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1 Introduction 

The dominant approach to the measurement of socioeconomic inequality of health consists of 
using rank-dependent indicators. They are called rank-dependent because they can be expressed 
as weighted averages of individual health levels, with the weights determined by the ranks of 
individuals in the socioeconomic distribution. Indices of this type allow us to find out whether 
there is pro-rich or pro-poor bias in the health distribution: positive values indicate that people 
who are relatively well-off in socioeconomic terms tend to have better health than those who are 
less well-off, and negative values the opposite. The Standard Health Concentration Index 
(Wagstaff, Paci and Van Doorslaer 1991) is undoubtedly the most popular rank-dependent index. 
There is now also a growing literature on the decomposition of the Concentration Index using 
various econometric techniques (see, e.g., Wagstaff, Van Doorslaer and Watanabe 2003; Van 
Ourti, Van Doorslaer and Koolman 2009; Allanson and Petrie 2013). An overview of recent 
contributions on the measurement and decomposition of socioeconomic inequality of health can 
be found in Van Doorslaer and Van Ourti (2011) and Van Ourti, Erreygers and Clarke (2014). 

Compared to indicators of income inequality or health inequality, which measure the degree of 
inequality within a given univariate distribution of income or health, indicators of socioeconomic 
inequality of health are bivariate in nature because they measure the degree of correlation between 
health and socioeconomic status. To explain the degree of correlation between these two variables 
rather than the degree of inequality in one variable, Erreygers and Kessels (2013) proposed a set 
of two-dimensional decompositions that investigate both variables simultaneously. The most 
salient of these decompositions is based on the bivariate multiple regression model that explains 
health and socioeconomic status simultaneously. This decomposition captures not only the direct 
contributions of the explanatory variables in the regressions, but also their combined or correlated 
contributions. 

However, two criticisms may be made of the two-dimensional decomposition analysis based on 
the bivariate multiple regression model. The first is that the bivariate multiple regression model 
uses the same set of variables to explain both health and socioeconomic status, which may not be 
the most appropriate assumption given that the determinants of health and socioeconomic status 
need not be the same. Related to this, the second criticism is that socioeconomic status is not 
included as an explanatory variable in the regression of health, and health not included as an 
explanatory variable in the regression of socioeconomic status. The existence of a reciprocal 
relationship should be examined since health is potentially both a cause and a consequence of 
socioeconomic status (O’Donnell, Van Doorslaer and Van Ourti 2014). In the literature on the 
decomposition of socioeconomic inequality of health, several empirical studies (see, e.g., Wagstaff, 
Van Doorslaer and Watanabe 2003; Hosseinpoor et al. 2006; Van de Poel et al. 2007; Doherty, 
Walsh and O’Neill 2014) have investigated the impact of socioeconomic status on health, reporting 
evidence that socioeconomic status is an important determinant of health. 

The main objective of Erreygers and Kessels (2013) was to compare the two-dimensional 
decomposition to the one-dimensional decompositions that are based on regressions of only one 
of the two variables under consideration. Therefore, they used the same set of explanatory 
variables in all regressions, which are all estimated using ordinary least squares (OLS). Moreover, 
for the one-dimensional decompositions, they argued that including either of the variables as an 
explanatory variable in the single regressions distorts the explanation of the correlation between 
health and socioeconomic status. It is then as if the variable in question were treated both as a 
dependent and as an independent variable. As a result, for the two-dimensional decomposition, a 
bivariate multiple regression modelling framework was chosen which includes neither health nor 
socioeconomic status as an explanatory variable. 
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To bridge the gap between empirical observations and modelling practice, we propose a flexible 
modelling approach for the decomposition of socioeconomic inequality of health that makes use 
of a structural or simultaneous equation model (SEM). The model allows for different sets of 
determinants of health and socioeconomic status as well as for the inclusion of socioeconomic 
status as an explanatory variable in the regression of health and health as an explanatory variable 
in the regression of socioeconomic status. The model produces consistent estimates of the 
regression coefficients using a two-step generalized method of moments (GMM) estimation 
procedure that includes instrumental variables. Although such a modelling approach has been 
hinted at before (Wagstaff, Van Doorslaer and Watanabe 2003: 214), this paper is the first to adopt 
it in practice. 

The outline of the remainder of the paper is as follows. Section 2 reviews the Generalized Health 
Concentration Index and the various concepts it embraces. Section 3 gives an overview of the 
most important one- and two-dimensional decompositions, based on the OLS regression 
approach. In Section 4, we present a unified SEM approach for regression-based decomposition 
analysis and show how it fits with the existing decompositions. By means of an empirical analysis 
of child malnutrition in Ethiopia in Section 5, we illustrate the proper use of the one- and two-
dimensional decompositions within the OLS and SEM regression framework. Finally, Section 6 
summarizes the paper and discusses the main outcomes. 

2 Generalized Health Concentration Index 

We consider a population of n individuals for which the health level of individual i, denoted as hi, 
is either a ratio-scale variable which takes non-negative values only, or a cardinal variable with a 

finite lower bound. The average health level in the population is equal to ( )μ
=

=  1
1

n

h ii
n h .  

Erreygers and Van Ourti (2011) pointed out that the use of the Health Concentration Index is 
pertinent when we are dealing with a ratio-scale health variable which is unbounded, i.e. which 
does not have a finite upper bound. However, when we are dealing with a variable which has a 
finite upper bound, a modified version is called for. For this situation, Wagstaff (2005) and 
Erreygers (2009) each proposed a variant of the Generalized Concentration Index. 

All these indices belong to the family of rank-dependent indices: they can be expressed as weighted 
sums of health levels with the weights determined by socioeconomic ranks. The socioeconomic 
rank of individual i is determined by his/her position according to the variable chosen to measure 
socioeconomic well-being, e.g. income. Let the value of this variable for individual i be yi. Then 
the natural number ri(y), or more simply ri, measures the position of individual i in the rank-order 
according to variable y, with the rank ri = 1 assigned to the person who is least well-off, and the 
rank ri = n assigned to the person who is most well-off. In the case of ties, we assign to every 
individual of the tied group the average rank of the group. Over the population as a whole the 
average rank is ߤr = (n + 1)/2. The fractional rank fi is defined as fi ≡ (1/n)(ri – 1/2), and varies 
between 1/(2n) and 1 – 1/(2n). The average fractional rank is ߤf = 1/2. Finally, the deviation of 
the fractional rank of individual i from the average fractional rank, denoted as di ≡ fi – ߤf, has an 
average of ߤd = 0. 

