1), which holds by (A1)(iv).
Second, H is negative deÖnite 8 (v1; v2) if f (1=2) < 2f (0). To see this, note that f (v) is

minimized at v = 0 and maximized at v = 1=2. Hence, f (1=2) < 2f (0) < 4f (0) implies

&2f (vi) +
1

2
f

1
v1 + v2
2

2
) &2f (0) +

1

2
f

1
1

2

2
< 0 8i 2 f1; 2g .

and

jHj = f (v1)
1
2f (v2)& f

1
v1 + v2
2

22
+ f (v2)

1
2f (v1)& f

1
v1 + v2
2

22
> 0.

Therefore, f (1=2) < 2f (0), which holds by (A1)(iv), is a su¢cient condition for (v!1; v
!
2) to

be the unique global optimum.

8.2.2 Proof of Lemma 2

Consider the equilibrium for the subgame deÖned by (v1; v2; ') and the resulting quality
vector (q1; q2). If q1 = q2, the standard Bertrand logic implies that (p (') ; p (')) = (P ; P )
is the unique equilibrium. Now suppose qi > qj . Clearly, the suggested strategy proÖle is a
subgame equilibrium. To see that i must bid p (') in equilibrium, Örst suppose pi > p ('). If
pi > pj + q (vi; ')& q (vj ; '), supplier j wins. By setting pi = p (') ) pj + q (vi; ')& q (vj ; '),
supplier i can ensure that he wins, which is a proÖtable deviation by (T2). If pi > p (') and
pi ) pj + q (vi; ') & q (vj ; '), supplier i wins. By setting pj = P , supplier j can proÖtably
deviate. If pi < p ('), supplier i can deviate upwards to p ('). He then still wins by (T1), and
revenues are higher.

8.2.3 Proof of Lemma 3

(i) The result is trivial for v1 = v2. For v1 < v2, we show that supplier 1 can proÖtably
deviate to some v01 > v1 if 5q (v1; v2) + P =2 P. Before the deviation, by Lemma 2, if
' 2 [0; v1], supplier 1 wins and p(') < 5q (v1; v2) + P . By continuity, 9 v01 2 (v1; v2] such
that p(') < 5q (v01; v2) + P < 5q (v1; v2) + P . By deviating to v

0
1, supplier 1 wins whenever

' < (v01 + v2) =2 rather than when ' < (v1 + v2) =2. The set of states in which supplier 1
wins after the deviation thus is a strict superset of the set of states in which the supplier wins
before the deviation. For ' 2 [0; v1], the price is una§ected. For ' 2 (v1; (v01 + v2) =2], the
price is at least as high as before the deviation. Thus, v01 is a proÖtable deviation by (T2).
(ii) follows directly from Lemmas 2 and 3 (i).
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8.3 Proofs of Main Optimality Results (Section 3.2)

8.3.1 Proof of Proposition 1

Sequential rationality of pi () follows from Lemma 2. We now show that (v1; p1 ()) is a best
response of supplier 1 to (v2; p2 ()); the argument for supplier 2 is analogous. For A = 0,
only (v1; v2) = (1=2; 1=2) satisÖes the above conditions. Thus, the statement for A = 0 will
follow from Proposition 3(ii). If v1 < v2, 5q (v1; v2) > 0, and the probability that supplier
1 wins with a positive prize is F (v1). Deviating to v01 < v1 is not proÖtable, because the
winning probability falls to F (bv1), with bv1 < v1 implicitly deÖned by q (v01; bv1)& q (v2; bv1) =
5q (v1; v2) ; and the prize does not rise. It is not proÖtable to deviate to v001 2 (v1; ev), where
ev = min (2v2 & v1; 1) % 1=2: For such deviations, 5q (v001 ; v2) < 5q (ev; v2) ) 5q (v1; v2)8', so
that the probability of winning a positive prize is 0. Finally, if ev < 1, deviating to v0001 2 [ev; 1]
is not proÖtable, because ev % 1=2+v2&v1 implies 1&ev ) 1=2&(v2 & v1) ) v2&(v2 & v1) = v1
and therefore, by symmetry of the state distribution, 1 & F (v0001 ) ) 1 & F (ev) ) F (v1). By
analogous arguments, there are no proÖtable deviations for supplier 2.

By Lemma 1, the social optimal satisÖes F (v!1) = 1=4 and F (v
!
2) = 3=4. Clearly, it must

be that 0 < v!1 ) 1=2 ) v
!
2 < 1, and the social optimum can be implemented.

8.3.2 Proof of Theorem 1

The buyer optimally chooses (v1; v2; p1; p2;P; t) 2 [0; 1]2 .P [*%b;*]
2

.I (R+). [0;+1) so as
to maximize

ST (v1; v2)& b91 (v1; v2; p1; p2)& b92 (v1; v2; p1; p2)& 2t

such that, for all i 2 f1; 2g and j 6= i; (DC1)-(DC3) hold and

b9i (vi; vj ; pi; pj) + t& C % 0 for all i; j 2 f1; 2g and i 6= j. (6)

(i) The statement follows from two lemmas. Lemma 6 shows that allocations maximizing
buyer surplus satisfy the conditions of Proposition 1 and can thus be implemented by a bonus
tournament. Lemma 7 shows that implementation requires lower expected transfer than any
alternative; hence buyer surplus is maximal.

Lemma 6 If
/
vB1 ; v

B
2 ; p1; p2

0
is an equilibrium of a contest that maximizes buyer surplus, then

0 < vB1 )
1
2 ) v

B
2 < 1.

We prove this lemma in two steps.
Step 1: If

/
vB1 ; v

B
2 ; p

B
1 ; p

B
2

0
is an equilibrium where w.l.o.g. vB1 ) v

B
2 , then v

B
1 ) 1=2 ) v

B
2 .

Proof : We will show that v1 ) 1=2 ) v2 must hold in any contest equilibrium. Suppose, to
the contrary, that v1 ) v2 < 1=2: The case that 1=2 < v1 ) v2 follows analogously. Let p1; p2
be the associated pricing strategies. Then, the expected revenue of supplier 1 is 91 (v1; v2) =
R v1+v2

2
0 p1 (q1 (') ; q2 (')) dF ('). Consider the deviation v01 = 2v2 & v1 < 1 with the same
pricing function. Supplier 1 now wins whenever ' > (v2 + v01) =2. We can write the expected
revenue as 91 (v01; v2) =

R 2v2
v01+v2
2

p1 (q1 (') ; q2 (')) dF (') +
R 1
2v2
p1 (q1 (') ; q2 (')) d'. Clearly,

(v1 + v2) =2 = 2v2 &
v01+v2
2 . Moreover, there exists a bijective mapping [0; (v1 + v2) =2] !

[(v01 + v2) =2; 2v2]; '
0 7! '00 such that q (v1; '0)& q (v2; '0) = q (v01; '

00)& q (v2; '00) and f ('0) )
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f ('00). Thus
R v1+v2

2
0 p1 (q1 (') ; q2 (')) dF (') )

R 2v2
v01+v2
2

p1 (q1 (') ; q2 (')) dF ('). As a result,

91 (v1; v2) ) 91 (v
0
1; v2) and v

0
1 leads to strictly higher probability of winning, hence v

0
1 is

a proÖtable deviation.31 Thus, v1 ) 1=2 ) v2 must hold in any equilibrium; in particular,
therefore vB1 ) 1=2 ) v

B
2 .

