
Discussion Paper
Deutsche Bundesbank
No 48/2015

Monetary policy and the
asset risk-taking channel

Angela Abbate
(Deutsche Bundesbank and European University Institute)

Dominik Thaler
(European University Institute)

Discussion Papers represent the authors‘ personal opinions and do not
necessarily reflect the views of the Deutsche Bundesbank or its staff.



Editorial Board:  Daniel Foos 

Thomas Kick 

Jochen Mankart 

Christoph Memmel 

Panagiota Tzamourani 

Deutsche Bundesbank, Wilhelm-Epstein-Straße 14, 60431 Frankfurt am Main,  

Postfach  10 06 02, 60006 Frankfurt am Main 

Tel +49  69 9566-0 

Please address all orders in writing to: Deutsche Bundesbank, 

Press and Public Relations Division, at the above address or via fax  +49 69 9566-3077 

Internet http://www.bundesbank.de 

Reproduction permitted only if source is stated. 

ISBN  978–3–95729–223–0 (Printversion) 

ISBN  978–3–95729–224–7 (Internetversion) 



Non-technical summary 

Research Question  

The recent financial crisis has marked the importance of understanding the different types of 
risk to which the financial sector, and ultimately the real economy, are exposed. In particular, 
monetary policy might influence financial sector risk through the so called risk-taking channel, 
i.e. the mechanism by which low levels of the risk-free interest rate induce financial institutions 
to make riskier investments. We explore the functioning and relevance of this channel using a 
quantitative macroeconomic model, and assess whether the monetary authority should take its 
influence on bank asset risk into account when setting the interest rate 

Contribution 

Motivated by empirical VAR evidence for the US banking sector, we develop a quantitative 
monetary DSGE model where monetary policy influences bank asset risk, an aspect of financial 
sector risk that might have played an important role in the lead-up to the 2008 financial crisis. 
We furthermore estimate the model using US data and systematically explore how this novel 
channel affects the trade-off faced by the monetary policy authority.  

Results 

In the model, an agency problem between depositors and equity providers, stemming from 
limited liability and the unobservability of risk taking, distorts the banks' incentives and leads 
them to choose excessively risky investments. A monetary policy expansion causes a decline in 
the real interest rate, which amplifies these distortions and increases excessive risk taking. This 
in turn lowers the expected return on investment, and dampens the positive output effects of the 
interest rate cut. 

The connection between interest rates and asset risk raises the question of whether the monetary 
authority should take this channel into account when setting the interest rate. To answer the 
question we first estimate the model on US data using Bayesian techniques and find that the 
inclusion of this additional channel improves the in-sample fit of the model, yields impulse 
responses that are broadly in line with the results of our VAR analysis, and predicts a path of 
risk taking that matches US survey evidence. We then assess optimal monetary policy conduct 
in the estimated model, and find that, if the risk-taking channel is active, monetary policy should 
stabilize the real interest rate, in order to reduce the welfare detrimental volatility of the banks' 
risk choice. 



Nichttechnische Zusammenfassung 

Fragestellung  

Die letzte Finanzkrise hat deutlich gemacht, wie wichtig das Verständnis der 
unterschiedlichen Risikoarten ist, denen der Finanzsektor und letztlich auch die 
Realwirtschaft ausgesetzt sind. Im Hinblick darauf ist es möglich, dass insbesondere die 
Geldpolitik das Risiko im Finanzsektor über den sogenannten Risikoneigungskanal 
beeinflusst. Durch diesen Mechanismus werden die Finanzinstitute bei einem niedrigen 
risikofreien Zins verleitet, sich in risikoreicheren Anlagen zu engagieren. Wir 
erforschen die Funktionsweise und Bedeutung dieses Kanals mithilfe eines 
quantitativen makroökonomischen Modells und nehmen eine Einschätzung vor, ob die 
Geldpolitik bei der Bestimmung des Leitzinses den von ihr ausgehenden Einfluss auf 
das Anlagerisikoverhalten der Banken berücksichtigen sollte. 

Forschungsbeitrag 

Auf der Grundlage empirischer VAR-Evidenz für den US-Bankensektor entwickeln wir 
ein quantitatives monetäres DSGE-Modell, bei dem das Anlagerisiko der Banken durch 
die Geldpolitik beeinflusst wird – ein Aspekt des Finanzsektorrisikos, der im Vorfeld 
der Finanzkrise des Jahres 2008 eine wichtige Rolle gespielt haben könnte. Außerdem 
schätzen wir das Modell anhand von US-Daten und loten systematisch aus, wie sich 
dieser neue Kanal auf den Zielkonflikt auswirkt, mit dem es die Geldpolitik zu tun hat.  

Ergebnisse 

In dem Modell führt ein Agency-Problem zwischen Einlegern und Eigenkapitalgebern, 
das von einer begrenzten Haftung und der Unbeobachtbarkeit des Risikoverhaltens 
rührt, zu Anreizverzerrungen bei den Banken, sodass diese zu übermäßig riskanten 
Anlageentscheidungen neigen. Eine expansivere Geldpolitik bedingt einen niedrigeren 
Realzins, der diese Verzerrungen vergrößert und somit exzessives Risikoverhalten 
verstärkt. Dies verringert wiederum die erwartete Anlagerendite und dämpft die 
positiven Effekte der Zinssenkung auf die Produktion. 

Um zu sehen, ob die Geldpolitik auf diesen Kanal reagieren sollte, schätzen wir das 
Modell zunächst mit bayesianischen Methoden auf der Basis von US-Daten. Dabei 
gelangen wir zu dem Ergebnis, dass die Einbeziehung dieses zusätzlichen Kanals die 
Anpassungsgüte des Modells verbessert und Impuls-Antwort-Folgen generiert, die 
weitgehend im Einklang mit den Resultaten unserer VAR-Analyse stehen. Des 
Weiteren deckt sich der vom Modell prognostizierte Risikoneigungspfad, mit den 
Umfrageergebnissen von US Banken. Wir zeigen auch, dass die Geldpolitik auf den 
Risikoneigungskanal der Banken durch ein Stabilisieren des Realzinses reagieren sollte. 
Dadurch kann sie die wohlfahrtsschädliche Volatilität mindern, die mit der 
Risikoentscheidung der Banken einhergeht. 
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ity and unobservable risk taking, distorts banks’ incentives leading them to

choose excessively risky investments. A monetary policy expansion mag-

nifies these distortions, increasing excessive risk taking and lowering the

expected return on investment. We estimate the model on US data using

Bayesian techniques and assess how this novel channel affects optimal mone-
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1 Introduction

The recent financial crisis has marked the importance of monitoring the different

types of risks to which the financial sector, and ultimately the real economy, are

exposed. A relevant aspect is whether interest rates, and therefore monetary

policy, can influence the risk-taking behavior of financial intermediaries. This

transmission mechanism, known as the risk-taking channel of monetary policy,1

could have contributed to the excessive levels of financial sector balance-sheet risk

which lead to the 2008 financial crisis. In the aftermath of the crisis interest rates

have fallen considerably in many countries, raising concerns on whether financial

market participants might be once again induced to reallocate portfolios towards

riskier investments, creating the risk of yet another crisis.2

This paper addresses these concerns from a theoretical point of view, motivated

by structural VAR evidence showing that expansionary monetary policy shocks

increase bank asset risk in the US. We build a monetary DSGE model, where

investment in capital is intermediated by a banking sector and is furthermore

risky. Building on Dell’Ariccia et al. [2014], we assume that banks can choose

from a continuum of investment projects, each defined by different risk-return

characteristics. Every project has a certain probability of yielding capital in the

next period. The safer the project is, however, the lower is the return in case of

success. Since depositors cannot observe the investment choice, and because bank

owners are protected by limited liability, an agency problem emerges: banks are

partially isolated from the downside risk of their investment and hence choose a

risk level that exceeds what would be chosen if these frictions were absent. This

problem could be mitigated if bankers held more equity. Yet, banks optimally rely

on both types of funding and hence the agency problem persists, because equity

is relatively more costly than deposits due to deposit insurance and a friction in

the equity market. Since the importance of these distortions is proportional to the

real rate of return, lower levels of the real risk-free rate induce banks to increase

leverage and choose riskier investment projects. This implies that the investment

intermediated by banks becomes less efficient, leading to a sizeable decline in the

1The term was first coined by Borio and Zhu [2008].
2See for instance: (2015, 26 September). Repeat Prescription, The Economist.
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capital stock both directly, as a lower fraction of capital projects is successful,

and indirectly, as households will not save as much. Overall, a monetary policy

expansion worsens the financial market distortions, which in turn attenuate the

positive output effects of the interest rate cut.

This connection between interest rates and asset risk raises the question of

whether the monetary authority should take this channel into account when setting

the interest rate. Since the answer to this question is of quantitative nature, we

embed the banking sector in a medium scale Smets and Wouters [2007]-type DSGE

model, known to fit the data well along many dimensions, and estimate it on

US data with Bayesian techniques. We find that the inclusion of this additional

channel improves the in-sample fit of the model, yields impulse responses that are

broadly in line with the results of our VAR analysis, and predicts a path of risk

taking for the estimation period that matches survey evidence. We then analyze

optimal monetary policy in the estimated model using simple rules and find that,

if the risk-taking channel is active, monetary policy should be less responsive to

inflation and output fluctuations. In this way, the monetary authority allows more

inflation volatility in exchange for stabilizing the real interest rate, which in turn

reduces the welfare detrimental volatility of the banks’ risk choice. The welfare

gains from taking the risk-taking channel into account are significant.

Our work relates to a small but growing theoretical literature that links mon-

etary policy to financial sector risk in a general equilibrium framework. Most of

the existing works focus on funding risk, associating risk with leverage, and build

on the financial accelerator framework of Bernanke et al. [1999].3 The mechanism

in these models relies on the buffer role of equity and therefore leverage is found

to be counter-cyclical with respect to the balance sheet size. Our model on the

contrary gives rise to pro-cyclical leverage, which is in line with the empirical ev-

idence reported in Adrian and Shin [2014] and Adrian et al. [2015]. Following a

different strategy, Angeloni and Faia [2013] and Angeloni et al. [2015] augment

the financial accelerator framework and construct a model where higher leverage

induced by expansionary monetary policy does not just amplify other shocks but

3For example in Gertler et al. [2012] and de Groot [2014] a monetary expansion increases
banking sector leverage, which in turn amplifies the financial accelerator and strengthens the
propagation of shocks to the real economy.
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also translates into a higher fraction of inefficient bank runs.

In this paper by contrast we model asset risk, i.e. the riskiness of the assets on

the banks’ balance sheets, another aspect of financial sector risk that seems to have

played an important role in the lead-up to the 2008 financial crisis. This type of

risk has so far mainly been discussed in the literature on optimal regulation such

as Christensen et al. [2011] and Collard et al. [2012]. In these papers however,

either the depositors or the financial regulator ensure that risk is always chosen

optimally, so monetary policy has no influence on risk taking.4 In contrast to the

previous two papers we provide microfoundations for the asset risk-taking channel

and focus on monetary policy while abstracting from regulation.5 Adding to the

literature on both types of risk taking, we furthermore systematically explore how

this novel channel affects optimal monetary policy in an estimated medium scale

model, where the policy maker needs to trade off several conflicting frictions.

The lack of theoretical papers on the asset risk-taking channel is not mirrored

by a lack of empirical evidence. Several studies find a causal link between monetary

policy and risk taking. Most of the existing research relies on loan or bank level

panel data and identification is based on the assumption that monetary policy is

exogenous. Jimenez et al. [2014] use micro data of the Spanish Credit Register

from 1984 to 2006 and find that lower interest rates induce banks to make relatively

more loans to firms that qualify as risky ex ante (firms with a bad credit history

at time of granting the loan) as well as ex post (firms that default on the granted

loan). They argue that this effect is economically significant and particularly

strong for thinly capitalized banks. These findings are confirmed for Bolivia using

credit register data in Ioannidou et al. [2014], and for the US using confidential

loan level data from the Terms of Business Lending Survey in Dell’Ariccia et al.

[2013]. For the US, these findings are furthermore corroborated by evidence from

aggregate time series data, where identification is obtained through restrictions on

the dynamic responses. Angeloni et al. [2015] and Afanasyeva and Guentner [2015]

find that monetary policy shocks increase asset risk, respectively proxied by the

debt stock of households and non-financial corporations, and by the net percentage

4Both papers feature ad-hoc extension that relate risk to the amount of lending and hence
indirectly to monetary policy.

5One could reinterpret our model as applying to an economy where regulation is not able to
fully control risk taking.
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of banks reporting tighter lending standards in the Fed survey of business lending.

These results are confirmed for small banks by the FAVAR analysis of Buch et al.

[2014], who use a more direct measure of bank risk from the Terms of Business

Lending Survey. We complement these results in the following section, where

we show that further evidence on the risk-taking channel for the whole banking

sector can be obtained using a more parsimonious setup. All these findings can be

summarized by the stylized fact that interest rate cuts increase bank asset risk

A second stylized fact that motivates the theoretical model is found by Buch

et al. [2014] and Ioannidou et al. [2014]. Both show that the increase in risk

taking induced by low interest rates is not accompanied by an offsetting increase

in the risk premium on loans, indicating that the additional risk might be priced

inefficiently.

Motivated by this comprehensive empirical evidence and the VAR analysis in

section 2, we develop in section 3 a DSGE model of asset risk-taking, where banks

respond to low interest rates by inefficiently taking more risk. Section 4 presents

the results from the estimation of the model and discusses the steady-state and

dynamic implications of bank risk taking. Section 5 analyzes how monetary policy

should be conducted if a risk-taking channel is present and section 6 concludes.