The Generalized health Concentration Index GC is defined as: 
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 (1)

The standard health Concentration Index as well as the indices introduced by Wagstaff (2005) and 
Erreygers (2009) are simple functions of GC. We can rewrite the formula for GC using a well-
known relationship between the rank-dependent indices and the covariance. Since  

( ) ( ) μ μ
=

= − 1
, 1

n

i i h di
Cov h d n h d  and , the value for GC can also be computed as: 

  (2)

Erreygers and Kessels (2013) used both (1) and (2) to generate decompositions of the Generalized 
Concentration Index. Some of these decompositions have a constant term. Because it is 
problematic to give a meaningful interpretation to the constant term, the most attractive 
decompositions are those without a constant term. In the next section, we review these 
decompositions, two of which are one-dimensional and one that is two-dimensional. In the one-
dimensional decompositions, either the health variable or the fractional rank deviation variable is 
subject to a regression, whereas in the two-dimensional decomposition, both variables are subject 
to a regression. The regression approach used is simply OLS. 

3 One- and two-dimensional decompositions using OLS regression 

3.1 The health-oriented decomposition 

The health-oriented decomposition, introduced by Wagstaff, Van Doorslaer and Watanabe (2003), 
has been the first and most well-known regression-based decomposition. It starts from the linear 
regression model describing the relationship between the health variable h and a number of 
explanatory variables x1, x2, …, xk: 

  (3)

where ߝi is an error term. Substituting the right-hand side of this model for hi in the ‘product 
definition’ of the GC in (1) and working out the result, we obtain the health-oriented 
decomposition, henceforth referred to as decomposition (I): 

 
 (4)

This decomposition has a deterministic component consisting of a sum of k contributions, one 
for each explanatory variable, and a residual component. 

As argued by Erreygers and Kessels (2013), it is misleading to include the fractional rank deviation 
variable d in the OLS regression for h in decomposition (I), or any proxy variable strongly 
correlated with d such as income or consumption. In that case, the residual component will be 
zero, or close to zero, suggesting that we have explained all or most of the variation in the 
Generalized Concentration Index. This result is, however, merely an artefact from the OLS 
regression-based approach of decomposition (I). Consider, for example, the simple case where the 
variable d is the only explanatory variable of h, i.e. x1 = d. Since the OLS estimate of 1ߚ is then 
equal to Cov(h, d)/Var(d), it follows that the deterministic component of decomposition (I) is 
identical to GC and therefore the residual component equal to zero. However, in this case, we 

=

= 
1

2 n

i i
i

GC h d
n

μ = 0d

( )= 2 ,GC Cov h d

β β β β ε= + + + + +0 1 1, 2 2, ,i i i k k i ih x x x

( ) ( )β ε
=

= +
1

2 , 2 ,
k

j j
j

GC Cov x d Cov d
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have explained nothing at all. We are just treating the fractional rank deviation variable d both as a 
dependent and as an independent variable. 

Even though empirical work suggests that the socioeconomic variable is an important predictor 
for health (see, e.g., Wagstaff, Van Doorslaer and Watanabe 2003; Hosseinpoor et al. 2006; Van de 
Poel et al. 2007; Doherty, Walsh and O’Neill 2014), the OLS regression-based methodology of 
decomposition (I) does not provide the right framework to use this result for the explanation of 
socioeconomic inequality of health. To bridge the gap between the empirical result and the regression-
based decomposition methodology, we propose using a SEM approach (see Section 4) that unifies 
these contrasting themes. 

3.2 A rank-oriented decomposition 

Erreygers and Kessels (2013) introduced a rank-oriented decomposition that relies on a linear 
regression model for the fractional rank deviations. Assuming that the variables z1, z2, …, zq are 
the relevant variables to explain the socioeconomic ranks, this model is given by 

  (5)

where	ߦi is an error term. Substituting the right-hand side of this model for di in the ‘covariance 
definition’ of the GC in (2) and working out the result, we arrive at the rank-oriented 
decomposition, henceforth referred to as decomposition (II): 

 
 (6)

Decomposition (II) has a similar structure to decomposition (I) because it decomposes the 
Generalized Concentration Index into a sum of q explained contributions, with each of these equal 
to a covariance weighted by a regression coefficient, and a residual or unexplained component, 
which is also a covariance. In line with good practice to exclude the socioeconomic variable d from 
the OLS regression for h in decomposition (I), Erreygers and Kessels (2013) also advise against 
the inclusion of h in the OLS regression for d because it would artificially result in a zero residual 
covariance in decomposition (II). In this case, too, in order to make room for a possible effect of 
health on socioeconomic status in the framework of decomposition (II), we recommend using a 
SEM procedure that describes the feedback mechanism between these two variables (see Section 
4). 

3.3 A two-dimensional simultaneous decomposition 

To give proper attention to the bivariate nature of the Generalized Concentration Index, Erreygers 
and Kessels (2013) proposed a set of two-dimensional decompositions that investigate the health 
levels h and the fractional rank deviations d simultaneously. The most salient of these 
decompositions is based on the bivariate multiple regression model that explains both variables 
simultaneously. It is typical of the bivariate multiple regression that a common set of p variables s1, 
s2, …, sp is used to explain h and d. The bivariate multiple regression has the following form: 

 
 

   (7)

      (8) 

γ γ γ γ ξ= + + + + +0 1 1, 2 2, ,i i i q q i id z z z

( ) ( )γ ξ
=

= +
1

2 , 2 ,
q

g g
g

GC Cov h z Cov h

0 1 1, 2 2, ,

0 1 1, 2 2, ,

i i i p p i i

i i i p p i i

h s s s

d s s s

= + + + + +

= + + + + +





λ λ λ λ ψ

π π π π χ
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where ߰i and ߯i are error terms. It is assumed that ߤψ = ߤχ = 0 and that the 2p covariances   Cov(sj, ߯) and Cov(߰, sj) are zero. 

