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Observing Each Other’s Observations in a

Bayesian Coordination Game

Dominik Grafenhofer, Wolfgang Kuhle1

Abstract: We study a Bayesian coordination game where agents receive private infor-

mation on the game’s payoff structure. In addition, agents receive private signals that

inform them of each other’s private information. We show that once agents possess these

different types of information, there exists a coordination game in the evaluation of this

information. Even though the precisions of both signal types is exogenous, the precision

with which agents forecast each other’s actions in equilibrium turns out to be endogenous.

As a consequence, there exist multiple equilibria which differ with regard to the way that

agents weight their private information to forecast each other’s actions. Finally, even

though all players’ signals are of identical quality, it turns out that efficient equilibria are

asymmetric.

Keywords: Coordination Games, Equilibrium Selection, Primary Signals, Sec-

ondary Signals

This version: November 27, 2015

1 Introduction

Games with strategic complementarities give players a strong incentive to choose mutually

consistent strategies. In reality such choices are often complicated by the fact that players

know neither the game’s exact payoffs nor the other player’s actions. In such environments

player’s have to rely on different “pieces” of private information to predict the other

player’s actions and thus their own payoffs from playing a particular strategy. That is,

players try to sense whether and to which extend the other player may be “leaning”

towards a particular action or that the other player might “misunderstand” the game, or,

respectively, may be under the “wrong impression” as to the situation.

1Both authors: Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10,

53113 Bonn, Germany. We thank Martin Hellwig for comments and for spotting an error. We also

received helpful comments and questions from Brian Cooper, Alia Gizatulina, Olga Gorelkina, Alexander

Morell, seminar participants in Bonn and Naples, the 2015 Game Theory Conference in Stony Brook, the

UECE Lisbon Meetings in Game Theory and Applications 2015, and the EEA conference in Mannheim.
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The current paper studies how players use diverse pieces of private information in

coordination games. Players receive two types of private information: (i) a “primary

signal” that informs them of the game’s payoff structure and (ii) a new “secondary signal”

that informs players of each other’s private beliefs over the games payoff structure. The

“secondary” signal models one player’s information about the other player’s beliefs, biases,

optimism, and “wrong impressions” concerning the game. The key prediction of our

model is that such heterogeneous pieces of information induce a coordination game in the

evaluation of this information. As a consequence, there emerge multiple equilibria which

differ in the agents’ weighting of different pieces of their private information in order to

forecast each other’s actions. Even though all players’ signals are of identical quality, it

turns out that efficient equilibria are asymmetric.

Our model is similar to the ones developed by Rubinstein (1989) and Carlsson and

van Damme (1993), where players rely on what we call primary signals to forecast each

other’s actions. That is, players receive a signal regarding the game’s payoffs, which they

use to update their beliefs regarding the game’s coefficients. Moreover, knowing that the

other agent’s signal is correlated with their own, they use their signal to infer the other

player’s posterior beliefs. In the present paper we argue that players often know more

than that. Players may observe directly parts of the other player’s observation. That is, in

the context of the coordinated attack interpretation of the Rubinstein (1989) “electronic

mail game”, the general may observe that his messenger is off to a “good start”. Thus, the

chances that he eventually arrives at the other camp are better than usual. The sender

of the “primary message” knows that the other player most likely received a message

indicating that a particular game was chosen. While he cannot be sure whether it was his

messenger or someone else, this observation induces him to revise upward the probability

with which the other general received the news. On the other hand, if the sender sees that

the messenger is off to a bad start, then he knows that it is less likely that the message

will reach its receiver.

The current analysis suggests that such signal environments give rise to two classes

of equilibria: (i) symmetric equilibria and (ii) asymmetric equilibria. The distinguishing

feature of a symmetric equilibrium will be that agents weight their two signal types equally.

In an asymmetric equilibrium one agent leans heavily on the secondary signal, while the

other agent has an incentive to lean heavily on his primary signal and vice versa. The

key feature is therefore that the two signals are “cross complements”. That is, if one

player relies heavily on his secondary signal, then the other player has an incentive to rely
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on his primary signal. Such an asymmetric weighting of private signals enables agents

to maximize the precision with which they can forecast each other’s actions. Finally, to

emphasize the importance of the class of asymmetric equilibria, we show that asymmetric

equilibria dominate symmetric equilibria on efficiency grounds.