Step 2: If
/
vB1 ; v

B
2 ; p

B
1 ; p

B
2

0
is an equilibrium maximizing buyer surplus, then 0 < vBi < 1 for

i 2 f1; 2g.
Proof : By Step 1, we know that v1 ) 1=2 ) v2. Suppose vB1 = 0 and vB2 = 1. We

will distinguish two cases, C = 0 and C > 0. First suppose C = 0. By single-peakedness
(A1), v1 = v2 = 1=2 results in weakly higher total surplus than

/
vB1 ; v

B
2

0
. As the allocation

(v1; v2) = (1=2; 1=2) can be implemented with an FPT and A = 2C by Proposition 3(ii),
the buyer would be strictly better o§ than in any contest implementing vB1 = 0 and v

B
2 = 1

where the suppliers earn positive surplus. Finally, observe that vB1 = 0 and vB2 = 1 cannot
be implemented so that the suppliers earn zero surplus, as the suppliers could increase their
probability of winning by deviating to the interior, which by (T2) would be a proÖtable
deviation. Next suppose C > 0. There exists some small " such that ST

/
vB1 = 0; v

B
2 = 1

0
<

ST ("; 1& ") and F (")5q ("; 1& ") < C. But then a bonus tournament with subsidy t0 =
C & F (")5q ("; 1& "), and P =f5q ("; 1& ") ; 0g implements ("; 1& "), achieves higher total
surplus, and the supplier surplus not higher than in any contest implementing vB1 = 0 and
vB2 = 1. Hence, the buyer surplus is higher, which is a contradiction.

Next suppose v1 = 0 and v2 < 1 (the case that v1 > 0 and v2 = 1 follows analo-

gously). By Lemma 2, the revenue is 91 (0; v2) =
R v2

2
0 6p (q1 (') ; q2 (')) dF (') for supplier 1

and 92 (v2; 0) =
R v2
v2
2
6p (q2 (') ; q1 (')) dF (')+

R 1
v2
6p (q2 (') ; q1 (')) dF (') for supplier 2. More-

over, 91 (0; v2) > 0, because otherwise supplier 1 could increase his probability of winning
by deviating to the interior, which by (T2) would be a proÖtable deviation. By single-

peakedness (A1) it holds
R v2

2
0 6p (q1 (') ; q2 (')) dF (') )

R v2
v2
2
6p (q2 (') ; q1 (')) dF ('). Suppose

that this equilibrium is implemented with transfers t such that t+91 (0; v2) % C. This implies
t+92 (v2; 0) > C. Further, using (1),dST

/
vB1 ; v

B
2

0
=dvB1

::
vB1 =0

= bF (v2=2) > 0, so that there

exists some 6" > 0 such that ST
/
"; vB2

0
> ST

/
0; vB2

0
for every " 2 (0;6"). Fix " such that

F (")5q ("; v2) ) 91 (0; v2) and F (") < 1 & F (v2). Let t0 = t + 91 (0; v2) & F (")5q ("; v2).
Now consider a bonus tournament with subsidy t0 and P =f5q ("; v2) ; 0g. By Proposition 1,
this bonus tournament will implement ("; v2) if the participation constraint is met. This con-
dition holds for both suppliers, because t0 + (1 & F (v2))5q ("; v2) > t0 + F (")5q ("; v2) % C.
Compared to the original situation with v1 = 0 and v2 < 1, the rent of supplier 1 is un-
changed, but the rent of supplier 2 decreases since

R v2
v2
2
6p (q2 (') ; q1 (')) dF (') + t > t0 and

R 1
v2
6p (q2 (') ; q1 (')) dF (') > (1 & F (v2))5q ("; v2). Since the total surplus increases and the

sellersí surplus decreases, the buyerís surplus must increase. Therefore, the bonus tournament
that implements ("; v2) increases the buyer surplus, which is a contradiction.

Lemma 7 If
/
vB1 ; v

B
2 ; p

B
1 ; p

B
2

0
is an equilibrium of a contest maximizing buyer surplus, then

it can be implemented by a contest with P = fA; 0g.

Proof: From Proposition 1 and Lemma 6, we know that the bonus tournament with

31Given the tie-breaking rule T2, this is even true for p = 0.
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A = 5q
/
vB1 ; v

B
2

0
implements

/
vB1 ; v

B
2

0
. It remains to be shown that the buyer cannot im-

plement
/
vB1 ; v

B
2

0
with lower expected total transfers with any other contest. First, sup-

pose that vB1 + v
B
2 = 1. By Lemmas 2 and 3, in any contest that implements

/
vB1 ; v

B
2

0

the price paid by the buyer is exactly 5q(vB1 ; v
B
2 ) + P if ' 2 [0; vB1 ] [ [v

B
2 ; 1] and it is

at least 0 if ' 2
/
vB1 ; v

B
2

0
. Thus, if 5q(vB1 ; v

B
2 )F (v

B
1 ) > C, a bonus tournament imple-

ments
/
vB1 ; v

B
2

0
with the lowest possible expected total transfers. If 5q(vB1 ; v

B
2 )F (v

B
1 ) ) C,

a bonus tournament with an appropriate t implements
/
vB1 ; v

B
2

0
with zero expected sup-

plier surplus. Next, consider an arbitrary contest implementing
/
vB1 ; v

B
2

0
with vB1 + v

B
2 < 1

with subsidy t (the case vB1 + v
B
2 > 1 is analogous). The surplus of supplier 1 is then

S1 = 5q(v
B
1 ; v

B
2 )F (v

B
1 )+

R vB1 +v
B
2

2

vB1
6p (q1 (') ; q2 (')) dF (')+ t&C, and for supplier 2 it is S2 =

5q(vB1 ; v
B
2 )(1& F (v

B
2 ))+

R v2
vB1 +v

B
2

2

6p (q1 (') ; q2 (')) dF (') + t&C. By similar arguments as in

Lemma 6, 5q(vB1 ; v
B
2 )F (v

B
1 ) < 5q(v

B
1 ; v

B
2 )(1& F (v

B
2 )) and

R vB1 +v
B
2

2

vB1
6p (q1 (') ; q2 (')) dF (') )R v2

vB1 +v
B
2

2

6p (q1 (') ; q2 (')) dF ('). Now consider a bonus tournament with P =f5q
/
vB1 ; v

B
2

0
; 0g

and t0 =
R vB1 +v

B
2

2

vB1
6p (q1 (') ; q2 (')) dF (') + t. The surplus of supplier 1 now becomes S01 = S1

by construction. On the other hand, S02 ) S2, but S
0
2 > S

0
1. Thus, the proposed bonus tour-

nament implements
/
vB1 ; v

B
2

0
with lowest possible net supplier surplus, which implies that

the buyer surplus is maximized.
(ii) Suppose C % F (v!1)5q (v

!
1; v

!
2). From Proposition 1 we know that for the proposed

P = fA; 0g, (v!1; v
!
2) emerges in equilibrium; and the result also gives the pricing strategies p1

and p2. For t = C & F (v!1)5q (v
!
1; v

!
2), the buyer surplus in the proposed equilibrium is

ST (v
!
1; v

!
2)&91 (v

!
1; v

!
2)&92 (v

!
1; v

!
2) + 2t (7)

= ST (v
!
1; v

!
2)& 2F (v

!
1)5q (v

!
1; v

!
2) + 2 (F (v

!
1)5q (v

!
1; v

!
2)& C) = ST (v

!
1; v

!
2)& 2C

This is the highest surplus that the buyer can achieve without violating the suppliersí partic-
ipation constraints.