Applying the ‘covariance definition’ of the GC in (2) to the bivariate multiple regression model 
leads to the simultaneous decomposition, henceforth referred to as decomposition (III): 

 
 (9)

It consists of p single-variable terms ߣjߨjVar(sj) which capture the direct effect of the p explanatory 
variables, p(p – 1)/2 two-variable terms (ߣjߨg + ߣgߨj)Cov(sj, sg) which capture the correlation structure 
between the explanatory variables, and a residual component which is proportional to the 
covariance between the two error terms. 

In the next section, we show that the simultaneous decomposition based on the bivariate multiple 
regression model is also the same decomposition that we obtain from applying a SEM regression 
approach. 

4 A unified structural equation modelling approach for decomposition analysis 

Perhaps the most pertinent critique of the bivariate multiple regression model as a basis for two-
dimensional decomposition is the one that questions the assumption that the same set of p 
variables explains both the health variable h and the fractional rank deviation d. The challenge rests 
on the grounds that the determinants of health and socioeconomic status need not be the same. 
Moreover, the bivariate multiple regression model seems inflexible in the sense that it does not 
include h as a predictor in the equation for d and d as a predictor in the equation for h. Empirical 
evidence has shown, however, that health is largely influenced by socioeconomic status. It might 
also be the case that socioeconomic status is influenced by health, implying that both variables 
influence one another reciprocally. 

To overcome the criticisms of the bivariate multiple regression model, we propose the 
specification of a structural or simultaneous equation model (see, e.g., Greene 2011: chapter 10; 
Verbeek 2012: chapter 5) which allows for different sets of predictors for h and d as well as the 
addition of d as a predictor in the equation for h and of h as a predictor in the equation for d. These 
structural equations are meant to represent causal relationships among the variables in the model. 

We assume that the variables x1, x2, …, xk with xk = d are the relevant variables in the equation for 
h and z1, z2, …, zq with zq = h are the relevant variables in the equation for d. We then have the 
following structural model of two equations: 

 

 

(10) 

(11) 

 

 

( ) ( ) ( ) ( )λ π λ π λ π ψ χ
= = = +

= + + + 
1 1 1

2 2 , 2 ,
p p p

j j j j g g j j g
j j g j

GC Var s Cov s s Cov

1

0 ,
1

1

0 ,
1

k

i j j i k i i
j

q

i g g i q i i
g

h x d

d z h

−

=

−

=

= + + +

= + + +





β β β ε

γ γ γ ξ
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In this SEM, the variables h and d are assumed endogenous or jointly determined by the system of 
simultaneous equations. The random error terms ߝ and ߦ affect both h and d (which is made clear 
by rewriting (11) in terms of h), suggesting a correlation between each of the endogenous variables 
and each of the random error terms. The remainder of the variables in the SEM are assumed 
exogenous or determined outside the system.  

Because of the endogeneity of the variables h and d, OLS regression cannot be relied upon to 
produce consistent estimates of the parameters of the equations. Instead, a GMM estimation 
procedure using instrumental variable (IV) or two-stage least squares (2SLS) estimation is needed 
to consistently estimate all parameters of the SEM (Hansen 1982). This requires the introduction 
of at least one instrumental variable or instrument for each equation. An instrument for an 
equation is strongly correlated with the right-hand side endogenous variable of that equation but 
uncorrelated with the equation’s error term. Moreover, an instrument does not have a direct effect 
on the response variable, and thus it does not belong on the right-hand side of the equation as an 
explanatory variable. It is therefore only a tool or instrument to solve the endogeneity problem, 
hence the name. Using an efficient GMM estimator, a necessary condition for identification of the 
two-equation SEM is that each equation has at least one exogenous variable that is not present in 
the other equation. 

Once the SEM is estimated, Equation (10) can be used as the input for decomposition (I) and 
Equation (11) as the input for decomposition (II). In this way, by using an efficient GMM 
estimation procedure instead of OLS, the contribution of d in decomposition (I) and of h in 
decomposition (II) is duly measured. 

Substituting the right-hand side of (11) for di in (10) and the right-hand side of (10) for hi in (11), 
we obtain: 

 

Rearranging terms and assuming that ߚkߛq ≠ 1, we arrive at the following reformulation of the 
model, which is called the reduced form of the SEM: 

 

 

(12) 

(13)

 

The reduced-form equations express each endogenous variable, h and d, in terms of the exogenous 
variables, x1, x2, …, xk–1 and z1, z2, …, zq–1, and the intercept, plus an error term. If variable xj* is 
equal to variable zg* – nothing excludes this case – then the coefficient of the variable in question 
in (12) will be (ߚj* + ߚkߛg*)/(1 – ߚkߛq), and in (13) (ߚj*ߛq + ߛg*)/(1 – ߚkߛq). 
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Like the bivariate multiple regression model (7)–(8), the reduced form of the SEM in (12)–(13) is 
characterized by the same set of explanatory variables, which we note as s1, s2, …, sp. Equations 
(12) and (13) can then be simplified as: 

 
 

(14) 

(15)  

The parameters ߣ ,… ,1ߣ ,0ߣp and ߨ ,… ,1ߨ ,0ߨp in (14)–(15) are called reduced-form parameters. The 
error terms	߰i and ߯i are called reduced-form errors. 

The reduced-form equations (14)–(15) are equivalent to the bivariate multiple regression model 
(7)–(8), and can be directly estimated by OLS since the right-hand side variables are exogenous 
and uncorrelated with the random errors ߰i and ߯i. This shows that, using a SEM regression 
approach, we end up with decomposition (III) based on the bivariate multiple regression model. 
Within the SEM framework, this decomposition incorporates the feedback mechanism between 
the variables h and d, which are allowed to depend on different sets of predictors. As a result, the 
above analysis answers to the criticisms of the bivariate multiple regression model and the resulting 
decomposition (III). 