Related Literature: The main contribution of the present paper is the introduction of a

new class of private signals. Compared to the literature, we note that Rubinstein (1989),

Carlsson and van Damme (1993), and Frankel et al. (2003) have studied two-action co-

ordination games, where agents receive what we call primary signals that allow them to

make inference on the game’s unknown coefficients.2 Moreover, through the correlation of

private information agents can reason about each other’s posteriors and actions. Regard-

ing equilibrium selection these studies predict that equilibria are symmetric and unique

once private signals are sufficiently precise. The present example shows that the existence

of secondary private signals can invert this finding: multiple equilibria, symmetric and

asymmetric, are ensured once the private signals are sufficiently precise.

Regarding different types of signals, Morris and Shin (2004), Hellwig (2002), Metz

(2002), and Angeletos and Werning (2006) emphasize the role of public signals and com-

mon priors in the global games framework, showing that such signals restore equilibrium

multiplicity if public signals are sufficiently precise compared to the private signal; we give

an example where multiplicity arises in pure private signal environments. A further class

of signals was introduced by Minelli and Polemarchakis (2003), Angeletos and Werning

(2006), and Dasgupta (2007), who study environments where agents observe each other’s

actions. Such signals tend to induce unique equilibria in the two-player games of Minelli

and Polemarchakis (2003), where signals over each other’s actions are perfectly revealing.

Angeletos and Werning (2006), and Dasgupta (2007) study public signals that partially

reveal the other players’ actions. They show that multiplicity will emerge if the public

signal is of high quality. Kuhle (2015) studies the role of heterogenous priors and gives an

example where the public signal’s quality reduces the number of equilibria. Rubinstein

(1989) points out that equilibrium multiplicity reemerges once there is a technical upper

bound for the number of exchanged messages. Similarly, multiplicity also obtains in the

model of Binmore and Samuelson (2001), where agents can decide whether or not to send

2See Frankel et al. (2003) for a broad literature overview on equilibrium selection through what we

call primary signals. Carlsson and van Damme (1993), pp. 1008-1010, and Morris and Shin (2007) for a

detailed comparison of their “global games”, which rely on continuous distributions, with the “electronic

mail game” and its discrete information structure.
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electronic messages which are costly. The equilibria in the aforementioned models are

always symmetric while the current study shows the existence of asymmetric equilibria.

In an alternative interpretation, following Monderer and Samet (1989) and Hellwig

(2002), the previously mentioned papers study how different signal structures give rise to

different levels of common p-beliefs among players. In this interpretation, we show that the

new signal type introduced here allows agents to reach levels of common p-beliefs which are

sufficiently high such that they can coordinate on multiple equilibria. That is, the current

analysis suggests that coordination games have multiple equilibria if the environment is

such that players can observe each other’s biases. Moreover, we demonstrate that the way

in which players evaluate their information is itself an equilibrium outcome.

The paper is organized as follows. Section 2 outlines our electronic mail game. In

Section 2.1, we recall the uniqueness result for the modified game without secondary

signals. Section 3 contains the main result. Sections 5 concludes.

2 A symmetric electronic mail game

There are two players 1 and 2. Each has two actions A and B to choose from. There is

uncertainty about which game Ga or Gb the two players are going to play. Games a and

b differ regarding their payoffs. Nature selects game a with probability 1− p and game b

with probability p < 1
2
. The game’s payoffs are:

Game Ga

A B

A M,M 0,−L
B −L, 0 0, 0

Game Gb

A B

A 0, 0 0,−L
B −L, 0 M,M

Moreover, we assume L > M > 0. Hence, players face a coordination problem in both

states of the world: if players coordinate on actions A (B) in state a (b), they receive M

each, while coordination on B (A) yields 0 to both players. However, if players fail to

coordinate, i.e. choose different actions, then the player who plays B receives −L, and the

payoff for playing A is 0. Players receive private information on the game’s fundamental

before they choose an action. The probability p, the payoff structure, and the forthcoming

communication protocol are common knowledge among players.

