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1 Introduction

For social choice environments with linear utilities and independent, one-dimensional private types,

Gershkov et al. (2013) have recently shown a prominent result that for any Bayesian incentive

compatible (BIC) mechanism there exists an equivalent dominant-strategy incentive compatible

(DIC) mechanism that yields the same interim expected utilities to all agents and generates the same

social surplus.1 Hence, for a wide range of objectives, including revenue and efficiency maximization,

the mechanism designer can restrict himself to more robust DIC mechanisms and gain nothing from

designing possibly more complex mechanisms with Bayes-Nash equilibria.

The main contribution of this paper is to extend the BIC-DIC equivalence result to environments

with non-linear utilities satisfying two assumptions. First, we assume that each agent’s utility has

the average single-crossing property that is a natural generalization of the single-crossing property

to Bayesian settings. We use this generalization to characterize BIC mechanisms in terms of a

monotonicity condition and an envelope formula. To understand the limitations of the average single-

crossing property, we also fully characterize the set of utility functions satisfying this assumption.

Second, we assume that the mapping of all agents’ utilities, as a mapping from the set of feasible

allocations to the space of possible utilities, is convex-valued. Though this condition might be

restrictive in general settings, it is trivially satisfied for linear utilities defined on a simplex (as

in Gershkov et al., 2013) and for any symmetric setting. We also illustrate that many important

papers in the literature on principal-agent problems, environmental mechanism design and public

good provision analyze settings satisfying this assumption.

Assuming the average single-crossing property and the mapping of all agents’ utilities being

convex-valued, we establish the BIC-DIC equivalence for non-linear environments. In addition,

we provide conditions on agents’ utilities when for a given BIC mechanism one could find a DIC

mechanism that yields the same interim expected utilities to all agents and generates at least as

large expected social surplus.

Finally, we illustrate the significance of our results with several important applications, for which

the previous works have little bite (e.g. Manelli and Vincent, 2010; Gershkov et al., 2013). We first

1The equivalence of mechanisms in terms of the same interim expected utilities is first proposed by Manelli
and Vincent (2010). They are also first to establish the BIC-DIC equivalence for standard single-unit, private-value
auctions. Goeree and Kushnir (2015) provides an alternative proof of the BIC-DIC equivalence using a novel geometric
approach to mechanism design. Kushnir (2015) extends the result to environments with correlated types.
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consider the principal-agent problem in a procurement context and illustrate that many influential

papers satisfy our main assumptions (e.g., Laffont and Martimort, 1997; Mookherjee and Tsumagari,

2004). In the same context, we study settings with allocative externalities, when agents care not

only about their own contracts, but also about contracts received by other agents (e.g., Jehiel et

al., 1996). If agents face non-decreasing, convex (concave) contracting costs and positive (negative),

concave externalities, then for any BIC mechanism one could find a DIC mechanism yielding the

same interim expected utilities to all agents and generating at least as large social surplus. We also

establish that the above result holds for environmental mechanism design problems (Martimort and

Sand-Zantman, 2013, 2015; Baliga and Maskin, 2003), when agents have linear (concave) benefits

and concave (linear) costs of pollution reduction. We finally consider the evergreen problem of public

good provision, where in addition to incentive compatibility and individual rationality constraints

the budget-balance constraint is of huge importance (e.g., Mailath and Postlewaite, 1990; Ledyard

and Palfrey, 1999; Hellwig, 2003; Norman, 2004). When agents have concave utilities and the costs

of public good provision is convex, we show that for any BIC mechanism that is ex ante budget

balanced there exists an equivalent DIC mechanism that is also ex ante budget balanced.

The paper is organized as follows. Section 2 presents the model. We discuss the single-crossing

properties in Section 3. We prove our main equivalence results in Section 4. Section 5 presents

applications. Finally, Section 6 concludes. The Appendix contains omitted proofs.

2 Model

We consider environments with a finite set of agents I = {1, 2, .., I} and a compact set of available

alternatives A ⊂ Rk for some natural k. Agent i’s utility when alternative a ∈ A is chosen equals

vi(a, xi) + ti, where xi is agent i’s type that is independently distributed according to probability

distribution λi with one-dimensional support Xi ⊂ R, vi : A × Xi → R is some continuously

differentiable function with vix being its derivative with respect to xi, and ti ∈ R is a monetary

transfer. We denote x = (x1, ..., xI), X =
∏

i∈I Xi, and λ =
∏

i∈I λi.

Without loss of generality we consider only direct mechanisms (q, t), where q : X → A defines

an allocation rule and t = {ti}i∈I , with ti : X → R defines monetary transfers to agents. A

mechanism (q, t) is Bayesian incentive compatible or BIC (dominant strategy incentive compatible
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or DIC) if truthful reporting by all agents constitutes a Bayes-Nash equilibrium (a dominant strategy

equilibrium). We also say that an allocation rule q is BIC (DIC) if there exist a payment rule t such

that mechanism (q, t) is Bayesian incentive compatible (dominant strategy incentive compatible).

When all agents report their types truthfully and agent i’s type is xi, we write his utility as

ui(x) = vi(q(x), xi) + ti(x) and his interim expected utility as Ui(xi) = Ex−i
(vi(q(x), xi) + ti(x)).

The expected social surplus is defined as Ex(
∑

i∈I vi(q(x), xi)) or, equivalently, as the sum of agents’

ex ante expected utilities minus the sum of agents’ ex ante expected transfers. As in Gershkov et

al. (2013), we employ the following notion of equivalence.

Definition 1. Two mechanisms (q, t) and (q̃, t̃) are equivalent if and only if they yield the same

interim expected utilities for all agents and generate the same expected social surplus.