2 The asset risk-taking channel in the US

To motivate our subsequent theoretical analysis, we provide additional empirical

evidence on the existence of the asset risk-taking channel in the US. We employ

a classical small-scale VAR that includes inflation, output, a measure of bank

risk-taking and the effective federal funds rate, taken as the monetary policy in-

strument. Output is measured by real GDP growth, while inflation is defined as

the log change in the GDP deflator.

Measuring risk taking is less straightforward. There are many notions of asset

risk. One can distinguish between ex-ante, ex-post and realized asset risk. The

former is the risk perceived by the bank when making a loan or buying an asset.

Banks can influence this class of risk directly, when making their investment de-

cisions (the ex-ante risk choice). On the other hand, the ex-post risk of a bank’s

balance sheet is also affected by unforeseen changes in asset riskiness, that take
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place after origination and are largely outside the banks’ influence. Lastly, the

payoff ultimately paid by an asset is a materialization of the former two types of

uncertainty (realized asset risk). In this paper we focus on active risk taking, that

is the level of ex-ante risk that intermediaries choose, which is however difficult to

observe directly.6 Therefore we follow Dell’Ariccia et al. (2014) and proxy bank

risk-taking by the weighted average of the internal risk rating assigned by banks

to newly issued loans, reported in the US Terms of Business Lending Survey. See

appendix A for a plot of this risk index.7

We estimate a VAR over the period 1997:Q2, the start of the survey-based

proxy for risk taking, to 2007:Q38. The lag length is chosen to be 1, as indicated by

the BIC information criterion. We identify an unexpected monetary policy shock

by using a conventional set of sign restrictions that are robust across a variety

of general-equilibrium models. In particular, we assume that an expansionary

monetary policy shock decreases the nominal risk-free interest rate and increases

inflation and output, both at the time of the shock and in the quarter immediately

after. Risk is left unrestricted. Note that the response of inflation ensures that this

shock is identified separately from a productivity shock, which increases output

but decreases both the interest rate and inflation.

The response of bank asset risk to an expansionary monetary policy shock is

shown in figure 1. An unexpected decrease in the nominal interest rate is followed

by a moderate macroeconomic expansion: output growth increases for less than

a year, while inflation displays a longer reaction of about two years. The results

are compatible with the existence of a risk-taking channel in the US: a fall in the

nominal interest rate leads in fact to a decrease in the ex-ante proxy for the safety

of banks’ assets, i.e. banks issue riskier loans. Interestingly, the implied responses

6Inferring it from realized risk (e.g. loan losses) is hardly possible with aggregate data.
Inference from the spread between bank funding costs and loan rates neglects the fact that this
spread not only reflects default risk but also incorporates a liquidity premium and the markup,
which are likely to be affected by the same variables that influence the risk choice.

7The average loan risk is a perfect measure for bank risk taking if we assume that the volume
of loans is constant. Else, banks could also minimize their risk exposure by reducing the quantity
of loans as their average quality goes down. While the correlation between risk and loan volume
growth is slightly negative, it is not significant at a 10% significance level. For a more in-depth
discussion of the data we refer to Buch et al. [2014].

8We have decided to cut the zero-lower bound period, but our results still hold when the
latest available data are used.
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Figure 1: Monetary policy shock on bank risk-taking: Impulse responses over a 3-year

horizon, identified through the sign restriction scheme in Table 1. Error bands correspond to

90% confidence intervals reflecting rotation uncertainty. Loan safety is defined as the inverse

of the average loan risk rating, standardized to take values between 0 and 100. The remaining

variables are annualized. See text for further details.
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of the nominal interest rate and the risk measure are approximately proportional.

These results are robust to using a recursive identification scheme, as shown in

appendix B.9

3 A Dynamic New Keynesian model with a bank

risk-taking channel

In this section we build a general-equilibrium model where monetary policy can

influence the risk-taking behavior of banks, thus providing an explanation for the

risk-taking channel observed in the data. As a starting point we use a standard

New Keynesian model with imperfect competition and price stickiness in the goods

market, which implies a role for monetary policy. We augment this basic framework

with an intermediation sector based on Dell’Ariccia et al. [2014]: competitive banks

obtain funds from depositors and equity holders, which they invest into capital

projects carried out by capital producers. Every bank chooses its investment from

9We tested two orderings (output, inflation, interest rate, risk) and (output, inflation, risk,
interest rate).
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a continuum of available capital production technologies, each defined by a given

risk-return characteristic. The risk choice of the representative bank is affected

by the level of the real interest rate, and can be shown to be suboptimal. This

model reproduces two features found in the data: risk taking depends on the

contemporaneous interest rate and is priced inefficiently.

While the aforementioned blocks are the necessary ingredients, in order to

obtain a quantitatively more realistic model we add further elements, which are

typically used in the DSGE literature. In particular we follow Smets and Wouters

[2007] and allow for internal habits, investment adjustment costs and imperfect

competition and wage stickiness in the labor market. Our model therefore features

seven agents that are typical for DSGE models (households, unions, labor packers,

capital producers, intermediate goods producers, final goods producers, and a

central bank) and two agents that we introduce to model risk taking (banks, funds).

Eight structural shocks hit the economy: these affect productivity, investment,

time preferences, the equity premium, wage and price markups, as well as monetary

and fiscal policy.

3.1 Households

The representative household chooses consumption ct, working hours Lt and sav-

ings in order to maximize its discounted lifetime utility. Saving is possible through

three instruments: government bonds st, deposit funds dt, and bank equity funds

et. The nominal return on government bonds is safe and equal to the nominal

interest rate Rt. The two funds enable the representative household to invest into

the banking sector, and pay an uncertain nominal return of Rd,t+1 and Re,t+1.
10

Households maximize their lifetime utility function:

maxdt,et,st,ct,Lt E

[ ∞∑
t=0

βtεBt
(ct − ιct−1)

1−σC

1− σC
exp

(
ϕL1+σL

t

σC − 1

1 + σL

)]
, (1)

subject to the per-period budget constraint in real terms:

10Note that in our notation the time index refers to the period when a variable is determined.
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ct + dt + et + st + Tt = Ltwt + dt−1
Rd,t

πt
+ et−1

Re,t

πt
+ st−1

Rt−1

πt
+Πt , (2)

where πt is the inflation rate, while Tt and Πt are taxes and profits form firm

ownership, expressed in real terms. We allow for habits in consumption (ι) and a

time preference shock εBt . This shock is assumed to be persistent with log-normal

innovations, like all following shocks unless otherwise specified. The household’s

optimality conditions are given by the usual Euler equation and two no-arbitrage

conditions:

Λt = βEt
[
Λt+1

Rt

πt+1

]
, (3)

Et

[
Λt+1

Rd,t+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
, (4)

Et

[
Λt+1

Re,t+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
, (5)

where Λt = εBt (ct − ιct−1)
−σC − βιEt

[
εBt+1 (ct+1 − ιct)

−σC] is the marginal utility

of consumption.

3.2 Labor and goods sectors

The labor and goods sectors feature monopolistic competition and nominal rigidi-

ties, which allow for a role for monetary policy. Since the modeling of these sectors

follows the canonical New Keynesian model, we discuss them only briefly and refer

to Smets and Wouters [2007] and Adjemian et al. [2008] for further details. The

corresponding equilibrium conditions are listed in appendix C.

Final good producers assemble different varieties of intermediate goods through

a Kimball [1995] aggregator with elasticity of substitution εp and Kimball param-

eter kp, taking as given both the final good price and the prices of intermediate

goods. Their optimization problem yields demand functions for each intermediate

good variety as a function of its relative price.

A continuum of firms produces differentiated intermediate goods using capital

8



Kt−1 and “packed” labor ldt as inputs. The production function is Cobb-Douglas

and is affected by a total factor productivity shock εAt . Firms use their monopolistic

power to set prices, taking as given their demand schedule. As in Calvo [1983],

they can reset their prices in each period with probability λp, otherwise they index

their prices to past inflation with degree γp and to steady state inflation with

degree (1 − γp). Furthermore they are subject to a time-varying revenue tax εpt

that is equivalent to a markup shock, up to a first-order approximation.

The labor market resembles the product market: Packed labor is produced by

labor packers, who aggregate differentiated labor services using a Kimball [1995]

aggregator with elasticity of substitution εw and Kimball parameter kw.

Differentiated labor services are produced by a continuum of unions from the

households labor supply. They use their monopolistic power to set wages. Wages

are reset with probability λw, otherwise they are indexed to past inflation (with

degree γw) and steady state inflation. Like intermediate firms, unions are subject

to a stochastic wage tax εwt .
11

3.3 Equity and deposit funds

As we explain in detail below, there is a continuum of banks which intermediate

the households’ savings using deposits and equity. Each bank is subject to a binary

idiosyncratic shock which makes a bank fail with probability 1 − qt−1, in which

case equity is wiped out completely and depositors receive partial compensation

from the deposit insurance. We assume that households invest into bank equity

and deposits through two funds. The function of the equity (deposit) fund is

to eliminate the idiosyncratic bank default risk by buying a perfectly diversified

portfolio of 1 period equity (deposits) of all banks.

The deposit fund works without frictions, and represents the depositors’ in-

terests perfectly. The deposit fund raises money from the households and invests

it into dt units of deposits12. In the next period, the fund receives the nominal

deposit rate rd,t from each bank that does not fail. Deposits of failing banks are

11Both εpt and εwt follow the standard shock process augmented by an moving average compo-
nent, as in Smets and Wouters [2007].

12We use deposits to refer to both units of deposit funds and units of bank deposits since they
are equal. We do the same for equity.
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partially covered by deposit insurance. Most deposit insurance schemes around the

world, including the US, guarantee all deposits up to a certain maximum amount

per depositor13. We represent this capped insurance model by assuming that the

deposit insurance guarantees deposits up to a fraction ψ of total bank liabilities lt,

which are the sum of deposits dt and equity et. We assume that the deposit insur-

ance cap is inflation adjusted, to avoid complicating the monetary policy trade-off

by allowing an interdependence between monetary policy and deposit insurance.

As we will show later, the deposit insurance cap is always binding in equilibrium,

i.e. the bank’s liabilities exceed the cap of the insurance rd,tdt > ψ(dt + et)πt+1.

Defining the equity ratio kt =
et

dt+et
, the deposit fund therefore receives a real re-

turn of ψ/(1−kt) per unit of deposits from each defaulting bank at t. The deposit

fund hence pays a nominal return of:

Rd,t+1 ≡ qtrd,t + (1− qt)
ψ

1− kt
πt+1 . (6)

Unlike the deposit fund, which is managed frictionlessly, the equity fund is sub-

ject to a simple agency problem. In particular, we assume that the fund manager

faces two options. He can behave diligently and use the funds et, raised at t, to

invest into et units of bank equity. A fraction qt of banks will pay back a return of

re,t+1 next period while the defaulting banks pay back nothing. Alternatively the

fund manager can abscond with the funds, in which case he consumes a fraction

ξt of the funds in the subsequent period and the rest is lost. Since he is a small

member in the big family of the representative household his utility from doing

so is Λt+1ξtet. To prevent the fund manager from absconding funds, the equity

providers promise to pay him a premium pt at time t + 1 conditional on not ab-

sconding. This premium is rebated to the household in a lump-sum fashion and

the associated utility for the fund manager is Λt+1pt. Equity providers pay the

minimal premium that induces diligent behavior, i.e. pt = ξtet. Once absconding

is ruled out in equilibrium, the equity fund manager perfectly represents the in-

terests of the equity providers. The nominal return on the bank equity portfolio

13For a comprehensive documentation see, for instance, Demirgüç-Kunt et al. [2005].
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is qtre,t+1 per unit of equity, hence one share of the equity fund pays:

Re,t+1 ≡ qtre,t+1 − ξtπt+1 . (7)

We allow the equity premium ξt to vary over time.14 Note that, since bank equity

is the residual income claimant, the return of the equity fund is affected by all

types of aggregate risk that influences the surviving banks’ returns.

The two financial distortions introduced so far have important implications.

The agency problem implies an equity premium, i.e. a premium of the risk-adjusted

return on equity over the risk-free rate. Deposit insurance on the other hand acts

as a subsidy on deposits, which implies a discount on the risk-adjusted return

on deposits. As explained below, the difference in the costs of these two funding

types induces a meaningful trade-off between bank equity and bank deposits under

limited liability.

3.4 Capital producers

We assume that the capital production process is risky in a way that nests the

standard capital production process in the New Keynesian model. In particular,

capital is produced by a continuum of capital producers indexed by m. At period

t they invest imt units of final good into a capital project of size omt . This project

is successful with probability qmt , in which case the project yields (ω1 − ω2

2
qmt )o

m
t

units of capital at t + 1. Else, the project fails and only the liquidation value of

θomt units of capital can be recovered (where θ � a− b
2
qmt ). Each capital producer

has access to a continuum of technologies with different risk-return characteristics

indexed by qm ∈ [0, 1]. Given a chosen technology qmt , the output of producer m

therefore is:

Km
t =

⎧⎨
⎩
(
ω1 − ω2

2
qmt
)
omt with probablity qmt

θomt else

14This shock, driving a wedge between deposit and safe rates on one hand and equity rates on
the other is similar to the risk premium shock often found in medium scale DSGE models (e.g.
Smets and Wouters [2007]).
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This implies that the safer the technology (higher qmt ), the lower is output in case

of success.

