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1 Introduction

Forecasts of macroeconomic activity are highly important for the decision making process of

economic policy makers. In addition to precise point forecasts, a reliable and timely prediction

of business cycle turning points can be extremely useful for the design of appropriate economic

policy, since the effectiveness of monetary and fiscal policy measures can depend heavily on

the current phase of the business cycle.1 In practice however, there are many problems associ-

ated with the real-time availability of many macroeconomic time series. These include mixed

data frequencies, the irregular and sometimes varying publication lags of various macroeco-

nomic indicators (often referred to as ragged edges) and data revisions. Since they pose huge

challenges to professional forecasters (see Giannone et al. (2008) for a detailed discussion of

these issues), they should be taken into account when assessing the accuracy of alternative

forecasting approaches.2

In order to separate periods of economic expansion from recessions researchers typically

turn to non-linear regime-switching models (for recent applications see Chauvet and Piger

(2008), Nalewaik (2012) and Camacho et al. (2014)). As an alternative, Bayesian density fore-

casting approaches (overviews are provided in Karlsson (2013) or Geweke and Whiteman

(2006)) can be used the compute the probability that the economy is in a specific business cycle

phase at a certain point in time. This has been documented, for example, by Österholm (2012)

who estimates the probability of a recession in the US in the third and fourth quarter of 2008

with a quarterly linear Bayesian vector autoregression. Dovern and Huber (2015) estimate

a linear Bayesian global vector autoregression and show that the model delivers probabilis-

tic recession forecasts that are more precise than those obtained with country-specific models.

However, the analyses in both of these papers are not conducted in a real-time setting since the

models used there do not account explicitly for the aforementioned features of real-time data.

In contrast to that, the linear mixed-frequency Bayesian vector autoregression (MFBVAR)

proposed by Schorfheide and Song (2015) is suited well to identify business cycle turning points

in real-time since it can be estimated on mixed-frequency data with ragged edges. The model

has been proven to increase the accuracy of short-term point and density forecasts for a number

of macroeconomic variables (see Schorfheide and Song (2015)), yet it is still an open question

whether it can also achieve forecast gains for the real-time detection of business cycle phases.

With this paper, I fill this gap and provide evidence that the MFBVAR provides very accu-

rate monthly real-time recession probabilities for the euro area for the period from 2004 until

2013. The risks of a recession are thereby defined as the probability that current quarter GDP

growth is part of a sequence of two consecutive quarters both displaying negative GDP growth

1Lo and Piger (2005) provide supporting empirical evidence for monetary policy and Auerbach and Gorod-
nichenko (2012) for fiscal policy.

2Recently, the success of different econometric forecasting methods in providing a reliable assessment of the
prevailing economic conditions in terms of GDP growth point forecasts, while coping with the outlined difficulties,
has been demonstrated. These methods include bridge equation models (see e.g. Baffigi et al. (2004) and ECB
(2008)), MIDAS-models (see e.g. Kuzin et al. (2011) and Schumacher (2014)) and factor models (see e.g. Schumacher
and Breitung (2008) and Banbura and Rünstler (2011)) as well as combinations of the aforementioned methods (see
e.g. Angelini et al. (2011) and Marcellino and Schumacher (2010)). The relative accuracy of these methods has been
studied for example in Foroni and Marcellino (2014).
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rates. They are obtained from the joint predictive distribution of the back-, now- and forecasts

for euro area real GDP growth in a real-time forecasting setting. I compare the accuracy of

the MFBVAR real-time recession signals to those obtained with univariate regime-switching

models for a number of hard and soft economic indicators as well as their optimal linear com-

binations. Moreover, I consider a real-time recession index based on Google Trends data that

is constructed as a population weighted mean of the Internet query shares for the word ”reces-

sion” in the eleven largest euro area countries.

Related papers that focus on the real-time detection of recessions (see Hamilton (2011) for

a comprehensive overview) often have to rely on monthly variables such as industrial produc-

tion as a proxy of overall economic activity (see Chauvet and Piger (2008), Anas et al. (2008),

Bellgo and Ferrara (2009) or Schreiber (2014)). Exceptions to this are Aastveit et al. (2014) and

Camacho et al. (2014) who estimate models that account for many of the features of real-time

data. In particular, Aastveit et al. (2014) solve the mixed-frequency data issue by applying

the Bry-Boschan rule (Bry and Boschan (1971)), an algorithm to detect recessions, to a bridge

equation model nowcast and compare the accuracy of the therewith obtained real-time reces-

sion probabilities to those obtained with an autoregressive Markov-switching model for Nor-

wegian GDP. Camacho et al. (2014) estimate a mixed-frequency Markov-switching dynamic

factor model for the euro area which captures not only comovements across various economic

indicators through a common business cycle factor but also shifts in the business cycle regime.

In all these studies the real-time recession signals are compared to an official business cycle

chronology such as, for example, that established by the CEPR business cycle dating commit-

tee for the euro area or that of the NBER for the US. Accordingly, in this paper, I use the CEPR

euro area business cycle turning points as a benchmark to evaluate the alternative forecast-

ing approaches. However, while most of the aforementioned papers limit their analysis to a

comparison of the official business cycle turning points to those obtained with their respective

econometric models, I compute formal measures that explicitly assess the calibration as well as

the sharpness of the probabilistic recession forecasts obtained with the different methods. An

approach is said to deliver well calibrated probability forecasts if the empirical event proba-

bility conditional on a forecast is close to that probability forecast, i.e. that it actually rains in

70% of the times rain was announced with a probability of 70%. Sharpness, on the other hand,

refers to the question of whether the probability forecasts are clear cut, i.e. whether they are

clustered around the confident values of zero and one rather than the ambiguous value of 0.5.

The ideal probabilistic forecast maximizes sharpness subject to calibration (Ranjan and Gneit-

ing (2010)). This implies that the real-time recession signals need to be not only very timely but

also clear-cut.