In our empirical illustration described in the next section, we show that a SEM regression analysis 
forms the basis for a proper use of decompositions (I), (II) and (III). 

5 An empirical illustration 

5.1 Data description 

For comparison the data are the same as those used by Erreygers and Kessels (2013). They come 
from the 2011 Ethiopia Demographic and Health Survey (EDHS) and are confined to children 
under the age of five. 

The response variables in decompositions (I), (II) and (III) are the health variable h and the 
fractional rank deviation d. The health variable h is actually an ‘ill-health’ variable: the degree of 
stunting or malnutrition. It is defined on the unit interval [0, 1] and provides information on the 
depth of child malnutrition. It is measured using the child’s height-for-age standard deviation or 
z-score which is the difference between the height of a child and the median height of a child of 
the same age and sex in a well-nourished reference population, divided by the standard deviation 
in the reference population. The new WHO Child Growth population was chosen as the reference 
population. The degree of stunting is stated relative to the threshold of minus two standard 
deviations of the median of the reference population. Children with a z-score greater than this 
threshold are designated as not stunted and are assigned a zero degree value. The other children 
are stunted and are assigned a value in the unit interval that is proportional to the magnitude of 
their z-score, where a z-score of minus six standard deviations corresponds to the maximum value 
of one. In total, taking into account the sample weights provided by the EDHS, 44 per cent of the 
children in the dataset are stunted. The fractional rank deviation d was obtained by ranking the 
children’s households according to their wealth status using the wealth indices constructed by the 
EDHS from a principal component analysis on all household living conditions and assets. In the 
computation sample weights were taken into account so that, in effect, the variable d stands for 
the weighted fractional rank deviation. 

0 1 1, 2 2, ,
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The set of explanatory variables is the same as the one used by Erreygers and Kessels (2013) except 
for the variable ‘time to water source’, which turned out to be insignificant in their decomposition 
analyses. The variables are: age and sex of the child, education of the mother and her partner or 
husband, urban or rural residence, access to safe drinking water, and satisfactory sanitation. In 
addition to that, the child’s age is specified nonlinearly in the regression models using a squared 
term, which is mean-centred in order to remove multicollinearity with the linear term. 
Furthermore, safe drinking water and satisfactory sanitation are defined along the lines proposed 
by the WHO and UNICEF. ‘Safe drinking water’ includes the following sources of water supply: 
piped water (piped into dwelling, piped into yard or plot, or public tap), water from a protected 
well, tube well or borehole, water from a protected spring, and rainwater. ‘Satisfactory sanitation’ 
includes the following sanitation infrastructure: a flush toilet (flush to piped sewer system, septic 
tank or pit latrine), a pit latrine with slab, a ventilated improved pit (VIP) latrine and a composting 
toilet. 

Table 1 shows a summary of all the variables with their descriptive statistics taking into account 
the sample weights. The data contain information on 9262 children under the age of five. The 
value for the GC equals -0.0136 using either the ‘product definition’ in (1) or the ‘covariance 
definition’ in (2). Its negative sign reveals higher rates of child malnutrition among the poor, that 
is, a socioeconomic inequality of malnutrition to the disadvantage of the poor. In the next two 
sections, we apply the various approaches described in this paper to compute decompositions (I), 
(II) and (III), which we express in percentages. We first discuss the decomposition results from 
using an OLS regression approach, and then those from using a SEM approach. We performed all 
regression analyses using the econometric software package EViews 8. 

Table 1: Mean, standard deviation and description of all variables 

Source: Authors’ calculation based on the 2011 EDHS. 

5.2 Decomposition results using OLS regression 

Decompositions (I) and (II) 

The results for decompositions (I) and (II) depend on the specification of the OLS regression 
model used. For decomposition (I), an important comparison to study is that between the 
exclusion and the inclusion of the weighted fractional rank deviation d in the regression for the 
degree of stunting h. For decomposition (II), we carry out a similar analysis, comparing the results 
from excluding and including h in the regression for d. Table 2 contains the coefficients for the 
two sets of regressions for h and d as well as the t- and F-statistics and significances. We corrected 
standard errors for heteroskedasticity by using White’s heteroskedasticity-consistent standard 
errors. 

Variable Mean SD Description 

Degree of stunting 0.1252 0.2073 

Height-for-age z-score (WHO) scaled to the interval 
[0, 1] 
Degree of stunting > 0 if height-for-age z-score       
< -2 SD

Weighted fractional rank deviation        0 0.2952 Based on the wealth indices provided by the EDHS
Age of child 29.8571 17.8084 In months 
Squared age of child 303.3724 270.6317 Term is mean-centred: (age of child – 29.8571)2

Sex of child 0.5140 0.5110 Male [1], female [0] 
Residence type 0.1237 0.3366 Urban [1], rural [0]
Education of mother 1.3446 2.8587 In years 
Education of partner/husband 2.7439 3.8141 In years
Safe drinking water 0.4614 0.5097 Available [1], not available [0] 
Satisfactory sanitation 0.1234 0.3362 Available [1], not available [0] 
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Using OLS regression, the t-statistics indicate that the variables d and h are highly significant in the 
regressions for h and d, respectively. In other words, h is very much influenced by d, and vice versa, 
d is very much influenced by h. Furthermore, the regression results for h are greatly affected when 
d is included as a regressor, whereas the regression results for d do not seem to differ much when 
h is included. When d is excluded in the regression for h, all variables are significant at the 5 per 
cent level except for safe drinking water. However, when d is included in the regression for h, two 
more variables besides safe drinking water turn out to be insignificant, namely residence type and 
satisfactory sanitation. Also, education of the mother and her partner become less significant when 
including d as a regressor. Consequently, it seems that in the regression for h, some of the variation 
explained by these variables is being attributed to d. In contrast, when h is included in the regression 
for d, only the child’s age variable is affected in the sense that it becomes more significant. 
Although we argue that the OLS framework is not the right methodology to estimate the 
regression models with d and h as regressors, because of the correlated nature of the cross-sectional 
data, we suspect that the regression model for h including d makes more sense than the regression 
model for d including h. 

