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Abstract 

The indirect effects of biofuels are mostly considered negative. In this paper, we argue that 

there may be a positive indirect effect of biofuels on food security and poverty. Our analysis 

shows that the introduction of castor production for biofuel in a poor country as Ethiopia can 

significantly improve food productivity of rural households who produce raw material for 

biofuel production. This spillover seems particularly linked to enhanced access to inputs and 

technical assistance which were provided as part of biofuel feedstock production contracts. 

Our results thus help nuancing the view that biofuels necessarily harm smallholders’ food 

security.  
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1. Introduction 

Biofuels are an increasingly controversial issue, in particular in developing countries. 

On one hand, the proponents of the use of biofuels in developing countries point out that three 

quarters of the world’s poor consume only 10% of the global energy supply (Bazilian et al., 

2010).
1
 Because energy poverty constrains poverty reduction efforts (Lee & Chang, 2008; 

Odhiambo, 2009; Kebede et al., 2010), diversification of energy resources, including biofuels, 

is viewed as a way to improve energy access and security – and thereby development. 

Sovacool (2012), for example, argues that decentralized production and distribution of biofuel 

energy in poor countries is a ‘low hanging fruit’ to expand energy access to energy deprived 

population in low-income countries. On the other hand, those opponents of biofuels argue that 

biofuels cause environmental problems and worsen food security. This is reflected in the 

‘food’ versus ‘fuel’ debate (Bindraban  et al., 2009; Cotula et al., 2008; Pimentel et al., 2009; 

FAO, 2008).   

Empirically, the research on the relationship between food security and biofuels 

reaches conflicting conclusions. Some studies on the impact of biofuels suggest that biofuel 

investments provide alternative income through employment, boost economic growth, and 

thereby reduce the incidence of poverty and improve food security (Arndt et al., 2011; Huang 

et al., 2012; Negash & Swinnen, 2013).  Others show that biofuel expansion reduces the 

availability of food and increases food prices, thereby jeopardizing food security for the poor 

(FAO, 2008; von Braun et al. 2008; Mitchell, 2008; Zhang et al. 2013).  

The debate on the costs and benefits of biofuels has been dramatically changed by two 

studies (Searchinger et al., 2008; Fargione et al., 2008) highlighting the so-called indirect land 

use change effect (ILUC) which should be taken into account when evaluating the welfare 

                                                           
1 The majority of those energy poor households live in the net oil importing Sub-Saharan Africa. They often depend on direct 

burning of solid biomass as a prime source of energy with undesirable effects on health and agricultural productivity (Duflo 

et al., 2008).   
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effect of biofuels. These authors pointed out to the unintended consequences of releasing 

more carbon emissions due to land-use changes induced by the expansion of cropland for 

ethanol and biodiesel in response to the increased demand for biofuels. These arguments were 

reinforced by the 2008 food crisis which brought the link to food prices, food security and 

biofuel production to the forefront. For both environmental and food security reasons, the 

indirect effects of biofuels are considered negative.  

In this paper we argue that there may be another indirect effect of biofuels which may 

be particularly important for smallholder feedstock production in poor countries. Using 

micro-survey evidence from Ethiopia and a matched plot pair design through which we 

control for the effect of plot and farmer characteristics, we find that food crop productivity 

improved on plots intercropped with biofuel feedstock (castor) due to enhanced access to 

inputs and technical assistance which were provided as part of the feedstock production 

contracts. Our estimates are in line with studies which have identified similar spillover effects 

of cash crop production on food crop productivity (Maertens, 2009; Minten et al., 2007; 

Barrett et al., 2012).  

Our paper is the first to identify these indirect effects of biofuels on food crop 

productivity and to provide an estimate of the potential size. There is only limited information 

so far on the importance and the nature of contract farming in biofuel supply chains. Yet 

available studies suggest that it is present in several developing countries. Contract farming in 

biofuel chains is documented in Jatropha production in Zambia (German et al., 2011) and 

Tanzania (Portale, 2012), in soybean in Brazil (Padula et al., 2012), and in palm oil in 

Malaysia and Indonesia (Vermeulen & Goad, 2006). Our results may therefore have far 

reaching implications and may potentially be important for many poor people.  

The paper is organized as follows. In section 2, we describe the biofuel policies and 

castor production and its link with food security in Ethiopia. In section 3, we present the setup 
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of the castor outgrower scheme in the study area and explain our empirical methodology. 

Section 4 contains descriptive statistics on the farmers and plots producing the biofuel 

feedstock and a description of our measure of productivity. Productivity differences and 

econometric results are presented in section 5. Section 6 discusses and concludes. 

