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1 Introduction

This paper studies the question whether skill-biased technical change (SBTC) diffuses

internationally and in this way contributes to the increasing relative skill demand in

other countries. Skill-biased technical change, that is a shift in production technologies

which favors skilled labor, is usually considered the main cause of the rising skill de-

mand in the United States and other developed countries.1 Several channels have been

proposed to explain SBTC, including technical change embodied in capital goods such

as information technology (Autor, Katz, and Krueger 1998, O’Mahony, Robinson, and

Vecchi 2008, Michaels, Natraj, and Van Reenen 2014), or disembodied forms of technical

change such as organisational change (Caroli and Van Reenen 2001). A wealth of studies

provides evidence explaining SBTC within countries, industries and firms, but hardly any

empirical evidence exists whether this form of non-neutral technical change, like it has

been shown for neutral technical change, diffuses internationally.2 If skill-biased technical

change diffused, it would affect the skill-bias of receiving entities and in this way shape

their relative skill demand. This form of technology diffusion, from here on denoted as

skill-biased technology diffusion (SBTD), could then be considered as another channel

explaining the changing skill demand.

I study this question for both developed and emerging countries. Most of the previous

evidence analyzing the increasing relative skill demand concentrates on the United States

and other developed, OECD countries. As Figure (1) illustrates, a rising skill demand

cannot only be observed in developed countries, but, at least for recent years, also in

emerging countries. Thus, providing new evidence on causes and consequences of SBTC

1In addition to SBTC, international trade (Wood 1998, Feenstra and Hanson 1999, Krugman 2000,
Krugman 2008), capital-skill complementarity (Krusell, Ohanian, Ríos-Rull, and Violante 2000, Duffy,
Papageorgiou, and Perez-Sebastian 2004), the role of intersectoral technology-skill complementarities
(Voigtländer 2014) and recently imported inputs (for developing countries) (Saravia and Voigtländer
2012, Raveh and Reshef 2015) have been identified as important explanations for the rising skill demand.

2For an overview article summarizing the literature studying the diffusion of neutral technical change,
see e.g. Keller (2004). Exceptions studying the role of technology diffusion in the context of skill-biased
technical change are Berman and Machin (2000), Hollanders and Ter Weel (2002) and Conte and Vivarelli
(2007). However, these papers all have a different focus than studying the existence of skill-biased
technology diffusion.
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Figure 1: Increasing Skill Demand in the US and in Emerging Countries
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(b) Emerging Countries
Notes: The left panel describes the development of the high-skilled labor compensation share between 1995 and 2007 in
the United States. The right panel describes this development for Brasil, Russia, India and China. The high-skilled labor
compensation share is computed as a value-added weighted mean of industry’s shares within a country. It is denoted as an
index which is equal to 1 in 1995.

in emerging countries can be considered a second contribution of this paper. Comparing

those two groups is also of particular interest to the study of skill-biased technology dif-

fusion, since it has been shown that for neutral technical change patterns of technology

diffusion can strongly differ among country groups. On the one hand, less developed

countries might have a higher potential to benefit from technology diffusion because they

are further away from the technological frontier. On the other hand, ample evidence is

provided that the ability to absorb external knowledge depends very much on charac-

teristics of the recipient entity, so called absorptive capacities. For example, the rate of

technology diffusion seems the higher, the more intense an entity’s own research efforts

are (Griffith, Redding, and Van Reenen 2004, Madsen, Islam, and Ang 2010).3 Since

the ability to absorb external knowledge is usually higher in more developed countries,

this effect might offset the higher theoretical diffusion potential. Thus, it is not clear

which group of countries benefits more of technology diffusion and comparing them might

provide deeper insights into the pattern of skill-biased technology diffusion.

To study skill-biased technology diffusion, I develop a framework which is based on

3The eduction level of a country is considered a second important factor increasing the ability to
absorb external knowledge (Kneller 2005, Madsen 2014).
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central elements of two established lines of research: the empirical SBTC literature and

the literature studying international technology diffusion (Coe and Helpman 1995, Keller

2002, Griffith, Redding, and Van Reenen 2004, Madsen 2014). In this framework, skill-

specific technical change is modeled as a function of the weighted relative skill-specific

distance to the technological frontier. The idea behind: if productivity of skilled (un-

skilled) labor in external firms, industries or countries is higher than in internal ones,

the internal entity might be able to learn from the external one, such that the inter-

nal one benefits from technology diffusion, which then increases its own factor-specific

productivity level.

Applying it to new sectoral (input-output) data for a panel of 40 emerging and de-

veloped countries, 30 industries (covering manufacturing and service industries) and 13

years (1995 - 2007), the obtained results support the presence of skill-biased technology

diffusion. For both, skilled and unskilled labor, I find a positive, significant and economi-

cally relevant diffusion rate, which explains around 10 to 20 percent of the annual rate of

SBTC. That is, the higher the external factor-specific productivity level, given the local

skill-specific productivity level, the higher is the subsequent local factor-specific productiv-

ity growth rate. The results are obtained controlling for relevant alternative explanatory

factors, such as the capital- and R&D-intensity, outsourcing as well as country-industry

and time fixed effects. In addition, to get more insights into the mechanisms underlying

this form of technology diffusion, I analyze the role of two, frequently studied, mediating

factors: the bilateral distance between two countries and the bilateral intersectoral trade

volume. The bilateral distance between two countries proves to be an important mediat-

ing factor. The closer two countries are located to each other, the higher is the diffusion

rate. For intersectoral trade linkages, so far, the results are less clear. Such links seem

to explain only a small part of skill-biased technology diffusion. The main results hold

for manufacturing and service industries as well as for emerging and developed countries.

Comparing the diffusion rates of developed and emerging countries, the results suggest

that the contribution of skill-biased technology diffusion to skill-biased technical change

3



is larger for developed than for emerging countries.

The rest of the paper is structured as follows. Section (2) describes the theoretical

framework which combines the classical framework used to model skill demand with the

modelling approach of the technology diffusion literature. Section (3) lays out the em-

pirical framework later used to test the empirical relevance of the skill-biased technology

diffusion, whereas section (4) introduces the data sources and the data set used in the

empirical analysis. Section (5) presents the baseline results as well as a set of robustness

checks. Section (6) concludes.

2 Theoretical Framework

To study the role of factor-specific technology diffusion in explaining the changing relative

skill demand, I extend the canonical modelling framework typically used to examine the

drivers of skill-biased technical change (Acemoglu and Autor 2011). It models production

as a CES aggregate of skilled labor (H) and unskilled labor (L). In addition, I include

capital (K) (Caselli and Coleman 2006):

Y = Kα
[
(AHH)ψ + (ALL)ψ

] 1−α
ψ
, (1)

where the (Aj) are factor-specific productivity terms which convert raw quantities of the

two labor types into efficiency units. The elasticity of substitution between skilled and

unskilled labor equals σ = 1/(1− ψ). Assuming competitive labor markets, relative skill

demand equals:

ln
(H
L

)
= −σ ln

(wH
wL

)
+ (σ − 1) ln

(AH
AL

)
, (2)

where the wj are wages. Explaining the relative productivity term (AH
AL

) is the aim of the

SBTC literature. Various drivers and proxies have been studied. As a very first approach,

the changing relative productivity term was modeled by a time trend (Katz and Murphy

1992). In addition, e.g. the role of ICT (Autor, Katz, and Krueger 1998, O’Mahony,

Robinson, and Vecchi 2008, Michaels, Natraj, and Van Reenen 2014), R&D (Machin and

Van Reenen 1998, Autor, Katz, and Krueger 1998) or organizational change (Caroli and
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Van Reenen 2001) have been analyzed and shown to be positively correlated with SBTC.

To analyze the role of skill-specific technology diffusion, I extend this baseline model

and follow the literature which studies factor-neutral technology diffusion theoretically

and empirically (Griffith, Redding, and Van Reenen 2004, Kneller 2005, Madsen 2014) by

adapting their approach to allow for factor-specific technology diffusion. This literature

models productivity growth as a function of a lagged technology pool, which represents

a set of technologies an entity can learn from. Instead of assuming that a factor-neutral

technology pool affects factor-neutral productivity growth, I model factor-specific pro-

ductivity growth as a function of a factor-specific technology pool. Thus, I assume that

productivity growth of skilled (unskilled) labor is a function of a lagged skilled (unskilled)

labor-specific technology pool Sk:

∆ lnAkt = γSk lnSkt−1, k ∈ {H,L}, (3)

where γSk, the parameter of interest, is the diffusion parameter, which reflects by how

much the factor-specific productivity growth rate changes due to changes in the technology

pool. The technology diffusion literature suggests that this parameter is positive. Testing

this for first time and providing evidence on its size is the aim of this study.