The bank orders the capital projects and requires the capital producer to use a

certain technology, but this choice cannot be observed by any third party. Given

the technology choice qt and assuming that the projects of individual producers are

uncorrelated, we can exploit the law of large numbers to derive aggregate capital:

Kt = ot

(
qt

(
ω1 − ω2

2
qt

)
+ (1− qt)θ

)
. (8)

Furthermore we assume that capital, which depreciates at rate δ, becomes a

project (of undefined qt) at the end of every period. That is, existing capital may

be destroyed due to unsuccessful reuse, and it can be reused under a different

technology than it was originally produced.15

The total supply of capital projects by the capital producers is the sum of the

existing capital projects ooldt = (1− δ)Kt−1, which they purchase from the owners

(the banks) at price Qt, and the newly created projects onewt , which are created

by investing it units of the final good. We allow for investment adjustment costs

and investment efficiency shocks, i.e. we assume that it units of investment yield

εIt (1− S(it/it−1)) units of project, where S = κ
(

it
it−1

− 1
)2

. Hence ot = onewt +ooldt

and onewt = εIt

(
1− S

(
it
it−1

))
it. Capital producers maximize their expected dis-

counted profits taking as given the price Qt and the households stochastic discount

factor16:

maxit,ooldt
Et

∞∑
0

βtΛt

[
Qtε

I
t

(
1− S

(
it
it−1

))
it +Qto

old
t − it −Qto

old
t

]
.

While the old capital projects are always reused, the marginal capital project is

15This assumption ensures that we do not have to keep track of the distribution of different
project types. Think of a project as a machine that delivers capital services and that can be run
at different speeds (levels of risk). In case it is run at higher speed, the probability of an accident
that destroys the machine is higher. After each period the existing machines are overhauled by
the capital producers and at this point the speed setting can be changed.

16Their out of steady state profits are rebated lump sum to the household.
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always a new one.17 Hence, the price of projects Qt is determined by new projects

according to the well known Tobin’s q equation:

Qtε
I
t

[
1− S

(
it
it−1

)
− S ′

(
it
it−1

)
it
it−1

]
−1 = βEt

[
Λt+1

Λt
εIt+1Qt+1S

′
(
it+1

it

)(
it+1

it

)2
]
.

(9)

Note that our model of risky capital production boils down to the standard

riskless setting of the New Keynesian model if we set qt = 1 and ω1 − ω2

2
= 1.18

3.5 The Bank

The bank is the central agent of our model and is modeled similarly as in Dell’Ariccia

et al. [2014]. Banks raise resources through deposits and equity and invest them

into a risky project. Since depositors cannot observe the banks’ risk choice and

banks are protected from the downside risk of their investment by limited liability,

an agency problem arises between them when the banks choose the risk level. The

less equity a bank has, the higher the incentives for risk taking. Yet, since deposit

insurance and the equity premium drive a wedge between the costs of deposits and

equity, the banks’ optimal capital structure comprises both equity and deposits,

balancing the agency problem associated with deposits with the higher costs of

equity. We will show that the equilibrium risk chosen by the banks is excessive,

and that the interest rate influences the degree of its excessiveness.

We assume that there is a continuum of banks who behave competitively so

that there is a representative bank (we therefore omit the bank’s index in what

follows). The bank is owned by the equity providers, and hence maximizes the

expected discounted value of profits19 using the household’s stochastic discount

factor. Every period the bank raises deposits dt and equity et from the respective

funds (optimally choosing its liability structure). These resources are then in-

vested into ot capital projects, purchased at price Qt. When investing into capital

projects, the bank chooses the risk characteristic qt of the technology applied by

17We abstract from a non-negativity constraint on new projects.
18Or, more generally when taking into account the aggregation through banks and funds, if

we set qt
(
ω1 − ω2

2 qt
)
+ (1− qt)θ=1 and qt = q.

19Profits in excess of the opportunity costs of equity.
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the capital producer. This risk choice is not observable for depositors. Each bank

can only invest into one project and hence faces investment risk20: with probabil-

ity qt the bank receives a high pay-off from the capital project; with probability

1− qt the investment fails and yields only the liquidation value. Assuming a suffi-

ciently low liquidation value θ, a failed project implies the default of the bank. In

this case, given limited liability, equity providers get nothing and depositors get

the deposit insurance benefit. In case of success the bank can repay its investors:

depositors receive their promised return rd,t and equity providers get the state

contingent return re,t+1.

It is useful to think of the bank’s problem as a recursive two-stage problem. At

the second stage, the bank chooses the optimal risk level qt given a certain capital

structure and a certain cost of deposits. At the first stage, the bank chooses the

optimal capital structure, anticipating the implied solution for the second-stage

problem. Note that not only the bank but also the bank’s financiers anticipate

the second-stage risk choice and price deposits and equity accordingly, which is

understood by the bank. Below we derive the solution for this recursive problem.

Before we do so, we establish the bank’s objective function. Per dollar of

nominal funds raised (through deposits and equity) in period t the bank purchases

Qt/Pt units of the capital project from the capital producer, choosing a certain

riskiness qt. If the project is successful it turns into (ω1 − ω2

2
qt)/(QtPt) capital

goods. In the next period t + 1, the bank rents the capital to the firm, who

pays the real rental rate rk,t+1 per unit of capital. Furthermore the bank receives

the depreciated capital, which becomes a capital project again, with real value of

(1−δ)Qt+1 per unit of capital. The bank’s total nominal income, per dollar raised,

conditional on success is therefore:

20The assumption that the bank can only invest into one project and can not diversify the
project risk might sound stark. Yet three clarifications are in place: First, our setup is isomorphic
to a model where the bank invests into an optimally diversified portfolio of investments but is
too small to perfectly diversify its portfolio. The binary payoff is then to be interpreted as the
portfolio’s expected payoff conditional on default or repayment respectively. Second, if the bank
was able to perfectly diversify risk, then limited liability would become meaningless and we would
have a model without financial frictions. Third, we don’t allow the bank to buy the safe asset.
Yet this assumption is innocuous: since the banks demand a higher return on investment than
the households due to the equity premium, banks wouldn’t purchase the safe asset even if they
could.
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(
ω1 − ω2

2
qt

) rk,t+1 + (1− δ)Qt+1

Qt

Pt+1

Pt
.

At the same time, the bank has to repay the deposit and equity providers.

Using the equity ratio kt, the total nominal repayment per dollar of funds due in

t+ 1 in case of success is re,t+1kt + rd,t (1− kt).

The bank maximizes the expected discounted value of excess profits, i.e. rev-

enues minus funding costs, using the stochastic discount factor of the equity hold-

ers, i.e. the household. Given the success probability of qt and the fact that the

equity providers receive nothing in case of default, the bank’s objective function

is:

max
qt,kt

βE

[
Λt+1

πt+1

qt

((
ω1 − ω2

2
qt

) rk,t+1 + (1− δ)Qt+1

Qt

πt+1 − rd,t(1− kt)− re,t+1kt

)]
.

(10)

Note that we did not multiply the per-unit profits by the quantity of investment.

In doing so we anticipate the equilibrium condition that the bank, whose objective

function is linear in the quantity of investment, needs to be indifferent about the

quantity of investment. The quantity will be pinned down together with the return

on capital by the bank’s balance sheet equation et+dt = Qtot, the market clearing

and zero profit conditions.

The bank’s problem can be solved analytically, yet the expressions get fairly

complex. Therefore we derive here the solution for ψ = θ = 0, that is without

deposit insurance and with a liquidation value of 0. This simplifies the expressions

but the intuition remains the same. Allowing ψ and θ to be nonzero on the other

hand is necessary to bring the model closer to the data. The solution for the

general case is discussed in section 3.5.5.

To make notation more tractable we rewrite the bank’s objective function (10)

in real variables expressed in marginal utility units21:

21That is we use the following definitions: r̃l,t = Et

[
Λt+1

(
rk,t+1+(1−δ)Qt+1

Qt

)]
, r̃d,t =

Et

[
Λt+1

rd,t
πt+1

]
, r̃e,t = Et

[
Λt+1

re,t+1

πt+1

]
, R̃t = Et

[
Λt+1

Rt

πt+1

]
, ξ̃t = Et [Λt+1ξt] .

15



ω1qtr̃l,t − ω2

2
q2t r̃l,t − qtr̃d,t(1− kt)− qtr̃e,tkt , (11)

For later use we rewrite the household’s no-arbitrage conditions (3) and (5) com-

bined with the definition of the funds’ returns (6) and (7) as r̃d,t = R̃t

qt
and

r̃e,t =
R̃t+ξ̃t
qt

. Let us now solve the bank’s problem recursively.

3.5.1 Second-stage problem:

At the second stage, the bank has already raised et + dt funds and now needs

to choose the risk characteristic of the investment qt, such that equity holders’

utility is maximized. As already mentioned, we assume that the bank cannot

write contracts conditional on qt with the depositors at stage one, since qt is not

observable to them. Therefore at the second stage the bank takes the deposit

rate as given. Furthermore, since the capital structure is already determined,

maximizing the excess profit coincides with maximizing the profit of equity holders.

The bank’s objective function is therefore:

max
qt

ω1qtr̃l,t − ω2

2
q2t r̃l,t − qtr̃d,t(1− kt) . (12)

Deriving problem (12) with respect to qt yields the following first-order condition
22:

qt =
ω1r̃l,t − r̃d,t (1− kt)

w2r̃l,t
. (13)

3.5.2 First-stage problem:

At the point of writing the deposit contract at stage one, depositors anticipate the

bank’s choices at stage two and therefore the depositors’ no arbitrage condition

r̃d,t =
R̃t

qt
must hold in equilibrium.23 Using this equation together with the previ-

ous first-oder condition (13) we can derive the optimal qt as a function of kt and

22We focus on interior solutions and choose the larger of the two roots, which is the closest to
the optimum, as we will see below.

23Note that the agency problem arises from the fact that the bank does not consider this as a
constraint of its maximization problem.
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r̃l,t:

q̂t ≡ qt(kt) =
1

2ω2r̃l,t

(
ω1r̃l,t +

√
(ω1r̃l,t)

2 − 4ω2r̃l,tR̃t(1− kt)

)
. (14)

We can now solve the first-stage problem of the banker. The bank chooses the

capital structure kt to maximize her excess profits, anticipating the qt(kt) that will

be chosen at the second stage:

max
kt

q̂tω1r̃l,t − ω2

2
r̃l,tq̂

2
t − qtr̃d,t(1− kt)− qtr̃e,tkt , (15)

subject to the no-arbitrage condition for depositors (r̃d,t = R̃t

qt
) and for equity

providers (r̃e,t =
R̃t+ξ̃t
qt

). Plugging these in and deriving, we obtain the first-order

condition for kt:

ω1r̃l,t
∂q̂t
∂kt

− ξ̃t − ω2

2
r̃l,t
∂q̂2t
∂kt

= 0 . (16)

which (assuming an interior solution) can be solved for kt as:

k̂t ≡ kt (r̃l,t) = 1− ξ̃t(R̃t + ξ̃t)(ω1r̃l,t)
2

ω2R̃tr̃l,t

(
R̃t + 2ξ̃t

2
) . (17)

3.5.3 Closing the bank model: the zero-profit condition

Since there is a continuum of identical banks, each bank behaves competitively and

takes the return on investment r̃l,t as given. Perfect competition and free entry

imply that banks will enter until there are no expected excess profits to be made.

In the presence of uncertainty it is natural to focus on the case that banks make

no excess profit in any future state of the world:

(
ω1 − ω2

2
qt−1

)(rk,t + (1− δ)Qt

Qt−1

)
− rd,t−1

πt
(1− k̂t−1)− re,t

πt
k̂t−1 = 0 . (18)

Using the equity and deposit supply schedules and taking expectation over this

equation we get:

q̂tω1r̃l,t − ω2

2
r̃l,tq̂

2
t − k̂tξ̃t − R̃t . (19)
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Combining (19) with the optimality conditions (14) and (17), we can derive

analytical expressions for the equity ratio kt, riskiness choice qt (the last term in

each row is an approximation under certainty equivalence and Rr
t ≡ Rt/E [πt+1]):

kt =
R̃t

R̃t + 2ξ̃t
≈

Rr
t

Rr
t + 2ξt

(20)

qt =
ω1(ξ̃t + R̃t)

ω2(2ξ̃t + R̃t)
≈

ω1(ξt +Rr
t )

ω2(2ξt +Rr
t )

(21)

3.5.4 Properties of the banking sector equilibrium

These results for the banking sector risk choice have five interesting implications

that we first summarize in a proposition, before intuitively discussing them in turn.

Proposition 1: Be [r̃l,t, qt, kt] an equilibrium in the banking sector with interior

bank choices under perfect competition. Denote the expected return on investment

in capital units by f(qt) ≡
(
ω1 − ω2

2
qt
)
qt. Then:

(1) Risk decreases in the real interest rate: ∂qt
∂R̃t

> 0 .

(2) The equity ratio increases in the real interest rate: ∂kt
∂R̃t

> 0 .

(3) Risk taking is excessive: qt < argmax f(qt) .

(4) The expected return of an investment increases in the real interest rate:
∂f(qt)

∂R̃t
> 0 .

(5) The expected return of an investment is a concave function of the real

interest rate ∂2f(qt)

∂R̃2
t
< 0 .

The proof can be found in appendix D.

The first two results can be easily seen from equations (20) and (21). As the

real risk-free rate Rr
t decreases, the equity ratio kt falls as banks substitute equity

with deposits and the riskiness of the bank increases (qt falls).
24 The intuition

24At least under certainty equivalence or up to a first order approximation, when the Λt+1

terms contained in the tilde variables cancel out.
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behind this result is as follows: On one hand, a lower risk-free rate decreases

the rate of return on capital projects, reducing the benefits of safer investments,

conditional on repayment. This induces the bank to adopt a riskier investment

technology. On the other hand, the lower risk-free rate reduces the cost of funding,

leaving more resources available to the bank’s owners in case of repayment: this

force contrasts the first one, making safer investments more attractive. There is a

third force: a lower risk-free interest rate means that the equity premium becomes

relatively more important. As a result the bank shifts from equity to deposits,

internalizing less the consequences of the risk decision and choosing a higher level

of risk. The first and third effects dominate, and overall a decline in the real

interest rate induces banks to choose more risk. Notice that these two results

depend on the assumption that the (discounted) equity premium is independent

of the (discounted) real interest rate. If we allowed the equity premium to be a

function ξ̃t

(
R̃t

)
of the real interest rate, the result would continue to hold under

the condition that ξ̃t

(
R̃t

)
> ξ̃t

′ (
R̃t

)
R̃t, which rules out proportionality. This

mechanism provides a rationalization of the empirical finding in section 2: that

a decline in the nominal interest rate25 causes an increase in bank risk taking

behavior.