2. Biofuels in Ethiopia 

Ethiopia is a relevant case to study the micro-level effects of biofuels in developing 

countries. On the one hand, Ethiopia is a major energy importer. In fact it is considered as the 

number one “energy poor country” in Africa (Nussbaumer et al., 2012).
2
 Developing 

renewable alternative resources therefore sounds appealing. On the other hand, Ethiopia’s 

agriculture sector is heavily dominated by subsistence smallholder farmers whose food 

security is vulnerable and who are often food aid recipients (Devereux & Guenther, 2009). 

2.1 Biofuel policies 

Enthralled by the various commonly portrayed opportunities lying ahead of the 

development of biofuels (such as energy source diversification, foreign currency saving, rural 

poverty alleviation and technology transfers), in 2007 the Ethiopian government launched an 

extensive biofuels expansion strategy and an ad hoc investment promotion program for two 

biodiesel crops: castor and jatropha. At the same time, the government established a 10% 

blending requirement of ethanol with petrol, and biodiesel with diesel. While the ethanol 

target was successfully reached in 2012 in major cities, progress regarding the biodiesel target 

is meager. The government manages a vertically coordinated ethanol production system while 

biodiesel is left largely to private operators.  

                                                           
2
 The authors constructed a Multidimensional Energy Poverty Index (MEPI) – that focuses on the deprivation of 

access to modern energy services and ranked countries using the scores from the index. 
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The availability of land, especially in under-developed regions makes Ethiopia 

attractive for the potential production of biofuel. According to government reports, 23.3 

million hectares (20% of the total country area) are available for the plantation of both castor 

and jatropha (MoME, 2007). Even taking the more modest estimate by the World Bank 

(2011) of 7 million hectares of non-cultivated and non-protected land and the high 

dependency of the country on oil imports, the development of a biofuel industry presents a 

notable opportunity to improve energy access and substitute fuel import for small-scale rural 

use, if not for transport or industrial sector.  

From 2007 onwards, the Government of Ethiopia has specifically supported the 

economic attractiveness of biofuel production and the expansion of investments in the sector 

by providing incentives to investors which include tax holidays, low-cost land leases, and 

long term credit facilities, among others. The government’s interest in biofuels was later 

reemphasized in the Growth and Transformation Plan (GTP). Over a five year period (2010-

2015), Ethiopia’s GTP foresees increasing the production of ethanol to 194.9 million liters, 

biodiesel to 1.6 million liters, and an increase in blending facilities to 8 for ethanol and to 72 

for biodiesel. As outlined, the main objectives for promoting biofuels are to create clean 

energy source diversity, serve as substitute for petroleum import and create jobs for local 

people. The document also recognizes the important contribution of involving the private 

sector and smallholder farmers into the development of biofuel.  

However, after a few years of enthusiasm, Ethiopia substantially downsized most of 

the incentives that were in place to promote the production of biofuels. The key reason behind 

this policy shift away from biofuel was an increasing concern over competition between food 

and biofuel crops and over bad management of land investments. This issue was raised by 

both the international and local communities and led to a substantive narrowing of land being 
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allocated to investors for the production of biofuel feedstock. Now, only what is categorized 

as marginal land can be used for biofuel production (Negash & Riera, 2014). 

2.2 Castor production and food security in Ethiopia  

The emerging biofuel feedstock production from private firms in Ethiopia thus far is 

dominated by two major non-edible crops i.e. castor beans and jatropha (Table 1). Both have 

been identified by the government of Ethiopia as priority crops for biodiesel feedstock 

because of their numerous attractive properties. First, castor, a non-edible crop that gives oil 

bearing seeds, has seen its global demand and production rise in recent years and it is believed 

to have strong market potential  (Wijnands et al. 2007). The oil (i.e. biodiesel blended or not) 

can replace diesel without any engine modification. In addition, it can be used as automotive 

lubricant, as raw material for the cosmetic industry and in pharmaceuticals. Second, the oil 

contains a toxic element and hence cannot be used as food or animal feed source. Third, it can 

grow on marginal soils and is said to combat desertification (Reubens et al., 2011; Wani et al. 

2012). These last two characteristics make castor production less threatening to local food 

production. However, at the same time, these marginal areas where castor production is 

allowed are areas with low agricultural potential and/or degraded areas and are often 

characterized by strong food insecurity.  

There are also other potential links between castor production and food security, such 

as the impact of castor production on the productivity of other (food) crops, through rotation 

or spillover effects. This is an issue which has received little attention in the biofuel literature 

but has been widely studied in the literature on cash crops and export agriculture (e.g. Minten 

et al., 2007). In the rest of this paper, we analyze these spillover effects from biofuel crops 

and we study how they affect food production, and thus food security, at the household level. 
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3. Data and methodology 

3.1 Data 

A farmers’ survey was organized in February-March 2011 soon after the main harvest 

season in the South Nations and Nationalities (SNNP) region of Ethiopia. The objective was 

to evaluate the castor contract farming system established by a company in the Gomo Gofa 

and Wolayta districts which are known to be heavily food insecure (Figure A1) (CSA, 2011). 