Before players choose action A or B, they receive information T1 and T2 respectively:

In state a, both players get information T1 = T2 = 0. In state b one player’s computer is

randomly selected with probability 1
2
. In turn, this computer sends a message to the other
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player’s computer. This message, however, is lost with probability ε. Upon receiving a

message this computer sends a confirmation back which is also lost with probability ε.

These messages are exchanged until finally one message is lost, and communication ends.

Players 1 and 2 now choose their actions based on the number of messages T1 and T2

that their computers have sent. This means in particular that both players do not know

whose computer send the first message when they choose actions. This departure from

the original Rubinstein (1989) game makes the game fully symmetric.3 In Appendix D we

derive our main result for the original asymmetric Rubinstein (1989) game, where Player

1 is informed of the state of nature with probability 1.

2.1 Rubinstein’s Equilibrium

Before turning to our main findings, we restate the uniqueness result of Rubinstein (1989)

for our symmetric mail game.

Proposition 1. There exists only one equilibrium in which player 1 plays A in the state

of nature a. In this equilibrium, both players play A, irrespective of the number of sent

messages T1 and T2.

Proof. See Appendix A for the proof via induction.

Proposition 1 recalls the inductive equilibrium selection mechanism that operates

through higher-order beliefs: If player 1 plays A for T1 = 0, then player 2 also plays

A for T2 = 0, and this induces both players to always play A when Ti > 0, i = 1, 2. That

is, both players continue to play (A,A) despite the fact that their signals inform them

that game b was selected, i.e., that playing (B,B) would be payoff-dominant.

Throughout the paper, we study the class of equilibria in which player 1 plays A in

the state of nature a.

3That is, the game would be asymmetric if one player knew that he was the first to send a message

as is the case in Rubinstein (1989). We make the current assumption to bring out the nature of the

asymmetric equilibria more clearly.
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3 Observing each other’s observations

Let us now add a secondary signal Z1 and Z2 as another source of private information:

player i not only gets information Ti but also observes

Zi :=

 Tj with probability 1− ψ

Tj + 1 with probability ψ .

The secondary signal Z1 informs player 1 of the primary signal T2 that player 2 received.

The secondary signal carries two types of information. First, it allows player 1 to reason

about the true fundamental of the game. That is, through its dependence on T2, Z1

is correlated with nature’s choice of a fundamental. Second, and more importantly, Z1

allows player 1 to look more directly at T2. This direct look at T2 informs him about the

probability with which player 2 plays A or B. In the following main propositions 3, 5,

and 6, we show that this “direct look” at the other player’s signal will induce asymmetric

equilibria, in which players weight their signals Z and T differently: if player 1 conditions

his actions mainly on his primary signal T1, then player 2 will have an incentive to

weight signal Z2 heavily and vice versa. Put differently, the signals Ti and Zj deliver

complementary information for the purpose of coordination, while the signals Ti and Tj

do so only to a lesser degree.

To underscore the significance of these asymmetric equilibria, we proceed in three

steps. First, we show that they exist. Second, we describe the symmetric equilibria, where

agents weight their signals symmetrically. Third, we show that the asymmetric equilibria

welfare-dominate symmetric equilibria. Before we study the asymmetric equilibria, we

note that the Rubinstein (1989) equilibrium carries over to the environment where agents

receive primary and secondary signals.

Proposition 2. When information T1, Z1 and T2, Z2 are available to players, there exists

an equilibrium in which both players play A irrespective of the information received.

Proof. Suppose player 1 thinks that player 2 plays A for sure. Irrespective of (T1, Z1) the

following holds: Choosing B will yield a payoff −L, while taking action A will secure him

a non-negative payoff. The same argument can be made for player 2, and thus we have

established that the strategy profile (A,A) is an equilibrium.