Beyond that, I investigate the discriminatory skill of the different approaches. This means

that I investigate to what extend the real-time recession probabilities obtained with the alterna-

tive models are useful signals when binary forecasts for the occurrence or non-occurrence of a

recession have to be issued. The ad-hoc binary event classifier that is typically used in related

papers is 0.5 and a recession is announced if the recession probability exceeds this threshold

(see Hamilton (1989) or Chauvet and Piger (2008)). However, as it turns out, this threshold is

not always optimal in the sense that it maximises the number of correct recession predictions
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and, simultaneously, minimizes the number of false alarms. Lahiri and Wang (2013) provide a

survey of different measures to evaluate probabilistic recession forecasts which take this aspect

into account and I apply the receiver operator characteristic and the Peirce skill score to assess

the different models’ discriminatory skill. Note that these evaluation approaches are closely re-

lated to the literature on the signals approach where potential indicators for economic crises are

analyzed with respect to their early warning properties (see for example Reinhart and Kamin-

sky (1999) or Boysen-Hogrefe et al. (2015)).

My findings show that the MFBVAR real-time recession probabilities are very sharp and

well calibrated and that only a univariate Markov-Switching model for the confidence index

in industry yields probabilistic recession forecasts that perform equally well. Both models also

have the highest skill to discriminate between recessions and expansions in real-time, although

the optimal binary event classifier used to translate the probabilistic forecasts into binary re-

cession signals varies for both models. By contrast, the real-time recession signals obtained

from other soft indicators such as the Economic sentiment indicator or the confidence index in

retail sale are much worse calibrated. In fact, these methods deliver many recession signals in

non-recession periods which suggests that they are potentially driven by more than economic

fundamentals. The probabilistic forecasts obtained with the models for the hard economic indi-

cators, in particular for industrial production and real GDP, on the other hand, lack sharpness,

due to the long publication lag of the respective data. As a consequence they have no discrim-

inatory skill to separate recession and expansion periods in real-time. The combinations of the

probabilistic forecasts of the univariate regime-switching models improve upon most of their

components in all dimensions considered here. However, even when an optimal combination

scheme is applied the pooled real-time recession probabilities are outperformed by those of

the MFBVAR. The Google Trends real-time recession indicator performs better than most uni-

variate regime-switching models and pools, but clearly worse than the MFBVAR in terms of

calibration, sharpness and discriminatory skill. Especially in between the two recession peri-

ods in the sample the index delivers very ambiguous real-time recession signals and turns out

not be very useful.

Finally, in the robustness analysis, I provide evidence that the inclusion of the confidence

index in industry is crucial for the good performance of the MFBVAR. Moreover, I investigate

to what extent the MFBVAR real-time recession signals can be improved by simultaneously

assessing the joint development of several economic indicators through the multivariate pre-

dictive distribution of these variables rather than just the course of GDP growth alone. My

findings indicate that no significant gains in accuracy are obtained compared to the benchmark

where the real-time risks of a recession are defined as the probability that current quarter GDP

growth is part of a sequence of two consecutive quarters both displaying negative GDP growth.

The remainder of this paper is structured as follows. In section (2) I give an overview of the

euro area business cycle since 2000, while in section (3) I describe the dataset used for the em-

pirical application in this paper. In section (4) I lay out the alternative forecasting approaches,

which are evaluated using the formal measures described in section (5). In section (6) I present

the main results, while the results of the robustness checks are shown in section (7). Finally, in

section (8) I conclude.
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2 The euro area business cycle

Since 2003 the euro area the CEPR business cycle dating committee has been publishing busi-

ness cycle turning points for the euro area.3 Table (1) displays the euro area business cycle

phases since 2000 as declared by the CEPR.

Dates Business cycle phase

until January 2008 expansion
February 2008 - April 2009 recession
May 2009 - July 20114 expansion
August 2011 - January 2013 recession
since February 2013 expansion

Table 1: CEPR euro area business phases since 2000.

The committee defines a recession as ”... a significant decline in the level of economic activity,

spread across the economy of the euro area, usually visible in two or more consecutive quarters

of negative growth in GDP, employment and other measures of aggregate economic activity for

the euro area as a whole, and reflecting similar developments in most countries. A recession

begins just after the economy reaches a peak of activity and ends when the economy reaches

its trough.” (Artis et al. (2003)). In total, the committee has identified two recessions since 2000,

namely the Great Recession of 2008/2009 and the recession in connection with the European

debt crisis of 2011/2013. These are marked by the shaded areas in panel (a) of figure (1), which

displays quarter-on-quarter euro area real GDP growth since 2000. While the first recession pe-

riod lasted for 15 months, the second recession in the sample persisted for 18 months in total.

During the Great Recession euro area real GDP growth turned negative in the second quarter

of 2008 and remained so until the second quarter of 2009. The strongest decrease in real GDP

amounts to −2.5% and occurred in the first quarter of 2009. By contrast, with a maximum

decline of −0.6% real GDP growth in the fourth quarter of 2012, the European debt crisis was

considerably milder. In this recession, real GDP growth rates were negative from the fourth

quarter of 2011 until the first quarter of 2013. In panel (b) of figure (1) the course of euro area

real GDP over up to 10 quarters after all CEPR dated peaks since 1970 (normalized to one) is

displayed. It can be seen that compared to earlier recessions in the euro area, the Great Reces-

sion was by far the most severe in terms of deepness, while the recession in connection with

the European debt crisis was characterized by the most prolonged but overall only moderate

decline in economic activity.

3The publishing delay for the CEPR business cycle turning points is quite substantial. For example, the euro area
business cycle peak that occurred in January 2008 was announced only on the 31st of March 2009 only. Similarly,
the trough in April 2009 was identified with more than 12 months delay.