(iii) Suppose C < F (v!1)5q (v
!
1; v

!
2) : The proof for this case relies on the fact that im-

plementation with minimal revenues uses bonus tournaments. It shows that
/
vB1 ; v

B
2

0
must

satisfy vB1 +v
B
2 = 1. Among all the bonus tournaments implementing (v1; v2) with v1 ) v2 and

v1 + v2 = 1, the buyer has highest surplus (ignoring participation constraint) at (1=2; 1=2).
Using these facts, the proof shows that the buyer always chooses the minimal value of the
subsidy t, and she just implements enough diversity so that the suppliers (who beneÖt from
some diversity) break even on expectation.
Step 1: The outcome of an optimal contest can be implemented by P = fA; 0g for some
A % 0.

This follows from Part (i).
Step 2: In an optimal contest vB1 + v

B
2 = 1.

Consider any (v1; v2) such that v1 + v2 < 1. We show that (v1; v2) 6=
/
vB1 ; v

B
2

0
; the case

v1+v2 > 1 follows analogously. By Step 1, the optimal outcome can be implemented by some
P = fA; 0g and t % 0. The equilibrium values of pi in this contest are zero whenever ' 2
(v1; v2). Hence, the participation constraint for supplier 1 implies that F (v1)A+ t % C; thus
v1+v2 < 1 implies (1& F (v2))A+t > C. Now suppose the buyer implements (v1 + "; v2 + ") ;
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where " is su¢ciently small. We know that (v1 + "; v2 + ") can also be implemented with
P = fA; 0g. Thus, we can write the buyer surplus as

SB (") = ST (v1 + "; v2 + ")& F (v1 + ")A& (1& F (v2 + "))A& 2t

for " % 0. Thus

dSB (")

d"
= dST (v1 + "; v2 + ") =d"&Af(v1 + ") +Af(v2 + "):

Since v1 + v2 < 1, single-peakedness and symmetry (A1) imply f(v1 + ") < f(v2 + "). Thus
dSB (") =d" > dST (v1 + "; v2 + ") =d". We will show that dST (v1 + "; v2 + ") =d" > 0; because
F (v1 + ")A+t > C and (for su¢ciently small ") (1& F (v2))A+t % C, the buyer will thus be
better o§ implementing (v1 + "; v2 + ") than (v1; v2). Maximizing total surplus is equivalent
to minimizing the expected distance

D (v1 + "; v2 + ") =

Z v1+"

0
(v1 + "& ') f(')d' +

Z v1+v2
2

+"

v1+"
(' & v1 & ") f(')d'

+

Z v2+"

v1+v2
2

+"
(v2 + "& ') f(')d' +

Z 1

v2+"
(' & v2 & ") f(')d'.

From this we obtain

dD (v1 + "; v2 + ")

d"
=

Z v1+"

0
f(')d' &

Z v1+v2
2

+"

v1+"
f(')d' +

Z v2+"

v1+v2
2

+"
f(')d' &

Z 1

v2+"
f(')d'

= 2F (v1 + ") + 2 (F (v2 + "))& 2F
1
v1 + v2
2

+ "

2
& 1:

We will show that this expression is negative for v1 + v2 < 1 and su¢ciently small ". To see

this, Öx any v2 such that 1=2 ) v2 < 1. Note that h (v1; v2) :=
dD(v1+";v2+")

d"

:::
"=0

= 0 for

v1 = 1& v2. Furthermore

@h

@v1
= 2f(v1)& f

1
v1 + v2
2

2
> 0,

were the last inequality follows by (A1)(iv). Thus, v1 + v2 < 1 implies 2F (v1) + 2 (F (v2))&
2F ((v1 + v2) =2)&1 < 0 and thus dD (v1 + "; v2 + ") =d" < 0 for small enough ". This in turn
implies that ST (v1 + "; v2 + ") increases in " so that buyer surplus also increases in ".
Step 3: For v1 2 [0; 1=2] and for Öxed t, buyer surplus SbtB (v1; 1& v1) increases in v1.

For any ' 2 [0; v1], buyer surplus equals q2 (1& v1; '), which increases in v1. For any
' 2 (v1; 1=2], buyer surplus equals q1 (v1; '); for a small marginal change, the expected payo§
from states on (v1; 1=2] thus also increases in v1. By similar arguments, buyer surplus increases
for any ' 2 (1=2; 1& v1] and any ' 2 (1& v1; 1].
Step 4: Suppose C < F (v!1)5q (v

!
1; v

!
2). Then, there exists v1 2 (v

!
1; 1=2] such that: C =

F (v1)5q (v1; 1& v1) :
The result follows from F (1=2)5q (1=2; 1=2) = 0 because F (v1)5q (v1; 1& v1) is a con-

tinuous function.
Step 5: Fix ev1 = max[0;1=2] v1 s.t. C = F (v1)5q (v1; 1& v1). Then vB1 % ev1.
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Suppose not. According to Step 1,
/
vB1 ; v

B
2

0
can be implemented in a bonus tournament

with a subsidy t % 0. By Step 4, ev1 exists. Suppose vB1 < ev1. By Step 3, moving from/
vB1 ; v

B
2

0
to (ev1; 1& ev1) the buyer could increase her payo§ while the participation constraint

would remain satisÖed.
Step 6: For v2 = 1& v1 and v1 > v!1, ST (v1; 1& v1) decreases in v1.

Using the same argument as in Step 2, the derivative of the expected distance is

dD (v1; 1& v1)
dv1

=

Z v1

0
f (') d' &

Z 1
2

v1

f (') d' &
Z 1%v1

1
2

f (') d' +

Z 1

1%v1
f (') d' = 4F (v1)& 1

This function is monotonic and positive for all v1 > v!1. Hence the total expected distance
increases in v1, and the total expected surplus decreases.
Step 7: Fix ev1 as in Step 5. Then vB1 ) ev1.

Suppose not. By Step 1,
/
vB1 ; v

B
2

0
can be implemented in a bonus tournament with a sub-

sidy t % 0. Suppose vB1 > ev1. By Step 6, moving from
/
vB1 ; v

B
2

0
to (ev1; 1& ev1) increases total

surplus. Since (ev1; 1& ev1) can be implemented with t0 = 0 because C = F (ev1)5q (ev1; 1& ev1),
buyer surplus increases.
Step 8: The optimal

/
vB1 ; v

B
2

0
for the buyer (i) satisÖes vB1 = ev1 and vB2 = 1 & vB1 . It can

implemented with (ii) a bonus tournament such that t = 0.
The Örst part of the statement follows by combining Steps 5 and 7. The second part

follows from (i) and the fact that the suggested contest implements (ev1; 1& ev1) with minimal
subsidies required to satisfy the participation constraint.

8.3.3 Proof of Proposition 2

Proof. As F (v!1)5q(v
!
i ; v

!
j ) < C by assumption, both prizes are positive. For Örm 1, the ex-

pected proÖt of following the candidate equilibrium is91 (v!1; v
!
2) = F (v

!
1)A+(1=2& F (v

!
1)) a&

C. Inserting the values of A and a and F (v!1) = 1=4, 91 (v!1; v
!
2) = 0. By symmetry, both

suppliers break even on expectation. Thus, the suggested allocation maximizes total surplus,
with full rent appropriation by the buyer. It thus su¢ces to show that fA; ag implements
(v!1; v

!
2). Consider supplier 1. First, any deviation v1 = v

!
2 + " is dominated by v

0
1 = v

!
2 & ".

Next, a deviation to v01 < v!1 cannot increase expected supplier proÖt, as the probability of
winning decreases and the price charged in any state of the world does not increase. Thus, the
only remaining case is a deviation to v01 2 (v

!
1; v

!
2]. The expected gross proÖt can be written

as 91 (v01; v
!
2) = aF ((v

0
1 + v

!
2) =2). This is clearly increasing in v

0

1 and the proÖt of supplier 1
is at most 91 (v01; v

!
2) = aF (v

!
2). The expected proÖt of following the candidate equilibrium is

91 (v
!
1; v

!
2) = F (v

!
1)A+ (1=2& F (v

!
1)) a. Thus there is no proÖtable deviation to values just

below v!2 if and only if F (v
!
1)A+ (1=2& F (v

!
1)) a % aF (v

!
2). Inserting the values of A and a

and F (v!1) = 1=4 and F (v
!
2) = 3=4 shows that (v

!
1; v

!
2) is an equilibrium.