Finally, to illustrate how this then affects SBTC and in this way in a second step the

relative skill demand, one can subtract equation (3) for unskilled labor from the one for

skilled labor. Assuming γSH = γSL ≡ γS, SBTC then equals:4

∆ ln
(AH
AL

)
t

= γS ln
(SHt−1

SLt−1

)
≡ γS lnSt−1, (4)

where St−1 is defined as the relative technology pool. Inserting this expression into a first-

differenced version of equation (2) then yields an equation illustrating how skill-specific

4I will keep this assumption, which states that the diffusion rates of skilled and unskilled productivity
are identical in size, throughout most parts of the paper. As will be shown in the results section, this is,
at least in my case, statistically justified. However, of course one can imagine situations where these are
not identical. E.g. as described by Gancia and Zilibotti (2009), directed technology adoption could cause
them to differ. So studying such differences and their reasons would be highly insightful, but is beyond
the scope of this paper, which aims at providing a framework to study such questions and to provide first
evidence of its relevance.
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technology diffusion affects the change in relative skill demand:

∆ ln
(H
L

)
t

= −σ∆ ln
(wH
wL

)
t
+ (σ − 1)γS lnSt−1. (5)

As can be seen, if skilled and unskilled labor are substitutes (σ > 1), which is what

empirical evidence suggests (Ciccone and Peri 2005), an increase in the relative technology

pool comes with an increase in demand for skilled over unskilled labor. In case σ < 1, an

increase in the relative technology pool would come with a relative reduction in skilled

labor demand.

All three equations (3) - (5) can be used to test whether skill-specific technology

diffusion affects skill-specific productivity growth and thus helps explaining the changing

relative skill demand. Section (3) lays out how such a test is implemented empirically.

3 Empirical Framework

To study the properties of the diffusion parameter (γS), one can estimate one of the

equations (3) - (5) econometrically. To do so, it is however necessary first to derive

values for the productivity terms (Ak) and secondly to proxy the technology pools (Sk)

empirically.

3.1 Backing out Factor-Specific Productivity Terms

Following e.g. Caselli and Coleman (2006) I calibrate the values of the productivity terms

Ak using a method which is similar to deriving TFP values based on growth accounting

methods. Rearranging the first-order conditions (FOCs) of the production technology

6



outlined by equation (1) yields the following two expressions for the productivity terms:5

AH = Y
1

1−αK
−α
1−α

1

H

( wHH

wHH + wLL

) σ
σ−1 (6)

AL = Y
1

1−αK
−α
1−α

1

L

( wLL

wHH + wLL

) σ
σ−1 (7)

For the relative productivity of skilled vs. unskilled labor, i.e. the skill-bias, this implies

the following equation:
AH
AL

=
L

H

(wHH
wLL

) σ
σ−1

. (8)

Making assumptions on σ and α one can use these expressions together with data on

wages, capital, labor and output to back out values for AH and AL. Following Ciccone

and Peri (2005), I set σ = 1.5 and, in contrast to Caselli and Coleman (2006), who

assume α = 1/3 for all countries, I allow α to differ by industry and assume that it equals

industry-specific average capital shares.6 Tables 2 and 3 in the Appendix summarize the

derived values.

3.2 Constructing Technology Pools

Having derived empirical values for the productivity terms, it is possible to construct

various proxies for the technology pools Sk from which a recipient entity can learn. I

provide two types of such proxies which represent the modelling approach of two strands of

the technology diffusion literature: (1) Proxies based on the concept of the distance-to-the-

technological-frontier; (2) Proxies based on the concept of weighted external knowledge

stocks. Both approaches have their distinct merits in studying whether technological

knowledge diffuses internationally such that I make use of both of them.

5Alternatively, assuming a more simple production technology equal to Y =
[
(AHH)ψ + (ALL)ψ

] 1
ψ

,
as e.g. Voigtländer (2014), the following two expressions for the productivity terms result:

ÃH =
Y

H

( wHH

wHH + wLL

) σ
σ−1

,

ÃL =
Y

L

( wLL

wHH + wLL

) σ
σ−1

.

Using them, overall, I find similar results as with the more complex production technology.
6In a robustness check I also set α = 1/3 and find qualitatively similar results as with the industry-

specific α-values.
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The empirical literature represented e.g. by Griffith, Redding, and Van Reenen (2004),

Kneller (2005), Madsen, Islam, and Ang (2010) or Madsen (2014) models the technology

pool as the ratio of the productivity level of the most productive relevant entity (the

technological frontier) to the internal productivity level. This ratio is denoted as the

distance-to-frontier (DTF). It represents the idea that the higher this ratio, the further

away is an entity from the technological frontier and thus the more it can potentially

benefit from technology diffusion. The implicit assumption is that the amount of tech-

nology which diffuses towards a recipient entity is proportional to the total potential to

learn from external sources. I proxy the industry- and time-specific technological frontier

as the geometric mean of the three highest productivity levels of foreign industries of the

same type.7 The technology pool is defined as the ratio of the industry-specific measure

of the frontier (AFkit) to the productivity level (Akict) of the recipient industry i in country

c and year t:

SFkict =
AFkit
Akict

.

Whereas the distance-to-frontier approach, in its basic form, assumes that knowledge

diffuses quasi-automatically and proportionally to the total diffusion potential, a second

strand of the diffusion literature is more focused on understanding the channels through

which knowledge diffuses.8 Following the pioneering work of Coe and Helpman (1995), it

models the technology pool as the weighted average of external knowledge stocks. It is

assumed that the actual amount of knowledge which diffuses towards an entity depends

not so much on an entity’s total distance to the technological frontier but depends more

on how much an entity actually learns from each external entity. This depends on (a)

an entity’s own knowledge stock, (b) the distribution of external knowledge stocks (the

potential for diffusion) and (c) on factors affecting how much of the diffusion potential
7As an alternative, I also provide a frontier-measure equal to the level of the most productive industry

(AF1). However, measuring the productivity level of the technological frontier using only one observation
can be expected to come with high measurement error, such that my preferred frontier-proxy uses the
information of the three most productive industries.

8Of course, also the diffusion literature using the distance-to-frontier approach studies factors which
affect the actual diffusion rate. Hereby a focus is on the role of absorptive capacities, where among the
many factors that have been proposed two stand out: R&D-efforts (Griffith, Redding, and Van Reenen
2004) and human capital (Kneller 2005, Madsen, Islam, and Ang 2010, Madsen 2014).
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is actually realized. E.g. an entity might benefit from technology diffusion more if all

external entities are much more productive than it compared to a situation where only

one external entity is much more productive than it. In addition, the more intensively

an entity is connected (e.g. through input-output linkages) to those external entities

from which it can learn something, the more of the diffusion potential might actually

be realized. According to the overview article by Keller (2004), the main channels of

technological diffusion are trade, FDI and language skills. Thus, measures used in the

literature include bilateral trade flows (Lichtenberg and van Pottelsberghe, 1998, Coe et

al., 2009 and Dieppe and Mutl, 2013), FDI (van Pottelsberghe and Lichtenberg, 2001)

or language skills (Musolesi, 2007). Since the bilateral distance between two countries

can be considered a comprehensive measure picking up some of the effects of trade, FDI

and language, I follow e.g. Keller (2002) and Ertur and Musolesi (2013) and use it as my

main weighting measure. In addition, I provide evidence based on an unweighted and a

trade-weighted measure.

Whereas many studies proxy the external knowledge stocks using R&D or patent

stocks, I model the knowledge stocks an entity can learn from again by technological

distances (Akibt/Akict) which equal productivity ratios of the sending country b to the

receiving country c.

The technology pool which is based on the simple average of the technological distances

can be considered a most basic variant of the technology proxies which use weighted

external knowledge stocks. It is defined as:

SAkict =
∑
b6=c

ωA
Akibt
Akict

, ωA =
1

n− 1
,

where n equals the number of countries considered (in my case, n = 40). This proxy allows

studying whether an increase in the average technological distance results in technology

diffusion.9

9Using technological distances (Akibt/Akict) as knowledge stocks, it becomes obvious that the two
types of proxies SF and SA as well as the proxies introduced in the following, are closely related. They
only differ in their weighting schemes: SF weights the most productive external entity with the value
1 and the remaining entities with value 0, whereas the remaining proxies use more equally distributed
weights.
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The distance-weighted technology pool is defined as follows:

SDkict =
∑
b 6=c

ωD
Akibt
Akict

, ωD =
d−1
bc∑

b 6=c d
−1
bc

,

where the technological distances are weighted by the inverse relative bilateral distance

of two countries (dbc).