4Recently the CEPR has abandoned its practice to announce the month of the business cycle turning point.
Hence, from July 2011 onwards, I set the first month of the quarter announced as business cycle turning point as the
month of the respective peak or trough. This assumption is quite conservative and requires the real-time recession
signals of the alternative approaches to be very timely. The results for an evaluation where the second or third
month of a quarter are set as the turning point are very similar to those presented in section (6) and are available
upon request.
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(a) Euro area real GDP growth since 2000
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(b) Euro area recessions since 1970

1974 Q3 - 1975 Q1
1980 Q1 - 1982 Q3
1992 Q1 - 1993 Q3
2001 Q1 - 2002 Q1 
(no CEPR recession)
2002 Q3 - 2003 Q2 
(no CEPR recession)
2008 Q1 - 2009 Q2
2011 Q3 - 2013 Q1

Figure 1: Euro area economic activity.

In addition to the CEPR, other authors also have attempted to establish a monthly business

cycle chronology for the euro area (see Anas et al. (2008) and Billio et al. (2012) for recent exam-

ples covering also the Great Recession of 2008/2009). Their assessment of the Great Recession,

which Billio et al. (2012) date from September 2008 until July 2009, differs slightly from that of

the CEPR committee. Moreover, there is also disagreement on whether there was another reces-

sion in the euro area between 2000 and 2005. Billio et al. (2012) declare an industrial recession

from September 2001 until May 2006, which Anas et al. (2008) date from December 2000 until

November 2001. However, the view of the CEPR is that the overall evidence did not support

a ”fully-fledged recession but rather a prolonged pause in the growth of economic activity”

(Artis et al. (2003)). This is confirmed in panel (b) of figure (1) as well, where in addition to

the official CEPR recessions since 1970 also two periods between 2000 and 2005 with weak real

GDP growth rates below 0.2% are included.

Note that there are other formal approaches to identify business cycle turning points such

as the well-known Bry-Broschan rule (see Bry and Boschan (1971) and Harding and Pagan

(2002)). For the period from 2000 onwards, however, this rule would deliver the same business

cycle chronology for the euro area as the CEPR business cycle dating committee.

3 Data

For the empirical application in this paper I use a real-time dataset that consists of 123 monthly

data vintages for October 2003 until December 2014 all of which start in January 1991.5 Each

of these data vintages provides a historic snapshot of the data at the beginning of each month,

5The very small number of vintages that was unavailable for some variables, was replaced with the data vintage
of the previous month. Moreover, since for the unemployment rate the data vintages start only after 1991, all
vintages were augmented with data taken from the OECD database.

5



as it was available at the time. This implies that the dataset not only reflects the publication

lag of each variable with respect to the reference date, i.e. the date at which the snapshot was

taken, but also changes in the data flow over time due to recent improvements in the timeliness

of various indicators. The dataset was obtained from the real-time database of the Statistical

Data Warehouse of the European Central Bank in early December 2014. A detailed description

of the database, the variables included as well as the treatment of issues such as data revisions,

changing variable definitions and the composition of the euro area over time can be found in

Giannone et al. (2010). All series are seasonally adjusted and natural logarithms are taken for

all variables not expressed in rates.

Euro area monthly indicators Reporting lag in January 2008

Industrial production excluding construction 3 months
CPI 2 months
Unemployment 2 months
New passenger car registrations 2 months
Money supply M1 2 months
Money supply M3 2 months
Economic sentiment indicator 1 month
Stock market index 1 month
Oil price 1 month
Confidence index industry 1 month
Confidence index retail sales 1 month

Table 2: Euro area monthly indicators with respective reporting lag in early January 2008.

The dataset includes eleven monthly indicators for the euro area which are summarized

in table (2). The reporting lag of each indicator, which is displayed in the second column of

the table, illustrates the heterogeneity in the timeliness of the publication of different series.

For example, in early January 2008 the most recent available observation for industrial produc-

tion excluding construction was referring to October 2007, while for the Economic Sentiment

indicator the figure for December 2007 was already available.

For quarterly euro area real GDP, which is also included in the analysis, the first official

release is usually published about 45 days after the end of the reference quarter. Hence, the

respective observation is included for the first time in the data vintage of the third month of the

following quarter. This implies not only that the figure for current quarter GDP is unknown

throughout the whole quarter, but also that the figure for last quarter GDP is not available in

first and second month of a given quarter. Hence, in each quarter an estimate of current quarter

GDP (referred to as the nowcast) and in some cases also of last quarter GDP (referred to as the

backcast) have to be computed. To increase the estimation sample for the univariate quarterly

Markov-Switching model for real GDP growth (see section 4.3) each of the data vintages for

GDP is augmented with data from the 14th update of the area wide model database (see Fagan

et al. (2001)) covering the period from 1970 Q1 until 1990 Q4.
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4 Forecasting Approaches

In order to assess the real-time probabilities for a recession in the euro area, I implement a

number of different econometric models which are described below in section 4.1 until 4.3. In

addition, I also consider a real-time recession indicator based on Internet search data that is

described in section 4.4.

4.1 The Bayesian Mixed-Frequency VAR

Consider the following monthly VAR

Xt = C + A1Xt−1 + ... + ApXt−p + ǫt, (1)

where the vector Xt = (xm
1,t, ..., xm

11,t, x
q
t )

′ contains the 11 observable monthly indicators listed in

table (2) and latent monthly real GDP x
q
t . Following Bańbura et al. (2010) I include the variables

in log-levels rather than growth rates to not lose information that might possibly be contained

in the trends. p denotes the number of lags included in the estimation and is set to p = 6. C

is a vector of constants, A1, ..., Ap are parameter matrices and ǫt is a vector of independently

identically distributed white noise error terms with zero mean and covariance matrix Σ.