3 The Single-Crossing Properties

In this section, we introduce a novel condition that we call the average single-crossing property. We

use this property to characterize Bayesian incentive compatible mechanisms in terms of a mono-

tonicity condition and an envelope formula similar to how the single-crossing property is used to

characterize dominant strategy incentive compatible mechanisms.

We consider connected type spaces with Xi = [xi, xi] ⊂ R.2 As a motivation, let us first consider

the single-crossing property (see Mookherjee and Reichelstein, 1992).

Definition 2. Function vi satisfies the single-crossing property when for any a, a′ ∈ A if there

exists type y such that vix(a, y) > vix(a′, y), then for any type x ∈ Xi, vix(a, x) > vix(a′, x).

If function vi satisfies the single-crossing property for each i ∈ I then dominant strategy incentive

compatibility can be characterized by a monotone-marginal condition and an envelope formula:

Proposition 1 (Mookherjee and Reichelstein, 1992). Suppose vi satisfies the single-

crossing property for each i ∈ I. A mechanism (q, t) is DIC if and only if for each i ∈ I and

x ∈ X (i) vix(q(s,x−i), xi) is non-decreasing in s and (ii) agent i’s utility can be expressed as

ui(xi,x−i) = ui(xi,x−i) +

∫ xi

xi

vix(q(s,x−i), s)ds. (1)

2Our main results (Theorem 1 and 2) can also be extended to discrete types similar to Gershkov et al. (2013).
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The result follows from Proposition 1, 2, and 3 of Mookherjee and Reichelstein (1992) and, hence,

we omit its proof here.

Similar to dominant strategy incentive compatibility, we want to characterize Bayesian incentive

compatibility. To accomplish this we need an appropriate extension of the single-crossing property

to Bayesian settings. Note that from the perspective of each agent, who knows only the distribution

of other agent types, the allocation rule induces a probability distribution over possible outcomes.

This naturally leads to the following definition.

Definition 3. Function vi satisfies the average single-crossing property when for any pair of prob-

ability distributions G,F ∈ ∆(A) if there exists type y such that
∫
vix(a, y)dG >

∫
vix(a, y)dF , then

for any type x ∈ Xi,
∫
vix(a, x)dG >

∫
vix(a, x)dF .

The following proposition shows that given the average single-crossing property BIC mechanisms

can be indeed characterized by a monotone expected marginal condition and an envelope formula:3

Proposition 2. Suppose vi satisfies the average single-crossing property for each i ∈ I. A mecha-

nism (q, t) is BIC if and only if for each i ∈ I and xi ∈ Xi (i) Ex−i
vix(q(s,x−i), xi) is non-decreasing

in s and (ii) agent i’s interim expected utility can be expressed as

Ui(xi) = Ui(xi) +

∫ xi

xi

Ex−i
vix(q(s,x−i), s)ds. (2)

The version of the single-crossing property due to Mookherjee and Reichelstein (1992) is arguably

more restrictive than the standard strict (smooth) single-crossing differences condition, as in Milgrom

(2004). We use the former property and its extension to Bayesian settings because the set of

allocations A and the set of distributions over allocations ∆(A) do not have an inherent order.

Hence, the standard characterization of incentive compatibility, as in Milgrom (2004), does not

apply to our settings.

The average single-crossing property gives us a readily workable characterization of Bayesian

incentive compatibility. This property is, however, novel and we want to understand how it restricts

agents’ utilities before proceeding with further analysis. First of all, if the feasible set A is the set of

3Note that the sufficiency part holds even without imposing the average single-crossing property.
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all possible lotteries over some set of alternatives, the average single-crossing and the single-crossing

are equivalent because in this case any probability distribution over A simply defines a compound

lottery over the underlying set of alternatives. In general, however, the average single-crossing

only implies the single-crossing. To see this, simply note that one can always consider a pair of

deterministic distributions in the definition of the average single-crossing. Finally, we provide a full

characterization of utilities that satisfy the average single-crossing property:

Proposition 3. A continuously differentiable function vi(a, xi) with respect to agent’s type satisfies

the average single-crossing property if and only if

vi(a, xi) = fi(a)Mi(xi) +mi(xi) + gi(a), (3)

where fi and gi are continuous functions defined on the set of allocations A; Mi and mi are contin-

uously differentiable functions with Mi being either constant or increasing everywhere on Xi.

Given this result, we assume in the remainder of the paper that agent i’s value function vi takes the

form of (3) for each i ∈ I. With this specification, the monotonicity conditions in the characteriza-

tions of DIC and BIC mechanisms are now equivalent to fi(q(s,x−i)) being non-decreasing in s for

each i ∈ I and x−i ∈ X−i and Ex−i
fi(q(s,x−i)) being non-decreasing in s for each i ∈ I respectively.

4 The BIC-DIC Equivalence

We use the following logic to prove the equivalence between Bayesian and dominant strategy imple-

mentation. For connected type spaces, the characterizations of DIC and BIC mechanisms (Proposi-

tions 1 and 2) imply that the interim expected utilities of agents are determined (up to a constant)

by the allocation rule. Therefore, to match agents’ interim expected utilities we basically need to

match interim expected marginals Ex−i
fi(q(xi,x−i)) for each i ∈ I and xi ∈ Xi. We also need to

make sure that the equivalent mechanisms generate the same expected social surplus. In addition,

to respect the incentive compatibility we need to satisfy the corresponding monotonicity conditions.