One channel through which distance could affect the rate of diffusion is trade. The

closer two entities are located to each other, the higher the trade intensity due to lower

transportation and coordination costs. Technology has often been shown to diffuse through

intersectoral intermediate input-output linkages. Intermediate input-output linkages be-

tween firms, industries and countries come with collaboration and contact between them

which leads to an intended and unintended exchange of ideas, knowledge and technology.

As Voigtländer (2014) shows, intersectoral linkages have an important role in explaining

the relative skill demand. He finds evidence for an intersectoral technology-skill comple-

mentarity, that is, a high upstream skill intensity comes with a high downstream skill

intensity. This could be explained, in parts, by skill-specific technology diffusion. If

upstream sectors have a high skill intensity, this can be a sign of a high relative skill pro-

ductivity, which, if this comes with technology diffusion, could increase the downstream

relative skill productivity and with this the downstream skill intensity. To test whether

intersectoral linkages are a relevant diffusion channel for skill-specific technology diffusion,

I provide a the third variant, which uses the intersectoral trade volumes to weight foreign

productivity levels. It equals:

STkict =
∑
b6=c

ωT
Akidt
Akict

, ωT =
Tbc∑
b 6=c Tbc

,

where Tbc is the bilateral time-averaged trade volume between two industries (export +

import).10

10Using as an alternative to trade volumes, intermediate inputs from external industries, as e.g.
Voigtländer (2014), does not change my findings substantially. Also, using the current trade volume
instead of the average trade volume does not affect the baseline results substantially.
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3.3 Econometric Specification

Employing the technology pool proxies in equation (4), adding control variables Xit and

allowing for a stochastic error term (εit) results in the estimation equation. For brevity of

notation, from here on, i represents a country-industry combination. Xit includes three

controls: the capital intensity (K
Y
), the R&D-intensity (R&D

Y
) and an outsourcing proxy

(OSn). The first one is included to capture the effect of capital-skill complementarity

(see e.g. Krusell, Ohanian, Ríos-Rull, and Violante (2000) and Duffy, Papageorgiou, and

Perez-Sebastian (2004)). The R&D-intensity shall control for skill-biased technical change

caused by local innovation efforts (as in Machin and Van Reenen (1998), Autor, Katz, and

Krueger (1998)). OSn is included to control for the effect of outsourcing (see e.g. Feenstra

and Hanson (1999)). There will be unobserved country-industry characteristics, which

affect rates of productivity growth and are not captured by the model and which are likely

to be correlated with the technology pool proxy. To control for unobserved heterogeneity

that is correlated with the explanatory variable I include country-industry fixed effects

(αi). There may also be common macroeconomic shocks that affect productivity growth

in all countries, such that in addition I include time dummies (αt). The model equals

then:

∆ ln
(AH
AL

)
it

= γS lnSχit−1 + β lnXit−1 + αi + αt + εit, χ ∈ {F,A,D, T}. (9)

It is worth making two more remarks concerning this specification. First, inserting the

technology pool proxies as defined before would carry the risk that a significant estimate of

γS is only due to serial correlation of the domestic productivity parameter (Akit), which

appears in the denominator of both, the dependent variable and the technology pool

proxies. In case of a negative serial correlation, a positive productivity shock is followed

by a negative one, which would result in a positive estimate for γS, independently of a

significant influence of the external knowledge stock. To make it transparent whether both

parts, the domestic productivity level and the external knowledge stock are significantly

related to the domestic productivity growth rate, I split the technology pool proxies (Sχ)

11



into two parts: the domestic productivity level (Akit) and the external knowledge stock

(S̃χkit).
11 Thus, my final estimation equation equals:

∆ ln
(AH
AL

)
it

= γ̌S ln
(AH
AL

)
it−1

+ γ̃S ln S̃χit−1 + β lnXit−1 + αi + αt + εit. (10)

For γ̌S I expect a negative estimate. It would indicate, as the idea of the distance-to-

frontier suggests, that SBTC is the lower, the higher the lagged own productivity level,

given the level of the external knowledge stock (S̃χit−1). In contrast, if we expect the size

of the foreign knowledge stocks to have a positive effect on domestic productivity growth,

γ̃S should show a positive value.

Next to this issue, in a cross-country cross-industry setting it is necessary to allow

for correlation of the error terms across industries within a country. Such a correlation

should be expected since industries within a country are typically exposed to common

shocks. I therefore allow for clustering of observations at the country level.

4 Data

4.1 Data Sources

The data used in this study are mainly taken from the World Input-Output Database

(WIOD), which provides detailed information on value added accounts, including infor-

mation on labor inputs by three types of educational attainment levels, and world input-

output tables. It covers 40 developed and emerging countries, 35 industries (covering all

economic sectors) and 15 years (1995 – 2009).12 Countries covered are the 27 EU coun-

tries, Australia, Brazil, Canada, China, India, Indonesia, Japan, Korea, Mexico, Russia,

Taiwan, Turkey and the United States.

The value added accounts provide information on the quantities and prices of labor and

capital used in production. The labor market data are split on the basis of educational

attainment levels as defined in the International Standard Classification of Education
11It holds: lnSχ = ln S̃χkit − lnAkit = ln

∑
ωχAkidt − lnAkit = ln

∑
ωχ

Akidt
Akit

. In my tables S̃χkit is
denoted as Aχkit.

12For a description of the database, see Timmer (2012) and Timmer, Dietzenbacher, Los, Stehrer, and
Vries (2015).
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(ISCED) into three groups: low skilled (ISCED categories 1 and 2), medium skilled

(ISCED 3 and 4) and high skilled (ISCED 5 and 6). This roughly corresponds to: below

secondary schooling; secondary schooling and above, including professional qualifications,

but below college degree; and college degree and above (see Timmer, Erumban, Los,

Stehrer, and de Vries (2014)).13 To aggregate these three groups into a high- and a low-

skilled labor aggregate, I combine low- and medium-skilled workers into a low-skilled labor

aggregate and keep high-skilled workers in a high-skilled labor aggregate.14

For the empirical analysis I require data on wages and labor input quantities by skill

level as well as capital stock and value added data. Labor quantities are directly available

in WIOD, whereas wages, by education-level, have to be calculated by dividing skill-

specific labour compensation values by skill-specific hours worked. Measures of value

added and the capital stock are directly available in WIOD. In addition to the labor,

capital and value added data, I also use the available international input-output data to

construct intersectoral trade volumes. These equal the sum of intermediate inputs and

outputs from one country-industry combination to another. The input-output data are

also used to construct outsourcing proxies, which will be used as control variables. My

main outsourcing proxy (OSn), which is based on the narrow definition of outsourcing (see

Feenstra and Hanson (1999)), is defined as the share of an industry’s intermediate inputs

coming from the same type of industries in total intermediate inputs of this industry.

Finally, since I am interested in analyzing a cross-country panel setting, it is necessary

to transform all monetary units into common units (real 2005 US dollars). This is achieved

by using deflators and exchange rates available in WIOD.

Next to the information taken from WIOD I make use of sectoral R&D data and infor-

13For most advanced countries the data are constructed by extending and updating the EU KLEMS
database using the methodologies, data sources and concepts described in O’Mahony and Timmer (2009).
For other countries additional data has been collected according to the same principles, mainly from
national labor force surveys, supplemented by household surveys for relative wages. For a more extensive
description of the data, see Appendix (8.1).

14As an alternative, I use only low- and high-skilled (but not medium-skilled) labor input and com-
pensation shares to decompose total labor input and compensation quantities into low- and high-skill
aggregates. This requires the assumption, that medium-skilled workers can be allocated to low- and
high-skilled labor groups according to the ratio of high- to low-skilled labor. Doing so, I find similar
results as with the base variables.
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mation on bilateral distances between countries. The R&D data are taken from the OECD

ANBERD (Analytical Business Enterprise Research and Development) database.15 I use

expenditures by main activity denoted in PPP-adjusted 2005 US dollars and compute a

R&D-intensity variable (R&D
Y

) which equals R&D divided by real value added. Informa-

tion on the distance between two countries is taken from CEPII’s GeoDIST database.16

I use the population-weighted distance measure (in km).17

A detailed description of the variables finally available is provided in Table 1 of the

Appendix.