Castor production started in the region in 2008 with castor seeds being distributed to 

more than 10,000 farmers in the two districts. However, due to the low value of castor as cash 

crop, initial take-up was very and the company had to undertake extensive promotion 

campaigns to encourage farmers to grow castor. After three years of operation, adoption of 

castor had substantially increased.   

The contract offered by the company to its suppliers is standard to most outgrowers 

contract schemes. Farmers receive all the necessary inputs such as fertilizer, herbicide, and 

technical assistance. In return they allocate part of their land for castor production and pay in 

seeds during harvest. The price of castor seeds is set in advance. The firm’s extension workers 

at the village level are responsible for training farmers, facilitating group formation, input 

distribution and for following up the cultivation and output collection. The promoters of the 

crop are mainly extension agents hired by the company (83%), but government extension 

workers have also been involved in disseminating the information.  

Following a two-stage random stratification, the data represents smallholder farmers in 

castor growing areas of the region. It contains information about 478 farmers in 24 villages of 

which 113 grow castor and 83 intercrop it.
3
  

                                                           
3
 Extensive information on the sampling methodology can be found in Negash and Swinnen (2013). 
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3.2 Empirical strategy 

Evaluating the effect of technology adoption on productivity faces numerous 

challenges. Observable and unobservable farmers’ and land characteristics are correlated with 

farm productivity measures because they influence technology and crop adoption decisions, 

input application choices and observed outcomes. Farmers and farms heterogeneity will lead 

to a selection bias if not properly accounted for. For example, more skilled and/or better 

educated farmers can be more inclined to adopt the new technology. If this is the case, 

comparing outcomes of adopters and non-adopters to analyze the impact of a given 

technology will suffer from a self-selection problem and yield inconsistent and biased results. 

Hence, it is important to control for farmer differences when comparing outcomes across 

types of farmers. But a second challenge lies in the fact that farmers can implement the 

technology on their best plots or at least on plots having favorable characteristics and offering 

a higher productivity for the technology being adopted. Differences across plots should also 

be accounted for when comparing outcomes across plots. 

To overcome these methodological challenges, we follow the method proposed by 

Barrett et al. (2004) and used in Chen & Yen (2006) and Minten et al. (2007). Using data 

from adopting farmers only and detailed information on plots both under the new and old 

technology, we are able to isolate the productivity effect of adopting the technology, i.e. in 

our case castor production. We use panel data methods applied to a situation where instead of 

the ‘time’ dimension, we have different plot observations. The vast majority of farmers who 

adopted castor have more than one plot and at least one is intercropped with castor. Because 

farmers simultaneously use both technologies, i.e. at least one plot is intercropped with castor 

and one plot is not, we will randomly select one plot intercropped with castor and one plot 

without castor production. Using a sample of paired plots cultivated by the same farmer in the 

same season and using detailed information on plot characteristics to control for differences, 
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we are able to measure the spillover effect from adopting castor and hence resolve the 

unobserved heterogeneity problem. 

Following the specification from Barrett et al. (2004) and Minten et al. (2007), the 

technologies on each of the two plots, the castor intercropped plot and the plot without castor, 

can be represented by:  

        (   ) 

          (   ) 

Where     is a measure of productivity of castor intercropped plots,      a measure of 

productivity on plots without castor,   is a t dimensional vector representing production 

inputs under the control of the farmer and   is a s dimensional vector including exogenous 

plot characteristics.  

Taking a standard logarithmic Cobb-Douglas function,  

              ∑                
 
     ∑               

 
        (1) 

                ∑                  
 
     ∑                 

 
        (2) 

 

Differencing equations (1) and (2), we get the differential production function:  

           ∑            
 
     ∑          

 
            (3) 

Where       is the difference in productivity,       the difference in input application rates 

on the two plots,       reflects the exogenous differences in the plots and     is a mean zero 

independent error term. All farmer-specific characteristics that are plot invariant, whether 

observed (e.g. education, gender, household size, rainfall) or unobserved (e.g. ability, social 

connections) are differenced away. Direct estimation of Equation (3) and particularly the 



 

10 
 

parameter    gives consistent and unbiased estimates of plot productivity differences 

attributable to castor production.  

4. Descriptive statistics and food productivity indicators 

4.1 Farm and farmers characteristics  

The predominant farming system of the study area is a mixed crop-livestock system. 

The most important food crops which farmers cultivate include diverse types of cereals and 

root crops and enset (commonly called “false banana”)
 4

. Some farmers produce some local 

cash crops such as fruit, ginger, coffee, and cotton. Crop production entirely depends on 

rainfall, which is often erratic and unpredictable and which leaves many vulnerable to food 

insecurity. Almost half (47%) of the families in these regions face 2 to 3 months of food 

shortages, according to CSA (2011). 