Using the two regressions for h, excluding and including d, we computed two versions of 
decomposition (I), and using the two regressions for d, excluding and including h, we computed 
two versions of decomposition (II). The percentage contributions of these decompositions are 
shown in Table 3 and visualized in Figure 1. An important observation is that decomposition (I) 
has a zero residual component when d is included and decomposition (II) has a zero residual 
component when h is included. Also, the contribution of d in decomposition (I) and of h in 
decomposition (II) are by far the largest, being 66.08 per cent and 43.08 per cent, respectively, and 
seem to capture all residual variation on top of their real contributions, compared to the large 
residual value of 39.76 per cent in decomposition (I) excluding d and in decomposition (II) 
excluding h. As discussed in Section 3.1, this result is an artefact of including either socioeconomic 
status or health as a variable in the decompositions that aim to explain the correlation between 
these variables. 

One might thus inadvertently conclude that the contributions of d and h are very large in 
decompositions (I) and (II). However, for decomposition (I), the contribution of d exceeds the 
residual term from the same decomposition when d is excluded by a factor of 1.66, whereas for 
decomposition (II), the contribution of h is about the same as the residual term from the same 
decomposition excluding h. Compared to these residual terms, the contribution of the 
socioeconomic variable in decomposition (I) may be real and large, but not as large as 66.08 per 
cent, whereas the contribution of the health variable in decomposition (II) may not be real. Also, 
similar to the regression results, when d is included in decomposition (I), the contributions of most 
other variables are smaller in absolute magnitude than when d is excluded. In contrast, when h is 
included in decomposition (II), the contributions of the other variables seem largely unaffected. 
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Table 2: OLS regressions for the degree of stunting h and the weighted fractional rank deviation d, where d has been excluded and included in the regression for h and h has 
been excluded and included in the regression for d 

Notes: °p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.  
Source: Authors’ calculation based on the 2011 EDHS. 

 

 h d 
 excluding d including d excluding h including h 
 Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 
Constant 0.1305 15.80*** 0.1212 14.16*** -0.1720 -18.54*** -0.1627 -16.99*** 
Age of child 0.0016 10.94*** 0.0016 11.10*** 0.0003               1.82° 0.0005                2.41* 
Squared age of child -0.0001 -13.49*** -0.0001 -13.49*** 0.0000                0.02 0.0000                -0.80 
Sex of child 0.0135               2.30* 0.0139              2.36* 0.0065                 0.98 0.0074                1.12 
Residence type -0.0255          -2.18* -0.0122            -1.02 0.2470 22.30*** 0.2452 21.84*** 
Education of mother -0.0036 -3.43*** -0.0030           -2.87** 0.0106 8.06*** 0.0103 7.87*** 
Education of partner/husband -0.0030 -3.31*** -0.0022            -2.38* 0.0146 13.49*** 0.0144 13.28*** 
Safe drinking water 0.0033                0.53 0.0103                  1.60 0.1289 18.12*** 0.1291 18.18*** 
Satisfactory sanitation -0.0170             -2.03* -0.0110              -1.28 0.1118 12.12*** 0.1106 11.96*** 
d – – -0.0539 -4.19*** – – – – 
h – – – – – – -0.0712 -4.17*** 

F 96.55*** 90.11*** 765.62*** 687.07*** 
R2 0.0770 0.0806  0.3983 0.4006  
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Figure 1: Percentage contributions from decomposition (I), excluding and including d, and decomposition (II), 
excluding and including h, using the OLS regressions from Table 2 

 

                        (a) Decomposition (I)                                                        (b) Decomposition (II) 

Source: Authors’ illustration based on the 2011 EDHS.  

Decomposition (III) 

We computed decomposition (III) starting from the bivariate multiple regression model, the 
coefficients of which are the same as those from the univariate regressions for h excluding d and 
for d excluding h, shown in Table 2. Table 4 contains the individual percentage contributions of 
decomposition (III). As indicated by Erreygers and Kessels (2013), the column and row totals of 
the contributions of decomposition (III) relate to decompositions (I) and (II) from the regressions 
for h excluding d and for d excluding h. The contribution of the residual term in decomposition 
(III) is therefore the same as in decompositions (I) and (II), equating to 39.76 per cent. Table 5 
contains a summary presentation of decomposition (III) showing the direct and combined or 
correlated percentage contributions. Similar to the results of Erreygers and Kessels (2013), the 
total of the combined or correlated contributions is almost twice as large as the total of the direct 
contributions. As a comparison, Figure 2 contains the direct percentage contributions of 
decomposition (III) as well as the contributions from decomposition (I) excluding d and from 
decomposition (II) excluding h. 

Assuming that all explanatory variables in the bivariate multiple regression model are the 
exogenous variables in a two-equation SEM for the estimation of h and d, decomposition (III) 
takes into account the mutual dependency between h and d and thus captures the net or reduced 
effects of the explanatory variables upon both h and d. In the next section, we further discuss the 
relevant decompositions obtained by using a SEM approach.  
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Table 4: Percentage contributions from decomposition (III) in relationship with decompositions (I) and (II) using the OLS regressions for h excluding d and for d excluding h from 
Table 2 

Source: Authors’ calculation based on the 2011 EDHS. 

 

Table 5: Percentage direct and combined contributions from decomposition (III) using the individual contributions from Table 4 

Source: Authors’ calculation based on the 2011 EDHS. 