In my analysis I use data on all 40 WIOD countries, but only on 30 out of 35 industries

and can only cover the period between 1995 and 2007. For the years 2008 and 2009 several

countries provide no data on capital stocks. The industries that are dropped are the Agri-

cultural sector (NACE AtB), the Mining sector (NACE C), the Coke, Refined Petroleum

and Nuclear Fuel industry (NACE 23), the Real Estate Activities industry (NACE 70) and

the Private Households sector (NACE P). These show exceptional production structures

(e.g. has the real estate activities industry an exceptionally high capital input share) or

are only very partially covered and therefore are often neglected in empirical studies. In

addition to those 5 industries, observations are dropped which feature exceptionally high

or low values in my dependent variable, the measure of skill-biased technical change.18

Thus, the final sample covers 40 countries, 30 industries, 13 years (1995 - 2007) and forms

an unbalanced panel of 6381 observations.

4.2 Summary Statistics

Summary statistics for the full sample as well as for two country-subgroups (low- and

high-developed countries) are presented in Table 2. This split into two country groups
15Unfortunately, for several countries and some industries no information on R&D expenditures are

available, such that including this variable as a control variable strongly reduces the number of observa-
tions.

16For a description see Mayer and Zignago (2011).
17The basic idea behind a population-weighted distance measure is to calculate the distance between

two countries based on bilateral distances between the biggest cities of those two countries, where inter-
city distances being weighted by the share of the city in the overall country’s population.

18I keep observations within one standard deviation around the mean growth rate. That is, I keep
observations with an annual growth rate larger than -10 percent and smaller than 20 percent.
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is done to allow studying whether the pattern of skill-biased technology diffusion differs

by development status. Countries are classified as low- or high-developed according to

a simple criterion: the twenty countries having the highest average labor productivity

are defined as high-developed, whereas the remaining countries are classified as lower-

developed.19

The average annual growth rate of the high-skilled labor share (SH) is equal to 2.05

percentage points, indicating that the countries covered by this sample show a steady

shift in demand towards skilled labor. This development takes place both in developed

and lower-developed countries. For high-developed countries this growth rate is equal

to 2.38 percentage points, whereas for low-developed ones it equals 1.69. Skill-biased

technical change, as measured by the growth rate of equation (8), also shows, again for

both country groups, a positive average annual growth rate of 4.75 percent for the full

sample. For lower-developed countries this value is slightly smaller, equal to 3.99 percent,

whereas for high-developed countries it is equal to 5.43 percent.

The distance-to-frontier variables show that for skilled labor, on average, the distance-

to-frontier is larger than for unskilled labor, such that, according to our model, we can

expect technology diffusion to drive technical change towards a higher skill-bias. In line

with what one would expect, the average distance-to-frontier is for both types of labor

lower for high-developed countries than for lower-developed countries.20 The growth rates

of the relative knowledge stocks (AFH/AFL , ADH/ADL , ATH/ATL) are on average all positive, i.e.

they show that at the technological frontier technical change is directed towards relative

skill-enhancing technologies. Their average growth rates range from 5.43 to 7.09 percent,

such that all of them grow faster than the average skill-bias. This indicates again that

there is potential for technology diffusion to cause local skill-biased technical change.

Finally, the summary statistics illustrate that some variables vary quite strongly. E.g.

19High-income countries are: AUS, AUT, BEL, CAN, CYP, DEU, DNK, ESP, FIN, FRA, GBR, GRC,
IRL, ITA, JPN, LUX, MLT, NLD, SWE, USA, whereas low-income countries are: BGR, BRA, CHN,
CZE, EST, HUN, IDN, IND, KOR, LTU, LVA, MEX, POL, PRT, ROU, RUS, SVK, SVN, TUR, TWN.

20The negative values for the distance-to-frontier measures are a consequence of computing the tech-
nological frontier as the geometric mean of the three most productive entities within an industry, such
that the most productive industries might have a slightly negative measure of the distance-to-frontier.
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Figure 2: Distance-to-Frontier and Long-Run Productivity Growth
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(a) High-Skilled Labor
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(b) Low-Skilled Labor
Notes: Both figures display on the x-axis the skill-specific log distance-to-frontier in 1996 of country-industry observations
(ln(AFk96/Aki96)). The y-axis shows the skill-specific productivity growth rate between 1996 and 2007 (ln(Aki07)−ln(Aki96)).
The sample consists of all country-industry observations available in 2007 and 1996.

the growth rates show very large outliers, which is in parts caused by structural breaks

in the underlying data. However, assuming that these breaks are uncorrelated with the

variables of interest, they should not systematically influence the results.

4.3 Graphical Evidence

The scatter plots in Figure 2 provide first evidence on the relationship of skill-specific

technology pool proxies and subsequent skill-specific productivity growth. They show the

relationship between the skill-specific log distance-to-frontier in 1996 and the long-run

skill-specific productivity growth rate (for the period from 1996 to 2007).21 The sample

used for plotting them consists of all observations available in 1996 and 2007. Panel (a)

shows the relationship for high-skilled labor. It reveals a positive relationship between

the distance to the technological frontier and subsequent high-skill-specific productivity

growth. For low-skilled labor, panel (b) provides a similar picture. There is positive

relationship between both variables. These findings can be considered as first suggestive

evidence for the idea of skill-specific technology diffusion.

21The skill-specific log distance-to-frontier equals (ln(AFk96/Aki96)). The long-run skill-specific produc-
tivity growth is computed as: ln(Aki07) − ln(Aki96). The data for 1995 were excluded since for several
country-industry combinations no observations are available for that year.
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5 Empirical Results

In this section I provide estimation results obtained by estimating equation (10), which

models SBTC as a function of the lagged own skill-bias (AH
AL

) and of the various proxies of

the lagged relative knowledge stocks (A
χ
H

AχL
). The results support the idea that skill-biased

technical change diffuses internationally. First, I show results based on using the classical

distance-to-frontier measure (SF ), which enables insights into how the potential to benefit

from external knowledge sources affects internal productivity growth. In a second step, I

apply the three technology pool proxies (SA, SD, ST ), where the latter two proxies allow

identifying channels through which such knowledge diffuses: namely, the bilateral distance

between two countries and the degree of intersectoral linkedness. The overall findings are

robust to a variety of controls, specifications and samples.

5.1 SBTC and the Skill-Specific Distance-to-Frontier

Table 4 contains the results I obtain using the classical distance-to-frontier measure (SF ).

Column 1 and 2 show results based on estimating equation (3) for high-skilled and low-

skilled labor separately. As theory predicts, both columns show a significant negative effect

for the lagged own productivity level. This implies that factor-specific productivity growth

rates decrease the higher the lagged own productivity level, given the productivity level of

the factor-specific technology frontier. In contrast, the variables of interest, the external

factor-specific knowledge stocks, measured by the productivity level of the technological

frontier, show a positive significant coefficient. That is, for a given own productivity level,

an increase in the external technological frontier comes with a subsequent increase in the

domestic factor-specific productivity growth rate. This suggests the presence of factor-

specific technology diffusion. These and the following specifications can also be used to

analyze whether splitting the technology pool proxies Sχ into own productivity levels

and weighted external knowledge stocks is justified, by testing whether γ̃ = −γ̌ holds.

Based on F-tests, in all specifications I can reject the null hypothesis that the regression

coefficients of the two parts of the original technology pool proxies are of the same size,
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i.e. empirically, it is justified not to restrict them to have the same coefficient size and

not to combine the two parts into one variable.

Column 3 combines the models underlying the first two columns by subtracting the

specification concerned with low-skilled labor (column 2) from the one concerned with

high-skilled labor (column 1). The dependent variable now equals the difference of the

two skill-specific productivity growth rates and thus is a measure of skill-biased technical

change. Using this model, I find similar results as before: the coefficients remain significant

but are slightly reduced in size. The low-skilled-specific coefficients change signs, which is

to be expected, since low-skilled productivity growth was subtracted from the high-skilled

one in computing the dependent variable. This model allows comparing the size of the

two coefficients of interest. The high-skilled diffusion parameter equals 0.014, whereas the

low-skilled one equals 0.02. A simple F-test with H0 : γ̃SH = −γ̃SL provides a p-value of

0.5338 such that we cannot reject the equality of the two coefficients. Thus, from column

4 on I restrict the two diffusion parameters to be equal in absolute value which allows

me to combine the two factor-specific knowledge stock proxies into a relative one (as in

equation 4).22

I consider column 4 as my baseline specification. It shows how the skill-bias of the

technological frontier, given the domestic skill-bias, affects subsequent domestic skill-

biased technical change. Using this specification, I find a positive significant effect for the

frontier skill-bias. It indicates that a change in the frontier skill-bias affects the internal

direction of technical change: an increase in the frontier skill-bias comes with higher

skill-biased technical change, a decrease in the frontier skill-bias results in a shift towards

unskilled-biased technical change.