To account for the mixed frequencies and the ragged edges of the dataset the VAR outlined

in equation (1) is rewritten in state-space form with a time-varying measurement equation (see

Schorfheide and Song, 2015) that reads

Yt = StΛZt. (2)

The corresponding transition equation for the states Zt = (X′
t, ..., X′

t−p+1)
′ is simply the com-

panion form of the monthly VAR described in equation (1). In equation (2) the time-varying

diagonal selection matrix St governs that the states contained in Zt are included in the obser-

vation vector Yt only if they are truly observable, while the matrix Λ aggregates latent monthly

real GDP into its observed quarterly counterpart. In particular, following Schorfheide and Song

(2015) the log of quarterly real GDP is assumed to be observable every third month only and

to be equal to the average over the three unobserved monthly GDP figures in the respective

quarter, i.e. y
q
t =

1
3

(
x

q
t + x

q
t−1 + x

q
t−2

)
. Hence, for t = 3, 6, 9, ..., Tb, where Tb is the last month in

which a quarterly GDP figure is observable, the observation vector reads Yt = (ym
1,t, ..., ym

11,t, y
q
t )

′,

where ym
j,t are the j = 1, ..., 11 monthly indicators and y

q
t denotes observed quarterly real GDP.

By contrast, in the first and second month of each quarter y
q
t is dropped from Yt. Moreover, at

the current edge, e.g. for t > Tb, y
q
t is never included and depending on their publication lags

some of the ym
j,t are dropped from Yt as well.

The mixed-frequency state-space model outlined above is estimated with Bayesian tech-

niques using data up to month T > Tb. This involves the estimation of the marginal posterior

distributions of the unknown VAR parameters A1, ..., Ap, C and Σ as well as the estimation of

the unknown state vector Z1:T. Following Schorfheide and Song (2015), I rely on a version of

the normal inverse wishart prior that retains the main principles of the widely used Minnesota
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prior (see Kadiyala and Karlsson, 1997; Litterman, 1986). The prior is augmented to constrain

the sum of coefficients of the VAR (see e.g. Sims and Zha, 1998) as well as to incorporate the

belief that the variables in the VAR follow a common stochastic trend. I implement this prior

using the dummy variable approach outlined in Bańbura et al. (2010).6

The initial values of the state vector Z0 are sampled conditional on a presample ranging

from April 1991 until December 1994 (see Schorfheide and Song, 2015). A Gibbs sampler then

iteratively samples the VAR parameters A1, ..., Ap, C and Σ as well as the unknown states Z1:T

from their respective conditional posterior distributions.

For each of the retained Gibbs draws of the VAR coefficients Ai
1, ..., Ai

p, Ci, Σi and the vec-

tor of states Zi
1:T a shock vector ǫi

T+h is drawn from N(0, Σi) and equation (1) is iterated for-

ward to compute forecasts for the monthly observable and unobservable variables in X̂i
T+h with

h = 1, ..., 12. The forecasts for unobservable monthly GDP are transformed into their quarterly

counterparts based on equation (2). From these I compute the implied forecasts for quarterly

GDP growth ∆ŷi
TB+h̃

, where TB denotes the last quarter for which GDP was observable and

h̃ = 1, ..., 3. The set of
{

∆ŷi
TB+h̃

}N

i=1
approximates the predictive distribution of the back-, now-

and forecasts of quarterly euro area GDP growth that can be used to compute pointforecasts as

the mean or median of the distribution and real-time recession probabilities.

Note that depending on the current information set, i.e. the month of the quarter in which

the prediction is made, ∆ŷTB+1 could either denote a backcast (implying that we are in the

first or second month of a quarter when last quarter GDP is not available yet) or a nowcast.

Correspondingly, ∆ŷTB+2 refers to a nowcast if it is computed in the first two months and

to a 1-quarter ahead forecast in every third month of a quarter, and so on. For example, in

January 2008 the most recent available observation for GDP refers to the third quarter of 2007

(TB = 2007Q3) and TB + 1 denotes the backcast for the fourth quarter of 2007, while TB + 2

refers to the nowcast for the first quarter of 2008. By contrast, two months later, in March 2008,

the figure for the fourth quarter of 2007 has been released (TB = 2007Q4) and the nowcast for

the first quarter of 2008 is denoted as TB + 1. This has to be taken into account in the following

when computing the MFBVAR real-time recession probabilities.

According to a widely used (approximate) definition, the economy is in a recession if real

GDP growth is negative for at least two quarters in a row. I will therefore define the real-time

risks of a recession as the probability that the nowcast for current quarter GDP growth (i.e.

either ∆ŷTB+1 or ∆ŷTB+2, depending on the current information set) is part of a sequence of

two consecutive quarters both displaying negative GDP growth rates. This criterion implies

that the GDP growth nowcast could either be the first or the second period of a two-quarter

recession sequence. Hence, taking into account the data availability in month T, the real-time

recession probabilities implied by the MF-BVAR can be computed as

πMFBVAR
T =

{
Pr
(
∆ŷTB < 0, ∆ŷTB+1 < 0

⋂
∆ŷTB+1 < 0, ∆ŷTB+2 < 0 |YT

)
for T = 3, 6, ...

Pr
(
∆ŷTB+1 < 0, ∆ŷTB+2 < 0

⋂
∆ŷTB+2 < 0, ∆ŷTB+3 < 0 |YT

)
otherwise.

(3)

6A detailed outline of the prior is provided in the appendix.
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From the Gibbs sampler output πMFBVAR
T can be easily obtained as

πMFBVAR
T = N−1

N

∑
i=1

I
(

∆ŷi
TB :TB+3

)
, (4)

where I(.) denotes an indicator function that is equal to one if and only if the GDP growth

nowcast for the current quarter is part of a consecutive sequence of two quarters both display-

ing negative GDP growth. Note that in section (7) I consider alternative recession definitions

to extract the real-time recession probabilities from the predictive distribution of the MFBVAR

to see how far the model’s performance is robust to the definition in equation (3).