The third result implies that the bank’s investment could have a higher ex-

pected return (in units of capital) if the bank chose a higher level of safety.

In other words, risk taking is excessive, i.e. suboptimally high. This is due to

the agency problem, which arises from limited liability and the lack of commit-

ment/contractability of the banker regarding his risk choice. The importance of

this friction can be assessed by comparing the solution of the imperfect markets

bank model to the solution of the model without any frictions. The frictionless

risk choice can be derived under any of the following alternative scenarios: Either

both equity premium and deposit insurance are zero (which eliminates the cost

disadvantage of equity and leads to 100% equity finance), or contracts are complete

and deposit insurance is zero (which eliminates the agency problem and leads to

100% deposit finance), or liability is not limited and deposit insurance is zero (as

before), or household invests directly into a diversified portfolio of capital projects

25In a monetary model, a cut in the real interest rate, the standard monetary policy tool, is
followed by a decline in the real interest rate due to price stickiness.
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(which eliminates the financial sector all together). Since in a frictionless model

qt is chosen to maximize the consumption value of the expected return:

maxqt r̃l,t(ω1 − ω2

2
qt)qt ,

the optimal level of qt trivially is qot = ω1

ω2
. Comparing the frictionless risk choice

qot and the choice given the friction qft

qft = qot
ξ̃t + R̃t

2ξ̃t + R̃t

≈ qot
ξt +Rr

t

2ξt +Rr
t

,

we observe that the agency friction drives a wedge between the frictionless and

the actually chosen risk level. This wedge has two important features. First, it

is smaller than one,26 implying that under the agency problem the probability of

repayment is too low, and hence banks choose excessive risk. Second, note that

the wedge depends on Rr
t and that the derivative of the first order approximation

of the wedge w.r.t. Rr
t is positive. This implies that the wedge increases, i.e. risk

taking gets more excessive, as the real interest rate falls. As we move further away

from the optimal level of risk the expected return on investments necessarily falls,

which is the fourth result above.

Note that this feature of the model is consistent with the empirical finding of

Ioannidou et al. [2014] and Buch et al. [2014] that the additional loan risk taking

spurred by low interest rates is not fully compensated by a sufficient increase in

the return on loans: As qt decreases, (ω1 − ω2

2
qt) increases but not sufficient to

avoid a drop in (ω1 − ω2

2
qt)qt.

But not only the bank risk choice is suboptimal. Also the capital structure is

chosen suboptimally, given the equity premium. If banks could commit to choose

the optimal level of risk, they would not need any skin in the game. Hence they

would avoid costly equity and would finance themselves fully by deposits: kot = 0.

Instead they choose kft = R̃t

R̃t+2ξ̃t
. The equity ratio resembles the two features of

the risk taking. First, there is excessive use of equity funding. Second, the equity

ratio is increasing in Rr
t up to a first order approximation.

26This is true under certainty equivalence, i.e. up to first order approximation.
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Both the risk and the capital structure choice have welfare implications. A

marginal increase in qt means a more efficient risk choice, i.e. a higher expected

return, and hence should be welfare improving, ceteris paribus. At the same time

a marginal increase in kt implies, due to the equity premium, a higher markup

in the intermediation process, which distorts the consumption savings choice and

hence lowers welfare, ceteris paribus. Since both qt and kt are increasing functions

of the real interest rate, this begs the question of whether an increase in the real

rate alleviates or intensifies the misallocation due to the banking friction.27 The

answer to this question depends on the full set of general equilibrium conditions.

Given the estimated model, we will later numerically verify that the positive first

effect dominates, i.e. an increase in Rr
t has welfare improving consequences on the

banking market.28 The existence of these opposing welfare effects motivates our

optimal policy experiments in section 5.

Finally, the last statement of the proposition implies that a mean preserving

increase in the variance of the real interest rate decreases the mean of the expected

return of the banks investment. This has implications for optimal monetary policy.

As we discuss in detail later, the monetary authority cannot affect the nonstochas-

tic steady state of the real rate, but it can influence its volatility. The policy maker

therefore has an incentive to keep the real interest rate stable, at least as long as

the opposing effect of the equity premium is negligible.

3.5.5 Full model with deposit insurance and liquidation value

The simplified version of the bank’s problem presented so far is useful to explain

the basic mechanism. Yet deposit insurance and a non zero liquidation value are

important to improve the quantitative fit of our model to the data.

The assumptions made about deposit insurance and the liquidation value imply

that depositors get the maximum of the amount covered by deposit insurance and

27These two opposing forces are well known from the literature on bank capital regulation,
where a raise in capital requirements hampers efficient intermediation but leads to a more stable
banking sector.

28The dominance of the risk-taking effect is intuitive for two reasons: First, while risk taking
entails a real cost, the equity premium just entails a wedge but no direct real costs. Second, as
the real interest rate increases the equity premium becomes less important, so a more efficient
allocation is intuitive.
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the value of the capital recovered from a failed project. That means that their

return in case of default is:

min

(
rd,t
πt+1

,max

(
rk,t+1 + (1− δ)Qt+1

Qt(1− kt)

θ

1− kt
,

ψ

1− kt

))
.

To make deposit insurance meaningful we assume that the liquidation value θ

is small enough such that
rk,t+1+(1−δ)Qt+1

Qt(1−kt)
θ

1−kt <
ψ

1−kt , which eliminates the inner

maximum.29 As the following lemma, proven in appendix D, states, the outer

maximum is unambiguous in equilibrium.30

Lemma: There can be no equilibrium such that the insurance cap is not binding,

i.e.
rd,t
πt+1

> ψ
1−kt .

Deposits therefore pay ψ
1−kt in case of default. Combining the nominal return on

the the deposit funds (6) with the households no-arbitrage condition, and defining

ψ̃t = E [Λt+1]ψ, we can write the deposit supply schedule as:

qtr̃d,t + (1− qt)
ψ̃t

1− kt
= R̃t . (22)

We assume that the deposit insurance scheme, which covers the gap between

the insurance cap and the liquidation value for the depositors of failing banks, is

financed through a variable tax on capital that is set ex post each period such that

the insurance scheme breaks even. The return on loans r̃l,t can then be rewritten

as:

r̃l,t ≡ Et

[
rk,t+1 + (1− δ)Qt+1 − τt+1

Qt

]
where τt =

Qt−1
1−qt−1

qt−1

(
ψ − θ

rk,t+(1−δ)Qt

Qt−1

)
ω1 − ω2

2
qt−1

29In principle the fact that the return on capital is determined only one period later implies that
we could have cases where this inequality is satisfied for some states of the wold and violated
for others. Since we will later approximate our model locally around the steady state, which
allows us to consider only small shocks, we abstract from this complication. Note that this
simplification is quantitatively unimportant if shocks are small and the difference between the
LHS and the RHS is big in steady state.

30For this result we again abstract from the effect of uncertainty. See the previous footnote.
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This way the tax also perfectly offsets the distortion on the quantity of investment

caused by the deposit insurance. Deposit insurance therefore influences only the

funding decision of the bank and, through that, the risk choice. Hence, if qt was

chosen optimally (or was simply a parameter) the deposit insurance would not

have any effect.

The same procedure as outlined above can be applied to obtain closed-form

solutions31 for the risk choice and the equity ratio. The solutions can be found

in appendix C. As state below in proposition 2, the equilibrium characterizations

in subsection 3.5.4 remain valid. In particular note that the deviation of the

chosen risk (equity ratio) from the optimal level decreases (increases) in the real

interest rate. Given our estimation, the risk effect dominates in terms of welfare

implications. The intuition for the risk-taking channel is similar as before.

Deposit insurance makes deposits cheaper relative to equity: As a result, the

bank will demand more deposits and choose a riskier investment portfolio. Deposit

insurance furthermore strengthens the risk-taking channel, which is now affected

not only by the importance of the equity premium relative to the real interest

rate, but also by the importance the the deposit insurance cap relative to the real

interest rate. On the other hand, the efficient risk level is not affected by the

deposit insurance.

The liquidation value on the other hand is irrelevant for the banks’ and in-

vestors’ choice since it is assumed to be smaller than deposit insurance. Yet it

eases the excessiveness of risk taking since it increases the optimal level of risk:

qot =
ω1−θ
ω2

.

Finally, we would like to point out that none of the results in proposition 1 is 
due to the functional form that we have assumed for the risk return trade-off.

  The statement holds even for a generic function f(qt)32 under relatively weak 
assumptions, some of which are sufficient but non necessary. For a proof and a 
discussion of these assumptions see appendix D.

31In this case, one needs to apply the adjusted deposit supply schedule (22) and to make
sensible assumptions about the relative size of parameters and about the root when solving the
zero-profit equation.

32Given the recovery value f(qt) now describes the expected return conditional on success.
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Proposition 2: Consider proposition 1, but replace f (qt) by the expected

return taking into account the liquidation value of failed projects: f (qt) + (1 −
qt)θ.

(1) Given this adjustment, all statements of proposition 1 hold for the

full bank model with deposit insurance and a small enough liquidation

value as well.

(2) Given this adjustment, statements (1)-(4) of proposition 1 hold for a

generic conditional expected return function f(qt) with deposit insur-

ance and a small enough liquidation value under the additional assump-

tions that f(qt) satisfies f(qt) ≥ 0, f ′′(qt) < 0, f ′′′(qt) ≤ 0, f ′′′′(qt) ≤ 0.

Statement (5) holds if furthermore either the default probability is low

relative to the parameters qt
(1−qt) ξ̃t ≥ R̃t − ψ̃t or there is no deposit

insurance ψ̃t = 0.

3.6 Monetary and fiscal policy

The central bank follows a nominal interest rate rule, targeting inflation and output

deviations from the steady state:

Rt − R̄ = (1− ρ) (φππ̂t + φyŷt) + ρ
(
Rt−1 − R̄

)
+ εRt , (23)

where ρ is a smoothing parameter, the hat symbol denotes percentage deviations

from the steady state values, R̄ = πss
β

is the steady state nominal interest rate,

and εRt is a monetary policy shock. In addition, the fiscal authority finances a

stochastic expenditure stream gyȲ ε
G
t :

ln
(
εGt
)
= ρgln

(
εGt−1

)
+ uGt + ρGAu

A
t ,

where we are allowing for a correlation between exogenous spending and innova-

tions to total factor productivity.33 For simplicity we rule out government debt

33This is a shortcut to take exports into account. Productivity innovations might rise exports
in the data, and a way to capture it in a closed-economy model such as ours is to allow for
ρGA 	= 0 as in Smets and Wouters [2007].

24



(st = 0), implying that all expenditures are financed by lump sum taxes; i.e.

gyȲ ε
G
t = Tt .

4 Steady-state and dynamic implications the risk

taking channel in the estimated model

We have embedded our risk-taking channel in a medium-scale model which closely

resembles the non-linear version34 of Smets and Wouters [2007] and we next esti-

mate the model parameters using Bayesian techniques. This serves two purposes.

First, in order to perform a sound monetary policy evaluation we need a quanti-

tative model that is able to replicate key empirical moments of the data. Second,

it helps to understand whether our channel is quantitatively important compared

to other monetary and real frictions that affect the monetary policy trade-off.

In this section we first discuss the estimation, and then examine the steady-

state and dynamic macroeconomic implications of the risk-taking channel, before

we turn to optimal monetary policy in section 5.

4.1 Model estimation

We estimate a linearized version of the model with Bayesian techniques using

eight US macroeconomic time series covering the period of the great moderation

from 1984q1 to 2007q3. These include the seven series used by Smets and Wouters

[2007], i.e. the federal funds rate, the log of hours worked, inflation and the growth

rates in the real hourly wage and in per-capita real GDP, real consumption, and

real investment. To identify the banking sector parameters we add a series of the

banking sector equity ratio, which we construct from aggregate bank balance-sheet

data provided by the FDIC. For a full description of the data we refer to appendix A

and to the supplementary material of Smets and Wouters [2007]. The observation

equations, linking the observed time series to the variables in the model, as well

34Our model deviates from Smets and Wouters [2007] only to the extent that we abstract (for
simplicity) from capital utilization, shown by the authors to be of secondary importance once
wage stickiness is taken into account, and growth. Furthermore, since we use one additional time
series we have added a time preference shock and reinterpreted it as an equity premium shock
that affects only bank equity.
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as the prior specifications can be found in appendix C. While the priors of the

non-bank parameters follow Smets and Wouters [2007], the priors for the banking

sector parameters are motivated by historical averages and external estimates for

the US. Note that, instead of forming priors directly about ω2 (risk return trade-

off) and ψ (deposit insurance), we rewrite these parameters as functions of the

steady state equity ratio k̄ and default rate q̄. The prior mean of the steady

state equity premium ξ is centered around an annualized value of 6%, in line with

the empirical estimates of Mehra and Prescott [1985], while the prior distribution

for k̄ is diffuse and centered around the historic mean of 12%. The prior for

the liquidation value is set such that the prior value is contained between 0.3

and 0.7 with 95% probability, in line with the evidence provided by Altman et al.