To state our main result, we introduce first the notion of convex-valued mappings. A mapping

f : A→ RI with f(a) = (f1(a), ..., fI(a)) is convex-valued if its image is convex, i.e. for any a, b ∈ A
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and α ∈ [0, 1] there exists c ∈ A such that f(c) = αf(a) + (1 − α)f(b). We also note that for

mappings g = (g1, ..., gI) and f = (f1, ..., fI) in (3), if mapping g is a linear transformation of f , then

f is convex-valued if and only if the mapping of all agents utilities (v1(·, x1) + t1, ..., vI(·, xI) + tI) is

convex-valued for each (x1, ..., xI) ∈ X.4

Theorem 1. Assume mapping f is continuous and convex-valued, and g is a linear transformation

of f . Then for any BIC mechanism (q̃, t̃) there exists an equivalent DIC mechanism (q, t).

The proof of the theorem follows the main steps of the proof of Theorem 1 in Gershkov et al.

(2013). The main part of the argument establishes that for a given BIC allocation rule q̃ there exists

a feasible allocation q that satisfies

Ex−i
fi(q(xi,x−i)) = Ex−i

fi(q̃(xi,x−i)), ∀i ∈ I,∀xi ∈ Xi, (4)

and that has non-decreasing marginals fi(q(·,x−i)) for all i ∈ I and x−i ∈ X−i. We prove this

statement for discrete and uniformly distributed types in Lemma 1 below. In particular, we develop

an algorithm that finds a feasible allocation that satisfies (4) and that has non-decreasing marginals.5

We then extend the proof to continuous types and arbitrary type distributions (see Lemmas A1 and

A2). Finally, we construct transfers that lead to the same interim expected utilities and generate

the same expected social surplus using the envelope formula (see Proposition 1).

Lemma 1. Suppose, for all i ∈ I, Xi is a discrete set and λi is the uniform distribution on Xi.

For any BIC allocation q̃ there exists a feasible allocation q satisfying (4) and fi(q(·,x−i)) being

non-decreasing for all i ∈ I and x−i ∈ X−i.

Proof. Consider an arbitrary BIC allocation q̃, and let us assume fj(q̃(·,x−j)) is not non-decreasing

for some j and x−j; otherwise the statement is trivial. Then, there exists some x′j > xj such that

fj(q̃(x
′
j,x−j)) < fj(q̃(xj,x−j)). Since agent j’s expected marginal Ex−j

fj(q̃(·,x−j)) is non-decreasing

there also exists a set of other agents’ types X ′−j such that fj(q̃(x
′
j,x
′
−j)) > fj(q̃(xj,x

′
−j)) for all

4The necessity part actually holds only under an additional mild condition. If we denote the matrix transforming
f to g as A and the diagonal matrix with elements Mi(xi) as M(x) with x = (x1, ..., xI), the additional condition
states: the sum of matrices M(x) +A has a full rank.

5Gershkov et al. (2013) use a minimization problem to find a feasible allocation that satisfies (4) and that has
non-decreasing marginals. Their minimization problem could also be adapted to our settings. We use an algorithmic
proof because of its convenience in the proofs of our Theorem 2 and the applications presented in Section 5.
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x′−j ∈ X ′−j. Now consider a new allocation q̂ 6= q̃ such that

f(q̂(xj,x−j)) =
1

2
f(q̃(xj,x−j)) +

1

2
f(q̃(x′j,x−j)), f(q̂(xj,x

′
−j)) = (1− δ)f(q̃(xj,x′−j)) + δf(q̃(x′j,x

′
−j)),

f(q̂(x′j,x−j)) =
1

2
f(q̃(x′j,x−j)) +

1

2
f(q̃(xj,x−j)), f(q̂(x

′
j,x
′
−j)) = (1− δ)f(q̃(x′j,x′−j)) + δf(q̃(xj,x

′
−j)),

for all x′−j ∈ X ′−j and q̂(x) = q̃(x) for all other x ∈ X, where

δ =
1

2
(fj(q̃(xj,x−j))− fj(q̃(x′j,x−j)))/

∑
x′−j∈X′−j

(fj(q̃(x
′
j,x
′
−j))− fj(q̃(xj,x′−j))). (5)

Since Ex−j
fj(q̃(·,x−j)) is non-decreasing we have 0 ≤ δ ≤ 1

2
. In addition, a feasible allocation

q̂ with q̂(x) ∈ A, for each x ∈ X, is guaranteed to exist because mapping f is convex-valued.

Equation (5) guarantees that the equal expected marginal condition (4) is satisfied for agent j

having types xj and x′j. For agent j having other types, condition (4) follows trivially. For agent

i, i 6= j, condition (4) follows from f(q̂(xj,x−j)) + f(q̂(x′j,x−j)) = f(q̃(xj,x−j)) + f(q̃(x′j,x−j)) and

f(q̂(xj,x
′
−j)) + f(q̂(x′j,x

′
−j)) = f(q̃(xj,x

′
−j)) + f(q̃(x′j,x

′
−j)).

Let us now define ŝ = Ex(||f(q̂(x)||2) and s̃ = Ex(||f(q̃(x)||2), where || · || denotes the Euclidean

norm ||f(q(x))||2 =
∑

i∈I fi(q(x))2. Taking into account that λi is uniformly distributed, we have

ŝ− s̃ =
(
−1/2||f(q̃(xj,x−j))− f(q̃(x′j,x−j))||2−2δ(1− δ) ||f(q̃(x′j,x′−j))− f(q̃(xj,x

′
−j))||2

)
/|X| < 0.