4.2 A quarterly Bayesian VAR

As a benchmark, I estimate a quarterly version of the model outlined in section (4.1) for each

of the monthly data vintages. This implies that all monthly observations beyond Tb, i.e. the

last month for which real GDP is available, are dropped and that all monthly indicators are

aggregated to quarterly frequency. Since the quarterly BVAR does not include any latent vari-

ables, there is no need to set up a state space system as described above. However, apart from

that the estimation procedure, the prior specification and the computation of the predictive

densities and real-time recession probabilities are equivalent to that of the MFBVAR.

4.3 Markov-Switching Models

4.3.1 Univariate Markov-Switching Models

For selected indicators in the dataset, I set up the following univariate model:

∆yt = µst + ψst ∆yt−1 + ǫt with ǫt ∼ N(0, σst), (5)

where ∆yt denotes the first difference of the respective indicator.7 The latent discrete variable

st is assumed to evolve as a two-state, 1st order Markov-Switching process, i.e. st = {E, R},

with transition probabilities

P(st = j|st−1 = i) = pij, i, j = E, R. (6)

This model implies that the dynamics of the process described in equation (5) may differ be-

tween the two regimes E and R, thus allowing for structural breaks in the time series which

can be estimated. Assuming that µE > µR and that E are expansionary business cycle phases,

while R stands for recession periods, the model can be used to identify business cycle turning

points and to compute recession probabilities. In particular, the probability that the economy

7For the sake of simplicity I use the subscript t for both, the model in monthly frequency for the monthly
indicators and the model in quarterly frequency for real GDP growth.
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is in a recession in period t given the observations y1:t can be obtained as

P(st = R|y1:t) =
P(yt|st = R) P(st = R|y1:t−1)

∑
R
j=E P(yt|st = j) P(st = j|y1:t−1)

(7)

where P(st = j|y1:t) j = E, R are referred to as filtered probabilities and P(yt|st = j) is the

likelihood of the data in period t conditional on state j.

I estimate the model in equation (5) for all monthly indicators listed in table (2), except the

price indices and the monetary aggregates.8 In particular, following Anas et al. (2008) I consider

industrial production, the unemployment rate and the new passenger car registrations. In

addition, I include the sentiment indices in the dataset, i.e. the Economic sentiment indicator

and the indices for confidence in industry and retail sale, and the Stock market index since

these could potentially provide even timelier recession signals than the aforementioned hard

economic indicators. For quarterly real GDP growth I estimate the well-established modified

version of equation (5) proposed by Hamilton (1989) which only allows for regime shifts in the

mean µst but not in the coefficient on the lagged dependent variable or the variance.

I estimate the univariate Markov-Switching models for the selected indicators with Bayesian

techniques as described in Kim and Nelson (1999). This involves setting up a Gibbs sampler

that iteratively draws the states S1:T, the probabilities pEE and pRR and the remaining unknown

parameters {µj, ψj, σj, } for j = E, R from their respective conditional posterior distributions

using the filter proposed by Hamilton (1989) and the multi-move sampler suggested by Carter

and Kohn (1994). A normal inverse wishart prior, that is assumed to be symmetric across the

two states, is used for the coefficients and the variance in equation (5), while the probabilities

pEE and pRR are assumed to a priori follow a beta distribution.

In this real-time application, I estimate the univariate Markov-Switching models for each

indicator m with data up to period T∗
m, i.e. the period for which the most recent observation

for that indicator is available. The real-time recession probability for the current period T =

T∗
m + km can thus be obtained as

πm
T = P(sT = R|y1:T∗

m
) = Pkm

(
P(sT∗

m
= R|y1:T∗

m
) P(sT∗

m
= E|y1:T∗

m
)
)′

,

where km is the publication lag of indicator m and the (2 x 2) matrix P contains the estimated

transition probabilities pij, i, j = E, R.

4.3.2 Markov-Switching Linear opinion pool

The combination of forecasts from different sources is very popular as a means to increase the

accuracy of point forecasts (see for example Bates and Granger (1969), Stock and Watson (2003),

Kuzin et al. (2011) and Schwarzmüller (2015)). As shown by Clements and Harvey (2011) and

Ranjan and Gneiting (2010) among many others, the concept of forecast pooling can also be

extended to probabilistic forecasts.

8For these variables, it is not intuitively clear that the assumption µE > µR identifies a ”high” state E and a
”low” state R which correspond to phases of economic expansion and recession, respectively.
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Following Anas et al. (2008), who construct a business cycle coincident indicator (BCCI) as

a linear opinion pool of the probabilistic forecasts obtained with several univariate Markov-

Switching models to assess recession risks in the euro area, I implement a Markov-Switching

Linear opinion pool with equal weights as

π
pool
T = M−1

M

∑
m=1

πm
T . (8)

While Anas et al. (2008) chose their pooling weights to minimize first and second order fore-

cast errors, I opt for an equal weights pool. The main reason for this is technical, because in this

real-time application, where the realized business cycle phases are observed with substantial

delay, it would be very hard to compute meaningful pooling weights based the on the recent

forecast performance of the alternative forecast approaches. In addition, the limited sample

size impedes the calculation of performance-based weights over a presample. Moreover, for

pointforecasts equally weighted forecast pools have been proven to be extremely competitive

in comparison to pools with performance-based pooling weights (see for example Stock and

Watson (2004) and Timmermann (2006)).

However, Ranjan and Gneiting (2010) show that for probabilistic forecasts, in general, the

linear opinion approach is suboptimal, since it yields pools that are uncalibrated and lack

sharpness. They propose to recalibrate the linear opinion pool by applying a beta transform

which is given as

π
pool,opt
T = Hα,β

(
M−1

M

∑
m=1

πm
T

)
, (9)

where Hα,β is the cumulative distribution function of a beta density with parameters α and β

for which α = β ≥ 1. I apply the beta transform in the robustness analysis in section (7) to

assess ex post to what degree the performance of the linear equal weights pool is inferior to

that of the optimal pool.