8.4 Proofs on Auctions and Tournaments (Section 4)

8.4.1 Proof of Proposition 3

(i) By Lemma 2, the unique equilibrium of the pricing subgame induced by q1 and q2 is
pi = max fqi & qj ; 0g for i; j 2 f1; 2g; j 6= i. Suppose that an auction does not implement the
social optimum (v!1; v

!
2). Then, for some i, there exists 6vi 6= v

!
i such that9i(6vi; v

!
j ) > 9i(v

!
i ; v

!
j ).
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Let ;i (vi; vj) = f' 2 [0; 1]j q (vi; ') % q (vj ; ')g and ;%i (vi; vj) = [0; 1] n ;i (vi; vj). Thus
9i(6vi; v

!
j ) > 9i(v

!
i ; v

!
j ) if and only if

Z

-i(.vi;v!j )

/
q (6vi; ')& q

/
v!j ; '

00
dF (') >

Z

-i(v!i ;v!j )

/
q (v!i ; ')& q

/
v!j ; '

00
dF (') ,

or equivalently
Z

-i(.vi;v!j )

/
q (6vi; ')& q

/
v!j ; '

00
dF (') +

Z 1

0
q
/
v!j ; '

0
dF (') >

Z

-i(v!i ;v!j )

/
q (v!i ; ')& q

/
v!j ; '

00
dF (') +

Z 1

0
q
/
v!j ; '

0
dF (')

Splitting [0; 1] into ;i
;
6vi; v

!
j

<
and ;%i

;
6vi; v

!
j

<
in the Örst line and into ;i

;
v!i ; v

!
j

<
and

;%i

;
v!i ; v

!
j

<
in the second line and simplifying, this is equivalent with

Z

-i(.vi;v!j )
q (6vi; ') dF (') +

Z

-#i(.vi;v!j )
q
/
v!j ; '

0
dF (') >

Z

-i(v!i ;v!j )
q (v!i ; ') dF (') +

Z

-#i(v!i ;v!j )
q
/
v!j ; '

0
dF (') .

and thus
Z 1

0
maxfq(6vi; '); q(v!j ; ')gdF (') >

Z 1

0
maxfq(v!i ; '); q(v

!
j ; ')gdF (') ,

contradicting optimality of (v!1; v
!
2).

(ii) This follows from the more general statement in Propostion 5(ii).
(iii) Using Proposition 3(ii), any FPT such that the supplier breaks even has a unique

equilibrium with (v1; v2) = (1=2; 1=2). For A = 2C and t = 0, the participation constraint of
the suppliers binds. Hence, buyer surplus is maximized in the class of FPTs. It is

SfptB =

Z 1=2

0

1
)& b

1
1

2
& '

22
f (') d' +

Z 1

1=2

1
)& b

1
' &

1

2

22
f (') d' & 2C

= )+

Z 1=2

0
b'f (') d' &

Z 1

1=2
b'f (') d' & 2C

The surplus of supplier 1 (supplier 2 follows by symmetry) is

Sa1 = F (v!1)5q (v
!
1; v

!
2) +

Z 1=2

v!1

(q (v!1; ')& q (v
!
2; ')) f (') d'

=
b (v!2 & v

!
1)

4
+

Z 1=2

v!1

(q (v!1; ')& q (v
!
2; ')) f (') d'.

Thus whenever C < b (v!2 & v
!
1) =4, the participation constraint of the suppliers is satisÖed

even with t = 0. By Lemma 2, in an auction the winning supplier bids exactly the quality
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di§erence. This implies that the value the buyer receives, in any state of the world, is equal
to the quality of the losing supplier. Then, the buyer surplus in an auction with t = 0 is

SaB =

Z 1=2

0
()& b (v!2 & ')) f (') d' +

Z 1

1=2
()& b (' & v!1)) f (') d'

= )+

Z 1=2

0
b'f (') d' &

Z 1

1=2
b'f (') d' &

bv!2
2
+
bv!1
2

The buyer prefers FPT to the auction if SfptB &SaB > 0, which holds whenever
bv!2
2 &

bv!1
2 &2C > 0

or equivalently
b(v!2%v!1)

4 > C.

When
b(v!2%v!1)

4 < C, the participation constraints require positive subsidies. In this case,
the buyer implements the social optimum by using an auction with t = C & 9a1 with zero
supplier surplus. Obviously this outperforms the ine¢cient FPT.

8.4.2 Proof of Proposition 4

Denote the minimum allowable price with P . If v1 6= v2 in equilibrium, by Proposition 3(ii),
the contest is not an FPT. Suppose that v1 < v2: By Lemmas 2 and 3, the buyer pays
qi & qj + P to the supplier with qi % qj in equilibrium. Thus, for any ', the buyer surplus is
minfq1; q2g & P . Hence, the surplus of a buyer who induces v1 < v2 with P is

SB (v1; v2 ;P ) =

Z 1

0
minfqi (vi; ') ; qj (vj ; ')gdF (')& P

=

Z v1+v2
2

0
q2 (v2; ') dF (') +

Z 1

v1+v2
2

q1 (v1; ') dF (')& P

Thus
dSB
dv1

=

Z 1

v1+v2
2

@q1
@v1

dF (') > 0;
dSB
dv2

=

Z v1+v2
2

0

@q2
@v2

dF (') < 0.

Thus, the buyer surplus is maximal for v1 = v2 and P = 0. Given v1 = v2, the buyer surplus
is maximal for v1 = v2 = 1=2, the unique equilibrium of an FPT with A arbitrarily close to
0. Given (T2), it is an equilibrium for A = 0.

8.5 Extensions: Generalizations for n=2 (Section 5.1)

8.5.1 Proof of Proposition 5

Proof. (i) The result for the auction mechanism follows from Lemma 10. By the gener-
alized Proposition 1, the social optimum can be implemented with a bonus tournament if
0 < v!1 ) 1=2 ) v!2 < 1. Thus, we only need to show that the social optimum always sat-
isÖes these conditions. Therefore, Örst consider any v1 = 0 (v2 = 1 is analogous). Clearly,
@ST (v1;v2)

@v1

:::
v1=0

> 0. Hence, in the social optimum v!1 > 0. Next, consider (v1; v2) such that

v1 ) v2 < 1=2 (the case 1=2 < v1 ) v2 is analogous). Supplier 2 o§ers higher quality than
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supplier 1 in the interval
!
v1+v2
2 ; 1

"
. We can write the total surplus from this interval as

ST (v1; v2)j#' v1+v2
2

=

)

1
1& F

1
v1 + v2
2

22
&
Z v2

v1+v2
2

)(jv2 & 'j)f (') d' &
Z 1=2

v2

)(jv2 & 'j)f (') d'

&
Z 1%v2

1=2
)(jv2 & 'j)f (') d' &

Z 1% v1+v2
2

1%v2
)(jv2 & 'j)f (') d' &

Z 1

1% v1+v2
2

)(jv2 & 'j)f (') d'

Consider a deviation to v02 = 1 & v2. Symmetry of f (') implies that
R 1% v1+v2

2
v1+v2
2

)(jv2 &

'j)f (') d' =
R 1% v1+v2

2
v1+v2
2

)(jv02 & 'j)f (') d'. As the highest available quality determines the

total surplus, it follows ST (v1; v2)j v1+v2
2

(#(1% v1+v2
2

) ST (v1; v
0
2)j v1+v2

2
(#(1% v1+v2

2

. Observe

that
R 1
1% v1+v2

2
)(jv2 & 'j)f (') d' <

R 1
1% v1+v2

2
)(jv02 & 'j)f (') d', because ) is increasing. Thus

ST (v1; v2)j#' v1+v2
2

< ST (v1; v
0
2)j#' v1+v2

2

. For ' < v1+v2
2 , the highest quality always comes

from v1. Thus ST (v1; v2)j#< v1+v2
2

= ST (v1; v
0
2)j#< v1+v2

2

. Thus, we obtain ST (v1; v2) <

ST (v1; v
0
2). Thus, there can be no social optimum with v!1 ) v

!
2 < 1=2.