  

 Age of 
child 

Squared age 
of child 

Sex of 
child 

Residence 
type 

Education of 
mother 

Education of 
partner 

Safe drinking 
water 

Satisfactory 
sanitation 

χ Total (I) 

Age of child -2.49 0.00 -0.02 0.16 0.59 0.96 -0.46 0.21 – -1.04 
Squared age of child -0.19 0.04 0.03 0.31 0.19 0.75 -0.88 -0.03 – 0.20 
Sex of child -0.01 0.00 -0.32 0.03 0.02 0.00 0.04 -0.03 – -0.27 
Residence type 0.00 0.00 0.00 10.05 1.51 2.64 2.65 1.42 – 18.26 
Education of mother -0.04 0.00 0.00 4.99 4.41 4.75 2.16 1.39 – 17.65 
Education of partner -0.04 0.00 0.00 5.22 2.86 8.99 2.13 1.45 – 20.60 
Safe drinking water 0.00 0.00 0.00 -0.66 -0.16 -0.27 -1.57 -0.14 – -2.81 
Satisfactory sanitation -0.01 0.00 0.00 2.09 0.62 1.08 0.83 3.03 – 7.65 
ψ – – – – – – – – 39.76 39.76 
Total (II) -2.79 0.04 -0.31 22.18 10.03 18.88 4.91 7.30 39.76 100.00 

 Direct effect Combined effect
  Age of child Squared age of 

child 
Sex of child Residence type Education of 

mother 
Education of 

partner 
Safe drinking 

water 
Age of child -2.49   
Squared age of child 0.04 -0.19   
Sex of child -0.32 -0.02 0.03      
Residence type 10.05 0.15 0.31 0.03  
Education of mother 4.41 0.54 0.19 0.01 6.50  
Education of partner 8.99 0.92 0.75 0.00 7.86 7.60  
Safe drinking water -1.57 -0.46 -0.88 0.04 1.99 2.00 1.86  
Satisfactory sanitation 3.03 0.21 -0.03 -0.03 3.51 2.01 2.52 0.69 
Component total 22.13 38.11
Residual 39.76        
Total  100.00 
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Figure 2: Percentage contributions from direct effects related to decompositions (I), (II) and (III) using the OLS 
regressions for h excluding d and for d excluding h from Table 2

 

Source: Authors’ illustration based on the 2011 EDHS. 

5.3 Decomposition results using a SEM approach 

SEM estimation 

The first step in a SEM regression analysis for the estimation of h and d as endogenous variables 
in Equations (10)–(11) is to define the exogenous variables for each equation as well as the 
instrumental variables for GMM analysis. Looking at the OLS regression results in Table 2, we 
learn that the variables ‘child’s age’, both its linear and squared term, and ‘sex of child’ are 
important predictors for h, but not for d, whereas the variables ‘residence type’, ‘safe drinking 
water’ and ‘satisfactory sanitation’ are important predictors for d, but not for h. We have therefore 
removed the variables ‘residence type’, ‘safe drinking water’ and ‘satisfactory sanitation’ from the 
equation for h, and used ‘residence type’ and ‘satisfactory sanitation’ as instruments for d. We did 
not include ‘safe drinking water’ as an instrument because we obtained a more powerful GMM 
analysis by not considering this variable. Similarly, we have removed the variables ‘child’s age’, 
both its linear and squared term, and ‘sex of child’ from the equation for d, and used all three terms 
as instruments for h. For each equation in the SEM, we then have at least one exogenous variable 
that is not present in the other equation, so that our system is identified. 

We estimated the SEM in (10)–(11) using a feasible efficient two-step GMM procedure for robust 
covariance estimation in the presence of heteroskedasticity (White 1982) using EViews 8. This 
procedure is also known as two-stage instrumental variables (2SIV) or heteroskedastic two-stage 
least squares (H2SLS). Table 6 contains the GMM regression coefficients for the two-equation 
SEM as well as the OLS regression coefficients, for comparison. Regarding the GMM analysis, 
Table 6 includes the t-, Hansen’s J- and Cragg-Donald F-statistics and significances. Hansen’s J-
statistic has a ߯2-distribution under the null hypothesis that the instruments for an equation in the 
SEM are valid. The J-statistics for the two equations in the SEM are not significant at the 5 per 
cent level so that we conclude that all our instruments are valid. The Cragg-Donald F-statistic is 
used to test for weak instruments or instruments that are not highly correlated with an equation’s 
right-hand side endogenous variable. The Cragg-Donald F-statistics for the two equations in the 
SEM are highly significant, meaning that the instruments for each equation are strong. 
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Table 6: GMM regressions (and OLS regressions for comparison) for the structural equation model (SEM) which includes the degree of stunting h and the weighted fractional 
rank deviation d as endogenous variables 

Notes: °p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.  

Source: Authors’ calculation based on the 2011 EDHS. 

 h d 
 GMM  OLS GMM OLS 
 Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 
Constant 0.1187 13.52*** 0.1240 15.32*** -0.1700 -16.01*** -0.1493 -26.15*** 
Age of child 0.0017 11.18*** 0.0016 11.13*** – – – – 
Squared age of child -0.0001 -13.48*** -0.0001 -13.55*** – – – – 
Sex of child 0.0143              2.41* 0.0138              2.34* – – – – 
Residence type – – – – 0.2502 22.55*** 0.2457 21.94*** 
Education of mother -0.0022            -1.81° -0.0033 -3.36*** 0.0108 8.01*** 0.0102 7.80*** 
Education of partner/husband -0.0014              -1.27 -0.0024 -2.63*** 0.0148 13.37*** 0.0144 13.21*** 
Safe drinking water – – – – 0.1288 17.96*** 0.1296 18.23*** 
Satisfactory sanitation – – – – 0.1132 12.17*** 0.1108 11.97*** 
d -0.0987 -3.46*** -0.0559 -4.67*** – – – – 
h – – – – 0.0826                1.25 -0.0621 -3.73*** 

R2 0.0767 0.0796 0.3895 0.3996  
J              0.42 –              2.69 – 

Cragg-Donald F  917.43***  –  194.31***  – 
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Using a GMM regression, the t-statistics indicate that the health variable h is largely influenced by 
the weighted fractional rank deviation d, but there is no feedback or two-way influence in the sense 
that the weighted fractional rank deviation d is not affected by h. This result is different from the 
result from the OLS regression shown in Table 6 where h is highly significant in the regression for 
d (see also the discussion in Section 5.2, Decompositions (I) and (II)). Furthermore, most exogenous 
variables in the GMM analysis of the SEM are significant at the 5 per cent level, except in the 
GMM regression for h, where ‘education of the mother’s partner’ is insignificant and ‘education 
of the mother’ is only significant at the 10 per cent level. 