In total, I implement three linear equal weights pools. The first combines the probabilistic

forecasts of all considered univariate Markov-Switching models, while the second pool com-

bines only the real-time recession probabilities obtained with the models for the soft indicators,

i.e. the two confidence indices in industry and retal sale, the Economic sentiment indicator

and the Stock market index. Finally, in the spirit of the BCCI proposed by Anas et al. (2008) I

implement a pool that aggregates the predictions of the univariate Markov-Switching models

for industrial production, the unemployment rate and new passenger car registrations.

4.4 A Google-Trends Real-Time Recession Indicator for the Euro Area

Google Trends (https://www.google.de/trends/) provides real-time indices of the relative

volume of Internet search queries for specific terms in a predefined geographic area starting

from January 2004.9 A growing body of literature has documented the usefulness of this data

9See Choi and Varian (2009b) for a description of the Google Trends interface and potential uses of the data.
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to predict variables such as for example unemployment (Askitas and Zimmermann (2009);

Choi and Varian (2009a)), consumer demand and sales (Vosen and Schmidt (2011) and Yan and

Labbé (2013) and Fantazzini and Toktamysova (2015)) as well as tourism flows (Concha and

Galán (2012)) and influenza outbreaks (Ginsberg et al. (2009)).

As an alternative to the econometric real-time recession indices discussed above, I construct

a euro area real-time recession indicator based on Google Trends data for the search query share

of the word recession. In particular, the indicator is built as population-weighted mean over the

indices for the eleven largest euro area countries for which a query series is available. The

list of countries includes Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,

Netherlands, Portugal and Spain.

The idea underlying this approach is very similar to the co-called R-word index introduced

by The Economist magazine in the early 1990’s, which tracks the number of newspaper articles

that use the word recession in a given quarter. The R-word index has been documented to reliably

provide early signals for pending recessions in the US (Doms and Morin (2004)), Germany

(Mayr and Grossarth-Maticek (2008)) or Switzerland (Iselin and Siliverstovs (2013)).

5 Evaluation of the probabilistic recession forecasts

I evaluate the real-time recession probabilities of the alternative approaches outlined in section

(4) with formal scoring rules for the period ranging from January 2004 until December 2013, i.e.

a total of 120 recession predictions are considered for the evaluation. In particular, the recession

probability forecasts πt are compared to a binary indicator variable bct that is equal to one for

periods that were declared as recessions by the CEPR and zero otherwise (see table 1).

The first scoring rule that I compute to assess the accuracy of the alternative approaches is

the widely used quadratic probability score (QPS) which is given as

QPS = T−1
T

∑
t=1

(
πt − bct

)2
. (10)

Gneiting et al. (2007) show that this score is proper, meaning that the forecaster has no incentive

to state anything but his true beliefs. The QPS corresponds to the common notion of mean

squared error loss that is typically used to evaluate pointforecasts. That implies that the score

explicitly accounts for the strength of false signals, meaning that a recession probability π1
t =

0.8 in a month where bct = 0 is considered to be worse than π2
t = 0.6.

The QPS simultaneously addresses the sharpness and calibration of the probabilistic fore-

casts πt. It can be decomposed to make the performance in both dimensions visible. The

negatively-oriented component that assesses the calibration of the probabilistic forecast is given

as

CAL = T−1
J

∑
j=1

Tj
−1
(

π j − bcj

)2
, (11)
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while the positively-oriented sharpness component reads

SHARP = T−1
J

∑
j=1

Tj
−1
(

bcj − bct

)2
. (12)

π j ∈ [0, 1] are j = 1, ..., J discrete probability values used to define probability bins. Tj is the

number of times πt falls into bin j. bcj is the respective empirical conditional event frequency

and bct is the unconditional mean of bct (see Ranjan and Gneiting (2010)). It holds that

QPS = CAL − SHARP + Var(bct). (13)

I assess the statistical significance of the difference between the QPS scores for the alterna-

tive forecasting approaches with a version of the Diebold-Mariano test (Diebold and Mariano

(1995)) that accounts for serial correlation of the forecast errors using Newey-West standard

errors as proposed by Lopez (2001).

Lahiri and Wang (2013) survey a number of alternative methods that are suited well to eval-

uate probabilistic forecasts for a decline of GDP. Unlike global measures of forecast quality such

as the QPS, these measures explicitly take into account the ability of a forecasting approach to

assess the odds for the occurrence of an event against its non-occurrence. This could be par-

ticularly important, for example, in the policy process when clear signals for the predicted

occurrence or non-occurrence of an event have to be issued.

I apply two of the evaluation methods outlined in Lahiri and Wang (2013), namely the Re-

ceiver operating characteristic (ROC) and the Peirce skill (PS) score. Both of these measures are

based on (2x2) contingency tables which classify
{

b̂ct

}T

t=1
, the binary forecasts for the occur-

rence or non-occurrence of an event, into Hits (b̂ct = bct = 1), False Alarms (b̂ct = 1, bct = 0),

Misses (b̂ct = 0, bct = 1) and Correct rejections (b̂ct = bct = 0) for a given period of observations{
bct

}T

t=1
. These binary event forecasts b̂ct can be obtained from the probabilistic forecasts πt

via a binary event classifier w, such that b̂ct = 1 if πt > w and b̂ct = 0 otherwise.

The ROC is calculated for a range of thresholds w and thus explicitly accounts for the role of

the binary event classifier for the accuracy of the binary forecast signal. The ROC is commonly

depicted as a curve of the rates of Hits against the corresponding rates of False alarms over a

range of thresholds w for a given period of observations
{

bct

}T

t=1
. Ideally, for high values of

w the rate of Hits should increase monotonically from zero to one as w decreases, while the

rate of False alarms should remain constant at zero. For further decreases in w the ideal ROC

curve would indicate increasing False alarm rates but a constant Hit rate of one (see figure 2). By

contrast, a ROC curve along the 45 degree line in the unit square indicates no discriminatory

skill for the occurrence and non-occurrence of an event.