(ii) The unique equilibrium in an FPT is such that v1 = v2 and F (vi) = 1=2 for i = 1; 2.
First, we show that the suggested (v1; v2) emerges as an equilibrium. Denote the prize with
A. Let vj be such that F (vj) = 1=2. Since f is everywhere positive, such a vj is unique.
Now if supplier i 2 f1; 2g plays vi = vj , his revenue is 9i (vi; vj) = A=2. For any vi < vj
the revenue is 9i (vi; vj) = AF ((vi + vj) =2) < A=2. Similarly, for any vi > vj the revenue
is 9i (vi; vj) = A (1& F ((vi + vj) =2)) < A=2. Thus, vi = vj is an equilibrium. Second,
v0i = v0j is an equilibrium only if F (v0j) = 1=2. Suppose not. Then, a supplier i can prof-
itably deviate to vi such that F (vi) = 1=2, since his revenue will be 9i (vi; vj) > A=2. Third,
vi 6= vj is never an equilibrium. Suppose it was. Let v1 < v2. Then, the revenue of sup-
plier 1 is 91 (v1jv2) = AF ((v1 + v2) =2), while deviating to (v1 + v2) =2 leads to a revenue of
AF ((v1 + 3v2) =4) > AF ((v1 + v2) =2).

8.5.2 Proof of Proposition 6

(i) By Proposition 5(ii), the FPT uniquely implements v1 = v2 = 1=2 and F (vi) = 1=2
for i = 1; 2. Then there exists " > 0, such that F (1=2& ")5q (1=2& "; 1=2 + ") = (1 &
F (1=2& "))5q (1=2& "; 1=2 + ") < C. Then, by the generalized version of Proposition
1, a bonus tournament with prices P = f5q (1=2& "; 1=2 + ") ; 0g and transfers t = C &
F (1=2& ")5q (1=2& "; 1=2 + ") implements (v1; v2) = (1=2& "; 1=2 + "). This yields strictly
greater total surplus, with weakly lower supplier surplus than any FPT. Hence, buyer surplus
is strictly greater in such a bonus tournament than in any FPT.

(iia) By Proposition 5(i), both the auction and the bonus tournament implement the social
optimum with t = 0. When ' 2 [0; v!1] [ f(v

!
1 + v

!
2) =2g [ [v

!
2; 1], the price paid is equal in

both the auction and the bonus tournament. Everywhere else the price paid is in the bonus
tournament is zero, while in the auction it is strictly positive. Hence, the buyer is strictly
better o§ in the bonus tournament than in the auction.
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(iib) If v!1 + v
!
2 = 1, then F (v!1)5q (v

!
1; v

!
2) = (1& F (v!2))5q (v

!
1; v

!
2). Moreover, we ob-

tain
R v!1+v

!
2

2
v!1

(q (v!1; ')& q (v
!
2; ')) f (') d' =

R v!2
v!1+v

!
2

2

(q (v!2; ')& q (v
!
1; ')) f (') d'. By (iia), we

can focus on the case that F (v!1)5q (v
!
1; v

!
2) < C: If, in addition, C < F (v!1)5q (v

!
1; v

!
2) +

R v!1+v
!
2

2
v!1

(q (v!1; ')& q (v
!
2; ')) f (') d', the auction implements the social optimum with positive

supplier surplus. The bonus tournament implements the social optimum (with appropriate
choice of t) in such a way that the suppliers make zero surplus. Hence, the buyer is strictly bet-

ter o§ in a bonus tournament. If C % F (v!1)5q (v
!
1; v

!
2)+

R v!1+v
!
2

2
v!1

(q (v!1; ')& q (v
!
2; ')) f (') d',

both contests implement the social optimum with zero supplier surplus and the buyer is in-
di§erent.

(iic) Suppose that neither (a) nor (b) hold and suppose (w.l.o.g.) that v!1 + v
!
2 < 1. We

can write the revenues for each buyer as

9a1 = F (v!1)5q (v
!
1; v

!
2) +

Z v!1+v
!
2

2

v!1

(q (v!1; ')& q (v
!
2; ')) f (') d'

9a2 = (1& F (v!2))5q (v
!
1; v

!
2) +

Z v!2

v!1+v
!
2

2

(q (v!2; ')& q (v
!
1; ')) f (') d'

From v!1+v
!
2 < 1, it follows that F (v

!
1)5q (v

!
1; v

!
2) < (1& F (v

!
2))5q (v

!
1; v

!
2). Furthermore,

symmetry and single-peakedness of f (') implies that
R v!1+v

!
2

2
v!1

(q (v!1; ')& q (v
!
2; ')) f (') d' <R v!2

v!1+v
!
2

2

(q (v!2; ')& q (v
!
1; ')) f (') d'. Let t

0 % 0 be the lowest subsidy needed to satisfy par-

ticipation constraints in an auction; t0 guarantees that supplier 1 breaks even. Then, the

bonus tournament with P = f5q(v!1; v
!
2); 0g and t = t

0 +
R v!1+v

!
2

2
v!1

(q (v!1; ')& q (v
!
2; ')) f (') d'

implements the social optimum. Again, the participation constraint of supplier 1 binds, while
supplier 2 obtains positive surplus. However, the surplus of supplier 2 is lower in the bonus
tournament than in the auction since

Z v!1+v
!
2

2

v!1

(q (v!1; ')& q (v
!
2; ')) f (') d' <

Z v!2

v!1+v
!
2

2

(q (v!2; ')& q (v
!
1; ')) f (') d'

implies that

t+(1& F (v!2))5q (v
!
1; v

!
2) < t

0+

Z v!2

v!1+v
!
2

2

(q (v!2; ')& q (v
!
1; ')) f (') d'+(1& F (v

!
2))5q (v

!
1; v

!
2) :

Hence, the buyer is better o§ in the bonus tournament than in the auction.