[2003]. The default rate q̄ is not well identified and is therefore fixed to 0.99, which

implies an annual default rate of 4%, roughly in line with the historical average

of delinquency rates on US business loans. Sensitivity tests have moreover shown

that this parameter is only of small quantitative relevance.35 Lastly, we normalize

the units of capital versus final goods by setting ω1 (return of most risky asset)

such that one unit of final good is expected to produce one unit of capital good in

steady state.

Table 1 summarizes the posterior parameter values, which are broadly in line

with existing empirical estimates for the US. The steady state inflation rate is

estimated to be about 2.5% on an annual basis, while the posterior mean of the

discount factor implies an annual steady-state real interest rate of around 1.7%.

Wages are slower moving than prices: wages are reoptimized every year and a half,

while prices are reoptimized approximately every three quarters. The coefficient of

relative risk aversion σc is estimated to be 1.7, above its prior mean. The posterior

estimates of the Taylor rule parameters show a strong response to inflation (1.87),

a small response to output (0.02), and a high degree of interest rate smoothing

(0.84).

The key banking sector parameters that determine the importance of the risk-

taking channel are well identified by the data. The steady state equity ratio has a

35In particular, the implications for optimal monetary policy behavior are very robust to the
value of the steady state default rate. What matters is the importance of the channel over the
business cycle, determined by the liquidation value and the extent of deposit insurance.

26



tight posterior around 12%, the posterior mean of the equity premium is around

an annualized value of 9%, and the liquidation value is about 74%.36 For the

following quantitative analysis we set the parameters to their posterior means.

4.2 Steady-state and dynamic implications

In Table 2 we compare the non-stochastic steady state of the model with banking

frictions (henceforth bank model) with that of the model without banking frictions.

In the latter model the capital structure is undetermined and risk is equal to

the socially optimal level. For the given set of estimated values, the optimum

is a corner solution: qo = 1. In the bank model, the capital ratio is below one,

implying that banks do not fully internalize the implications of their risk choice,

and hence choose an excessive level of risk. This implies that the capital production

technology is inefficient. Consequently, the bank economy is under-capitalized in

the steady state, and output, consumption and welfare are inefficiently low.

To understand the dynamic effects of the risk-taking channel, we assess how

the propagation mechanism of the model differs if a risk-taking channel is present.

For illustration, we discuss an expansionary monetary policy shock. As we have

just seen, the economy without financial frictions and the bank economy have dif-

ferent steady states. This makes dynamic comparisons of the two models difficult,

since both the different behaviors of qt and kt as well as the different steady states

imply different dynamics. In order not to mix the two effects, we focus on com-

paring models with the same steady state. For this purpose we alter the model

without financial frictions by treating the risk choice qt and the equity ratio kt

as parameters, which we set to the steady state values of the bank model. This

model, henceforth benchmark model, not only has the same steady state as the

bank model but also corresponds to a standard New Keynesian model with a small

markup in capital markets.

In figure 2 we compare the dynamic responses in the bank model (solid red lines)

36The implied mean value for deposit insurance cap ψ of about 88% implies that 99% of deposits
are insured in steady state. Demirgüç-Kunt et al. [2005] report that the explicit deposit insurance
scheme in the US is estimated to cover between 60% and 65% of deposits. The divergence can
be interpreted as implicit deposit guarantees resulting from the expectation of bailouts. The
implied mean values of ω1 (1.13) and ω2 (0.2561) yield a corner solution for qopt at 1.
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Table 1: Model estimation: prior and posterior values

parameter prior shape prior mean prior std post. mean 90% HPD interval

structural parameters

μy trend growth norm 0.4 0.1 0.4264 0.3908 0.4618

μl labor normalization norm 0 2 -0.0938 -1.6569 1.4777

α output share norm 0.3 0.05 0.2001 0.1602 0.2395

100 1−β
β

real rate in % norm 0.25 0.1 0.427 0.2992 0.5485

ε̄P price markup norm 1.25 0.12 1.5068 1.3621 1.6523

π̄ inflation in % gamma 0.62 0.1 0.6263 0.4893 0.7616

φπ TR weight on inflation norm 1.5 0.25 1.8723 1.5489 2.2003

φy TR weight on output norm 0.12 0.05 0.0198 -0.0348 0.0753

ρ TR persistence beta 0.75 0.1 0.8411 0.8057 0.8768

κ investment adj. costs norm 4 1.5 7.4584 5.5992 9.3376

ι habits norm 0.7 0.1 0.7774 0.7042 0.8532

σc risk aversion gamma 1.5 0.375 1.7362 1.2809 2.1939

σl disutility from labor gamma 2 0.75 2.0183 0.9726 3.0566

λp price calvo parameter beta 0.5 0.1 0.6206 0.5429 0.701

λw wage calvo parameter beta 0.5 0.1 0.8476 0.8099 0.8864

γp price indexation beta 0.5 0.15 0.1533 0.0537 0.2479

γw wage indexation beta 0.5 0.15 0.448 0.2066 0.6829

ξ equity premium norm 0.015 0.01 0.0213 0.0054 0.0348

θ liquidation value norm 0.5 0.1 0.7416 0.6425 0.8385

k̄ equity ratio norm 0.12 0.05 0.1231 0.1208 0.1254

structural shock processes

σA stdev TFP unif 0 10 0.3665 0.3172 0.414

σB stdev preference unif 0 10 3.4696 2.2271 4.6946

σG stdev govt. spending unif 0 10 2.2678 1.984 2.5382

σI stdev investment unif 0 10 4.7269 3.0495 6.3757

σP stdev price markup unif 0 1 0.1332 0.109 0.1574

σR stdev monetary unif 0 1 0.1164 0.1009 0.1315

σW stdev wage markup unif 0 10 0.4742 0.4088 0.5389

σξ stdev equity premium unif 0 10 0.5805 0.199 1.0255

ρA persistence TFP beta 0.5 0.2 0.4623 0.3496 0.5765

ρB persistence preference beta 0.5 0.2 0.9004 0.8549 0.9486

ρG persistence gov.

spending

beta 0.5 0.2 0.9009 0.8471 0.9556

ρI persistence investment beta 0.5 0.2 0.1924 0.0357 0.3396

ρP persistence price markup beta 0.5 0.2 0.9772 0.9625 0.9925

ρR persistence monetary beta 0.5 0.2 0.9585 0.918 0.9967

ρW persistence wage markup beta 0.5 0.2 0.7721 0.6706 0.8734

ρξ persistence equity

premium

beta 0.5 0.2 0.8156 0.7623 0.8699

ρG,A correlation gov.

spending & TFP

beta 0.5 0.2 0.6513 0.3835 0.9394

mp MA component of price

markup

beta 0.5 0.2 0.7765 0.6826 0.875

mw MA component of wage

markup

beta 0.5 0.2 0.9741 0.9516 0.9972
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Table 2: Steady state comparison: The model without banking sector frictions features an

undetermined equity ratio and risk equal to the socially optimal level; i.e. qo = 1. Parameters

are fixed to the posterior mean estimates of the bank model reported in table 1.

variable model with banking frictions model without banking frictions

q loan safety 0.99 1

k equity ratio 0.1231 0

Y output 0.9484 0.9803

C consumption 0.6289 0.6376

I investment 0.1488 0.1662

K capital 5.9517 7.0227

L labor 1 1

π inflation 0.0063 0.0063

R interest rate 0.0106 0.0106

Figure 2: Monetary policy shock in the bank and benchmark models: dynamic

responses in the bank model (solid red lines) and in the benchmark model (dashed blue lines) to

an expansionary monetary policy shock, at the mean of the posterior distribution. Shaded areas

denote the highest posterior density interval at 90% for the bank model impulse responses and

the black line the steady state level. Inflation and interest rates are quarter on quarter rates.
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and in benchmark model (dashed blue lines) to an expansionary monetary policy

shock. A monetary policy expansion triggers a set of standard reactions, which

are evident in the benchmark model. An unexpected fall in the nominal risk-free

rate causes a drop in the real interest rate, since prices are sticky. Consequently,

consumption is shifted forward, firms that can adjust the price do so causing an

increase in inflation, while the remaining firms increase production. The risk-

taking channel adds two further elements as both the risk level and the capital

structure chosen by the bank respond to the real interest rate movement. On

impact, the drop in the real interest rate cause banks to substitute equity for

deposits, since the relative cost advantage of deposits increases. Consequently,

banks have less skin in the game and hence take more risk (lower loan safety). The

risk choice therefore moves further away from the optimal level and the expected

return on aggregate investment f(qt) = qt(ω1 − ω2/2qt) + (1 − qt)θ drops.37 To

maintain the same path of capital as in the benchmark case, households would

have to invest more and consume less. Yet this would not be optimal because of

consumption smoothing and because of the lower expected return on investment.

Therefore investment rises by less then what would be needed to compensate the

loss in investment efficiency, which makes the capital stock decline considerably.

Overall, agents are worse off (in terms of welfare) in the bank model than in the

benchmark economy.

We conclude this section with a few remarks on the fit of the estimated model.

Comparing our bank model to the benchmark Smets and Wouters [2007]-type

model we find that the parameter estimates are rather similar and the fit of the

two models is comparable.38 The posterior odds ratio of exp(2.86) favors the bank

model, though it is close but not above the value of exp(3), which, according to

Jeffreys [1961], can be interpreted as conclusive evidence.

To evaluate the fit particularly with respect to the risk-taking channel we look

37Note that the decline in the equity ratio diminishes the distortion due to the equity premium,
which reduces the cost of capital. Yet this effect is tiny relative to the increase in the cost of
capital due to lower investment efficiency.

38Recall that the Smets and Wouters [2007] model is obtained by turning off the banking sector
frictions. Hence bank leverage is no longer defined. For the comparison we therefore estimate the
two versions of the model (with and without the banking frictions) using only the seven macro
aggregates used by Smets and Wouters [2007], and calibrate the banking parameters in the bank
model to the posterior estimates in table 1.
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Figure 3: Risk taking in the model and in the data: The figure compares the value

of loan safety qt implied by the estimated model (in particular we plot the mean of the series

posterior distribution) with the risk index discussed in section (2)
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q model (left scale)
loan risk survey (right scale)

at three statistics that were not targeted by the estimation. First, note that the

responses shown in figures 2 are in accordance with the structural VAR results in

section 2, in particular with the finding that the response of risk is proportional

to that of the interest rate, even though our model displays a higher degree of

persistence. Second, we compare the model-implied series for the risk variable qt

with the risk-taking index used in the VAR analysis. Figure 3 shows that the model

implies a cyclical pattern of risk that is roughly in line with the survey measure (the

correlation is 60%). Third, the responses in figure 2 also show that, conditional

on the monetary policy shock, leverage (the inverse of the equity ratio kt) is pro-

cyclical with respect to the the size of the bank balance sheet et+ dt. Conditional

on the full set of shocks we find a correlation of 43% which is in line with the

evidence for US data provided by Adrian and Shin [2014] and distinguishes our

model from canonical financial accelerator models that build on Bernanke et al.

[1999].39

Lastly, we find that the introduction of the banking frictions reduces the role

of the investment efficiency shock. In particular, we find that the forecast variance

of the output level drops by a third, while the variance decomposition share of

the investment shock drops from around 49% (estimated benchmark model) to

39See, for instance, the discussion in Adrian et al. [2015].
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34% (estimated bank model) for horizons between 3 and 8 quarters. This relates

to the argument of Justiniano et al. [2011], who find that the large role of this

shock in explaining GDP volatility in the canonical medium-scaled Smets and

Wouters [2007] DSGE model could be a spurious result that captures unmodeled

financial frictions. In reducing the importance of this shock, the risk-taking channel

proves to be capable of capturing at least some of this missing mechanism. This

is intuitive because both the investment shock εIt and the expected return of the

banks’ investment qt
(
ω1 − ω2

2
qt
)
+(1−qt)θ enter the capital accumulation equation

multiplicatively:

Kt =
[
εIt (1− S(it/it−1)) it + (1− δ)Kt−1

] [
qt

(
ω1 − ω2

2
qt

)
+ (1− qt)θ

]
,

Yet they are not perfectly isomorphic, since the shock affects only net investment

(new capital), while the expected return on investment affects gross investment (all

capital). Moreover the path of εIt backed from the estimated benchmark model

is strongly correlated with the path of the return on investment in the estimated

bank model.40

Overall, we interpret these findings as suggestive that the additional dynamics

implied by the risk-taking channel are not rejected by the data and, on the contrary,

help to reduce the mismatch between the benchmark model and the data.

5 Monetary policy with a risk-taking channel

We have seen that the risk-taking channel has both static and dynamic effects.

While monetary policy does not affect the non-stochastic steady state, it can

influence the dynamics of the economy. In particular, it can influence the real

rate and hence affect bank risk taking. But are these additional mechanisms

implied by the risk-taking channel actually quantitatively significant for monetary

40For this exercise we use only the 7 nonfinancial series. Notice that the specification of our
model is not exactly the same as Smets and Wouters [2007] and Justiniano et al. [2011] since
we have abstracted from capital utilization. This means that the numbers are not directly
comparable.
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policy? To answer this question we determine the optimal simple implementable

monetary policy rule in the risk-taking channel model. We then compare this

policy to the optimal policy in the benchmark economy with the same steady

state but without the risk-taking channel. This comparison has an interesting

interpretation. Suppose that the actual economy features the risk-taking channel

(the bank model), but that the central bank is unaware of this channel and believes

that risk is an irrelevant constant from her point of view. The central bank would

then implement optimal policy based on a wrong model (the benchmark model).

Our comparison then answers the question of how important understanding the

risk-taking channel is, in terms of optimal policy and welfare.