Decompositions 

Because the GMM analysis has shown that d has a significant impact on h, but not vice versa, we 
use the GMM regression for h from Table 6 as our input for decomposition (I) and we can simply 
use the OLS regression for d excluding h, from Table 2, as our input for decomposition (II). We 
refer to Section 5.2, Decompositions (I) and (II), where we computed decomposition (II) based on 
this OLS regression. Note that whether or not we include the variables ‘child’s age’, both its linear 
and squared term, and ‘sex of child’ in the OLS regression for d does not make much difference 
in decomposition (II). Table 7 shows the percentage contributions of decomposition (I) based on 
the SEM equation for h in (10). We report the contributions using the GMM regression coefficients 
from Table 6 as well as the OLS regression coefficients for comparison. Figure 3 visualizes the 
two sets of contributions from decomposition (I). Note that, to compute the contribution of the 
weighted fractional rank deviation d using the GMM regression coefficients, we did not include d 
itself, but the predicted value of d resulting from the OLS regression of d on all the exogenous and 
instrumental variables in the SEM equation for h. 

Table 7 and Figure 3 show that decomposition (I) using GMM regression has a large residual 
component of 38.11 per cent, which is of the same size as that of decomposition (I) excluding d 
and using OLS regression. Furthermore, the contribution of d is much lower and more realistic 
using GMM instead of OLS. It was reduced from 68.45 per cent using OLS to 42.62 per cent using 
GMM, which is, however, still a substantial percentage. Also, the contributions of the variables 
education of the mother and her partner were lowered to a similar extent, approximately by a 
factor of 0.6, by using GMM instead of OLS. 

Table 7: Percentage contributions from decomposition (I) using the SEM equation for h and the GMM and OLS 
regression coefficients from Table 6 

Source: Authors’ calculation based on the 2011 EDHS. 

 

 

 GMM OLS 
Age of child -1.06 -1.06 
Squared age of child 0.20 0.20 
Sex of child -0.29 -0.28 
Residence type – – 
Education of mother 10.75 16.21 
Education of partner/husband 9.67 16.47 
Safe drinking water – – 
Satisfactory sanitation – – 
d 42.62 68.45 
h – – 
Residual 38.11                                                        0 
Total 100.00 100.00 
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Figure 3: Percentage contributions from decomposition (I) using the SEM equation for h and the GMM and OLS 
regression coefficients from Table 6 

 

Source: Authors’ illustration based on the 2011 EDHS. 

Lastly, regarding decomposition (III), whether we use the bivariate multiple regression model or 
the SEM regression approach, we end up with the same decomposition (III) which we discussed 
in Section 5.2, Decomposition (III). 

6 Summary and discussion 

Empirical research has provided evidence that socioeconomic status, represented by a wealth- or 
income-related variable, is an important determinant of health. Vice versa, it is likely that health is 
an important determinant of socioeconomic status. However, in order to explain socioeconomic 
inequality of health, or the correlation between health and socioeconomic status, neither of the 
variables, health or socioeconomic status, can be used as an explanatory variable in an OLS 
regression-based decomposition approach, because we would then explain the bivariate dependent 
variable by one of its univariate components, which is meaningless. To unify the potentially 
bidirectional relationship between health and socioeconomic status with the regression-based 
decomposition methodology, we recommend using a structural or simultaneous equation model 
(SEM) which captures the feedback mechanism between health and socioeconomic status using a 
system of equations for these variables, which are assumed endogenous. More specifically, this 
two-equation model allows the inclusion of socioeconomic status as an explanatory variable for 
health and health as an explanatory variable for socioeconomic status, while providing consistent 
estimates using a two-step GMM estimation procedure. It also allows for the specification of 
different sets of determinants of health and socioeconomic status. 

The SEM for the estimation of health and socioeconomic status can easily be transformed into a 
bivariate multiple regression model for these variables, which, in the SEM framework, is also called 
the reduced form of the SEM. The SEM’s exogenous variables are the explanatory variables in 
each equation of this model format. We can then simply apply OLS to estimate the bivariate 
multiple regression model and use the regression coefficients as input for the two-dimensional 
simultaneous decomposition introduced by Erreygers and Kessels (2013). As such, we have shown 
that this decomposition takes into account the mutual dependency between health and 
socioeconomic status and captures the reduced effects of the explanatory variables upon health 
and socioeconomic status. 



17 

In the case that one wishes to use one of the main one-dimensional decompositions, the health-
oriented decomposition proposed by Wagstaff, Van Doorslaer and Watanabe (2003) or the rank-
oriented decomposition (without a constant term) proposed by Erreygers and Kessels (2013), a 
GMM analysis of the SEM is required for a proper application of these decompositions. However, 
if the GMM regressions indicate that socioeconomic status is insignificant in the equation for 
health or health in the equation for socioeconomic status, we can resort again to an OLS regression 
analysis of the particular equation(s) after having removed the insignificant endogenous variable(s). 
We would advise very strongly against applying OLS to the initial SEM equations. 

In our empirical illustration, the GMM analysis of the SEM confirms previous findings that health 
is largely influenced by socioeconomic status, but the opposite relationship appears not to hold. 
In the GMM analysis the effect of socioeconomic status on health is, however, indirect and 
measured by the instrumental variables ‘residence type’ and ‘satisfactory sanitation’. We used the 
GMM regression coefficients of the health equation in the health-oriented decomposition and the 
OLS regression coefficients of the socioeconomic status equation (without an explanatory health 
variable) in the rank-oriented decomposition. We recommend such modelling practice when 
computing one-dimensional decompositions. The contribution of socioeconomic status in the 
health-oriented decomposition turns out to be 42.62 per cent, which is substantial and by far the 
largest. This contribution is, however, indirect and measured by the variables ‘residence type’ and 
‘satisfactory sanitation’. The residual term is not zero, as when using OLS regression coefficients, 
but amounts to 38.11 per cent, which is about the same size as the residual term from 
decompositions based on OLS regressions without health and socioeconomic status as explanatory 
variables. 