In this equilibrium, both players receive a zero payoff, even in those situations where

they know that playing (B,B) would yield a higher payoff. However, players can use their

private signals to coordinate on an alternative class of equilibria:
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Proposition 3. If the secondary signal’s precision is sufficiently high, there exist two

asymmetric threshold equilibria for every n ∈ {1, 2, 3, . . . }: In one equilibrium, player 1

plays B if and only if T1 ≥ n + 1, and player 2 plays B if and only if Z2 ≥ n + 1 and

T2 ≥ n. Reversing the roles of players 1 and 2 yields a second equilibrium.

Proof. Let us consider the first equilibrium with cutoff n.

1. Take the behavior of player 2 as given. There are three cases to consider:

(a) T1 < n: Player 1 is sure that Z2 ≤ n and hence plays A.

(b) T1 = n: With probability 1 − ψ player 2’s information is Z2 = n, otherwise

(probability ψ) it is Z2 = n + 1. Playing A secures a payoff of zero for sure;

playing B yields an expected payoff smaller than (1−ψ)(−L) +ψM , which is

the first player’s payoff from B, when player 2 always plays B given Z2 > n.

Thus, for ψ ≤ L
L+M

=: ψ1 playing B yields a negative payoff, and hence playing

A is optimal.

(c) T1 ≥ n+1: Player 1 is sure that Z2 ≥ n+1 and T2 ≥ n, hence finds it optimal

to play B.

2. Equivalently, now take the behavior of player 1 as given.

(a) Z2 ≤ n: Player 2 knows that T1 ≤ n, and thus plays A.

(b) Z2 > n+ 1: Player 2 knows that T1 ≥ n+ 1, and thus plays B.

(c) Z2 = n+ 1: Here we have to take care of four sub-cases:

i. T2 = n− 1: Hence T1 = n for sure and player 2 thus chooses A.

ii. T2 = n: Defining λψ := P (T1 ≤ n|T2 = n ∧ Z2 = n + 1) = ψ

ψ+ 1−ε
2

(1−ψ) , the

payoff for playing B can be written as λψ(−L)+ (1−λψ)M . From this we

obtain a boundary ψ2 :=
(1−ε)M

2L−(1−ε)M > 0, which ensures that for all ψ ≤ ψ2

playing B is optimal for player 2. That is, for ψ ≤ ψ2 the expected payoff

of playing B is non-negative.

iii. T2 = n + 1: We repeat the same argument using µψ := P (T1 ≤ n|T2 =

n + 1 ∧ Z2 = n + 1) = ψ
ψ+(1−ε)(1−ψ) . It holds that µψ < λψ, such that for

all ψ ≤ ψ2 playing B is optimal for player 2.

iv. T2 = n+ 2: Hence T1 = n+ 1 for sure, and player 2 chooses B.

Thus, we can choose ψ sufficiently small, i.e. ψ ≤ min{ψ1, ψ2}, such that the strategy

profile from the proposition constitutes an equilibrium.
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This shows that secondary signals allow to prevent (to a certain degree depending on

n) infection from players choosing action A when there information is Ti = 0. To interpret

the equilibria in Proposition 3 we note that players weight primary and secondary signals

asymmetrically. That is, if player 1 switches from playing A to playing B for signals

T1 ≥ n + 1, then player 2 switches from A to B for signal values T2 ≥ n, Z2 ≥ n + 1.

As the proof shows, signals where the trigger strategy requires values greater or equal

n + 1 carry the main information regarding the other player’s signals and actions. On

the contrary, signals where the trigger strategy requires values greater or equal n carry

little information on other player’s signals. More precisely, player 1 relies in his inference

about the other player’s action on the fact that T1 ≥ n + 1 informs him of the fact that

T2 ≥ n, Z2 ≥ n + 1. Hence, player 1 relies on his primary signal to infer the action of

player 2. The main reason for player 1’s reliance on his primary signal T1, is that player

2 conditions his actions on T2 ≥ n, Z2 ≥ n + 1. That is, as steps 2.(c)i − iv in the proof

show, player 2 relies on his secondary signal to infer the action of player 1. In turn, player

1’s reliance on the secondary signal Z1 justifies player 2’s reliance on the primary signal...