Columns 5 to 8 provide robustness checks for this finding. Column 5 includes the

three control variables outlined before: the capital and the R&D-intensity as well as an

outsourcing proxy. Doing so, reduces the number of observations since the R&D-variable

22Although the coefficients of the two lagged productivity levels AH and AL differ statistically, for
simplification, from here on I assume they are identical in size. Doing so, does not change the main
conclusions.
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is highly unbalanced. Still, I again find a positive significant effect of the frontier-bias.

Among the three control variables only the lagged capital and R&D-intensity variables

are significant. But in contrast to what previous evidence suggests, both coefficients are

negative. This would indicate that a higher lagged capital intensity and a higher lagged

R&D-intensity come with a lower subsequent skill-biased technical change. Again the

coefficient of the variable of interest, the frontier-bias is significant and positive. Column

(6) then uses the baseline frontier proxy but without splitting the distance-to-frontier

measure into two parts. Doing so, I find a strongly significant positive effect. This

specification is most closely in line with the way the technology proxy is modeled by

e.g. Griffith, Redding, and Van Reenen (2004) or Madsen (2014). Column (7) uses

the alternative frontier proxy which is based on the information from the single most

productive industry only. It confirms the results found with the baseline specification.

Finally, column (8) makes use of an alternative frontier proxy which is based on calibrated

productivity terms from the more simple production structure as outlined in footnote (8).

Using it instead of the baseline version, hardly affects the estimates. Again the lagged

own productivity level has a negative effect whereas the frontier-bias has a significantly

positive effect.

Taken together, these results suggest that technical change which affects the skill-bias

of the technical frontier indeed diffuses internationally and thus affects the local rate of

skill-biased technical change. These findings can be seen as first evidence in support of the

existence of factor-biased technology diffusion. These results were obtained using various

measures of the distance-to-frontier. The next section provides first insights on potential

diffusion channels.

5.2 Geographic Distance and Intersectoral Linkages

In this section I describe the results I obtain by applying the alternative technology pool

proxies. Table 5 contains the results, where columns 1 and 2 focus on the average external

skill-bias (SA), columns 3 to 5 use the distance-weighted knowledge stocks (SD), columns
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6 to 8 use the trade-weighted knowledge stocks (ST ) and columns 9 to 11 combine the

distance- and trade-weighted ones. In all specifications the dependent variable is the rate

of SBTC.

Column 1 uses only the lagged own skill-bias and the average external skill-bias. It

shows, as before, a negative significant effect for the own lagged skill-bias and a significant

positive effect for the external knowledge stock. However, adding in column 2 the skill-

bias of the technological frontier, now both technology proxies become insignificant. This

indicates that both, the frontier-bias and the mean-bias proxy contain similar information.

Thus, from here on, I consider only the classical measure of the frontier skill-bias.

In column 3, I introduce the distance-weighted proxy. It is, controlling for the own

lagged skill-bias, positively significant, whereas as before the own lagged skill-bias is nega-

tive and significant. Thus, using the distance-weighted technology pool proxy also brings

supportive evidence for the idea of skill-biased technology diffusion. Before interpreting

the role of bilateral distances for technology diffusion in more detail, a noteworthy feature

of the distance- and trade-weighted proxies has to be discussed. Both, the distance- and

the trade-weighted technology pools (SD and ST ) as defined so far might not capture

the entire role of distance and trade for technology diffusion. The weights used in their

construction are shares of bilateral distances or trade volumes, not levels, such that they

do not reflect the full effect of those levels. It might however be expected that among two

countries which have the same composition of bilateral distances and foreign knowledge

stocks, the one which is on average more closely located to its neighbors will benefit more

from technology diffusion. The same holds true for bilateral trade volumes. To account for

that, inspired by Coe and Helpman (1995), I extend these two specifications by including

an interaction term of (a) the respective technology pool proxy (S̃D or S̃T ) and (b) either

the log of the inverted sum of all bilateral distances of a country to all other countries or

the log of the total trade volume of an industry relative to its real value added. Applying

it in column 4, the specification equals:

∆ ln
(AH
AL

)
it

= γ̌S ln
(AH
AL

)
it−1

+ γ̃S ln S̃Dit−1 + γ̆S ln(D−1
i ) ln S̃Dit−1 + αi + αt + εit, (11)
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where Di =
∑

b 6=i dbi.
23 A positive significant estimate of γ̆S would indicate that the

effect of the distance-weighted knowledge stock is the higher the more closely a country

is located to the remaining countries in the sample.

Indeed, in column 4 both the distance-weighted proxy and the interaction term show

a positive and highly significant coefficient. That is, an increase in the distance-weighted

knowledge stock comes with a higher skill-biased technical change the closer a country is

located to its neighbors. This strengthens the interpretation that the bilateral distance

between two countries is an important mitigating factor for the rate of technology diffu-

sion. The closer two entities are located to each other, ceteris paribus, the more knowledge

will diffuse between them. To facilitate the interpretation of the effect size, it is useful to

compute the marginal effect of a change in the distance-weighted knowledge stock at e.g.

the average log inverted total distance. It is defined as: ∂∆ ln(AH/AL)

∂ ln S̃D
= γ̃S + γ̆S ln(D−1

i )

and is in specification (4) equal to 0.024. That is, a one percent increase of the rela-

tive distance-weighted knowledge stock comes with a 0.024 percentage points increase in

the annual growth rate of the skill-bias. The important role of the bilateral distance for

technology diffusion is corroborated by column 5 which adds the three control variables

(capital intensity, R&D-intensity and outsourcing proxy) as well as the frontier-bias (S̃F ).

Doing so comes with a slight reduction in the marginal effect and an insignificant coef-

ficient for the frontier-bias. This indicates, that the measure of the frontier skill-bias,

controlling for the distance-weighted terms, provides little additional information.

In columns 6 to 8 the same specifications as in the previous three columns are used

but the distance-weighted measures are replaced by the trade-weighted measure. Doing

so, I find similar results which however are less significant with respect to the trade-

weighted measures. In column 6, the trade-weighted measure is insignificant. Adding the

interaction term renders both terms positively significant. However, including in addition

in column 8 the frontier-bias and the control variables comes with an insignificant trade-

weighted proxy again. So, it is not really clear whether trade is a relevant diffusion

23For readability the control variables Xit have been dropped.
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channel. Also, here the coefficient of the frontier-bias remains positive significant and is

not reduced in size (compared to the baseline specification in column 4 of Table 4). Thus,

so far, measuring intersectoral linkages by bilateral trade volumes, they seem to have a

minor role in explaining skill-biased technology diffusion.

To get more insights on the role of intersectoral linkages and bilateral distances, spec-

ifications (9) to (11) combine both types of measures. In column 9, where no additional

control variables are included, I again find a highly significant impact of distance on

technology diffusion, whereas the trade-related variables and the frontier measure are in-

significant. Again, this suggests that trade, controlling for bilateral distance, has at least

not a very important role in explaining skill-biased technology diffusion. This finding,

however should be interpreted with care. There are several ways in modeling bilateral

trade, e.g. yet I am only using input-output linkages with industries of the own type.

Perhaps, including input-output linkages with other sectors and thus allowing for tech-

nology diffusion from other types of industries would change these findings. Also, as

columns 10 and 11 suggest, there might be heterogeneity with respect to the relevance

of certain diffusion channels. As discussed before, the development status could matter

for the rate of skill-biased technology diffusion due to differences in absorptive capacities.

For low-developed countries (column 10) I find no significant effect of the trade-weighted

knowledge stocks, but for high-developed countries (column 11) there is a positive sig-

nificant effect. The measures capturing the role of distance as before are positive and

significant in both specifications, that is for both high- and low-developed countries. The

frontier measure is insignificant in both specifications. This suggests that the bilateral

distance between countries is a very important mediating factor affecting the rate of skill-

biased technology diffusion, whose role in parts, at least for developed countries, might

be explained by intersectoral linkages. Given these findings, from here on I concentrate

on the distance-weighted measure and test the robustness of the results obtained with it

by using alternative samples and specifications.

22



5.3 Quantification

To understand the economic significance of the results obtained one can compute the

average contribution of skill-biased technology diffusion to annual skill-biased technical

change. Using the coefficient of ln(AFH/A
F
L) from the baseline specification (column 4 of

Table 4), which describes the effect of the frontier-bias on skill-biased technical change

and which equals 0.018, for the average country the contribution of skill-biased technology

diffusion to skill-biased technical change equals 0.94 percentage points. This represents

around 20% of annual skill-biased technical change.24 Using instead the obtained esti-

mates from the main distance-weighted specification (column 4, Table 5), the contribution

is equal to around 11% of the average annual rate of skill-biased technical change. Thus,

both results show that skill-biased technology diffusion is an economically important force

behind skill-biased technical change over the period 1995 to 2007.