Descriptive statistics of farmers growing castor are shown in Table 2.  89% of the 

households in our sample are headed by a men. The average head has about 45 years old and 

3 years of education. On average, households have 7 members of which 4 are in the labor 

force (productive age group). The large majority of households participate in activities 

benefiting the community and less than 10% of them had a mobile phone at the time of 

interview. Looking at an indicator of food insecurity, only 19% of the sample had a food gap
5
 

of at least 2 months which is considerably smaller than the regional average of 47%. 

Smallholder farmers have on average 1ha of land but there is a wide dispersion. The land they 

cultivate is divided into 3 plots, of which 1 is intercropped with castor. The average area 

allocated to castor is 0.13 ha and the variation among farmers is small. On average, the 

contract with the company was ongoing since one and a half year.  

                                                           
4
 Enset is a perennial and relatively drought-resistant plant, maturing at around four years and grows up to 

seven years, serves as a food store for most households. 
5 

“Food Gap” is defined as the number of months that the household runs out of its own stock of f ood and 

lacks the money to purchase food.  
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Table 3 provides details on the extent of intercropping with castor. The number of 

crops castor is intercropped with varies from 1 to 11, with the proportion of plots where 2, 3 

or 4 or more crops are cultivated in total being fairly equal in the sample (table 3a). It can also 

be seen that there is a large diversity in terms of the crops that are cultivated together with 

castor. The most frequent crop is maize, closely followed by haricot beans and then coffee, 

sweet potato and mango (table 3b).  

 

Qualitative indicators (table 4) show that 67% of the households are happy with the 

assistance they received from the company and 53% would recommend other farmers to join 

the program. Slightly less than half of the sample is satisfied with the contract itself. To 

understand farmers’ motivation, we asked them about their perceived benefits associated with 

growing castor. 87% of participant farmers responded that they planted castor in the 

expectation of higher income. Interestingly, only 10% of them stated it was mainly to benefit 

from higher soil productivity associated with planting castor. This suggests that a small share 

of farmers were aware of the soil improvement benefit of castor, especially when used in 

intercropping.  

 

Analyzing possible improvements and problems, 70% of the farmers state that the 

company should increase the price paid for the castor beans. During interviews, several 

farmers indeed complained that castor was not profitable given the current market prices of 

other food crops.  22% of the farmers mention that assistance and technical support should be 

improved and 19% mention the need for additional inputs (fertilizers, seeds and pesticides).  
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4.2 Food productivity indicators 

To measure plot level food crop productivity we use two different indicators, a 

measure of income and a measure of calories produced, each of which are standard practices 

in the literature (Govereh & Jayne, 2003; Holden, et al., 2001; Kassie, et al., 2011).
6
 First, we 

converted all plot level production into monetary values. We computed the food crop value 

aggregates using average prices from the entire sample that can be considered as a proxy for 

the regional market price levels. Second, we converted plot level food crop production to 

calorie equivalent and computed food productivity in terms of the calorie content. Using FAO 

and WFP guidelines, we used standard food caloric conversion rates to convert food 

production into energy kilo calorie (kcal) equivalent levels, (FAO, 2003; FAO/WFP, 2009).  

To be able to compare plot productivity between plots that are intercropped with castor 

and plots that are not intercropped with castor, we compute a measure of income and calories 

produced on each plot per hectare without castor production.  

5. Spillovers of biofuel production on productivity 

5.1 Unconditional productivity differences between castor plots and non-castor 

plots 

Unconditional productivity differences using the indicators described in section 4.2 for 

the two plots that were selected in the matched sampling design are presented in table 5.
7
 At 

the farm level, we compare a plot intercropped with castor with one plot without castor 

randomly selected among the plots without castor of the farm. Descriptive statistics at the plot 

level indicate that food crop income per hectare without castor is 79% higher on plots 

                                                           
6
 Because of data unavailability, we are not able to calculate the Land Equivalent Ratio, a commonly used index 

of intercropping benefits defined as the relative land area required as sole crop to produce the same yields as 

inter-cropping (Vandermeer, 1992).  
7
 Since our empirical strategy involves matching one plot intercropped with castor with one plot without castor at 

the farm level, we lose some observations due to incomplete data. Some farmers only cultivate one crop in the 

main agricultural season, some others cultivate more than one plot but castor is cultivated on all of them. These 

cases were excluded from our analysis.  
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intercropped with castor. Food crop income increases from 2,221 Ethiopian Birr (ETB) to 

3,982 ETB and the difference is significant at the 10% level.
8
  

An even larger and significant difference appears when comparing food production in 

calories per hectare without castor across plots that are intercropped with castor and the ones 

that are not. Total calories produced on plots with castor is on average 112% higher.  