8.6 Extensions: n>3 (Section 5.2)

8.6.1 Proof of Lemma 4

(i) Arguing as for two suppliers, v!i 6= v
!
j for all i 6= j 2 f1; :::; ng. Thus

ST (v) =

Z v1+v2
2

0
q1 (v1; ') d' +

n%1X

k=2

Z vk+vk+1
2

vk#1+vk
2

qk (vk; ') d' +

Z 1

vn#1+vn
2

qn (vn; ') d'
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The maximum of this function exists and it obviously does not involve corner solutions. Hence,
it is given by the Örst order conditions

@ST (v)

@v1
= &bv1 + b

v2 & v1
2

= 0 (8)

@ST (v)

@vk
= &b

vk & vk%1
2

+ b
vk+1 & vk

2
= 0 (9)

for k 2 f2; :::; n& 1g
@ST (v)

@vn
= &b

vn & vn%1
2

+ b (1& vn) = 0 (10)

(9) can be rearranged to give vk&vk%1 = vk+1&vk $ 5v for k = 2; :::; n&1. (8) and (10) give
v1 = 1&vn = 5v=2. Inserting these equations into v1+(v2 & v1)+:::+(vn & vn%1)+(1& vn) =
1 gives 5v = 1

n . Thus, v1 =
1
2n and vk =

1
2n +

k%1
n = 2k%1

2n for k 2 f2; :::; ng..
(ii) The result on auctions follows from Lemma 10 below. Consider the bonus tournament.
If suppliers 1; :::; n choose v!1; v

!
2; :::; v

!
n; then suppliers 2; ::; n & 1 receive no revenues, but

they break even because of the subsidy. There are no feasible deviations for which they
can earn a positive price. Consider supplier 1 (supplier n is analogous): His surplus is
1
2n

/
b
n

0
+ C & C = b

2n2
. Deviating to v1 < v!1 would reduce the probability of winning the

prize, with no compensating beneÖts. Deviating to vn > v!n would mean that supplier 1 would
only win the low prize 0. This is clearly not proÖtable.
(iii) Let v = [v1; :::; vn] be the vector of approaches, ordered so that v1 ) ::: ) vn. In Step
1-5, we show that diversity is less than socially optimal in the FPT. In Step 6, we consider
the e§ect of increasing n.
Step 1: In any equilibrium of the FPT, v1 = v2 and vn%1 = vn. This implies that there are
at most n& 2 active approaches.

Suppose v1 < v2. Then the revenue of supplier 1 is Av1+v22 . For v01 = v1 + ", " > 0, such

that v01 < v2; the revenue is A
v01+v2
2 > Av1+v22 . A similar argument holds for vn%1 < vn.

We prove the second claim (that there is an ine¢ciently low amount of diversity) in several
steps. For any supplier i, let P i#<vi (P

i
#>vi) be the probability that supplier i wins and, in

addition, ' < vi (' > vi). Let P i = P i#<vi + P
i
#>vi be the total probability that supplier i

wins.
Step 2: If for suppliers i and j there exist k 6= i and l 6= j such that vi = vk and vj = vl,
then P i#<vi = P

i
#>vi = P j#<vj = P

j
#>vj in any equilibrium.

Suppose Örst that P i#<vi 6= P
i
#>vi for some supplier i using the same approach as another

one. Suppose that P i#<vi > P i#>vi (the opposite case is analogous). Then, a deviation to
vi & " for some su¢ciently small " > 0 leads to a winning probability of 2P i#<vi > P i#<vi +

P i#>vi ,
32 which is a proÖtable deviation. Next, suppose that P i#>vi < P

j
#<vj (the opposite case

is analogous). Then, a deviation of supplier i to vj & " for su¢ciently small " > 0 leads to a
winning probability of 2P j#<vj > P

i
#<vi + P

i
#>vi ,

33 which is a proÖtable deviation.
Step 3: In any equilibrium of an FPT with n suppliers, P := P 1 = P 2 = Pn%1 = Pn %

1
2(n%2) .
By Step 2, all extreme approaches are duplicate. The three equalities thus follow from

Step 1. Suppose that the inequality does not hold. Then P 1+P 2+Pn%1+Pn < 2
n%2 which

32The winning probability is approximately 2P i)<vi if vi = minfv1; :::; vng:
33The winning probability is approximately 2P i)<vj if vj = minfv1; :::; vng:
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in turn implies that
Pn%2
j=3 P

j % n%4
n%2 . But then there exist at least one k 2 f3; :::; n & 2g

such that P k % 1
n%2 . By deviating to vk, each supplier 1; 2; n & 1 or n would win with a

probability of at least 1
2(n%2) , which would be a proÖtable deviation.

Step 4: Any equilibrium of an FPT with n suppliers satisÖes maxi vTi &mini v
T
i )

n%3
n%2 .

Suppose not. As 2(n%2)%1
2(n%2) & 1

2(n%2) =
n%3
n%2 , there exists an equilibrium of an FPT such

that either maxi vTi >
2(n%2)%1
2(n%2) or mini vTi <

1
2(n%2) or both. If maxi v

T
i >

2(n%2)%1
2(n%2) , then

Steps 1 and 2 imply Pn < 1
2(n%2) , which is impossible by Step 3. If mini v

T
i <

2%1
2(n%2) , then

P 1 < 1
2(n%2) by Steps 1 and 2, which is again impossible by Step 3.

Step 5: The diversity in an FPT is lower than socially optimal.
By (i), the socially optimal diversity is n%1n . By Step 4, the diversity in an FPT is at most

n%3
n%2 <

n%1
n .

Step 6: The di§erence between the FPT and the social optimum converges to zero as the
number of suppliers increases.

By Step 3, we know that each supplier 1; 2; n& 1; n wins with probability P . Then in any
equilibrium of an FPT, there exists a supplier j such that P j ) 1%4P

n%4 . A deviation to v1 & "
would result in a probability of winning approximately P . Then, a necessary condition for an
equilibrium is that P ) 1%4P

n%4 , which implies that P ) 1=n and consequently v1 ) 1=n and
vn % (n& 1) =n. Then, maxi vTi &mini v

T
i %

n%2
n in any equilibrium of an FPT. By (i), the

socially optimal diversity is (n& 1) =n, so the di§erence between the socially optimal diversity
and diversity in any equilibrium of an FPT is at most n%1n & n%2

n = 1=n. Thus, the di§erence
converges to zero as n increases.

8.6.2 Su¢cient Conditions for FPT equilibria

We now provide su¢cient conditions for equilibria in the FPT. These conditions hold in the
equilibria described in Figure 2.

Lemma 8 An outcome with k active approaches (r1; :::; rk) can be supported in an equilibrium
if the following conditions both hold:
(a) k 2 fk; :::; 6kg, where 6k = n& 2 and k = n=2 if n is even and k = (n+ 1) =2 if n is odd;
(b) (r1; :::; rk) = (1=2k; 3=2k; 5=2k; :::; (2k & 1) =2k).
Two suppliers choose the extreme approaches r1 and rk; each of the intermediate approaches
r2; :::; rk%1 is chosen by one or two suppliers.

Proof. Step 1: Suppose n is even and k = n=2. Then any choice of r1; :::; rk as stated in
part (b) of the lemma can be supported as an equilibrium.
In the suggested equilibria, the active approaches are equidistant. Also, r1 = 1=n and rn=2 =
1 & 1=n. For any 1 < m < n=2, rm & rm%1 = 2=n, any of the active approaches o§ers the
highest quality with probability 1=k = 2=n. Now suppose each approach r1; :::; rk is chosen
by exactly two suppliers. Then each supplier has a revenue of 9i = A=n. Deviating to any
other active approach leads to payo§ of 2A=3n; hence it is not proÖtable. A deviation to
[0; r1) or (rn=2; 1] results in a winning probability strictly lower than 1=n, so this is not a
proÖtable deviation either. Finally, consider a deviation to v 2 (rm%1; rm), m 2 f2; :::; n=2g.
The deviating supplier wins if and only if ' is in the set [v+rm#12 ; v+rm2 ], so that the winning
probability is 1=n and this is also not a proÖtable deviation.
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Step 2: Now suppose n is even or odd and k > n=2. Then any choice of r1; :::; rk as stated
in part (b) of the lemma is an equilibrium.
Arguing as in Step 1, any of the active approaches o§ers the highest quality with probability
1=k. Suppose two suppliers choose r1 and rk, respectively. Moreover, suppose that each of the
approaches r2; :::; rk%1 is chosen by one or two suppliers. Thus, if there are two suppliers using
an approach, each of them wins with probability 1=2k, and if there is only one supplier using
this approach, he wins with probability 1=k. Consider a supplier who wins with probability
1=2k. By the same argument as in Step 1, if he deviates to [0; r1) or (rk; 1], he wins with
probability strictly lower than 1=2k. Deviating to any approach in some interval (rl; rl+1);
l 2 f1; :::; k & 1g, he wins with probability of at most 1=2k; hence such a deviation is not
proÖtable either. If he deviates to any active approach, he wins with a probability of at most
1=2k. Thus, such suppliers do not have proÖtable deviations. Finally consider a deviation
by a supplier who is the only one to choose some rm, where 1 < m < k. Any deviation to
[0; rm%1] or [rm+1; 1] leads to strictly lower revenues, by the same argument as above. For
any approach v 2 (rm%1; rm+1), he wins whenever ' 2 [

v+rm#1
2 ; v+rm+12 ], so that the winning

probability is v+rm+12 & v+rm#1
2 = rm+1%rm#1

2 = 1=k. Hence, this is not a proÖtable deviation
either.