This complementarity between player 1’s primary and player 2’s secondary signal ensures

that asymmetric weighting of signals is an equilibrium. Put differently, players face a

coordination game in the weighting of their private signals; players can choose their cutoff

values for Ti and Zi in a way that makes it easy for their counterpart to assess whether

their requirement for playing B is met or not. In the present case this means leaning on

the primary signal once the opponent leans on the secondary signal and vice versa.

4 Welfare

The main purpose of the following propositions 4-6 is to emphasize the role of asymmetric

equilibria further. First, we show that there also exist symmetric equilibria, where agents

weight their signals equally. Moreover, we show that not every configuration of cutoffs is

an equilibrium. Second, proposition 5 underscores that multiple equilibria emerge once

private signals are of high quality. Finally, proposition 6 documents that asymmetric

equilibria, in which agents exploit the complementarity between primary and secondary

signals, welfare dominate the symmetric equilibria of proposition 4.

Proposition 4. If the secondary signal’s precision is sufficiently high, there exist sym-

metric monotone equilibria for every n ∈ {1, 2, 3, . . . }, where both players play B if and

only if Ti ≥ n+ 1 and Zi ≥ n+ 1. There exist no symmetric monotone equilibria, where
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both players play B if and only if Ti ≥ n+1 and Zi ≥ n+2 (or Ti ≥ n+2 and Zi ≥ n+1).

Proof. See Appendix B.

One might suspect4 that the emergence of the different equilibria in Propositions 2-4

depend on the relative precisions of primary and secondary signals, i.e., a high ε/ψ ratio

may be required. This, however, is not the case:

Proposition 5. There exist upper bounds ε̄ > 0 and ψ̄ > 0, such that the equilibria

described in propositions 3 and 4 exist for all combinations of ε ≤ ε̄ and ψ ≤ ψ̄.

Proof. For propositions 3 and 4 to hold, we need a sufficiently small error probability for

the secondary signal, i.e., ψ ≤ min[ψ1, ψ2, ψ3], where ψ1 = L
L+M

, ψ2 = (1−ε)M
2L−(1−ε)M , and

ψ3 = (1−ε)M
L+(1−ε)M . It therefore suffices to show that the limits of ψ1, ψ2, ψ3 for ε → 0 are

positive: First, observe that ψ1 is positive and does not depend on ε. Second, lim
ε→0

ψ2 =

M
2L−M > 0. Finally, lim

ε→0
ψ3 =

M
L+M

> 0.

Our results therefore differ from those obtained by Carlsson and van Damme (1993),

Frankel et al. (2003), and Morris and Shin (2007), where equilibrium selection works

best once private information is very precise. The equilibria in Proposition 3 rely on a

coordination game in the evaluation of this information. And this incentive to coordinate

is strongest once private signals are very informative.

Finally, we argue that asymmetric equilibria deserve special scrutiny since they are

welfare-dominant (in terms of expected total surplus):

Proposition 6. If the secondary signal’s precision is sufficiently high, asymmetric equi-

libria of Proposition 3 welfare-dominate the symmetric ones of Proposition 4 for every

given cutoff n. Furthermore, the asymmetric equilibria described in Proposition 3 for

n = 1 welfare-dominate those where n > 1.

Proof. See Appendix C.

That is, once agents exploit the complementarity in weighting the primary and sec-

ondary signal, which gives rise to the asymmetric equilibria of proposition 3, they can

anticipate each other’s actions with great precision. This increases expected utility since

it reduces the probability that, e.g., nature selects game b, but players play (A,A), or

worse (A,B).

4In the public and private information frameworks of Hellwig (2002), Morris and Shin (2004), and

Angeletos and Werning (2006), multiple symmetric equilibria emerge once public signals or priors are

sufficiently precise relative to private signals.
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5 Discussion

In coordination games, such as the coordinated attack problem, we often have a sense as to

the beliefs that the other player may hold on the game that he is involved in. That is, one

player may sense that the other player is an “optimist” with regard to a certain action or,

similarly, that the other player likely holds a particular “mistaken view” of the situation.