Alternatively, the ROC score can also be expressed as the area above the ROC curve. From

the description of the ideal ROC curve, it is clear the ROC score ∈ {0, 1} and that it is zero for

the ideal forecasting method which perfectly discriminates between the occurrence and non-

occurrence of an event.
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Figure 2: Ideal ROC curve.

Finally, the PS score is computed as the difference between the rate of Hits (H) and the rate

of False alarms (F) for a given threshold w, i.e.

PS(w) =
∑

T
t=1(bct b̂ct)

∑
T
t=1 bct

−
∑

T
t=1 b̂ct − ∑

T
t=1(bctb̂ct)

T − ∑
T
t=1 bct

= H − F. (14)

For an ideal forecasting approach PS(w) = 1 or PS(w) = −1, whereby the latter value in-

dicates that the binary signals are perfectly mislabeled. By contrast, PS(w) = 0 indicates no

discriminatory skill at all. Following Lahiri and Wang (2013), I assess the statistical significance

of the PS scores for the alternative forecasting approaches using the following standard error

formula:

SE(w) =

√
H(1 − H)

∑
T
t=1 bct

+
F(1 − F)

T − ∑
T
t=1 bct

(15)

6 Results

The monthly real-time recession signals obtained with the different methods described in sec-

tion (4) are depicted in figure (3). Since the original real-time recession probabilities obtained

with the alternative approaches are very noisy, the displayed real-time signals are obtained as

three month weighted moving averages over the original probabilities.10 The two recessions in

the evaluation period from January 2004 until December 2013, as dated by the CEPR (see table

1), are again marked by the shaded areas in each of the panels.

In general, all approaches shown in figure (3), show increased real-time recession signals

during the Great Recession and the recession in connection with the European debt crisis. How-

ever, there are considerable differences among the alternative approaches with respect to the

timeliness of recession signals as well as the amount of False alarms, i.e. recession signals in

non-recession periods. This is also reflected in table (3) which contains the QPS for the alterna-

10In particular, the real-time recession signals are obtained as π̃t =
1
6 πt−2 +

2
6 πt−2 +

3
6 πt, where πt is the original

recession probability for period t.
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Notes: The displayed monthly real-time recession signals are computed as three month weighted moving aver-
ages over the original probabilities obtained with the alternative approaches (see footnote 10). The shaded areas
mark euro area recessions as dated by the CEPR business cycle dating committee. MFBVAR: mixed-frequency
Bayesian vector autoregression, QFBVAR: quarterly BVAR, MS: univariate Markov-Switching model for, ESI: the
Economic Sentiment indicator, INDCONF: index for confidence in industry, RSCONF: index for confidence in
retail sales, STOXX: Stock market indicator, GDP: real gross domestic product, IP: industrial production, CARS:
new passenger car registrations, UN: unemployment rate, MSP: combination of probabilistic forecasts from uni-
variate Markov-Switching models for, ALL: all univariate MS models, SI: the Economic Sentiment index, the
confidence indices in industry and retail sale and the Stock market index, BCCI: industrial production, the un-
employment rate and new passenger car registrations.

Figure 3: Real-time recession signals for the euro area.
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tive models in the first column as well as the results of the formal assessment of the calibration

(CAL) and the sharpness (SHARP) of the probabilistic forecasts of the different approaches

in the second and third column. Small values for QPS and CAL reflect high overall accuracy

and good calibration, respectively, while high values for SHARP indicate that the probabilistic

forecasts of the alternative approaches are sharp.

QPS CAL SHARP

MFBVAR 0.108 0.028 0.108
QFBVAR 0.211*** 0.046 0.048

MS-ESI 0.231*** 0.123 0.040
MS-INDCONF 0.110 0.074 0.114
MS-RSCONF 0.317*** 0.161 0.005
MS-STOXX 0.148 0.075 0.087
MS-GDP 0.228*** 0.033 0.006
MS-IP 0.227*** 0.059 0.006
MS-CARS 0.188*** 0.022 0.016
MS-UN 0.315*** 0.173 0.009

MSP-All 0.168** 0.057 0.056
MSP-SI 0.154 0.100 0.090
MSP-BICC 0.215*** 0.053 0.002

Google Trends 0.148 0.021 0.047

Notes: The real-time recession signals of the alternative approaches are evaluated over the
sample from January 2004 until December 2013 using the CEPR business cycle chronology as a
benchmark. QPS: quadratic probability score, CAL: calibration score, SHARP: sharpness score.
***(**,*) denote that the QPS is significantly different from the QPS of the MFBVAR at the 1%
(5%,10%) level. For the model abbreviations refer to the notes for figure (3).

Table 3: Evaluation of real-time recession probabilities, QPS.

Overall, the results presented in table (3) suggest that MFBVAR performs best as it achieves

the lowest QPS among all approaches considered here. However, the improvements of the

MFBVAR upon the univariate Markov-Switching models for industry confidence, the Stock

market, the pool of models for the sentiment indices and the Google Trends real-time reces-

sion index are not statistically significant, as indicated by the results of the respective pairwise

Diebold-Mariano tests.

The Markov-Switching models for industry confidence achieves a QPS that is only slightly

higher than that of the MFBVAR, although its real-time recession signals are worse calibrated.

This is confirmed in figure (3), which shows that the few False alarms of the MFBVAR in panel

(a) are considerably less pronounced than those of the model for the industry confidence index

in panel (d). On the other hand, the latter model performs better than the MFBVAR in terms of

sharpness, which reflects that the real-time recession signals of the MFBVAR at the onset of the

Great Recession are only very muted.