If fj(q̂(·,x−j)) is not non-decreasing for some j and x−j, we repeat the above procedure. Iterating

the procedure we finally obtain a sequence of allocations qn ∈ A and a sequence of values sn ≥ 0

for n = 1, 2, .... If for some n we find that fj(q
n(·,x−j)) is non-decreasing for all j and x−j we set

qn+1 ≡ qn and sn+1 ≡ sn. By construction, sn is a weakly decreasing sequence that is bounded

below by 0. Hence, sn has a limit that we denote as s. Since set A is compact there exists also a

convergent subsequence of qn with a limit q such that q(x) ∈ A for all x ∈ X. By construction,

s = Ex(||f(q(x)||2) and fj(q(·,x−j)) are non-decreasing for all j and x−j.

Proof of Theorem 1. Lemmas A1 and A2 in the Appendix extend Lemma 1 to show that, given

any set Xi ⊂ R and any distribution λi, for any BIC allocation q̃ there exists a feasible allocation

q satisfying (4) with non-decreasing marginals fi(q(·,x−i)) for all i ∈ I and x−i ∈ X−i. Since these
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lemmas are rather technical we postpone them to the Appendix. To finish the construction of an

equivalent DIC mechanism we now consider transfers t defined by

ti(xi,x−i) = ti(xi,x−i) + vi(q(xi,x−i), xi)− vi(q(xi,x−i), xi) +

∫ xi

xi

vix(q(s,x−i), s)ds, (6)

for all x ∈ X, i ∈ I, where ti(xi,x−i) = Ex−i

(
vi(q̃(xi,x−i), xi) + t̃i(xi,x−i)

)
− vi(q(xi,x−i), xi).

Proposition 1 guarantees that mechanism (q, t) is DIC. In addition, mechanism (q, t) leads to the

same interim expected utilities as in BIC mechanism (q̃, t̃). In particular,

Ui(xi) = Ex−i
(t̃i(xi,x−i) + vi(q̃(xi,x−i), xi)) +

∫ xi

xi

Ex−i
vix(q(s, x−i), s)ds

= Ex−i
(t̃i(xi,x−i) + vi(q̃(xi,x−i), xi)) +

∫ xi

xi

Ex−i
vix(q̃(s, x−i), s)ds = Ũi(xi), (7)

where the first equality follows from (6), the second one from (4), and the third one from the

characterization of BIC mechanisms (Proposition 2). When mapping g is a linear transformation of

f , the equal expected marginal conditions in (4) also imply Ex[
∑

i∈I gi(q(x))] = Ex[
∑

i∈I gi(q̃(x))].

Hence, both mechanisms also generate the same expected social surplus.

Theorem 1 extends the BIC-DIC equivalence result to non-linear environments when each agent’s

utility satisfies the average single-crossing property and the mapping of all agents’ utilities is convex-

valued. In addition, the new proof only requires the set of feasible allocations A being compact

instead of being a simplex as in Gershkov et al. (2013).

The requirement that g is a linear transformation of f is satisfied, for example, if all terms gi are

zero as in some applications of Section 5. For general g the constructed DIC mechanism, however,

does not necessarily match the expected social surplus of the BIC mechanism.6 We now provide

sufficient conditions when for a given BIC mechanism one could find a DIC mechanism that produces

the same interim expected utilities and generates at least as large expected social surplus.

For this purpose, we consider environments where the set of feasible allocations A is a convex

and compact subset of RI with q = (q1, ..., qI), where qi ∈ R for each i ∈ I. We also assume that

functions fi depend on different components of allocations, i.e. fi(q) = f̌i(qi), for all i ∈ I, q ∈ A.

6For general g the constructed DIC mechanism still delivers the same interim expected utilities for all agents.

9



Theorem 2. Assume mapping f is continuous and convex-valued. For any BIC mechanism there

exists a DIC mechanism that delivers the same interim expected utilities for all agents. In addition,

the DIC mechanism generates at least as large expected social surplus, if for each i ∈ I

(i) f̌i(qi) is non-decreasing and concave (or non-increasing and convex) and gi(q) is continuous,

non-increasing, and concave in each component, or

(ii) f̌i(qi) is non-increasing and concave (or non-decreasing and convex) and gi(q) is continuous,

non-decreasing, and concave in each component.

Remark. The theorem also extends to settings where the set of feasible allocations A is compact,

mapping f is continuous and convex-valued, and the utility of each agent satisfies the following

condensation property. Functions fi and gi can be written as fi(q) = f̌i(hi(q)) and
∑

i gi(q) =

G(h1(q), ..., hI(q)) for all q ∈ A, where hi : A → R, f̌i is non-decreasing and concave (or non-

increasing and convex), and the aggregate function G : RI → R is continuous, non-increasing, and

concave in each component.7 The proof of this extension repeats the steps of the proof of Theorem

2 presented in the Appendix, and we omit it to avoid repetition. We exploit this observation when

we consider the environmental mechanism design applications in Section 5.

We want to note that Theorem 2 demands a DIC mechanism to produce only at least as large

expected social surplus as in the original BIC mechanism. This requirement is more flexible than

the one in the definition of equivalent mechanisms (see Definition 1). In addition, it better captures

the economic intuition that one does not need to insert additional money to achieve a more robust

solution concept. In particular, a mechanism designer concerned with revenue-maximization extracts

a higher level of revenue with the constructed DIC mechanism. Hence, this requirement should have

a broader range of meaningful economic applications, which we also illustrate in Section 5.

5 Applications

In this section, we demonstrate that Theorem 1 and 2 apply to many important environments where

previous works have little bite (e.g. Manelli and Vincent, 2010; Gershkov et al., 2013). In addition,

they produce several novel implications that are of independent interest.

7Similar to condition (ii) in the theorem the result also extends to settings when f̌i is non-increasing and concave
(or non-decreasing and convex) and G is continuous, non-decreasing, and concave in each component.