To understand where the differences in productivity come from, it is interesting to 

analyzing input differences. The data in Table 5 indicate that labor input (measured as the 

number of man-days worked on the plot) is similar between the two types of plots but that the 

quantity of fertilizer applied on plots with castor is double. This reflects the fact that not only 

do participants receive better access to fertilizers through the contract scheme but also that 

they use it where they are supposed to, on the plots where castor is grown.  The differences do 

not appear to be due to differences in irrigation because plots without castor seem to be even 

less irrigated than plots with castor. However, the difference should be interpreted with 

caution given the small number of plots with an irrigation system.  

 Comparing the characteristics of the plots, we see that the size of the plots where 

castor is grown is larger but the difference disappears if we compare the area of land 

cultivated excluding the land allocated to castor. On average, farmers cultivate 2 to 3 different 

crops on the same plot. When castor is grown, it is added as an extra crop to the plot but does 

not seem to reduce the number of other crops on the plot. Table 5 also presents physical 

characteristics of the two plots that were selected in the matched sample. The descriptive 

variables indicate that the plots seem to be fairly similar in several aspects such as ownership, 

soil type, slope and quality 5 years ago. One interesting difference emerges when we look at 

reported quality. The share of plots with castor considered as fertile by the farmers is smaller 

than the share of plots without castor that are said to be fertile. This is similar to the irrigation 

                                                           
8
 At the time of the survey (2011), the US$-ETB exchange rate was around 17. 



 

14 
 

differences, and suggests that farmers did not decide to grow castor seeds on their more fertile 

plots. 

 

5.2 Econometric results 

 

We now turn to the econometric analysis and implement the empirical analysis 

described in section 3.2 to evaluate and explain the productivity differences between plots 

where biodiesel is grown and plots where it is not. We ran a differential productivity 

regression on a sample of paired randomly selected plots, plots intercropped with castor and 

plots without castor, each pair cultivated by the same farmer. Results are presented in table 7. 

Potential sources of bias have been removed since observed and unobserved farmer and 

community-specific variables have been differenced away.  

Results confirm that the physical characteristics of the plots do not contribute much to 

explain the productivity differences between the plots. Only a black soil type leads to 

significant higher productivity, both when measured by the calories and income indicator. 

Analyzing the main variable of interest, it can be seen that the intercept is large and 

significant. The increase in productivity measured in terms of food calories produced ranges 

between 528,820 and 796,507 calories per hectare without castor, which represents an 

increase of 35%-52% (columns (1) – (2)). The effect decreases when controlling for the 

quantity of fertilizer applied on the plot but remains significant. The increase in productivity 

measured in terms of food income is of similar magnitude. Productivity increases by 46%  (or 

equivalently 1,030 ETB/ha) on plots intercropped with castor (column (3)). Controlling for 

fertilizer use, the positive effect on productivity measured by income decreases to 25% and 

becomes insignificant. This confirms the fact that spillovers from castor production for 

biofuels are partly  attributable to better access to fertilizers and inputs.  
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As robustness tests, we ran several alternative econometric specifications (including 

Random Effects and Pooled OLS models). The results of these additional analysis are 

presented in Appendix. All the results are qualitatively and quantitatively similar to the ones 

presented here, lending support to the robustness of our results.  

In summary, our analysis shows that the introduction of castor production for biofuel 

in a poor country as Ethiopia can significantly improve food productivity of rural households 

who produce raw material for biofuel production. Indeed, farmers allocated around 30% of 

one of their plots (13% of their total land) to castor production but as this paper shows, it does 

not mean that 13% less food is being produced since the increase in plot productivity on the 

remaining of the land increased by at least 35%. Spillovers of castor production cause strong 

increase in food productivity, thereby offsetting the impact of reduced land used for food 

crops. 

6. Conclusion 

The effects of biofuels on smallholder farmers in developing countries are still 

lively debated. We contribute to the discussion presenting micro-evidence on the indirect 

impact of cultivation of a biofuel feedstock crop, castor, for poor farm households in 

Ethiopia. Using survey data collected in early 2011 in the SNNP region about farmers 

engaged in a feedstock production contract with a company, we show that large spillover 

effects exist. Using a matched plot design to pair plots where castor is grown and 

intercropped with plots where no castor is grown at the farmer level, and using two 

measures of productivity (i) food crop income and (ii) food calories produced, we show 

that productivity is between 35% and 52% higher on plots intercropped with castor. This 

increase in productivity seems particularly linked to enhanced access to inputs and in 

particular fertilizer which were provided as part of the biofuel feedstock production contract. 
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The effect is large but not that surprising since fertilizer use is very constrained in the region 

surveyed and marginal effects can be very significant in such circumstances. We show that 

farmers apply the inputs received on the plots where castor is grown. Contract enforcement 

problems common to food supply chains seem to be limited in this case, especially because of 

low competition in the area (for a review on contract enforcement problems in global supply 

chains, see Swinnen & Vandeplas, 2010).  