8.6.3 Proof of Proposition 7

(i) Arguing as in Lemma 3, the bonus prize of b=n is necessary for implementation of the
social optimum with a bonus tournament. Thus, the total expected transfer from the buyer
to the suppliers is b=n2 + nC. In an auction, the conditional transfers to suppliers 1 and n
di§er from those for the remaining suppliers. The revenue of supplier 1 is

91 =
b

2n2
+

Z 2=2n

1=2n

1
)& b

1
' &

1

2n

2
&
1
)& b

1
3

2n
& '

222
d' =

3b

4n2

For supplier 2 it is

92 = 2

Z 3=2n

2=2n

1
)& b

1
3

2n
& '

2
&
1
)& b

1
' &

1

2n

222
d' =

2b

4n2

By symmetry, 91 = 9n and 92 = 9j for all j 2 f2; :::n&1g. As 91 > 92, the participation
constraint of suppliers j 2 f2; :::n&1g will be binding. Suppose Örst C > 92. Then, the buyer
optimally sets t = C & 92 in the auction. The total transfers of the buyer to the suppliers
are thus =9i + nt = 2 (91 &92) + nC = b

2n2
+ nC. In this case, the total transfers of the

buyer are strictly greater in the bonus tournament than in the auction. Since both contests
implement the social optimum, the buyer is better o§ in an auction.
Next, suppose C ) 92. Then, the buyer optimally sets t = 0. The total transfers of the buyer
to the suppliers are therefore =9i = 2 3b4n2 + (n& 2)

2b
4n2

= b
2n2

(1 + n). The buyer prefers the
bonus tournament i§ b

n2
+ nC < b

2n2
(1 + n) or, equivalently, C < b

2

/
n%1
n3

0
.

(ii) According to Lemma 4(iii), an FPT can implement at most n&2 di§erent approaches. By
Lemma 8, an FPT implementing n& 2 approaches exists. The FPT implementing maximum
diversity (hence maximizing total surplus) thus implements k = n& 2 with A = 0 and t = C.
The participation constraint of all suppliers binds, so this is the best outcome for the buyer.
In the FPT, the buyer has expected costs from suboptimal quality of b

4k . Moreover, she pays
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subsidies nC. In the bonus tournament, the buyer has expected costs from suboptimal quality
of b

4n , pays revenues
b
n2
and subsidies nC; together b

n2
+ b

4n + nC =
b
4
n+4
n2

+ nC. Thus, the

buyer is better of in the bonus tournament if b4
n+4
n2

) b
4k or k )

n2

n+4 . The maximum value
of k in any tournament equilibrium is n & 2. For k = n & 2 and n > 4, this condition holds
strictly; for k = n& 2 and n = 4 it holds with equality.

8.6.4 Proof of Corollary 2

According to Lemma 4(i), the social optimum is given by the choices v!k = (2k & 1) =2n
(k 2 f1; :::; ng): The average quality in the social optimum is thus ) & b=4n. Therefore the
total surplus is )& b=4n& nC. The maximum of this expression in R+ is n =

p
b=2
p
C. By

concavity of the objective function, the optimal choice of n 2 N is thus given by n% (C) or
n+(C). According to Lemma 4(ii), the social optimum for any given number of suppliers can
be implemented with an auction.

8.6.5 Proof of Lemma 5

This section provides the proof of Lemma 5 from Section 5.3.2. Suppose that there are n
suppliers and that assumption (A1)î holds. Consider an FPT with two prizes A1 > A2 > 0,
where the supplier with the highest quality receives A1 and the supplier with the second-
highest quality receives A2.34 For notational convenience, suppose that v1 ) v2 ) - - - ) vn.
We Örst provide an intermediate result.

Lemma 9 If v1; v2; : : : ; vn is an equilibrium of an FPT with two prizes, then v1 = v2 = v3
and vn%2 = vn%1 = vn.

Proof. We will prove that v1 = v2 = v3. The other claim follows by an analogous argument.
Step 1: v1 = v2. Suppose not. Then v1 < v2. Thus, the revenue of supplier 1 is

91 (v1; v%1) =
v1 + v2
2

A1 +
v3 & v2
2

A2:

Therefore, a deviation to any v01 2 (v1; v2) increases the probability of winning the Örst prize,
while not a§ecting the probability of winning the second prize. Hence, it is proÖtable.
Step 2: v1 = v2 < v3 = v4 cannot be an equilibrium. Denote with P

i;1
#<vi the probability

that supplier i wins the Örst prize when ' < vi. Analogously deÖne the probabilities of
winning when the state is greater than the chosen approach and the probabilities of winning
the second prize. By random tie breaking we have P 1;1#<v1 = P 2;1#<v2 = P 1;2#<v1 = P 2;2#<v2 and
P 1;1#>v1 = P

2;1
#>v2 = P

1;2
#>v1 = P

2;2
#>v2 . We will show that P

1;1
#<v1 = P

1;1
#>v1 . Suppose that this was

not true. First, suppose P 1;1#<v1 > P
1;1
#>v1 . Then, there exist "; "

0; "00 > 0 arbitrarily small such
that a deviation v01 = v1 & " leads to revenues

91
/
v01; v%1

0
= 2

;
P 1;1#<v1 & "

0
<
A1 + 2

;
P 1;1#>v1 & "

00
<
A2:

For su¢ciently small " this constitutes a proÖtable deviation. The case P 1;1#<v1 < P
1;1
#>v1 follows

by an analogous argument, but the incentives to deviate are even stronger.

34Ties are broken randomly, with equal chance of winning for each Örm with the respective quality.
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Now suppose that P 1;1#<v1 = P 1;1#>v1 and v1 = v2 < v3 = v4. We will show that this
cannot be an equilibrium. In the proposed equilibrium P 1;1#<v1 = v1=2 and P

1;1
#<v1 + P

1;1
#>v1 =

P 1;2#<v1 + P
1;2
#>v1 = v1. Hence, the expected revenue is

91 (v1; v%1) = v1A1 + v1A2:

For any deviation v01 2 (v2; v3) the probability of winning the Örst prize is

v01 + v3
2

&
v01 + v2
2

=
v3 & v2
2

= v1

where the last equality follows from P 1;1#<v1 = P
1;1
#>v1 . Using v3 = v4, the probability of winning

the second prize is
v2 + v

0
1

2
> v1

thus it follows that 91 (v01; v%1) > 91 (v1; v%1).
Step 3: v1 = v2 < v3 < v4 cannot be an equilibrium. The revenue of supplier 1 is

91 (v1; v%1) =
v1
2
A1 +

v3 & v1
4

A1 +
v3 + v1
4

A2 +
v4 & v3
4

A2: (11)