The current model incorporates such aspects by giving players noisy information over each

other’s information. The analysis of such an information structure shows that players who

posses different pieces of information face a coordination game as to how they use their

private signals to forecast each other’s actions. This coordination game in the evaluation

of information has multiple symmetric and asymmetric equilibria. Comparison of these

equilibria shows that asymmetric equilibria, where players exploit the complementarity

between primary and secondary signals, welfare dominate symmetric ones.
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A Proof of Proposition 1

The proof is parallel to the one in Rubinstein (1989). First, we establish that player i

plays A when Ti = 0. Player i considers two possible scenarios:

1. With probability (1− p), game Ga is played.

2. With probability 1
2
pε, Player j was selected, game Gb is played, and the message

from player j to player i was lost.

Hence, we find a lower bound Ã for i’s payoff from playing A and an upper bound B̃ for

i’s payoff from playing B:

π(A) ≥
(1− p)M + 1

2
pε0

(1− p) + 1
2
pε

=: Ã π(B) ≤
−(1− p)L+ 1

2
pεM

(1− p) + 1
2
pε

=: B̃

It holds that Ã > B̃, and thus player i plays A. The induction step from t − 1 to t

is identical to the original Rubinstein one: assume that both players play A when they

receive a Ti < t. Consider that player i gets information Ti = t. For the following

argument we denote the probability that player i was informed first that game Gb is

played by κt ∈ [0, 1]. The posterior probability of player j having received information

Tj = t− 1 is given by

zt :=
κtε+ 1− κt

κt(ε+ (1− ε)ε) + 1− κt
>

1

2
.

In other words, the posterior probability of player j playing A is larger than 1
2
, and thus

playing A is optimal for player i as well: Playing A yields 0, while playing B has expected

payoff zt(−L) + (1− zt)M < 0.

B Proof of Proposition 4

We start by proving the first statement. Without loss of generality, we have to check only

if player i’s best response to player j’s equilibrium strategy is consistent with player i’s

equilibrium strategy. We have to check the following cases of information that player i

might receive:

1. Zi ≤ n: Player i knows that Tj ≤ Zi ≤ n and that j player A, hence plays A.

2. Zi = n+ 1:

(a) Ti = n: player i knows that Zj = n and that player j plays A, which leads j

to play A as well.
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(b) Ti = n + 1: Clearly Zj ≥ n + 1 and Tj ∈ {n, n + 1}. To determine the payoff

of playing B, the conditional distribution of Tj has to be taken into account:

(1− ε)2nεψ

(1− ε)2nεψ + (1− ε)2n+1ε(1− ψ)
(−L) + (1− ε)2n+1ε(1− ψ)

(1− ε)2nεψ + (1− ε)2n+1ε(1− ψ)
M .

Hence playing B is optimal if ψ < ψ3 :=
(1−ε)M

L+(1−ε)M .

(c) Ti > n+1: thus Zj ≥ n+2 and Tj ≥ n+2. Player j plays B and the optimal

response of i is B.

3. Zi = n+ 2: Player i knows that Tj ≥ n+ 1.

(a) Zi = n+ 2 implies that Ti < n is not feasible.

(b) Ti = n: Zj ≥ n + 1 with probability ψ, hence the payoff of playing B is

(1− ψ)(−L) + ψM , which is negative for ψ < ψ1, the case when playing A is

optimal for player i.

(c) Ti > n: Therefore Zj ≥ n+ 1 for sure, and thus both players play B.

4. Zi > n+ 2: Player i knows that Tj ≥ Zi − 1 > n+ 1. It also holds that Ti ≥ n+ 1

and thus Zj ≥ n + 1. Therefore player j plays B and player i’s best response is to

play B as well.

Hence we have established the first part of the proposition for ψ ≤ min{ψ1, ψ3}.
To prove the second part of the proposition we provide a counter example: Suppose

Z1 = n+1 and T1 = n+2: player 1 now plays A. This is not a best response since player

1 knows that T2 ≥ n+ 1 and Z2 ≥ n+ 2, and thus that 2 plays B with certainty. Hence,

equilibria where players play B iff Ti ≥ n+ 1 and Zi ≥ n+ 2 cannot exist.