Furthermore, we computed the two-dimensional simultaneous decomposition based on the 
bivariate multiple regression model, since this model is equivalent to the reduced form of the SEM. 
The total of the combined or correlated contributions in this decomposition is almost twice as 
large as the total of the direct contributions, and the residual term amounts to 39.76 per cent. All 
in all, we can conclude that the SEM provides a unified modelling framework for correctly applying 
the one- and two-dimensional decompositions and we therefore recommend it as a starting basis 
for decomposition analysis. 

Finally, the SEM proposed in this paper is an observed-variables SEM because the endogenous 
variables health and socioeconomic status are observed or measured. A potentially interesting topic 
for further research would be to construct a SEM where the endogenous variables are not 
observed, but latent (Jöreskog 1973). In this regard, it may prove useful to make the socioeconomic 
variable, when assumed latent, directly dependent on a series of wealth-related variables. Also, 
instead of transforming the socioeconomic levels into ranks, another avenue would be to use the 
socioeconomic levels as they are, and to construct a level-dependent index of socioeconomic 
inequality of health, as proposed by Erreygers and Kessels (2015), to which a SEM regression-
based decomposition analysis can easily be applied. 

 

 

 



18 

References 

Allanson, P., and D. Petrie (2013). ‘Longitudinal Methods to Investigate the Role of Health 
Determinants in the Dynamics of Income-Related Health Inequality’. Journal of Health 
Economics, 32(5): 922–37. 

Doherty, E., B. Walsh, and C. O’Neill (2014). ‘Decomposing Socioeconomic Inequality in Child 
Vaccination: Results from Ireland’. Vaccine, 32(27): 3438–44. 

Erreygers, G. (2009). ‘Correcting the Concentration Index’. Journal of Health Economics, 28(2): 504–
15. 

Erreygers, G., and R. Kessels (2013). ‘Regression-Based Decompositions of Rank-Dependent 
Indicators of Socioeconomic Inequality of Health’. In P.R. Dias, and O. O’Donnell (eds), 
Health and Inequality (Research on Economic Inequality, Volume 21, Chapter 9). London: 
Emerald Group Publishing Limited, 227–59. 

Erreygers, G., and R. Kessels (2015). ‘Socioeconomic Status and Health: A New Approach to the 
Measurement of Bivariate Inequality’. Research report. Faculty of Applied Economics, 
Universiteit Antwerpen, forthcoming. 

Erreygers, G., and T. Van Ourti (2011). ‘Measuring Socioeconomic Inequality in Health, Health 
Care and Health Financing by means of Rank-Dependent Indices: A Recipe for Good 
Practice’. Journal of Health Economics, 30(4): 685–94. 

Greene, W.H. (2011). Econometric Analyis (7th Edition). New York: Macmillan. 

Hansen, L.P. (1982). ‘Large Sample Properties of Generalized Method of Moments Estimators’. 
Econometrica, 50(4): 1029–54. 

Hosseinpoor, A.R., E. Van Doorslaer, N. Speybroeck, M. Naghavi, K. Mohammad, R. Majdzadeh, 
B. Delavar, H. Jamshidi, and J. Vega (2006). ‘Decomposing Socioeconomic Inequality in 
Infant Mortality in Iran’. International Journal of Epidemiology, 35(5): 1211–19. 

Jöreskog, K.G. (1973). ‘A General Method for Estimating a Linear Structural Equation System’. 
In A.S. Goldberger, and O.D. Duncan (eds), Structural Equation Models in the Social Sciences. New 
York: Seminar Press, 85–112. 

O’Donnell, O., E. Van Doorslaer, and T. Van Ourti (2014). ‘Health and Inequality’. In A.B. 
Atkinson, and F.J. Bourguignon (eds), Handbook of Income Distribution (Volume 2B, Chapter 
18). Amsterdam: Elsevier. 

Van de Poel, E., A.R. Hosseinpoor, C. Jehu-Appiah, J. Vega, and N. Speybroeck (2007). 
‘Malnutrition and the Disproportional Burden on the Poor: The Case of Ghana’. International 
Journal for Equity in Health, 6(1): 21. 

Van Doorslaer, E., and T. Van Ourti (2011). ‘Measuring Inequality and Inequity in Health and 
Health Care’. In S. Glied, and P.C. Smith (eds), The Oxford Handbook of Health Economics 
(Chapter 35). Oxford: Oxford University Press, 837–69. 

Van Ourti, T., G. Erreygers, and P. Clarke (2014). ‘Measuring Equality and Equity in Health and 
Health Care’. In A.J. Culyer (ed), Encyclopedia of Health Economics. San Diego: Elsevier, 234–9. 

Van Ourti, T., E. Van Doorslaer, and X. Koolman (2009). ‘The Effect of Income Growth and 
Inequality on Health Inequality: Theory and Empirical Evidence from the European Panel’. 
Journal of Health Economics, 28(3): 525–39. 

Verbeek, M. (2012). A Guide to Modern Econometrics (4th Edition). West Sussex, U.K.: John Wiley & 
Sons. 



19 

Wagstaff, A. (2005). ‘The Bounds of the Concentration Index when the Variable of Interest is 
Binary, with an Application to Immunization Inequality’. Health Economics, 14(4): 429–32. 

Wagstaff, A., P. Paci, and E. Van Doorslaer (1991). ‘On the Measurement of Inequalities in 
Health’. Social Science and Medicine, 33(5): 545–57. 

Wagstaff, A., E. Van Doorslaer, and N. Watanabe (2003). ‘On Decomposing the Causes of Health 
Sector Inequalities with an Application to Malnutrition Inequalities in Vietnam’. Journal of 
Econometrics, 112(1): 207–23. 

White, H. (1982). ‘Instrumental Variables Regression with Independent Observations’. 
Econometrica, 50(2): 483–99. 

 

 