As to be seen in Table 6, in both higher- and lower-developed countries the external

distance-weighted knowledge stocks show a significant coefficient, which however is larger

for high-developed countries. For the average lower-developed country the coefficient

suggests an average annual contribution to skill-biased technical change of around 6%

(16% according to the specification using the frontier-bias). For high-developed countries

this share is around 17% (27%), which indicates that in higher-developed countries skill-

biased technology diffusion contributes more to skill-biased technical change than in lower-

developed countries. This result is driven by the higher coefficient estimate for high-

developed countries, which suggests a higher diffusion rate. It overcompensates the effect

of a higher diffusion potential, i.e. a higher distance-to-frontier and a lower rate of skill-

biased technical change in lower-developed countries.

In total these results show the economic significance of skill-biased technology diffusion

in explaining skill-biased technical change.

24This value is computed as: 0.018 times the difference of the mean values of ln(AFH/A
F
L) and

ln(AH/AL) divided by the mean value of ∆ ln(AFH/A
F
L).
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5.4 Robustness Checks

In this subsection I consider the robustness of the results to the following concerns: (1)

parameter heterogeneity as well as (2) validity of the statistical assumptions and the

functional forms.

5.4.1 Parameter Heterogeneity

Among the assumptions used the most restrictive one is probably that of homogeneous

estimation coefficients across development levels, regions and sectors. In the following, I

relax these assumptions.

Table 6 reports the results from specifications where I allow for more parameter het-

erogeneity. Columns 1 and 2 split the sample into low- and high-developed countries

(using again the simple productivity criterion as in section 5.2). For both samples both

the distance-weighted external knowledge stock and the interaction term with the log

inverted sum of bilateral distances are positively significant. Thus, for both an increase

in the distance-weighted knowledge stock comes with an increase in the domestic rate of

skill-biased technical change, which is the stronger the more closely these external coun-

tries are located to each other. Although the coefficients for the low-developed country

group are larger than those for the high-developed countries, the marginal effect of change

in the distance-weighted knowledge stock for the high-developed countries is, at least at

the mean bilateral distance, bigger than that for the lower developed countries. For the

low-developed countries an increase of the distance-weighted external skill-bias by one

percent comes with an increase of the local skill-biased technical change growth rate of

0.018 percentage points. For high-developed countries this value is equal to 0.036 per-

centage points. Finding a larger effect for more developed countries is in line with the

literature studying the role of absorptive capacities. This literature shows that the ability

to absorb external knowledge increases with the ability to understand external knowledge.

Columns 3 and 4 provide results where countries are spilt into EU and non-EU coun-

tries. One concern could be that the results are driven by common unobserved insti-
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tutional developments, which could affect both the external skill-bias and the rate of

skill-biased technical change in these countries in a nonlinear way.25 Since the EU fea-

tures common institutional developments, it is interesting to see whether the results are

robust in less homogeneous country groups such as the non-EU countries. And indeed,

for both country groups I find highly significant results, which shows that the findings

hold for both, homogeneous and heterogeneous country groups in terms of institutional

settings.

Finally, columns 5 and 6 compare the properties of skill-biased technology diffusion

for manufacturing and service industries. For both the manufacturing and the service

sector I find a positive significant effect of external knowledge stocks on local skill-biased

technical change.

5.4.2 Alternative Specifications

Table 7 provides several checks in order to test the robustness of the main findings with

respect to alternative statistical assumptions and functional forms.

The baseline specification allows for clustering of observations at the country level.

In column 1, however, I allow for clustering of observations at the industry level, since

it is not certain at beforehand which form of cross-sectional correlation, within countries

or within industries, is stronger. Doing so, does not change the previous findings. Both,

the distance-weighted knowledge stock and the interaction term become even more sta-

tistically significant. Clustering at the industry level decreases the obtained standard

errors.

Another concern is related to heteroscedasticity. Smaller industries might be measured

less accurately, which could induce heteroscedasticity. To avoid this, I weight in a second

specification observations using the average country-industry specific real value added. It

has no large effect. The size of the coefficients changes slightly, but the overall findings

remain unchanged.

25Keep in mind that linear unobserved country-industry specific trends in skill-biased technical change
pose no identification problem to my estimation since my dependent variable is the growth rate of skill-bias
technical change and I control for country-industry fixed-effects.
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Furthermore, the effect of the foreign knowledge stocks on domestic skill-biased techni-

cal change might be overestimated due to common factors, such as common institutional

changes, driving both the external skill-bias and the subsequent domestic SBTC. To tackle

this issue, I employ two approaches: (1) I make use of a alternative lag-structure and (2) I

control for more potential source of common factors. In the first case, I study whether us-

ing explanatory variables lagged two periods instead of only one period affects the results.

This is not the case, the results are both from their size as well as of their significance level

comparable to the previous findings. For the second approach, to control for more poten-

tial source of common factors, in column 4 I include in addition to the country-industry

fixed-effects country-year and industry-year fixed-effects. Doing so, however again does

not change the results very much and does not reduce the coefficient size of the distance

related variables. Moreover, with this specification, the marginal effect at the mean of the

log inverted total distance is equal to 0.053, which is largest value of all specifications.26

I also examine the sensitivity of the results to alternative functional forms. E.g.

Kneller (2005) assumes that the current productivity level is a function of the current

frontier-productivity level. Inspired by this, in column 5 the dependent variable is the

current skill-bias and as explanatory variables are included the current distance-weighted

knowledge stock as well as the interaction of the current distance-weighted knowledge

stock and the log inverted sum of bilateral distances. Controlling again for country-

and industry-year fixed-effects, both distance-related variables are positive significant.

Interestingly, however, here the marginal effect is strongly negative, equal to -0.266.

Finally, a last robustness check (column 7) uses equation (5) as functional form, where

the dependent variable is the growth rate of the relative skill-demand. This illustrates

the effect of skill-biased technology diffusion on the changing skill demand. Again, with

this specification, I find a positive significant effect for both distance-related variables.

26In this specification as well as in column 5 the frontier-bias is dropped since it varies quasi only by
year within an industry, such that its effect is picked up by the industry-year dummies.
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6 Conclusion

While for neutral technical change the existence of technology diffusion has been shown

extensively, hardly any empirical evidence for diffusion of non-neutral technical change,

such as skill-biased technical change, exists. At the same time, existing empirical work ex-

plaining within-industry skill-biased technical change cannot fully explain the relative rise

in skill demand. This paper studies the question whether skill-biased technical change dif-

fuses internationally and in this way explains parts of the rising skill demand in other, less

productive, countries and industries. Based on a framework that combines the canonical

SBTC model with central elements of the standard models used to study factor-neutral

technology diffusion, it provides empirical evidence that supports the presence of skill-

biased technology diffusion. It shows that skill-biased technology diffusion is statistically

and economically important in explaining skill-biased technical change. Skill-biased tech-

nology diffusion explains around 10 to 20 percent of the annual rate of SBTC. Countries

further away from the skill-specific technological frontier subsequently see higher skill-

specific productivity growth. For that, the bilateral distance between two countries proves

to be an important mediating factor. The closer two countries are located to each other,

the higher is the diffusion rate. In parts, this might be explained by intersectoral link-

ages. The more strongly two industries are linked via bilateral trade, the more knowledge

seems to diffuse between them. The main results hold for both, developed and emerging

countries. The findings are obtained using new sectoral (input-output) data for a panel of

40 emerging and developed countries, 30 industries and up to 13 years (1995-2007). The

results are robust towards (1) controlling for the capital- and R&D-intensity, outsourc-

ing as well as country-industry and time fixed effects, (2) the use of various technology

pool proxies, (3) parameter heterogeneity with respect to economic sectors, regions and

development status as well as (4) functional specifications.