10



5.1 Principal-Agent Problem and Allocative Externalities

Consider a standard contracting setting where a principal needs to procure I goods from I agents.

Assume the principal chooses a production plan q = (q1, ..., qI) ∈ A ≡ ΠI
i=1[qi, qi] ⊆ RI and a transfer

scheme (t1, ..., tI) ∈ RI , the payoff of agent i is then given by −ci(qi)xi + ti, where ci : [q
i
, qi] → R

is some continuous non-decreasing function with an interpretation of ci(qi)xi being agent i’s cost of

supplying qi units of good i. Many influential papers analyzing the optimal procurement contracts

fall into this setting (e.g., Laffont and Martimort, 1997; Mookherjee and Tsumagari, 2004; Severinov,

2008; Duenyas, et al., 2013). In this setting, we have fi(q) = −ci(qi) and gi(q) = 0 for each

i ∈ I. Since functions ci are continuous the Intermediate Value Theorem8 implies that mapping

f(·) = (−c1(·), ...,−cI(·)) is convex-valued. Then, Theorem 1 leads to the following corollary.

Corollary 1. Consider the standard procurement setting. If ci is continuous for i ∈ I, for any

BIC mechanism there exists an equivalent DIC mechanism.

In many contracting situations, agents may care not only about their own contracts with the

principal, but also have preferences over the contracts received by other agents. For instance,

a country may prefer its ally rather than its enemy to get a weapon contract (see Jehiel et al.,

1996). Similar concerns arise in the presence of downstream competition among the firms after the

allocation of contracts (Segal, 1999).9 Within the current framework, type-independent allocative

externalities can be captured by incorporating an additional term into agent’s utility function, i.e.

−ci(qi)xi + gi(q) + ti. Assuming that the cost and externality functions satisfy the conditions of

Theorem 2, we establish the following result.

Corollary 2. Consider a procurement setting with allocation externalities. If ci is continuous

for each i ∈ I, then for any BIC mechanism there exists a DIC mechanism that delivers the same

interim expected utilities for all agents. If ci is also non-decreasing and convex (concave) and gi is

continuous, non-decreasing (non-increasing), and concave in each component for each i ∈ I, then

the DIC mechanism generates at least as large expected social surplus as the BIC mechanism.

Corollary 2 identifies environments with allocative externalities, where a mechanism designer can

8See, for example, Chapter 2 of Royden (1988).
9See Jehiel and Moldovanu (2006) for an excellent overview of papers analyzing allocative externalilities.
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rely on dominant strategy implementation and gains nothing from designing more complex BIC

mechanisms. This is in sharp contrast to results pertaining to environments with both allocative and

information externalities, where more robust solution concepts appear to be much more restrictive

(see Jehiel and Moldovanu, 2006).

5.2 Mechanism Design for the Environment

Let us first consider a model of Martimort and Sand-Zantman (2013, 2015) who analyze feasible

agreements in reducing the aggregate pollution of I countries. Each country i can exert effort

qi ∈ [q, q] ⊆ R+ that have both local benefits of size αqi (with α ∈ [0, 1)) and global benefits of

size (1 − α)qi, which accrue worldwide. The countries differ in their costs of effort q2i xi/2 with xi

being country i’s efficiency parameter. Efficiency parameters are drawn independently from the

same cumulative distribution λ with support [x, x] ⊆ R. Overall, country i’s payoff is given by

−q2i xi/2 + αqi + (1− α)Q+ ti, where Q =
∑I

i=1 qi is aggregate global benefits and ti is a monetary

transfer to country i. Taking into account that function −q2i /2 is non-increasing and concave and the

externality function αqi + (1−α)Q is non-decreasing and linear (and, hence, concave), the following

result directly follows from Theorem 2.

Corollary 3. Consider the environmental mechanism design setting of Martimort and Sand-

Zantman (2013, 2015). Then, for any BIC mechanism there exists a DIC mechanism producing the

same interim expected utilities to all agents and generating at least as large expected social surplus.

Baliga and Maskin (2003) also study feasible agreements to efficiently reduce the aggregate

pollution level, but consider a slightly different model. While they assume that agents’ costs are

type-independent, agents have private information about their value of the pollution reduction. More

specifically, agent i’s utility is given by xiQ
1/2 − qi + ti, where xiQ

1/2 is the gross benefits to agent

i from aggregate reduction Q. Though Theorem 2 does not formally apply to this environment,

each agent i’s benefits and costs from pollution reduction satisfy the condensation property defined

in the remark after Theorem 2. In particular, agent i’s benefits equal f̌i(hi(q)) = hi(q)
1
2 and the

aggregate costs equal
∑

i∈I qi =
∑

i∈I qi = −G(h1(q), ..., hI(q)), where the condensation function

hi(q) =
∑

i∈I qi, i ∈ I, is the same for all agents. Note that mapping f = (f1(·), ..., fI(·)) is

12



symmetric and, hence, the Intermediate Value Theorem implies that it is convex-valued. In addition,

f̌i is non-decreasing and concave, and function G is non-increasing and linear (and, hence, concave).

Hence, the following result is implied by the extension discussed in the remark after Theorem 2.

Corollary 4. Consider the environmental mechanism design setting of Baliga and Maskin (2003).

Then, for any BIC mechanism there exists a DIC mechanism producing the same interim expected

utilities to all agents and generating at least as large expected social surplus.