Notice that in this paper we consider a central bank that has no policy tools

besides the interest rate. With a second instrument, such as capital regulation,

the central bank could do better or even eliminate the friction. Exploring optimal

macroprudential regulation is however beyond the scope of the present paper.41

In what follows, we first discuss the concept of the optimal simple imple-

mentable monetary policy rule, and then present our results.

5.1 The central bank problem

We follow Schmitt-Grohe and Uribe [2007] and characterize optimal monetary

policy as the policy rule that maximizes welfare among the class of simple, imple-

mentable interest-rate feedback rules42 given by:

Rt − R̄ = φππ̂t+s + φyŷt+s + φkk̂t+s + ρ
(
Rt−1 − R̄

)
. (24)

where the hat symbol denotes percentage deviations from the steady state, and

the index s allows for forward- or contemporaneous-looking rules (respectively

by setting s = 1 or s = 0). The policy rule specification (24) is chosen for its

generality, as it encompasses both standard Taylor-type rules (setting φk = 0),

41For a thorough analysis of macroprudential policy in an economy with bank risk-taking see
Collard et al. [2012].

42The implementability criterion requires uniqueness of the rational expectations equilibrium,
while simplicity requires the interest rate to be a function of readily observable variables. For
a complete discussion, see Schmitt-Grohe and Uribe [2007]. Notice that we drop their second
requirement for implementability which is that an implementable rule must avoid regular zero
lower bound violations.
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and the possibility that the central bank reacts to banking sector leverage, the

inverse of the equity ratio k (φk 	= 0). A fall in the equity ratio implies that banks

increase their debt financing, i.e. they increase leverage. As a consequence banks

internalize less the downside risk of their investments, and choose loans with a

higher default probability. Hence, a fall in the equity ratio signals an increase

in risk taking, to which the central bank may want to respond by increasing the

interest rate. We choose not to let the interest rate depend on risk taking directly,

because the latter is not a readily observable variable. We furthermore impose

that the inertia parameter ρ has to be non-negative. Since we are interested in the

effect of systematic monetary policy, we switch off the monetary policy shock for

this experiment.

The welfare criterion that defines the optimal parameter combination for rule

(24) is the household’s conditional lifetime utility:

V ≡ E0

∞∑
t=0

βtεBt u(ct, Lt) . (25)

This measure is commonly used in the literature and yields the expected lifetime

utility of the representative household, conditional on the economy being at the

deterministic steady state. To be able to make meaningful comparisons of welfare

levels we furthermore define the measure Ω as the fraction of the consumption

stream that a household would need to receive as a transfer under the suboptimal

rule to be equally well of as under the optimal rule. If o denotes the optimal and

s another suboptimal rule, this fraction Ω is implicitly defined by the equation:

V o = E0

∞∑
t=0

βtεBt u((1 + Ω)cst , L
s
t) .

5.2 Findings

Using the welfare criterion just described we numerically determine the coefficients

of the optimal simple implementable rules in the benchmark and in the bank model

using second order approximations around the non-stochastic steady state. The

first 5 rows of table 3 report the optimal coefficients for 5 different specifications of
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Table 3: Optimal simple rules: optimal parameters for policy rules of the class Rt − R̄ =

φππ̂t+s+φy ŷt+s+φyk̂t+s+ρ
(
Rt−1 − R̄

)
. The hat symbol denotes percentage deviations from the

steady state. The first collum descibes the timing of the policy rule. The second colum descibes

the restrictions we enforced. The first row for example corresponds to the standard taylor rule

with no smoothing. The last row is somewhat different. It reproduces line 2 for the benchmark

model and in the bank model shows the otimal rule given that the first three parameters are

fixed to their benchmark values. V is the welfare level associated with each policy in the bank

model. Ω is the welfare cost (in % of the consumption stream) associated to implementing in

the bank model the optimal policy rule of the benchmark model (given the same restrictions on

parameters). For the benchmark model the restriction φk = 0 is irrelevant, since the equity ratio

is a constant in the benchmark model. Entries in italics indicate restricted parameters.

benchmark model bank model

s rule ρ φπt+s φyt+s ρ φπt+s φyt+s φkt V Ω

0 φk, ρ = 0 0 7.100 0.115 0 3.080 0.126 0 -185.321 0.476

0 φk = 0 0.000 7.100 0.115 1.059 0.510 0.005 0 -184.750 0.898

0 ρ = 0 0 7.100 0.115 0 2.637 0.097 0.027 -185.314 0.481

1 φk, ρ = 0 0 17.222 0.148 0 4.294 0.172 0 -185.209 0.687

1 φk = 0 0.236 12.084 0.124 1.114 0.072 0.074 0 -184.656 0.813

0 choose φk 0.000 7.100 0.115 0 7.100 0.115 -0.177 -185.438 0.389

the monetary policy rule: contemporaneous and forward-looking, without inertia

and with optimal inertia, without and with reaction to current leverage. The

coefficients of the optimal rules generally vary greatly between the two models. A

set of results, which are robust across policy rule and estimation43 specifications,

are worth noticing.

First, the optimal coefficients on inflation deviations are smaller in the bank

model compared to the benchmark model. For any given change in inflation,

the nominal interest rate should move less if a risk-taking channel is present.

Furthermore, if the central bank can optimize over its smoothing parameter, then

full interest rate smoothing is optimal in the bank model. Given that the optimal

output coefficient is close to zero, the optimal rule is closer to a stable real interest

rate rule in the bank model than in the benchmark model. In doing so, the central

bank limits fluctuations in the real interest rate and hence in risk taking and

43We have experimented with different estimation samples and calibrated parameter values:
while the optimized parameters and transfers slightly change, the qualitative results discussed in
the text are very robust.
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Table 4: Differences in moments associated to the optimal simple rules in the bench-

mark and in the bank model: This table shows the % differences in the mean and standard

deviation associated to applying the different optimal rules in the bank model. The first entry,

for example, indicates that under the optimal bank policy rule average risk would be 0.15% lower

than if the rule optimal for the benchmark model had been applied.

mean standard deviation

s rule q Rr π y c q Rr π y c

0 φk, ρ = 0 0.151 0.002 -0.051 0.311 0.499 -43.880 -47.975 52.470 -0.843 -4.108

0 φk = 0 0.214 0.007 -0.038 0.439 0.701 -67.949 -77.760 64.393 -9.545 –9.566

0 ρ = 0 0.152 0.003 -0.015 0.323 0.506 -41.666 -47.248 53.194 -0.773 -3.800

1 φk, ρ = 0 0.194 0.011 -0.037 0.413 0.652 -50.536 -55.417 57.719 -2.781 -6.906

1 φk = 0 0.195 0.004 -0.054 0.458 0.724 -65.839 -76.3112 71.906 -10.373 -11.737

0 choose φk 0.130 0.001 -0.070 0.244 0.417 -41.691 -41.948 31.838 3.323 -0.345

slightly raises the average level of q towards the efficient value, as it can be seen in

table 4. At the same time inflation is significantly more volatile under the optimal

rule. If a risk-taking channel is present, the central bank should accept higher

inflation fluctuations in order to reduce the distortion stemming from risk taking.

This is because monetary policy cannot affect the deterministic steady state,

but it can control the real interest rate and therefore the fluctuations in excessive

risk. Upward movements of the real interest rate are welfare enhancing since they

lower the level of risk taking towards the efficient level, whereas downward changes

of the real interest rate lead to even more excessive risk taking. But this does

not mean that movements in the interest rate are irrelevant. Since the expected

return on investments qt
(
ω1 − ω2

2
qt
)
+ (1 − qt)θ is concave in the real interest

rate, as we have shown above, a mean preserving increase in the volatility of the

real rate reduces the average expected return of investments. Therefore the risk-

taking channel provides a motive for keeping the real interest rate constant. This

adds a third dimension to the central bank problem: besides trading off inflation

versus output stabilization the central bank would now also like to stabilize the

real interest rate. As a result, the optimal policy is tilted away from inflation

stabilization.

To understand how different the equilibria associated to the two optimal rules

are, and therefore how important it is for the central bank to take the risk-taking
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channel into account, we compute the cost Ω of applying the rule that is optimal

for the benchmark model in the bank model. These costs, expressed in % of the

lifetime consumption stream, are reported in the last column of table 3. Though

the costs vary a lot across policy specifications, they are always non significant.

For the best performing policy (fifth row of table 3), the costs of applying the

benchmark policy in the bank model is around 0.81% of the lifetime consumption

stream. Hence, internalizing the feedback effect that the nominal interest rate has

on bank risk taking pays off in terms of welfare.

Second, including an explicit reaction to banking sector leverage, in addition to

inflation and output, improves welfare only marginally (compare the last column

of the first and third row of table 3). Recall that leverage depends on both the

nominal interest rate and expected inflation. By setting the nominal rate optimally

as a function of current inflation, the central bank can already steer risk taking,

to the extent that current and expected future inflation are highly correlated. The

fact that this correlation is not perfect, and that our approximation allows for

nonlinearities, accounts for the small improvement in welfare obtained by allowing

a response to leverage to the policy function. To further illustrate this point, in the

alst row we fix the coefficients of current inflation and output to the values optimal

in the benchmark economy, and allow the central bank to respond optimally only

to leverage. In this case, it is optimal to strongly raise the interest rate in response

to higher leverage (lower equity ratio k). Thereby the central bank again stabilizes

the real interest rate and does not much worse in terms of welfare than when the

responses to inflation and output are chosen optimally (compare the last column

of the third and sixth row of tables 3 and 4).

6 Conclusion

The recent financial crisis has highlighted the importance of monitoring the level

of risk to which the financial sector is exposed. In this paper we focus on one

aspect of financial sector risk, ex-ante bank asset risk, and on how the latter can

be influenced by monetary policy.

First, we provide new empirical evidence of the impact of monetary policy on

bank risk taking. We document that unexpected monetary policy shocks, identi-
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fied through sign restrictions in a classical VAR framework, increase a measure for

ex-ante bank risk taking in the US. This conclusion, robust to using a recursive

identification scheme, is compatible with the monetary policy transmission mech-

anism in the theoretical model that we build to explain the effects of monetary

policy on risk taking.

For this purpose, we extend the work of Dell’Ariccia et al. [2014] and build a

dynamic general-equilibrium model where low levels of the risk-free interest rate

induce banks to make riskier investments. At the core of this mechanism is an

agency problem between depositors and equity providers: the latter choose the

level of risk but are protected by limited liability. In general equilibrium, this

friction leads to a steady state with excessive risk taking, and inefficiently low levels

of capital, output and consumption. Furthermore, risk taking alters the dynamic

response of the economy to shocks. In particular, an expansionary monetary policy

shock has non-standard consequences: because banks choose a riskier and less

efficient investment strategy, the growth of capital, output and consumption will

be lower than in the model without the risk-taking channel.

In order to assess the importance of the risk-taking channel and to study opti-

mal monetary policy, we estimate the model on US data using Bayesian methods.

Including this additional channel improves the in-sample fit, yields a path for risk

taking that matches survey evidence for the US and implies a pro-cyclical be-

havior of leverage with respect to total assets which is in line with US evidence

documented by Adrian and Shin [2014]. Our policy experiments using optimal

simple rules suggest that, if a risk-taking channel is present and the interest rate is

the only instrument available to the monetary authority, the optimal rule should

stabilize the path of the real interest rate more than without the risk-taking chan-

nel. This implies that the central bank should tolerate higher inflation volatility in

order to reduce welfare detrimental fluctuations in risk taking. The welfare gains

of taking the channel into account are found to be significant. Nevertheless, these

results do not rule out that an alternative instrument could perform better at

maximizing consumer welfare, an issue that deserves to be investigated in future

work.
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Appendix A: Data description

Table 5: Data description: All level variables are expressed in per-capita terms (divided

by N). Hours are measured as H1 · H2/N where H1 is converted into an index. The nominal

wage W is deflated by the GDP deflator. We define equity capital as equity plus reserves plus

subordinated debt, and total liabilities as equity plus deposits. In doing so we net out two types

of liabilities, since they are typically overcollateralized: federal funds purchased & repurchase

agreements and federal home loan bank advances. Furthermore we omit a few categories of

debt that match neither of our concepts of insured deposits and equity, or that are simply

not well enough characterized: other borrowed money, uncategorized liabilities, trading book

liabilities, banks liability on acceptances. All of these balance sheet positions are minor. Over

the observation period, the first group accounts for roughly 11% of the balance sheet, the second

for about 9%. All indexes are adjusted such that 2009 = 100. The estimation sample spans from

1984Q1 to 2007Q3 for the DSGE and from 1997Q2 to 2007Q3 for the VAR.

symbol series mnemonic unit source

Y real gross domestic product gdpc96 bn. usd fred / bea

P gdp deflator gdpdef index fred / bea

R effective federal funds rate fedfunds % fred / board of governors

C personal consumption expenditure pcec bn. usd fred / bea

I fixed private investment fpi bn. usd fred / bea

H1 civilian employment ce16ov thousands fred / bls

H2 nonfarm business (..) hours prs85006023 index department of labor

W nonfarm business (..) hourly compensation prs85006103 index department of labor

N civilian population lns1000000 0ce16ov bls

q average weighted loan risk own calculation % board of governors

E equity capital over liabilities own calculation % fdic
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Figure 4: Bank risk taking and nominal interest rate: The risk measure (solid blue line,

left axis) is redefined such that a decrease is associated with higher risk-taking of the banking

sector, matching the definition in the theoretical model discussed later. The nominal interest

rate (dashed line, right axis) is the effective federal funds rate.
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Appendix B: Empirical motivation - recursive identification

scheme

Figure 5: An expansionary monetary policy shock - Recursive identification scheme.

Error bands correspond to 90% confidence intervals obtained by bootstrap. Loan safety is defined

as the inverse of the average loan risk rating, standardized to take values between 0 and 100.