Although this study might be an important step in analyzing the existence of skill-

biased technology diffusion, there are several limitations. To identify a truly causal effect

of skill-biased technology diffusion, additional evidence making use of instrumental vari-
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ables would be necessary. So far, the findings have to interpreted as conditional correla-

tions. Future research could extend the approach by allowing for factor-specific diffusion

rates, i.e. by not restricting the diffusion rates of skilled and unskilled labor to be identical

in size. They could differ due to absorptive capacities or because of directed technology

adoption (Gancia and Zilibotti 2009). In addition, future research could strive for evi-

dence on factor-biased technology diffusion with respect to alternative production factors

(such as e.g. capital vs. labor or energy- vs. non-energy inputs).
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8 Appendix

8.1 Data Appendix

Description of the WIOD (taken from Timmer et al., 2014)

In WIOD three types of workers are identified on the basis of educational attainment

levels as defined in the International Standard Classification of Education (ISCED): low

skilled (ISCED categories 1 and 2), medium skilled (ISCED 3 and 4) and high skilled

(ISCED 5 and 6). This roughly corresponds to: below secondary schooling; secondary

schooling and above, including professional qualifications, but below college degree; and

college degree and above. For most advanced countries this data is constructed by ex-

tending and updating the EU KLEMS database using the methodologies, data sources

and concepts described in O’Mahony and Timmer (2009). For other countries additional

data has been collected according to the same principles, mainly from national labor force

surveys, supplemented by household survey for relative wages. Numbers of workers in-

clude employees, self-employed and family workers. Prices for labor refer to wages and

additional non-wage benefits, with an imputation for self-employed income. Capital in-

come is derived as gross value added minus labor income as defined above. It is the gross

compensation for capital, including profits and depreciation allowances. Being a resid-

ual measure it is the remuneration for capital in the broadest sense, including tangible

capital, intangible capital (such as R&D, software, database development, branding and

organization capital), mineral resources, land and financial capital.

33



Table 1: Variable Description and Units of Measurement

Variable Description and Unit of Measurement

Factor Quantities and Output
H High-skilled labor services in hours worked by persons engaged
L Low-skilled labor services in hours worked by persons engaged
K Capital services in real 2005 US dollar
Y Value added in real 2005 US dollar

Factor Prices
wH High-skilled labor service wage in real 2005 US dollar per hour worked
wL Low-skilled labor service wage in real 2005 US dollar per hour worked

Factor Shares
SH Share of high-skilled labor compensation

Skill-Specific Productivity Terms (k ∈ H,L)
Ak Skill-specific productivity level
Ãk Alternative skill-specific productivity level
AFk Skill-specific technological frontier by industry (mean of 3 most productive countries)
AF1
k Alternative skill-specific technological frontier by industry (highest productivity level)

AAk Average skill-specific productivity
ADk Distance-weighted mean skill-specific productivity
ATk Trade-weighted mean skill-specific productivity
D Population-weighted bilateral distance (in km)
T Intersectoral trade volume (import + export) in real 2005 US dollar

Additional Control Variables
R&D R&D expenditures by main activity in PPP adjusted 2005 US dollar
OSn Outsourcing share (narrow definition)
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8.2 Tables

Table 2: Summary Statistics - All Countries and Industries (1995 - 2007)

All Countries Low High

mean sd p1 p50 p99 mean mean

∆ ln(SH) 2.05 3.36 -6.24 1.39 11.41 1.69 2.38
∆ ln(AH/AL) 4.75 7.37 -9.45 3.95 19.61 3.99 5.43
ln(AH/AL) -1.67 1.82 -6.24 -1.92 3.40 -1.70 -1.64
ln(AFH/AH) 2.13 1.67 -0.37 1.88 7.90 3.06 1.29
ln(AFL/AL) 1.61 1.24 -0.21 1.45 4.98 2.55 0.76
∆ ln(AFH/A

F
L ) 7.09 16.24 -42.72 6.36 51.33 7.02 7.15

ln(AFH/A
F
L ) -1.15 1.05 -2.97 -1.43 1.46 -1.19 -1.10

∆ ln(ADH/A
D
L ) 5.92 13.48 -38.61 6.08 42.76 5.72 6.11

ln(ADH/A
D
L ) -1.45 1.20 -3.46 -1.85 2.21 -1.50 -1.41

ln(D−1) -12.21 0.46 -13.22 -11.93 -11.79 -12.30 -12.13
∆ ln(ATH/A

T
L) 5.43 18.04 -50.27 5.80 58.54 5.08 5.75

ln(ATH/A
T
L) 0.11 0.51 -1.11 0.11 1.51 0.11 0.11

ln(T/Y ) -17.69 2.88 -24.75 -17.06 -13.27 -17.72 -17.66
ln K

Y -13.33 0.75 -15.09 -13.30 -11.73 -13.24 -13.42
lnOSn -4.89 2.68 -11.25 -4.24 -0.91 -5.05 -4.75
Observations 6368 3024 3344
Notes: Growth rates are measured as annual growth times one hundred, i.e. they are denoted in percentage
points. The sample differs from the estimation sample by 13 observations since these get lost in computing
growth rates of variables, which are not used in estimation but are used for the table. Low indicates that the
sample of less productive countries is used, whereas High indicates the use of the high-developed country
sample.
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Table 3: Top- and Worst-Peformer by Industry (1995 - 2007)

AH AL

1st 2nd 39th 40th 1st 2nd 39th 40th

15t16 GBR USA IND CHN CAN IRL BGR IND
17t18 GBR DEU IND CHN DNK GBR RUS IND
19 GBR DEU BGR CHN GBR ITA IDN IND
20 GBR NLD IND CHN CAN GBR IDN IND
21t22 IRL GBR IND CHN IRL AUS BRA IND
24 IRL USA ROU CHN IRL SWE RUS IND
25 GBR FIN IDN CHN DNK CAN IDN IND
26 GBR FIN IND CHN CAN AUT IDN IND
27t28 GBR DEU ROU CHN CAN LUX IDN IND
29 GBR DEU ROU CHN NLD BEL RUS IND
30t33 FIN GBR ROU CHN IDN FIN RUS IND
34t35 DEU USA ROU CHN IDN CAN RUS IND
36t37 GBR DEU IND CHN GBR CAN CHN IND
50 USA FRA IND CAN BEL SWE KOR IND
51 IRL JPN CHN IDN IRL NLD KOR IDN
52 USA FIN IDN CHN SWE DNK IND CHN
60 IRL FRA IDN CHN ITA DNK IND IDN
61 FRA CYP RUS IDN GRC FRA MEX IDN
62 CYP ESP BGR POL JPN GRC POL HUN
63 CYP LTU CHN IDN ROU BEL KOR IDN
64 IRL ESP CHN ITA BRA BEL HUN CHN
71t74 GBR TUR IND CHN SWE GBR KOR IND
E GBR BRA RUS CHN AUS GBR SVN IND
F KOR DEU IND CHN IRL GBR IND CHN
H CYP USA IND CHN ESP DNK BRA IND
J IRL BRA ROU CHN DNK LUX ROU IND
L TWN AUS IDN CHN BEL ITA IND IDN
M NLD ESP CHN IDN BEL CAN LTU TWN
N ESP ITA IDN CHN BEL SWE IND IDN
O USA NLD IND CHN SWE BEL IND CHN

Notes: 1st indicates that a country has on average in this industry the highest skill-specific productivity
level.
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Table 4: Skill-Specific Distance-to-Frontier and Skill-Biased Technical Change

∆ lnAH ∆ lnAL ∆ ln(AH/AL) ∆ ln(ÃH/ÃL)

(1) (2) (3) (4) (5) (6) (7) (8)

lnAHt−1 -0.111∗∗∗ -0.041∗∗∗
(0.020) (0.009)

lnAFHt−1 0.027∗ 0.014∗
(0.014) (0.008)

lnALt−1 -0.177∗∗∗ 0.057∗∗∗
(0.019) (0.010)

lnAFLt−1 0.030∗∗ -0.020∗∗∗
(0.015) (0.007)

ln(AH/AL)t−1 -0.045∗∗∗ -0.053∗∗∗ -0.053∗∗∗
(0.009) (0.014) (0.014)

ln(AFH/A
F
L)t−1 0.018∗∗∗ 0.017∗∗

(0.006) (0.006)
ln(

AFH/AH
AFL/AL

)t−1 0.040∗∗∗

(0.009)
ln(AF1

H /AF1
L )t−1 0.007∗∗

(0.003)
ln(ÃH/ÃL)t−1 -0.053∗∗∗

(0.014)
ln(ÃFH/Ã

F
L)t−1 0.016∗

(0.009)
ln K

Y t−1 -0.034∗∗ -0.032∗ -0.035∗∗ -0.035∗∗

(0.015) (0.016) (0.015) (0.015)
ln R&D

Y t−1 -0.004∗ -0.003 -0.004∗ -0.004∗

(0.002) (0.002) (0.002) (0.002)
lnOSnt−1 0.006 0.006 0.006 0.006

(0.004) (0.004) (0.004) (0.004)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes Yes Yes Yes

H0 : γ̃ = −γ̌ 0.000 0.000 0.021 / 0.004 0.020 0.017 0.004 0.015
Adjusted R2 0.067 0.110 0.056 0.054 0.069 0.063 0.068 0.068
Observations 6381 6381 6381 6381 3785 3785 3785 3785

Notes: Clustered standard errors (by country) in parentheses; ***, **, * significantly different from 0 at the 1%, 5%, and 10%
levels, respectively; Annual data, 1995-2007, for 30 industries and 40 countries; All regressions include a full set of year dummies
and a full set of country-industry interactions (within-group estimators); H0 : γ̃ = −γ̌ provides the p-value of a F-test which tests
whether γ̃ = −γ̌.