Corollaries 3 and 4 imply that the mechanism designer would lose nothing by restricting himself

to DIC mechanisms for environmental design problems, if he/she wants to maintain the same level

of agents’ interim expected utility without the influx of additional money into the system. This

result, however, holds without imposing additional constraints - such as ex post budget balance,

as thoroughly discussed in Baliga and Maskin (2003). Though Bayesian implementation is more

permissive when ex post budget balance is imposed, the mechanism designer can still rely only on

DIC mechanisms if the budget balance constraint needs to be satisfied in expectations. We show

this result in the next application.

5.3 Public Good Provision

Consider a standard setting of public good provision with I ≥ 2 agents. If q ∈ A = [q, q] units of

public good is provided, agent i’s utility is given by f(q)xi + ti, where f(q)xi is agent i’s valuation

of the public good and ti ∈ R is the units of private good that he receives. Many influential papers

on public good provision fall into this setting (e.g., Mailath and Postlewaite (1990), Ledyard and

Palfrey (1999), Hellwig (2003), Norman (2004)). If f : A → R is continuous in q, it again follows

from the Intermediate Value Theorem that the mapping f(·) = (f(·), ..., f(·)) is convex-valued and,

hence, Theorem 1 can be applied here.

Corollary 5. Consider the public good provision setting. If f is continuous, then for any BIC

mechanism there exists an equivalent DIC mechanism.

While the equivalent DIC mechanism, constructed in Theorem 1, inherits interim individual

rationality from the BIC mechanism,10 there is no guarantee that other constraints imposed on the

10The constructed DIC mechanism satisfies even a stronger notion of ex post individual rationality.
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BIC mechanism will remain satisfied as well. For example, when designing a mechanism for public

good provision it is typical to require that the private goods raised from the agents are enough to

cover the cost of the public good. Formally, a direct mechanism (q, t) is ex ante budget balanced if

∫
x∈X

[
K(q(x)) +

I∑
i=1

ti(x)

]
dλ(x) ≤ 0, (8)

where K : A → R is the cost function of producing the public good. The following corollary of

Theorem 2 provides a sufficient condition under which the equivalent DIC mechanism constructed

in Theorem 1 also inherits ex ante budget balance from the original BIC mechanism.11

Corollary 6. Suppose f is continuous, non-decreasing, and concave and K is continuous, non-

decreasing, and convex. For any BIC mechanism that is ex ante budget balanced the equivalent DIC

mechanism, constructed in Theorems 1, is also ex ante budget balanced.

Intuitively, the monotonicity and concavity of utility functions imply that the provision of pub-

lic good is more balanced across states in the equivalent DIC mechanism than that in the BIC

mechanism. Consequently, the expected cost of providing the public good is lower. Since the ex-

pected transfers remain unchanged in the equivalent DIC mechanism constructed in Theorem 1, the

property of ex ante budget balance is preserved.

Our result thus suggests that for a quite general class of public good provision problems it

is without loss of generality to insist on dominant-strategy incentive compatibility even when the

additional ex ante budget balance constraint is imposed.12 For example, the second-best allocation

rule in Hellwig (2003) can be equivalently implemented in dominant strategies without violating the

ex ante budget balance condition if functions f and K are concave and convex respectively.

11The result of Corollary 6 extends without any change to non-symmetric settings with mapping f = (f1(·), ..., fI(·))
being convex-valued and functions fi, i ∈ I, being continuous, non-decreasing, and concave.

12For some applications, it is natural to require mechanisms to be ex post budget balanced, i.e. inequality (8) holds
for each x ∈ X. Borgers and Norman (2009) show that for every ex ante budget balanced DIC mechanism (q, t)
there exist transfers t′ such that (q, t′) is (i) BIC for all agents and DIC for all but one agent and (ii) ex post budget
balanced. Agents also have the same interim expected payments in both mechanisms (see also Borgers, 2015, Ch. 3).
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6 Conclusion

This paper extends the equivalence between Bayesian and dominant strategy implementation to

non-linear environments where each agent’s utility satisfies the average single-crossing property and

the mapping of all agents’ utilities is convex-valued. These assumptions are satisfied by many

important environments in the literature on principal-agent problems with allocative externalities,

environmental mechanism design, and public good provision. Since the results of the previous papers

(Manelli and Vincent, 2010; Gershkov et al., 2013) do not apply to these environments the current

paper significantly enlarges the set of settings where the mechanism designer can rely on more robust

solution concept of dominant strategy implementation.

In this paper, we also provide sufficient conditions when for a given BIC mechanism there exists

a DIC mechanism that yields the same interim expected utilities to all agents and generates at

least as large social surplus (see also Kushnir, 2015). Using this result we provide several novel

implications for the above-mentioned environments. In addition, being more flexible than the notion

of equivalence due to Gershkov et al. (2013), this way of comparing two implementation concepts

broadens the set of environments when the mechanism designer could stick to a more robust notion

of implementation without sacrificing his/her objectives. Hence, we believe this notion will be useful

for future studies.

Finally, we want to outline a possible research agenda. In their original paper, Gershkov et al.

(2013) provide examples showing that the BIC-DIC equivalence generally fails in environments with

non-linear utilities, correlated or multi-dimensional types, and interdependent values. This paper,

however, shows that the equivalence can be extended to important non-linear settings. Similarly,

Kushnir (2015) shows that the equivalence extends to interesting environments with correlated types.