The remaining variables are annualized. See text for further details.
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Appendix C: The full model - Equilibrium and estimation

details

Model summary: We report here the equations that enter the non-linear model,

grouped by sector. Note that following Smets and Wouters [2007] we assume that

different varieties of intermediate goods and of labor are assembled through a

Kimball [1995] aggregator, rather than a Dixit-Stiglitz one. This latter assumption

is introduced in order to obtain estimates of price and wage rigidity that are closer

to micro estimates, but we do not derive the recursive formulation here (see e.g.

Adjemian et al. [2008]). Also note that the variables regarding the equity and

deposit funds Rd and Re have been substituted out.

Competitive equilibrium: The competitive equilibrium is a path of 41 vari-

ables (Λ, K, L, y, l, c, q, k, d, e, π, rk, rd, re, R, W , mc, onew, o, π�, Zp1, Zp2, Zp3,

Zw1, Zw2, Zw3, Δp1, Δp2, Δp3, Δp4, Δw1, Δw2, Δw3Δp4, W
�, i, R̃, ξ, ξ̃, ψ̃, τ) that

satisfy the following 41 equations at each point in time given initial conditions and

the exogenous shock processes εA, εB, εG, εI , εP , εR, εW , εξ.

Household

Λt = εBt (ct − ιct−1)
−σC − βιEt

[
εBt+1 (ct+1 − ιct)

−σC] (26)

Et

[
Λt+1

qtrd,t+1 + (1− qt)
ψ

1−ktπt+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
(27)

Et

[
Λt+1

qtre,t+1 − ξtπt+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
(28)

Λt = βEt

[
Λt+1

Rt

πt+1

]
(29)

yt = ct + it + gyȲ ε
G
t (30)
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Goods sector
Ldt
Kt−1

α

1− α
=
rk,t
wt

(31)

mct =
1

At
α−αrαktw

1−α
t (1− α)α−1 (32)

π�t =
εp (1 + kp)

εp (1 + kp)− 1

Zp1,t
Zp2,t

+
kp

εp − 1
(π�t )

1+εp(1+kp) Zp3,t
Zp2,t

(33)

Zp1,t = (1− τp,t)ΛtmctytΔ
εp(1+kp)/(1−εp(1+kp))
p1,t + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)
Zp1,t+1

]
(34)

Zp2,t = (1− τp,t)ΛtytΔ
εp(1+kp)/(1−εp(1+kp))
p1,t + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)−1

Zp2,t+1

]
(35)

Zp3,t = Λtyt + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)−1

Zp3,t+1

]
(36)

Δp1,t = (1− λp) (π
�
t )

1−εp(1+kp) + λpΔp1,t−1

(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)−1

(37)

1 =
1

1 + kp
Δ

1/(1−εp(1+kp))
p1,t +

kp
1 + kp

Δp2,t (38)

Δp2,t = (1− λp) π
�
t + λpΔp2,t−1

(
πt+1

π
γp
t π̄

1−γp

)−1

(39)

Δp3,t =
1

1 + kp
Δ
εp(1+kp)/(1−εp(1+kp))
p1,t Δp4,t +

kp
1 + kp

(40)

Δp4,t = (1− λp) (π
�
t )

−εp(1+kp) + λpΔp4,t−1

(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)
(41)
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AtK
α
t−1

(
Lt

Δp3,t

)1−α
= Δp3,tyt (42)

Labor sector

w�t =
εw (1 + kw)

εw (1 + kw)− 1

Zw1,t
Zw2,t

+
kw

εw − 1
(w�t )

1+εp(1+kp) Zw3,t
Zw2,t

(43)

Zw1,t = εBt L̄L
1+σL
t w

εw(1+kw)
t (Ct − ιCt−1)

1−σc exp
(
L̄
σc − 1

1 + σl
L1+σL
t

)
(44)

·Δεw(1+kw)/(1−εw(1+kw))
w1,t + βλwEt

[(
πt+1

πγwt π̄1−γw

)εw(1+kw)

Zw1,t

]

Zw2,t = (1−τw,t)ΛtLt
[
wΔ

1/(1−εw(1+kw))
w1,t

]εw(1+kw)

+βλwEt

[(
πt+1

πγwt π̄1−γw

)εw(1+kw)−1

Zw2,t+1

]
(45)

Zw3,t = (1− τw,t)ΛtLt + βλwEt

[(
πt+1

π
γp
t π̄

1−γp

)−1

Zw3,t+1

]
(46)

Δw1,t = (1− λw)

(
w�t
wt

)1−εw(1+kw)

+λwΔw1,t−1

(
wt−1

wt

)1−εw(1+kw)(
πt+1

πγwt π̄1−γw

)εw(1+kw)−1

(47)

1 =
1

1 + kw
Δ

1/(1−εw(1+kw))
w1,t +

kw
1 + kw

Δw2,t (48)

Δw2,t = (1− λw)

(
w�t
wt

)
+ λwΔw2,t−1

(
wt
wt−1

πt+1

πγwt π̄1−γw

)−1

(49)

Δw3,t =
1

1 + kw
Δ
εw(1+kw)/(1−εw(1+kw))
w1,t Δw4,t +

kw
1 + kw

(50)

Δw4,t = (1− λw)

(
w�t
wt

)−εw(1+kw)

+ λwΔw4,t−1

(
wt
wt−1

πt+1

πγwt π̄1−γw

)εw(1+kw)

(51)
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Government

Rt − R̄ = φπ
πt+s
π̄

+ φy
yt+s
ȳ

+ φk
kt+s
k̄

+ ρ
(
Rt−1 − R̄

)
(52)

Capital producer

Kt = qt

(
ω1 − ω2

2
qt

)
ot + (1− qt)θ (53)

ot = onewt + (1− δ)Kt−1

onewt = εIT it

(
1− κ

2

(
it
it−1

− 1

)2
)

(55)

Qtε
I
t

[
1− S

(
it
it−1

)
− S ′

(
it
it−1

)
it
it−1

]
−1 = βEt

[
Λt+1

Λt
εIt+1Qt+1S

′
(
it+1

it

)(
it+1

it

)2
]
.

(56)

Bank

qt = 1− R̃

ψ̃t
+

√
ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

(
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

)
ω2ψ̃t(R̃t + 2ξ̃t)

(57)

kt =
R̃t − ψ̃t

R̃t + 2ξ̃t
(58)

(
ω1 − ω2

2
qt−1

) rk,t + (1− δ)Qt − τ:t
Qt−1

− rd,t
πt+1

(1− kt)− re,t+1

πt+1

kt = 0 (59)

τt =
Qt−1

1−qt−1

qt−1

(
ψ − θ

rk,t+(1−δ)Qt

Qt−1

)
ω1 − ω2

2
qt−1

(60)
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ξ̃t = ξtEt [Λt+1] (61)

ξt = ξεξt (62)

R̃t = Et

[
Λt+1

Rt

πt+1

]
(63)

ψ̃t = ψEt [Λt+1] (64)

otQt = et + dt (65)

kt = et/ (et + dt) (66)

Shock processes

log
(
εBt
)
= ρP log

(
εBt−1

)
+ σBuBt (67)

log
(
εQt

)
= ρI log

(
εQt−1

)
+ σQuQt (68)

log
(
εξt

)
= ρξ log

(
εξt−1

)
+ σξuξt (69)

log
(
εPt
)
= (1− ρP ) log

(
ε̄Pt−1

)
+ ρP log

(
εPt−1

)
+ σP

(
uPt +mpu

P
t−1

)
(70)

log
(
εWt
)
= (1− ρW ) log

(
ε̄Wt−1

)
+ ρW log

(
εWt−1

)
+ σW

(
uWt +mWu

W
t−1

)
(71)

log
(
εAt
)
= ρA log

(
εAt−1

)
+ σAuAt (72)

log
(
εRt
)
= ρR log

(
εRt−1

)
+ σRuRt (73)
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log
(
εGt
)
= ρG log

(
εGt−1

)
+ σGuGt + ρGAσ

AuAt (74)

Observational equations: The observation equations, linking the observed

time series (left hand-side) to the variables in the non-linear model (right hand-

side) are the following:

100Δ log

(
Yt
Yt−1

)
= 100Δ log

(
yt
yt−1

)
+ 100μy

100Δ log

(
Ct
Ct−1

)
= 100Δ log

(
ct
ct−1

)
+ 100μy

100Δ log

(
It
It−1

)
= 100Δ log

(
it
it−1

)
+ 100μy

100Δ log

(
Wt

Wt−1

)
= 100Δ log

(
wt
wt−1

)
+ 100μy

100Δ log

(
Pt
Pt−1

)
= 100πt

100 log

(
Ht

H̄

)
= 100 log

(
Lt
L̄

)
+ 100μl

(
Rt

4

)
= 100R

Ẽt = 100kt

where H̄ are hours worked in 2009 and μl is a shift parameter. Since there is no

growth in the model, we estimate the mean growth rate in the data μy. The equity

ratio in the data Ẽt is transformed by taking deviations from its linear trend and

adding back the mean.

Prior specifications: We fix parameters that are not identified to values com-

monly used in the literature. In particular, we choose a depreciation rate δ of
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0.025, a steady-state wage markup ε̄W of 1.05, a steady-state spending to GDP

ratio gy of 18%, a weight of labor in the utility function L̄ such that steady-state

hours are equal to 1, and curvatures of the Kimball aggregator for goods and labor

varieties of 10.

For all structural shocks, we employ a non-informative uniform distribution.

The persistences of the shock processes are assumed to have a beta prior distri-

bution centered at 0.5, and with standard deviation of 0.2. Following Smets and

Wouters [2007], we further assume that the two markup shows have a moving

average component.

The priors of the Taylor rule parameters are centered around very common

values: the smoothing parameter has a Beta distribution with a mean of 0.75, while

the responses to inflation and output are assumed to follow a Normal distribution

with a mean of 1.5 and of 0.5/4 = 0.125.

Since we use level data of the inflation rate and of the nominal interest rate, we

choose the priors for the steady state of the inflation rate π̄ and the real interest

rate 1/β− 1 to match the mean in the data, i.e. we assumed they follow a gamma

distribution respectively centered around annualized values of 2.5% and 0.9.

The parameters affecting price and wage stickiness have a beta distribution

centered at 0.5 with standard deviation of 0.1. Our prior is that prices and wages

are reoptimized on average every 6 months, and that the degree of indexation to

past inflation is only up to 50%. The steady-state price markup is assumed to be

centered around 1.25, slightly above the steady-state wage markup.

We employ very common priors for all the parameters of the utility function.

Habits are centered around 0.7, the intertemporal elasticity of substitution σc has

a prior mean of 1.5, while the elasticity of labor supply σl has a prior mean of

2. The capital share in production has a prior mean of 0.3 while the investment

adjustment costs parameter has a loose prior around 4.

For the discussion on the priors for the banking sector parameters, we refer to

section 4.1 in the main text.
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Appendix D: Proofs

The risk-taking channel for a generic expected return func-

tion

Consider the bank problem discussed in section 3 with deposit insurance partial

recovery but replace the expression for the expected return conditional on success

qt (ω1 − ω2/2qt) by the generic function f(qt).

Assume there exists an equilibrium [r̃l,t, qt, kt] under perfect competition that

satisfies the following conditions: (1) the bank’s choices are interior, i.e. [kt,qt] ∈
[0, 1]2, (2a) the default probability is low relative to the parameters qt

(1−qt) ξ̃t ≥
R̃t − ψ̃t or (2b) there is no deposit insurance ψ̃t = 0, the conditional expected

return function f(qt) satisfies (3) f(qt) ≥ 0, f ′′(qt) < 0 and (4) f ′′′(qt) ≤ 0,

f ′′′′(qt) ≤ 0.

Notice that assumption 2a), which is sufficient but by no means necessary and

only needed for claim (e), is weak if we consider the empirically relevant section

of the parameter space with a low equity premium (around 0.0x), a real rate just

above 1 (1.0x) and high deposit insurance (0.x) and high repayment probabilities

(0.9x). Assumption 3 is straightforward as it guarantees a meaningful risk turn

trade-off with an interior solution. Assumption 4 is another a sufficient but non

necessary condition.

We prove that, if such a solution exists, then:

(a) risk taking is excessive: qt < argmax f(qt) ,

(b) the safety of assets qt is a positive function of R̃t:
∂qt
∂R̃t

> 0,

(c) the equity ratio kt is a positive function of R̃t:
∂kt
∂R̃t

> 0,

(d) the expected return of an investment is a positive function of R̃t:
∂f(qt(R̃t))+(1−qt(R̃t))θ

∂R̃t
> 0,

(e) the expected return of an investment is a concave function of R̃t:
∂2f(qt(R̃t))+(1−qt(R̃t))θ

∂R̃2
t

< 0.
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For a generic return function f(qt) the bank’s objective function at the second

stage is:

max
qt

f (qt) r̃l,t − qtr̃d,t(1− kt)

Deriving this problem with respect to qt yields the following first-order condition,

which by concavity is necessary and sufficient:

f ′(qt)r̃l,t = r̃d,t(1− kt) (75)

Notice that this condition implies f ′(qt) > 0 (kt ∈ (0, 1] by assumption,r̃d,t > 0

by the deposit supply schedule, and r̃l,t > 0 by the zero profit condition). Notice

further that in a frictionless world, e.g. without limited liability, the banks risk

choice would satisfy qoptt = argmax f(qt) + (1 − qt)θ, i.e. f
′(qoptt ) = θ. Since we

have assumed above that the recovery value is smaller than the deposit insurance

cap, which in turn is smaller than the cost of deposits by lemma 1, we have:

r̃l,tθ < ψ̃t < r̃d,t(1 − kt). Combining this with equation (75) and the frictionless

optimality condition and rearranging, we obtain f ′(qt) > f ′(qoptt ). Given f ′′(qt) < 0

this implies excessive risk taking, i.e. qt < qoptt (claim(a)).