37



Table 5: Distance and Intersectoral Linkages

Average Skill-Bias Distance Intersectoral Linkages Distance & Linkages

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

ln(AH/AL)t−1 -0.044∗∗∗ -0.045∗∗∗ -0.045∗∗∗ -0.046∗∗∗ -0.054∗∗∗ -0.044∗∗∗ -0.045∗∗∗ -0.054∗∗∗ -0.047∗∗∗ -0.028∗∗ -0.070∗∗∗
(0.009) (0.009) (0.009) (0.008) (0.012) (0.009) (0.009) (0.014) (0.009) (0.011) (0.011)

ln(AFH/A
F
L)t−1 0.011 0.007 0.017∗∗ 0.008 0.009 0.006

(0.009) (0.009) (0.006) (0.008) (0.010) (0.009)
ln(ADH/A

D
L )t−1 0.027∗∗ 0.818∗∗∗ 0.947∗∗∗ 0.792∗∗∗ 1.087∗∗∗ 0.576∗∗∗

(0.010) (0.169) (0.246) (0.175) (0.295) (0.159)
ln(D−1)× ln(ADH/A

D
L )t−1 0.065∗∗∗ 0.076∗∗∗ 0.063∗∗∗ 0.088∗∗∗ 0.045∗∗∗

(0.014) (0.020) (0.015) (0.024) (0.014)
ln(ATH/A

T
L)t−1 0.009 0.089∗∗ 0.065 0.035 0.006 0.070∗∗

(0.007) (0.038) (0.046) (0.037) (0.059) (0.030)
ln( TY )× ln(ATH/A

T
L)t−1 0.005∗∗ 0.004∗ 0.002 0.001 0.004∗

(0.002) (0.003) (0.002) (0.003) (0.002)
ln(AAH/A

A
L)t−1 0.025∗∗ 0.013

(0.010) (0.014)
ln K

Y t−1 -0.021∗ -0.034∗∗

(0.012) (0.015)
ln R&D

Y t−1 -0.003 -0.004∗

(0.002) (0.002)
lnOSnt−1 0.004 0.006

(0.003) (0.004)
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sample All All All All All All All All All Low High

ME 0.024 0.021 0.002 -0.011 0.017 0.008 0.027
H0 : γ̃ = −γ̌ 0.140 0.056 0.165 0.003
Adjusted R2 0.05 0.05 0.05 0.07 0.09 0.05 0.05 0.07 0.07 0.09 0.10
Observations 6381 6381 6381 6381 3785 6370 6370 3785 6370 3026 3344

Notes: Clustered standard errors (by country) in parentheses; ***, **, * significantly different from 0 at the 1%, 5%, and 10% levels, respectively; Annual data, 1995-2007, for 30
industries and 40 countries; All regressions include a full set of year dummies and a full set of country-industry interactions (within-group estimators); The dependent variable is
∆ ln(AH/AL); Sample indicates use of: full sample (All), low-developed country sample (Low) or high-developed country sample (High); ME provides the marginal effect of either a
change in ln(AdH/A

d
L)t−1 or in ln(ATH/A

T
L)t−1 at the mean of either ln(D−1) or ln( T

Y
); H0 : γ̃ = −γ̌ provides the p-value of a F-test which tests whether γ̃ = −γ̌.
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Table 6: Heterogeneity in Distance-Weighted Results

Development Status Region Sector

Low High Non-EU EU Manu. Serv.

ln(AH/AL)t−1 -0.028∗∗ -0.069∗∗∗ -0.050∗∗∗ -0.046∗∗∗ -0.056∗∗∗ -0.039∗∗∗
(0.011) (0.011) (0.012) (0.012) (0.014) (0.010)

ln(ADH/A
D
L )t−1 1.101∗∗∗ 0.630∗∗∗ 0.557∗∗∗ 4.787∗∗∗ 0.851∗∗∗ 0.791∗∗∗

(0.282) (0.164) (0.182) (1.587) (0.231) (0.263)
ln(D−1)× ln(ADH/A

D
L )t−1 0.088∗∗∗ 0.049∗∗∗ 0.044∗∗ 0.400∗∗∗ 0.067∗∗∗ 0.065∗∗∗

(0.023) (0.014) (0.015) (0.134) (0.019) (0.022)
Year FE Yes Yes Yes Yes Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes Yes

ME 0.013 0.041 -0.000 0.038 0.038 0.002
Adjusted R2 0.09 0.10 0.11 0.07 0.10 0.06
Observations 3037 3344 2769 3612 2770 3425

Notes: Clustered standard errors (by country) in parentheses; ***, **, * significantly different from 0 at the 1%, 5%, and 10% levels,
respectively; Annual data, 1995-2007, for 30 industries and 40 countries; All regressions include a full set of year dummies and
a full set of country-industry interactions (within-group estimators); The dependent variable is ∆ ln(AH/AL); ME provides the
marginal effect of a change in ln(AdH/A

d
L)t−1 at the mean of ln(D−1); Low indicates that the sample of less productive countries is

used, whereas High indicates the use of the high-developed country sample; EU indicates that only EU-countries are used, whereas
Non − EU indicates that only non-EU countries are used; MANU indicates manufacturing industries, whereas SERV indicates
service industries.
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Table 7: Alternative Distance-Weighted Results

∆ ln(AH/AL) ln(AH/AL) ∆ ln(ÃH/ÃL) ∆ ln(H/L)

(1) (2) (3) (4) (5) (6) (7)

ln(AH/AL)t−1 -0.046∗∗∗ -0.063∗∗∗ -0.047∗∗∗ -0.025∗∗∗
(0.005) (0.010) (0.011) (0.007)

ln(ADH/A
D
L )t−1 0.815∗∗∗ 0.665∗∗∗ 0.698∗∗∗ 0.750∗∗∗

(0.076) (0.199) (0.241) (0.211)
ln(D−1)× ln(ADH/A

D
L )t−1 0.066∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.063∗∗∗

(0.006) (0.018) (0.019) (0.017)
ln(AH/AL)t−2 -0.042∗∗∗

(0.010)
ln(ADH/A

D
L )t−2 0.870∗∗∗

(0.201)
ln(D−1)× ln(ADH/A

D
L )t−2 0.069∗∗∗

(0.017)
ln(ADH/A

D
L )t 3.968∗∗

(1.768)
ln(D−1)× ln(ADH/A

D
L )t 0.347∗∗

(0.144)
ln(ÃH/ÃL)t−1 -0.047∗∗∗

(0.008)
ln(ÃDH/Ã

D
L )t−1 0.896∗∗∗

(0.179)
ln(D−1)× ln(ÃDH/Ã

D
L )t−1 0.072∗∗∗

(0.015)
Year FE Yes Yes Yes No No Yes Yes
Country-Industry FE Yes Yes Yes Yes Yes Yes Yes
Country-Year FE No No No Yes Yes No No
Industry-Year FE No No No Yes Yes No No
Frontier-Bias Yes Yes Yes No No Yes Yes

ME 0.014 0.024 0.022 0.053 -0.266 0.017 -0.014
Adjusted R2 0.07 0.10 0.07 0.36 0.71 0.07 0.07
Observations 6381 6381 5552 6381 6381 6381 6381
Notes: Clustered standard errors (by country) in parentheses; ***, **, * significantly different from 0 at the 1%, 5%, and 10%
levels, respectively; Frontier−Bias indicates whether the frontier-bias proxy was included; (1) provides clustered standard errors
(by industry); In (2) observations are weighted using average real value added; in (3) the right-hand side variables are lagged two
periods; (4) includes country- and industry-year fixed effects; In (5) the right-hand side variables are not lagged; In (6) alternative
productivity term values Ãj are employed; In (7) the dependent variable is the growth rate of relative skill demand ∆ ln(XH/XL);
Annual data, 1995-2007, for 30 industries and 40 countries; All regressions include a full set of year dummies (except of specifications
4 and 5) and a full set of country-industry interactions (within-group estimators); ME provides the marginal effect of a change in
ln(AdH/A

d
L)t−1 at the mean of ln(D−1).
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