We believe that one should be able to identify the conditions when the BIC-DIC equivalence holds

for the environments with multi-dimensional types and interdependent values. We leave this exciting

prospect for future research.
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Appendix

Proof of Proposition 2

For the sufficiency part, note that agent i does not deviate from the truth-telling Bayes-Nash equi-

librium if and only if

Ui(xi) ≥ Ex−i
(vi(q(x

′
i,x−i), xi) + ti(x

′
i,x−i)) = Ui(x

′
i) + Ex−i

(vi(q(x
′
i,x−i), xi)− vi(q(x′i,x−i), x′i))

for all xi, x
′
i ∈ Xi. Using (2), this is equivalent to require that for all xi, x

′
i ∈ Xi,∫ xi

x′i

Ex−i
(vix(q(s,x−i), s)) ds ≥ Ex−i

(vi(q(x
′
i,x−i), xi))− Ex−i

(vi(q(x
′
i,x−i), x

′
i)) ,

which is true under the condition that Ex−i
(vix(q(s,x−i), xi)) is non-decreasing in s for all xi ∈ Xi.

For the necessity part, suppose that mechanism (q, t) is BIC. We then have

Ui(xi) = max
x′i∈Xi

(
Ex−i

(vi(q(x
′
i,x−i), xi) + ti(x

′
i,x−i))).

Since vi is continuously differentiable on [xi, xi] it is also absolutely continuous and has a bounded

derivative vix. Hence, equation (2) follows from the envelope theorem (Milgrom and Segal, 2002).

It remains to show that BIC also implies the monotone-expected-marginal condition. Suppose, in

contradiction, Ex−i
vix(q(y,x−i), z) > Ex−i

vix(q(x,x−i), z) for some agent i and x, y, z ∈ Xi, with

y < x. The average single-crossing property implies that

∫ x

y

Ex−i
vix(q(y,x−i), s)ds >

∫ x

y

Ex−i
vix(q(x,x−i), s)ds.

At the same time, the incentive compatibility implies

Ex−i
(vi(q(y,x−i), x)− vi(q(y,x−i), y)) ≤ Ui(x)− Ui(y) ≤ Ex−i

(vi(q(x,x−i), x)− vi(q(x,x−i), y)) .
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Using equation (2) we then obtain

∫ x

y

Ex−i
(vix(q(y,x−i), s))ds ≤

∫ x

y

Ex−i
(vix(q(s,x−i), s)) ds ≤

∫ x

y

Ex−i
(vix(q(x,x−i), s))ds.

Hence, we reach a contradiction.

Proof of Proposition 3

The sufficiency part is straightforward. Let us prove the necessity part. Consider some xi ∈ Xi

and let m̄ix(xi) = maxa∈A vix(a, xi) and mix(xi) = mina∈A vix(a, xi). Note that both m̄ix and mix

are well-defined since vi(a, x) is continuously differentiable. The average single-crossing property

ensures that the maximum and the minimum are achieved for the same alternatives across types

xi. We denote them as amax and amin respectively. If m̄ix(xi) = mix(xi), the average single-crossing

implies that for every xi ∈ Xi function vix(·, xi) is constant and, hence, satisfies equation (3).

Otherwise, for each a′ ∈ A, there exists a unique number fi(a
′) ∈ [0, 1] such that vix(a′, xi) =

fi(a
′)m̄ix(xi) + (1− fi(a′))mix(xi). Consider a distribution F ∈ ∆(A) such that amax is chosen with

probability fi(a
′) and amin is chosen with probability 1− fi(a′). By construction, we have

∫
vix(a, xi)dF = vix(a′, xi) = fi(a

′)m̄ix(xi) + (1− fi(a′))mix(xi).

The average single-crossing property then implies that for any y ∈ Xi∫
vix(a, y)dF = vix(a′, y) = fi(a

′)m̄ix(y) + (1− fi(a′))mix(y).

Hence, for all a ∈ A, xi ∈ Xi,

vix(a, xi) = fi(a)Mix(xi) +mix(xi), (A.1)

where mix(xi) = mix(xi) and Mix(xi) = m̄ix(xi)−mix(xi). Integrating (A.1), we obtain (3).
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Proof of Theorem 1

Lemma A1. Suppose, for all i ∈ I, Xi = [0, 1] and λi is the uniform distribution on Xi. Then,

for any BIC allocation q̃ there exists a feasible allocation q satisfying (4) with fi(q(·,x−i)) being

non-decreasing for all i ∈ I and x−i ∈ X−i.

Proof. The proof essentially repeats the proof of Lemma 2 in Gershkov et al. (2013), and we only

sketch it here. We consider a partition [0, 1]I to 2nI cubes of equal size. For each cube S in this

partition, we approximate f(q̃(x)), x ∈ S, by its average defined by

f(q̃(S)) = 2nI

∫
S

f(q̃(x))dx.

Note allocation q̃(S) ∈ A is well-defined, because mapping f is convex-valued. In addition, discrete

allocation q̃(S) inherits non-decreasing expected marginals from q̃. Lemma 1 then ensures that

there exists an allocation q(S) with non-decreasing marginals that can also be extended to piecewise

constant functions over [0, 1]I . Taking the limit with respect to the size of partition, we obtain the

result of the lemma. For the details of the construction, we refer to Gershkov et al. (2013).

Lemma A2. Suppose, for all i ∈ I, Xi ⊆ R and λi is some distribution on Xi. Then, for any BIC

allocation q̃ there exists a feasible allocation q satisfying (4) with fi(q(·,x−i)) being non-decreasing

for all i ∈ I and x−i ∈ X−i.

Proof. The proof repeats the proof of Lemma 3 in Gershkov et al. (2013). Its main idea is to relate

the uniform distribution covered by Lemma A1 to the case of a general distribution. In particular,

if random variable Zi is uniformly distributed then λ−1i (Zi) is distributed according to λi.
13 Hence,

for a given BIC allocation q̃ we use transformation λ−1i to construct an allocation q̃′ defined on

uniformly distributed types that has also a non-decreasing expected marginals. For allocation q̃′, we

then apply the results of Lemmas 1 and A1 to obtain an allocation q′ with non-decreasing marginals

defined on uniformly distributed types. We then use transformation λi to recover back an allocation

q with non-decreasing marginals defined on types distributed according to λi. For the details of the

construction, we refer to Gershkov et al. (2013).