Since the deposit supply schedule must hold in equilibrium, we can rewrite this

condition as

f ′(qt)r̃l,t − R̃t(1− kt) + (1− qt)ψ̃t
qt

= 0 (76)

Equation (76) implicitly defines q̂t(kt). Using the implicit function theorem we

find that,f ′(qoptt ) = θ < r̃d,t(1− kt) = f ′(qt)r̃l,t

∂qt
∂kt

=
−qtR̃t

(1− kt)R̃t − ψ̃t + q2t r̃l,tf
′′(qt)

At the first stage the maximization problem is

max
kt

f (qt) r̃l,t − qtr̃d,t(1− kt)− qtktr̃e,t .

which, using the deposit and equity supply schedules r̃d,t =
R̃t− 1−qt

1−kt
ψ̃t

qt
r̃e,t =

R̃t+ξ̃t
qt

,
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can be written as

max
kt

f (q̂t) r̃l,t + (1− qt)ψ̃t − ktξ̃t − R̃t .

The corresponding FOC is

(
f ′ (q̂t) r̃l,t − ψ̃t

) ∂qt
∂kt

− ξ̃t . (77)

Finally, the zero profit condition can in expectations be written as

f (q̂t) r̃l,t + (1− qt)ψ̃t − ktξ̃t − R̃t . (78)

Equations (76), (77),(78) implicitly define qt, kt and r̃l,t. Solving the latter two

equations for kt and r̃l,t we obtain:

kt =

(
−ξ̃tR̃t + qtR̃tψ̃t + ξ̃tψ̃t

)
f(qt)− qt

(
R̃t − (1− qt)ψ̃t

)(
R̃tf

′(qt) + qtξ̃tf
′′(qt)

)
−ξ̃t

(
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

))
(79)

r̃l,t =

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

) (80)

Plugging these equations into (76) and rearranging we obtain the following equa-

tion, which implicitly defines qt

(
R̃t + ξ̃t

) R̃tψ̃tf(qt)−
(
R̃t

(
R̃t + ξ̃t

)
−
(
(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt)− qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

−ξ̃t

(
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

)) = 0

We can simplify this condition further by multiplying with the denominator and

dividing by
(
R̃t + ξ̃t

)
R̃t

F (qt, Rt) ≡
R̃tψ̃tf(qt)−

(
R̃t

(
R̃t + ξ̃t

)
−
(
(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt)− qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

R̃t

= 0

(81)
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Using the implicit function theorem on equation (81) we find that

∂qt
∂Rt

= −
∂F
∂Rt

∂F
∂qt

(82)

where

∂F

∂Rt

=

(
R̃2
t + ξ̃tψ̃t

)
f ′(qt) + (1− qt)qtξ̃tψ̃tf

′′(qt)

−R̃2
t

∂F

∂qt
=

(
R̃t − (1− qt)ψ̃t

)((
R̃t + 2ξ̃t

)
f ′′(qt) + qtξ̃tf

′′′(qt)
)

−R̃t

Using our assumptions on f , the parameters and assuming an interior solution

it is obvious that ∂F
∂qt

> 0. How about the ∂F
∂Rt

?

To get at the sign of ∂F
∂Rt

, we solve 81 for f(qt)

f(qt) =

(
R̃t

(
R̃t + ξ̃t

)
−
(
(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt) + qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

R̃tψ̃t

and plug this expression into the equations (79) and (80) for kt and r̃l,t:

kt =
f ′(qt)(R̃t + ξ̃t)(R̃t − ψ̃t) + f ′′(qt)qtξ̃t(R̃t − (1− qt)ψ̃t)

R̃t

((
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf ′′(qt)

)2 (83)

r̃l,t =

(
R̃t + ξ̃t

)
ψ̃t(

R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf ′′(qt)

(84)

Since in equilibrium r̃l,t > 0 and since the numerator of r̃l,t is obviously positive it

must hold that its denominator is also positive:(
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt) > 0 (85)

Similarly, since kt > 0 and since the denominator of kt is obviously positive, the

numerator must be positive too:
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f ′(qt)(R̃t + ξ̃t)(R̃t − ψ̃t) + f ′′(qt)qtξ̃t(R̃t − (1− qt)ψ̃t > 0 (86)

Since f ′ > 0 and f ′′ < 0 we can conclude from the previous inequality that for any

[x1, x2] ∈ R
2 it must hold that f ′(qt)x1 + f ′′(qt)x2 > 0 if

x1
x2

≥
(
R̃t + ξ̃t

)
(R̃t − ψ̃t)

qtξ̃t(R̃t − (1− qt)ψ̃t)
(87)

We now test this condition for the numerator of ∂F
∂Rt

R̃2
t + ξ̃tψ̃t

(1− qt)qtξ̃tψ̃t
≶

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
Rearranging, multiplying only with positive values, yields

0 ≶ −R̃t(R̃t−(1−qt)ψ̃t)−qtψ̃tξ̃t−
(
R̃t(1− qt)ψ̃t + (1− qt)ψ̃tξ̃t

) qtψ̃t(
R̃t − (1− qt)ψ̃t

)
The RHS is obviously negative since from the proposition that every deposit

insurance cap will be exceeded it follows that R̃t > ψ̃t. Hence the condition
R̃2

t+ξ̃tψ̃t

(1−qt)qtξ̃tψ̃t
≥ R̃t+ξ̃t

qtξ̃t
is satisfied and we can conclude the the numerator of ∂F

∂Rt
is

positive. Hence ∂F
∂Rt

< 0 and therefore ∂qt
∂Rt

> 0 (claim (b)).

Equation (83) defines kt = K(qt, R̃t). Its derivative is given by

∂kt

∂R̃t

=
∂K

∂R̃t

+
∂K

∂qt

∂qt

∂R̃t

where

∂K

∂R̃t

=

(
(f ′(qt))

2
R̃2

t + 2f ′(qt) (f ′(qt) + f ′′(qt)(1− qt)qt) R̃tξ̃t + (f ′(qt) + f ′′(qt)qt) (f ′(qt)− f ′′(qt)(1− qt)qt) ξ̃
2
t

)
ψ̃t

R̃2
t

(
f ′′qξ̃t + f ′(R̃t + ξ̃t)

)2
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∂K

∂qt
=
qtξ̃tf

′′(qt)ψ̃t
(
2
(
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt)
)

R̃t

(
f ′′qξ̃t + f ′(R̃t + ξ̃t)

)2

From (87) it is immediately obvious that the numerator of ∂K
∂qt

is negative, hence
∂K
∂qt

< 0. After division by ψ̃t, the numerator of ∂K
∂R̃t

can be rewritten as

((
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt)
)2

− (f ′′(qt))
2
q3t ξ̃

2
t − f ′′(qt)f ′(qt)q2t ξ̃t(2R̃t + ξ̃t)

Since the first term is positive and bigger then the absolute value of the second

term we can see that ∂K
∂R̃t

> 0. Hence we have shown that ∂kt
∂R̃t

> 0 (claim (c)).

Applying the implicit function theorem a second time on equation (81) we can

find the following expression for the second derivative of qt

∂2qt

∂R̃2
t

=

(
∂2F

∂Rt∂qt
+ ∂2F

∂q2t

∂qt
∂Rt

)
∂F
∂Rt

−
(

∂2F
∂Rt∂qt

∂qt
∂Rt

+ ∂2F
∂R2

t

)
∂F
∂qt(

∂F
∂qt

)2 (88)

where

∂2F

∂R̃t∂qt
=

(
R̃2
t + 2(1− qt)ξ̃tψ̃t

)
f ′′(qt) + qt(1− qt)ξ̃tψ̃tf

′′′(qt)

−R̃t

∂2F

∂q2t
=

ψ̃t

(
qtξ̃tf

′′′(qt) +
(
R̃t + 2ξ̃t

)
f ′′(qt)

)
+
(
f ′′′′(qt)qtξ̃t + f ′′′(qt)

(
R̃t + 3ξ̃t

))(
R̃t − (1− qt)ψ̃t

)
−R̃t

∂2F

∂R2
t

=
2 (f ′(qt) + f ′′(qt)(1− q)q) ξ̃tψ̃t

R̃3
t

since f ′′ < 0 and f ′′′ ≤ 0 f ′′′′ ≤ 0 and all parameters are positive it is obvious

that ∂2F
∂Rt∂qt

> 0 and ∂2F
∂q2t

> 0. The term∂2F
∂R2

t
is less straight forward. A sufficient

condition for ∂2F
∂R2

t
> 0 can be found using again condition (87)
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1

(1− qt)qt
≥

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
Which simplifies to

qt
(1− qt)

ξ̃t ≥ R̃t − ψ̃t

Given the signs of the terms in (88) we have finally verified that

∂2qt

∂R̃2
t

=
((+) + (+) (+)) (−)− ((+) (+) + (+)) (+)

(+)
< 0

Under alternative assumption (2b) the expression for ∂2qt
∂R̃2

t
simplifies to

∂2qt

∂R̃2
t

= −
f ′(qt)

(
−2f ′′(qt)f ′′′(qt)qtξ̃t − 2 (f ′′(qt))

2
(
R̃t + 2ξ̃t

)
+ f ′(qt)

(
f ′′′′(qt)qtξ̃t + f ′′′(qt)

(
R̃t + 3ξ̃t

)))
(
f ′′′(qt)ξ̃t + f ′′(qt)

(
R̃t + 2ξ̃t

))3
which is negative without further conditions.

Using the signs of the derivatives of qt and the fact that f ′(qt) > f ′(qoptt ) = θ,

we can finally determine the slope and curvature of the expected return of the

bank’s investment.

∂ [f(qt) + (1− (qt))θ]

∂R̃t

= (f ′(qt)− θ)︸ ︷︷ ︸
+

∂qt

∂R̃t︸︷︷︸
+

> 0

∂2 [f(qt) + (1− (qt))θ]

∂R̃2
t

= (f ′(qt)− θ)︸ ︷︷ ︸
+

∂2qt

∂R̃2
t︸︷︷︸

+

+ f ′′(qt)︸ ︷︷ ︸
−

∂qt

∂R̃t︸︷︷︸
+

< 0

This completes the proof of claims (d) and (e).
Notice that the quadratic functional form we assumed for f(qt) in the model

section satisfies assumptions (3) and (4) and we focussed on interior solutions
(assumption (1)). Therefore claims (1), (2), (3) and (4) in propositions 1 and
2 hold. Furthermore, claim (5) in proposition 1 holds since assumption (2a) is
satisfied. Finally, to see that claim (5) in proposition 2.1 holds independent of
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assumption (2a) and (2b), consider the solution for qt

qt = 1− R̃

ψ̃t

+

√
ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

(
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

)
ω2ψ̃t(R̃t + 2ξ̃t)

The second derivative of this expression is

∂2q

∂R̃2
t

= −

⎛
⎜⎝ ω1ω2

{
2ω2

(
R̃t − ψ̃t

)3
ξ̃t

(
R̃t + 2ξ̃t

)
+ ω1ψ̃t...

...
[
R̃4

t + 2R̃t

(
4R̃2

t − 3R̃tψ̃t + 2ψ̃t
2
ξ̃t

)
+
(
12R̃t − 4R̃tψ̃t + 5ψ̃t

2
)
ξ̃2t + 4

(
2R̃t + ψ̃tξ̃

3
t + 4ξ̃4t

)]}
⎞
⎟⎠

(
R̃t + 2ξ̃t

){
ω2

(
R̃t − ψ̃t

)(
R̃t + 2ξ̃t

) [
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ b

(
R̃t − ψ̃t

)(
R̃t + 2ξ̃t

)]}2/3

Both numerator and denominator are obviously positive, so ∂2q

∂R̃2
t
< 0. Hence

∂2[f(qt)+(1−(qt))θ]

∂R̃2
t

< 0. �

Deposits in excess of insurance

The proof is by contradiction: Assume that there exists an equilibrium with no

excess profits where the bank would issue so little deposits that the promised

repayment rd,t would be lower than the cap on deposit insurance ψ/(1− kt)πt+1.
44

In this case the deposit rate rd,t would be equal to the risk free rate Rt.

The second stage maximization problem of the bank would then be

max
qt∈[0,1]

f(qt)− qtR̃t(1− kt)

and its solution q̂t is implied by

f ′(qt) = R̃t(1− kt)

The first stage maximization problem would be

max
kt∈[0,1]

V (k) = f(q̂t)− q̂R̃t(1− kt)− (ξ̃t + R̃t)kt

44For simplicity, we abstract from the possibility that the cap is binding for some states of the
future but not for others, which would be possible due to the inconsistency between the timing
of inflation and the nominal deposit rate. Note that this distinction disappears under certainty
equivalence or first order approximation.
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q̂t can either be a corner or an interior solution. If q̂t is a corner solution,

the first stage objective function of the bank is obviously decreasing in kt, hence

kt = 0 is optimal. If q̂t is an interior solution, the first derivative of the first stage

objective function is

R̃t − ξ̃t − R̃t(1− q̂t)

Since q̂t ∈ [0, 1] this derivative is negative for all kt ∈ [0, 1], i.e. the objective

function again is decreasing in k. Hence the solution to the first stage problem is

kt = 0. Optimality with full insurance therefore requires that the bank uses only

deposits. This contradicts our initial assumption. This result implies that any

insurance cap smaller than 100% would be exceeded by the deposit liabilities in

case of default. Depositors are therefore never fully insured.

Notice that for a cap to be effective in the sense of ruling out full insurance

equilibria, the cap has to be low enough. Formally speaking, it needs to hold

thatrd,t(1− kt) > ψ̃t even under full insurance, i.e. R̃t > ψ̃t.�
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