Spillover effects of biofuels on food crops as a result of (a) better access to 

fertilizer, (b) improved land quality by rotating and intercropping castor beans with other 

crops and (c) technical assistance by extension agents are channels through which 

participant households’ food productivity may improve under the contract scheme. Other 

studies have demonstrated that such type of contracts for cash crops can have significant 

spillover effects on non-contracted food crops (e.g. Masakure & Henson, 2005; Minten et 

al., 2007). Our findings suggest that such positive spillover effects may also occur in the 

case of biofuel feedstock. This paper thus help nuancing the view that biofuels necessarily 

harm smallholders’ food security.    
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Tables 

Table 1. Private biodiesel projects in Ethiopia 

Type of business model 
# of 

projects 

Type of feedstock 

specialized 

Total area (ha) 

Total allotted/or 

leased 

(‘000 ha) 

Under cultivation 

(‘000 ha) 

Large scale plantations
a 

3 
Castor, Jatropha, 

Pongamia 
66.7 8 

Outgrowers
b 

1 Castor NA 15-30 

Mixed outgrower with 

plantation 
2 Castor 3 3 

PPP
c
  1 

Castor, Jatropha, 

Candlenut, Croton 
15 7 

Source: data collected from the authors’ own survey 
a
 All are foreign firms  

b
 Cultivation is integrated with farmers’ own plots which makes it difficult to estimate the exact land allocation 

under this scheme. From Negash & Swinnen (2013), 10-20 thousand households cultivate on average 0.15 ha 

each. This approximately gives a total of 15-30 ha of land allocated to castor under this scheme 
c
 In some cases, farmers are encouraged to plant jatropha as fences and collect the seeds. 

 

 

 

 

Table 2. Farmers’ and farms characteristics 

  Variable Mean SD Min Max 

# of observations  83    

     

Head of household 

    

 

% of male 90 

   

 

Age 43.89 13.32 18 95 

 

Years of education 3.250 4.170 0 15 

Household characteristics 

    

 

Household size 6.760 2.640 1 18 

 

% of hh members in labor force 59 0.220 0.170 1 

 

% with at least one member working off-farm 41 

    % that own a mobile phone 8    

 

% involved in any communal activity 89 

    % that had a food gap of at least two months  19    

 

Livestock units owned (TLU) 2.800 3.180 0 17.40 

 

Total land owned (ha) 1.030 0.640 0.250 4.750 

 

# of plots owned 2.990 1.100 1 6 

 Average distance between plots and home (min) 10.87 10.54 0.700 46.50 

Castor contract 

    

 

Years since start of contract 1.570 0.680 1 3 

 Land allocated to castor (ha) 0.130 0.087 0.025 0.417 

 # of plots intercropped with castor 1.036 0.188 1 2 

 

# of extension agents' visits in the last year 8.660 11.03 0 48 

 

% that are satisfied with the assistance from the company 67 

     % that would recommend others to join the program 53       

 % that are satisfied with the contract with the company 48    

Source: own survey 
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Table 3. Details of intercropping 

a. # of crops intercropped with castor 

 

% 

1 33 

2 34 

3 13 

4 or more 20 

Source: own survey 

 

 

 

 

 

 

 

 

b. Main crops intercropped with castor 

 

%  

Maize 39 

Haricot beans 35 

Coffee 23 

Sweet Potato 22 

Mango 20 

Cassava 18 

Moringa 17 

Teff 16 

Banana 16 

Avocado 11 

Enset 10 

Source: own survey 

 

 

 

 

Table 4. Quality and motivation to grow castor 

    % of farmers 

Satisfaction 

 

 

Farmers satisfied with the assistance from the company 67 

 
Farmers that would recommend others to join the program 53 

 
Farmers are satisfied with the contract with the company 48 

Reasons to grow castor
a 

 

 

Higher income 87 

 

Higher soil productivity 10 

 

Guaranteed market 1 

 

Other 1 

Areas of improvement
b
  

 

Price of castor is too low 70 

 

Technical assistance should be strengthened 22 

  Input supply should increase and be better timed 19 
a 
Only one response was allowed. 

b 
The sum exceeds 100% because more than one response was allowed. 