C Proof of Proposition 6

We prove the second part of the statement first. That is, we compute the total welfare

loss in the asymmetric equilibria of Proposition 3 given n (sum of expected surplus losses

of player 1 and 2) compared to hypothetical perfect coordination between both players.

Note that in state a neither miscoordination nor coordination on the wrong action can

occur. In state b

1. coordination on the wrong action (A,A) happens with probability

p

[
1− (1− ε)2(n−1) + (1− ε)2(n−1)ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2n(1− ψ)

]

13



2. miscoordination (B,A) happens when T1 = n, T2 ≥ n, and Z2 = n + 1. The

associated probability is p(1− ε)2n−1εψ.

Using this, we can compute the welfare loss in equilibrium:

ln := p

{
(1− ε)2n−1εψ(2M + L)

+

[
1− (1− ε)2(n−1) + (1− ε)2(n−1)ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2n(1− ψ)

]
2M

}

= p(1− ε)2n−1

{
εψ(2M +L) +

[
−1 + ε(1 + (1− ψ)(1− ε)) +

1

2
(1− ε)2(1− ψ)

]
2M

}
+ p2M .

It is straightforward to see that the expression in curly brackets is negative for small ψ.

Hence, ln is increasing in n for small ψ.

The proof of the first part of the proposition requires computing the welfare loss in

the symmetric equilibria of Proposition 3 given n. Again there are two types of losses:

1. coordination on the wrong action (A,A) happens with probability

p
[
1− (1− ε)2n + (1− ε)2nε(1− ψ)

]
2. miscoordination (B,A) happens once T1 = n, T2 ≥ n, and Z2 = n + 1. Hence it

happens with probability p(1− ε)2(n−1)εψ.

Using these probabilities, we compute the welfare loss in equilibrium:

l̃n = p(1− ε)2(n−1)
{
εψ(2M + L) + (1− ε)2 [−1 + ε(1− ψ)] 2M

}
+ p2M

Note that ln − l̃n −−→
ψ→0

−p(1 − ε)2nεM < 0. Hence, for a small enough ψ it holds that

ln < l̃n, i.e., welfare is higher in the asymmetric equilibria for every given n.

14



D Referee appendix

In this appendix we show that our main result, multiplicity of equilibria in the presence of

primary and secondary signals, holds for the original asymmetric version of the electronic

mail game of Rubinstein (1989). That is, we now assume that it is always player 1 who

gets informed in case nature draws game b. This is the special case where we set the

probability P = 1 (rather than 1/2, which is what we assumed in the main text). Other

than that we leave the signals Z, T unchanged. Our only deviation from Rubinstein (1989)

is therefore the introduction of the secondary signal Z. Naturally, Proposition 2 holds

without modification of the proof.

We now show for this simplified setting that multiple equilibria exist as in the main

text. In particular, we prove that the asymmetric equilibria described in Proposition 3

still exist:

Proposition 7. For small enough ψ there exists an asymmetric threshold equilibrium for

every n ∈ {1, 2, 3, . . . }: player 1 plays B if and only if T1 ≥ n+1 (which implies Z1 ≥ n)

and player 2 plays B if and only if Z2 ≥ n+ 1 and T2 ≥ n.

Proof. The proof is mostly unchanged compared to the proof of Proposition 3. There are

two exceptions:

2. Equivalently, now take the behavior of player 1 as given.

(c) Z2 = n+ 1: Here we have to take care of four subcases:

ii. T2 = n: Note that P (T1 = n|T2 = n ∧ Z2 = n + 1) = ψ, and thus, the

payoff of playing B is given by ψ(−L) + (1 − ψ)M . From this we can

determine ψ̄2 := M
L+M

> 0 such that for all ψ ≤ ψ̄2 playing B is optimal

for player 2, i.e. where the expected payoff of playing B is non-negative.

iii. T2 > n: Hence T1 ≥ n+ 1 for sure, player 2 chooses B.

Again, we can choose a small enough ψ, i.e., ψ ≤ min{ψ1, ψ̄2}, such that the strategy

profile from the proposition is indeed an equilibrium.
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