Consider a deviation to v01 2 (v1; v3). The revenue is

91
/
v01; v%1

0
=
v3 & v1
2

A1 +
v01 + v1
2

A2 +
v4 & v3
2

A2:

If 91 (v01; v%1) > 91 (v1; v%1), then this is a proÖtable deviation. If 91 (v
0
1; v%1) ) 91 (v1jv%1)

is equivalent with

v1
2
A1 &

v3 & v1
4

A1 +
v3 & v1
4

A2 &
v01
2
A2 &

v4 & v3
4

A2 % 0 (12)

But consider in that case a deviation to v001 = v1&" for small positive ". The expected revenue
is

91
/
v001 ; v%1

0
=
v001 + v1
2

A1 +
v3 & v1
2

A2

and lim"!091 (v001 ; v%1) = v1A1 +
v3%v1
2 A2. Together with (11), this implies

lim
"!0

91
/
v001 ; v%1

0
&91 (v1; v%1) =

v1
2
A1 +

v3 & v1
4

A2 &
v3 & v1
4

A1 &
v1
2
A2 &

v4 & v3
4

A2:

Since v01 > v1, (12) implies lim"!091 (v
00
1 ; v%1)& 91 (v1; v%1) > 0. Hence, there always exists

" > 0 small enough such that 91 (v001 ; v%1)&91 (v1; v%1) > 0.
The lemma implies that the maximal number of active approaches in an FPT with two

prizes is n&4. By Lemma 8 an FPT with a single prize implements an equilibrium with n&2
active approaches. By Lemma 4(ii), it is possible to implement the socially optimal allocation
with n & 2 approaches in an FPT with a single prize. Implementing this equilibrium in a
single-prize FPT, where the prize size is the sum of the two prizes in an FPT with two prizes,
strictly increases the total payo§. On the other hand, the payo§ of the sellers remains the
same, as the total size of the Öxed prize remains the same. Hence, the expected buyer payo§
strictly increases.
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8.7 General Implementation of the Social Optimum

We prove, in a general setting, that a mechanism which i) selects the highest quality ex-post
and ii) transfers a positive fraction of the di§erence between best and second-best quality to
the winner always implements the socially optimal choice of approaches.

Let N = f1; :::; ng be the set of suppliers. Let V 7 R be a compact and convex set of
possible approaches. Let ; 7 R be a compact and convex set of possible supplier charac-
teristics. The actual supplier characteristics M1; :::; Mn 2 ; are commonly known. Let the
ideal approach ' 2 V and the ideal supplier characteristic M 2 ; be distributed according
to continuous probability density functions f# (') and f; (M), respectively, with corresponding
cumulative distribution functions F# and F;. For any combination of vi and Mi, and any (M; '),
the quality of supplier i is given by the function q(vi; (M; ')) := eq (); (jMi & Mj) ; )# (jvi & 'j))
where ); and )# are di§erentiable functions satisfying )0; > 0, )0# > 0, and q is a di§eren-
tiable function satisfying @q=@); < 0 and @q=@)# < 0. Here, ); (-) is the reduction in quality
due to suboptimal supplier characteristic and and )# (-) is the reduction in quality due to a
suboptimal approach. Let q; ); and )# be continuous functions.

Let the vector of approaches be v = [v1; :::; vn]. Then the total surplus is given by ST (v) =R
V

R
-maxi2N fq(vi; (M; '))g dF;dF#: Denote with ~;i(v; ') 7 ; the set of states M for which

supplier i o§ers the highest quality. Ties are broken so that the demand is assigned to the
supplier with a lower index.35 Thus, ~;i(v; ')\ ~;j(v; ') = ; for any i 6= j and [N ~;i(v; ') = ;.

DeÖnition 1 In the context just described, a generalized innovation contest is a game as
follows: The suppliers simultaneously select approaches vi 2 [0; 1]. Then the buyer selects
a supplier i 2 N . When choosing his approach, the selected supplier correctly anticipates a
transfer payment pi (qi;q%i) conditional on being selected; the transfer is zero otherwise.

A generalized innovation contest is thus su¢ciently general to encompass innovation con-
tests and negotiations as discussed in this paper.

Lemma 10 is a statement on the SPE of a generalized innovation contest as deÖned above.

Lemma 10 Any generalized innovation contest that always selects the ex-post optimal quality
and uses the payment rule

pi (qi;q%i) = c

1
qi &max

j 6=i
fqjg

2
(13)

if qi > maxj 6=i fqjg for all j 2 N ,and ti (qi;q%i) = 0 otherwise, (weakly) implements the
social optimum for any c > 0.

Proof. Step 1: ST has a maximum v! 2 V n.
V n is compact and ST is continuous. Thus, a maximum exists.

35This tie breaking assumption is di§erent from the one made in baseline model, where given equal qualities
and prices, the ties are broken randomly. This is done in order to simplify the deÖnition of sets ~8. The tie
breaking is immaterial in this case since, in the institution we will consider, all suppliers make positive proÖts
in expectation, while the transfer when qualities are equal are zero. Hence, incentives do not change regardless
of the tie breaking rule.
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Step 2: v! is an equilibrium of the game deÖned by the proposed procurement institution.
Suppose not. Then, there exists vi 2 V such that

9i(vi;v
!
%i) =

Z

V

Z

~-i(vi;v!#i;#)
c

1
qi(vijM; ')&max

j 6=i

?
qj(v

!
j jM; ')

@2
dF;dF# > (14)

Z

V

Z

~-i(v!i ;v
!
#i;#)

c

1
qi(v

!
i jM; ')&max

j 6=i

?
qj(v

!
j jM; ')

@2
dF;dF# = 9i(v

!
i jv

!
%i).

Multiply by 1=c and add the maximum expected quality of suppliers other than i to both
sides:

Z

V

Z

~-i(vi;v!#i;#)
qi(vijM; ') & max

j 6=i

?
qj(v

!
j jM; ')

@
dF;dF#

+

Z

V

Z

-
max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# >

Z

V

Z

~-i(v!i ;v
!
#i;#)

qi(v
!
i jM; ')

&max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# +

Z

V

Z

-
max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF#:

We can choose to split the set ; in a convenient way:
Z

V

Z

~-i(vi;v!#i;#)
qi(vijM; ')&max

j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# +

Z

V

Z

~-i(vi;v!#i;#)
max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# +

Z

V

Z

~-#i(vi;v!#i;#)
max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# >

Z

V

Z

~-i(v!i ;v
!
#i;#)

qi(v
!
i jM; ')&max

j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# +

Z

V

Z

~-i(v!i ;v
!
#i;#)

max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# +

Z

V

Z

~-#i(v!i ;v
!
#i;#)

max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF#:

Simplifying, we obtain:
Z

V

Z

~-i(vi;v!#i;#)
qi(vijM; ')dF;dF# +

Z

V

Z

~-#i(vi;v!#i;#)
max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF# >

Z

V

Z

~-i(v!i ;v
!
#i;#)

qi(v
!
i jM; ')dF;dF# +

Z

V

Z

~-#i(v!i ;v
!
#i;#)

max
j 6=i

?
qj(v

!
j jM; ')

@
dF;dF#:
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By deÖnition of ~; we have:
Z

V

Z

-
max

A
qi(vijM; ');max

j 6=i

?
qj(v

!
j jM; ')

@B
dF;dF# > (15)

Z

V

Z

-
max

A
qi(v

!
i jM; ');max

j 6=i

?
qj(v

!
j jM; ')

@B
dF;dF#

Thus ST
/
vi;v

!
%i
0
> ST

/
v!i ;v

!
%i
0
, contradicting the optimality of v!:
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