Source: own survey 
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Table 5. Plot level characteristics (main agricultural season) 

Variable 
Plots without 

castor 

Plots with 

castor 
Difference T-statistic 

# of observations 72 72 
   

       Productivity     
 

 

Food crop income  753 974 220 -0.99 * 

 

Food crop income per hectare  2,221 2,520 299 -0.51  

 

Food crop income per hectare without castor  2,221 3,982 1,761 -1.69 * 

 

Food production (calories) 529,208 797,438 268,230 -1.37  

 

Food production (calories) per hectare 1,521,031 2,003,377 482,346 -0.94  

 

Food production (calories) per hectare without castor 1,521,031 3,224,338 1,703,306 -1.77 * 

Plot inputs     
 

 Plot labor input per hectare  (adult equivalent) 375 361 -14.12 0.13  

 Plot fertilizer use per hectare (kg) 14.9 30.36 15.46 -2.31 ** 

 Plot irrigated (dummy) 0.07 0.00 -0.07 2.30 ** 

Plot characteristics     
 

 

Plot size (ha) 0.34 0.42 0.08 -1.66 * 

 Land cultivated with castor - 0.13 - -  

 Number of intercropped crops  2.74 3.50 0.76 -2.57 ** 

 Years since plot was last left fallow 0.24 0.10 -0.14 1.31  

 

Distance between plot and home (min) 16 19 3.13 -0.72  

Plot physical characteristics     
 

 

Plot soil type: black 44% 28% -16% 2.1 ** 

 

Plot soil type: mixed 31% 38% 7% -0.88  

 

Plot soil type: red 21% 31% 10% -1.33  

 

Plot soil type: other 4% 3% -1% 0.45  

 

Plot ownership: owned 90% 94% 4% -0.94  

 

Plot ownership: rented 4% 3% -1% 0.45  

 

Plot ownership: sharecropped 0% 1% 1% -1  

 

Plot quality: fertile 58% 42% -16% 2.01 ** 

 

Plot quality: average 32% 42% 10% -1.21  

 

Plot quality: poor 8% 14% 6% -1.06  

 

Plot quality 5y ago: better 57% 58% 1% -0.17  

 

Plot quality 5y ago: same 29% 28% -1% 0.18  

 

Plot quality 5y ago: worse 8% 10% 2% -0.29  

 

Plot slope: flat 72% 65% -7% 0.9  

 

Plot slope: gentle 18% 28% 10% -1.39  

 

Plot slope: steep 10% 7% -3% 0.6  

  Plot with terraces 19% 21% 2% -0.21   
*
p<0.10, 

**
p<0.05, 

***
p<0.01 

Source: own survey 
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Table 6. Selection equation, plots intercropped with castor (=1) versus plots without castor 

  Coefficient z-value 

Plot size (ha) 1.99 (1.75) 

Plot soil type: black -0.56 (0.36) 

Plot soil type: red -0.30 (0.44) 

Plot quality: fertile -0.31 (0.30) 

Plot quality: poor 0.04 (0.39) 

Plot slope: gentle 0.52 (0.53) 

Plot with terraces -0.09 (0.44) 

Years since plot was last left fallow -0.47 (0.47) 

Plot ownership: owned -0.01 (0.61) 

Distance between plot and home (min) -0.01 (0.01) 

Plot slope: steep -0.19 (0.62) 

Plot quality 5y ago: better -0.01 (0.28) 

Plot quality 5y ago: worse 0.12 (0.40) 

Constant -0.23 (0.58) 

   # of observations 142 

 Log likelihood -92.29 

 Wald test 33.88 

 Prob>Chi2 0.005   

Cluster robust standard errors in parentheses 
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Table 7. Differential productivity regression on plots intercropped with castor and plots 

without castor 

  

Food calories per ha w/o 

castor 
  

Food income per ha w/o 

castor 

 (1) (2)  (3) (4) 

      

Intercept 796,507*** 528,820* 

 

1,030*** 550 

 

(227,951) (275,115) 

 

(268) (402) 

D.Plot fertilizer use per ha (kg) 

 

15,766** 

  

26*** 

  

(6,784) 

  

(8) 

D.Plot labor input per ha (adult equivalent) 442 250 

 

0.159 0.001 

 

(328) (268) 

 

(0.480) (0.382) 

D.Plot soil type: black 883,969* 923,836* 

 

1,960** 1,510** 

 

(484,731) (526,822) 

 

(876) (631) 

D.Plot soil type: red 611,496 267,350 

 

906 418 

 

(504,917) (464,374) 

 

(664) (704) 

D.Plot quality: fertile 545,683 350,773 

 

52 374 

 

(660,959) (657,900) 

 

(1309) (938) 

D.Plot quality: poor 757,983 172,095 

 

617 -99 

 

(884,978) (617,994) 

 

(860) (644) 

D.Number of intercropped crops 106,911 58,423 

 

-85 -178 

 

(147,929) (125,428) 

 

(163) (164) 

D.Plot with terraces 403,837 620,168 

 

1,916 1,932 

 

(1,249,553) (1,199,524) 

 

(1,415) (1,353) 

D.Plot ownership: owned -550,624 92,937 

 

188 820 

 

(1,133,259) (1,119,450) 

 

(1,475) (1,514) 

D.Distance between plot and home (min) 2,2125* 13,115 

 

18 7 

 

(11,251) (12,755) 

 

(13) (13) 

      Observations 68 68 

 

68 68 

R-squared 0.138 0.225   0.145 0.273 

Cluster robust standard errors in parentheses 

District dummies included but not reported 

* p<0.10, ** p<0.05, *** p<0.01 
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Appendix 