13Where λ−1i (zi) = inf{xi ∈ Xi|λi(xi) ≥ zi}.
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Proof of Theorem 2

Consider an arbitrary BIC mechanism (q̃, t̃) and the corresponding DIC mechanism (q, t) constructed

in Theorem 1. Since equation (7) holds for any g, the first part of Theorem 2 immediately follows.

The idea behind the proof of the second part of theorem is to show that if functions f̌i and gi satisfy

conditions (i) or (ii), the DIC mechanism constructed in Theorem 1 also satisfies

Ex

(∑
i
gi(q(x))

)
≥ Ex

(∑
i
gi(q̃(x))

)
. (A.2)

Suppose condition (i) is satisfied. Let us first consider the case where types are discrete and uni-

formly distributed (as in Lemma 1). If the marginals of allocation q̃ are not non-decreasing, then

f̌j(q̃j(x
′
j,xj)) < f̌j(q̃j(xj,x−j)) for some j, x′j > xj, and x−j. Using the construction of the algo-

rithm in Lemma 1 we then obtain an allocation q̂ ∈ A satisfying the equal-marginal conditions in

(4) and delivering strictly smaller value to objective Ex||f(·)||2. Since function f̌j is non-decreasing

and concave (or non-increasing and convex), we also have

q̂j(xj,x−j) = q̂j(x
′
j,x−j) ≤

1

2
q̃j(xj,x−j) +

1

2
q̃j(x

′
j,x−j),

q̂j(xj,x
′
−j) ≤ (1− δ)q̃j(xj,x′−j) + δq̃j(x

′
j,x
′
−j),

q̂j(x
′
j, x̂−j) ≤ (1− δ)q̃j(x′j,x′−j) + δq̃j(xj,x

′
−j).

Since function gi is non-increasing and concave in each component, this further implies

gi(q̂(xj,x−j)) + gi(q̂(x
′
j,x−j)) ≥ gi(q̃(xj,x−j)) + gi(q̃(x

′
j,x−j)),

gi(q̂(xj,x
′
−j)) + gi(q̂(x

′
j,x
′
−j)) ≥ gi(q̃(xj,x

′
−j)) + gi(q̃(x

′
j,x
′
−j)),

for each i ∈ I and, hence, Ex(
∑

i gi(q̂(x))) ≥ Ex(
∑

i gi(q̃(x))). We iterate this procedure to obtain a

sequence of allocations qn ∈ A and a decreasing numerical sequence sn = Ex||f(qn(x))||2, n = 1, 2, ....

If we find that f̌j(q
n
j (·,x−j)) is non-decreasing for all j and x−j we set qn+1 ≡ qn and sn+1 ≡ sn.

Since sn is a weakly decreasing sequence bounded below by 0 it has a limit, which we denote as

s. Since set A is compact there also exists a convergent subsequence qn with a limit q such that

q(x) ∈ A for all x ∈ X. Clearly, s = Ex(||f(q(x)||2) and f̌j(qj(·,x−j)) is non-decreasing for each j

19



and x−j. Since functions gi are continuous we also have Ex

(∑
i gi(q(x))

)
≥ Ex

(∑
i gi(q̃(x))

)
.

The result can then be further extended to continuous space with arbitrary distribution similar

to Lemmas A1 and A2. We then use equation (6) to define payment rule t delivering the same

interim expected utilities. Finally, we have that the social surplus in the constructed allocation

Ex

(∑
i
vi(q(x), xi)

)
= Ex

(∑
i
fi(q(x))Mi(xi) +mi(xi) + gi(q(x))

)
≥ Ex

(∑
i
fi(q̃(x))Mi(xi) +mi(xi) + gi(q̃(x))

)
= Ex

(∑
i
vi(q̃(x), xi)

)
,

where the inequality follows from the equal-marginal conditions in (4) and inequality (A.2). This

establishes the claim of the theorem. The proof is analogues if instead condition (ii) is satisfied.

Proofs of results stated in Section 5

Proof of Corollaries 1 and 5. The statements follow from Theorem 1.

Proof of Corollary 2, 3, and 4. The statements follow from Theorem 2.

Proof of Corollary 6. Consider any BIC mechanism (q̃, t̃) and the equivalent DIC mechanism

(q, t), constructed in Theorem 1. Since we have gi(q) = 0 for each i ∈ I in the public good provision

setting, we have that both mechanisms having the same ex ante expected utilities imply that both

mechanism yield the same expected transfers, i.e. Ex(
∑

i∈I ti(x)) = Ex(
∑

i∈I t̃i(x)).

To prove the claim of the corollary, we then need to show that the expected costs for DIC

mechanism is lower than the expected costs for BIC mechanism, i.e. Ex(K(q(x))) ≤ Ex(K(q̃(x))).

This statement follows from applying the argument of the proof of Theorem 2 to function −K

instead of functions gi, i ∈ I. In particular, consider the sequence of allocation qn constructed in

the algorithm of Theorem 1. Since function K is non-decreasing and convex, the expected cost of

allocations qn is non-increasing in n, i.e. Ex(K(qn+1(x))) ≤ Ex(K(qn(x))) ≤ Ex(K(q̃(x))). The

continuity of K then implies that the inequality holds in the limit. Finally, the result further

extendeds to continuous type space with arbitrary distribution similar to Lemmas A1 and A2.
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