Figure A1: Sampled villages in SNNP (South Nations and Nationalities) region 
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Table A1. Productivity effects on plots intercropped with castor – Random effect model 

  

Food calories per ha w/o 

castor 
  

Food income per ha w/o 

castor 

 

(1) (2)   (3) (4) 

      

Plot intercropped with castor 705,205*** 519,300* 

 

558* 247 

 

(251,986) (285,095) 

 

(331) (405) 

Plot fertilizer use per ha (kg) 

 

10,620* 

  

23** 

  

(6394) 

  

(10) 

Plot ownership: owned 332,236 387,795 

 

458 575 

 

(348,535) (322,920) 

 

(510) (461) 

Distance between plot and home (min) 9,481 7,458 

 

7 5 

 

(5,792) (6,343) 

 

(6) (7) 

Plot labor input per ha (adult equivalent) 61 22 

 

0.130 0.026 

 

(157) (155) 

 

(0.248) (0.237) 

Plot soil type: black 450,846 410,154 

 

590 364 

 

(475,335) (462,906) 

 

(765) (607) 

Plot soil type: red 616,533*** 538,125*** 

 

592* 470 

 

(184,366) (197,743) 

 

(334) (327) 

Plot quality: fertile -80,507 53,717 

 

-166 234 

 

(387,901) (398,618) 

 

(694) (557) 

Plot quality: poor -822,899*** -722,573*** 

 

-1129*** -883*** 

 

(260,591) (249,070) 

 

(387) (334) 

Number of intercropped crops 20,399 -10,708 

 

-88 -121 

 

(74,274) (59,047) 

 

(74) (74) 

Plot with terraces 371,532 416,758 

 

636 738 

 

(398,047) (438,228) 

 

(665) (737) 

Number of plots owned by household -174,798 -136,601 

 

-386 -287 

 

(219,901) (234,175) 

 

(382) (402) 

Household size -29,176 -22,971 

 

-26 -32 

 

(65,340) (62,958) 

 

(103) (88) 

Education of the HH head (years) 33,407 18,604 

 

12 -0.666 

 

(28,598) (25,420) 

 

(54) (45) 

Gender of HH head 374,575 403,420 

 

865 843 

 

(414,905) (391,039) 

 

(624) (552) 

      Observations 140 140   140 140 

Cluster robust standard errors in parentheses 

District dummies included but not reported 

* p<0.10, ** p<0.05, *** p<0.01 
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Table A2. Productivity effects on plots intercropped with castor – Pooled OLS model 

  

Food calories per ha w/o 

castor 
  

Food income per ha w/o 

castor 

 

(1) (2)   (3) (4) 

      Plot intercropped with castor 701,571** 521,224* 

 

561* 248 

 

(252,908) (289,666) 

 

(342) (417) 

Plot fertilizer use per ha sila (kg) 

 

10,176 

  

22* 

  

(6,394) 

  

(11) 

Plot ownership: owned 366,848 424,431 

 

544 632 

 

(324,139) (292,749) 

 

(466) (427) 

Distance between plot and home (min) 8,905 6,811 

 

6 4 

 

(5,651) (6,081) 

 

(6) (7) 

Plot labor input per ha (adult equivalent) 50 

  

0.119 0.010 

 

(160) (162) 

 

(0.253) (0.252) 

Plot soil type: black 434,678 379,201 

 

497 252 

 

(471,066) (459,594) 

 

(751) (609) 

Plot soil type: red 624,458*** 553,846** 

 

586* 479 

 

(185,020) (200,059) 

 

(335) (341) 

Plot quality: fertile -105,714 20,784 

 

-208 179 

 

(388,171) (402,951) 

 

(651) (553) 

Plot quality: poor -874,359*** -788,933*** 

 

-1288*** -1029*** 

 

(271,358) (267,452) 

 

(397) (364) 

Number of intercropped crops 17,494 -12,584 

 

-90 -121* 

 

(71,935) (57,094) 

 

(71) (69) 

Plot with terraces 372,650 420,800 

 

577 701 

 

(398,055) (438,449) 

 

(667) (748) 

Number of plots owned by household -180,011 -145,225  -401 -304 

 (220,220) (233,717)  (383) (403) 

Household size -29,070 -23,228  -27 -33 

 (64,086) (61,498)  (101) (86) 

Education of the HH head (years) 32,844 18,774  12 0.115 

 (28,446) (25,681)  (53) (45) 

Gender of HH head 369,993 394,464  843 815 

 (409367) (384,467)  (606) (533) 

      Observations 140 140 

 

140 140 

R-squared 0.187 0.219   0.139 0.227 

Cluster robust standard errors in parentheses 

District dummies included but not reported 

* p<0.10, ** p<0.05, *** p<0.01 
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