The univariate Markov-Switching models for the Stock market index, the pool of all senti-

ment indices and the Google Trends real-time recession indicator perform more or less equally
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well in terms of QPS. However, for the former two this is due to the high sharpness of their

forecasts, while the Google Trends real-time recession signals are better calibrated. Again, this

is confirmed in figure (3) which shows that the real-time recession signals obtained with the

models for the Stock market index in panel (f) and the sentiment pool in panel (k) are concen-

trated at the confident values of zero and one. On the other hand, both models issue many

False alarms which deteriorates their relative performance in terms of calibration. By contrast,

the Google Trends indicator depicted in panel (n) is almost always equal to zero in the non-

recession period prior to 2008 and also very low after the end of the second recession in the

sample. This improves the calibration score of the index considerably. Its moderate perfor-

mance in terms of sharpness can be explained by the fact that apart from two drastic increases

in euro area Internet users’ interest in the word recession in early 2008 and in September 2008,

the signals were mostly not very clear-cut, especially for the period between the two recessions

in the sample. One reason for the latter observation could be the general high uncertainty in

that period about the sustainability of early signs of economic relief and fears of a double-dip

recession (see Camacho et al. (2014)).

The results for the univariate Markov-Switching models for real GDP growth, industrial

production and new passenger car registrations (panel (g) - (i) in figure (3)) illustrate that a

well calibrated probabilistic forecast can be very useless in practice if it lacks sharpness. The

QPS for these models is very high. To a lower extend, this also applies for the QFBVAR in

panel (b), the pool of all Markov-Switching models in panel (k) and the BCCI pool considered

in Anas et al. (2008) in panel (m). All these models have in common that they deliver real-time

recession signals that are not very clear-cut and mostly also highly delayed. However, given

that these models are estimated with the series that have the highest publication lag (see table

(2)) this result is not particularly surprising.

By contrast, the poor performance of the two sentiment indices, namely the Economic Sen-

timent indicator and the confidence index in retail sales, may come unexpectedly. Both models

apparently not only lack sharpness but are also very badly calibrated. Indeed, from panel (c)

and (e) in figure (3) it can be seen that these two sentiment indices deliver many pronounced

False alarms. One possible reason for that could be that these sentiment indices might not only

be driven by hard economic fundamentals, but also by other factors. These could possibly be

unrelated contagious waves of optimism and pessimism which are often referred to as animal

spirits or noise shocks (see Akerlof and Shiller (2008) or De Grauwe (2011)).

Finally, the univariate Markov-Switching model for the unemployment rate achieves by far

the highest QPS of all models considered here. The pattern of the model’s real-time recession

signals depicted in panel (j) suggests, that the unemployment rate is likely to increase only

with a certain lag after the beginning of a recession. In fact, this confirms that this variable is

typically regarded as a lagging rather than a contemporaneous or even leading indicator for

the state of the economy. In addition, the model also clearly reflects the steady increase in

euro area unemployment until early 2005 which was not accompanied by a recession. A close

inspection of panel (j) and panel (c) of figure (3) shows that there are some similarities between

the real-time recession signals obtained with the unemployment rate and those delivered by

the model for the Economic sentiment indicator. This could suggest that the latter is driven by
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news about the former. However, to establish a solid causal link here, of course much more

research would be needed.

Figure (4) depicts the ROC curves for the alternative approaches as well as the respective

ROC scores, i.e. the areas above the ROC curve in the unit square. It can be seen clearly that

the ROC curves for the MFBVAR in panel (a) and for the model for the confidence index in

industry in panel (d) are located far away from the 45-degree line and that they achieve the

lowest ROC scores. This provides evidence for an overall very high discriminatory skill of the

two approaches independent of the selected binary event classifier w. The ROC scores for the

model for the Stock market index in panel (f), the Markov-Switching pool of sentiment indices

in panel (l) and to a slightly lesser extend also the pool of all univariate models in panel (k)

and the Google Trends indicator in panel (n) are moderately higher but still considerably lower

than those for the remaining models. In particular the models for the hard indicators depicted

in panels (g) - (j) and the BCCI pool considered by Anas et al. (2008) in panel (m) produce very

flat ROC curves, which indicates that the models’ real-time recession signals are not able to

discriminate between recession and non-recession periods.
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Notes: The displayed curves show the rate of Hits and the corresponding rate of False alarms for varying thresh-

olds used to transform the monthly real-time recession probabilities displayed in figure (3) into binary signals

for the occurrence and non-occurrence of a recession. The evaluation sample ranges from January 2004 until

December 2013. ROC: receiver operating characteristic (area above the depicted curve). A small ROC signals

high discriminatory skill. For the model abbreviations refer to the notes for figure (3).

Figure 4: ROC curves and scores.
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PS

w = 0.1 0.2 0.3 0.4 0.5

MFBVAR 0.75*** 0.66*** 0.71*** 0.66*** 0.60***

QFBVAR 0.43*** 0.35*** 0.32*** 0.09 -0.03

MS-ESI 0.03* 0.22*** 0.28*** 0.26** 0.39***

MS-INDCONF 0.09*** 0.38*** 0.67*** 0.73*** 0.82***

MS-RSCONF 0.06 0.11 0.18 0.11 0.10

MS-STOXX 0.00 0.21*** 0.48*** 0.70*** 0.72***

MS-GDP -0.04 -0.12 -0.02 -0.07 -0.02

MS-IP 0.05** 0.15* 0.19* 0.08 0.04

MS-CARS 0.13*** 0.20*** 0.25*** 0.24*** 0.09

MS-UN 0.06** -0.00 0.05 0.11 0.03

MSP-All 0.00 0.10 0.39*** 0.58*** 0.28***

MSP-SI 0.00 0.15 0.38*** 0.48* 0.68***

MSP-BICC 0.05 -0.02 0.03 0.08 0.13*

Google Trends 0.64*** 0.58*** 0.41*** 0.15* 0.17**

Notes: The Peirce skill score (PS) is calculated as the difference between the rate of Hits and the corresponding

rate of False alarms for the binary event classifier w. The evaluation sample ranges from January 2004 until

December 2013. For the model abbreviations refer to the notes for figure (3).

Table 4: Evaluation of real-time recession probabilities, PS.

The entries in table (4) reveal the usefulness of the alternative recession signals for selected

binary event classifiers w and could give valuable guidance to practitioners. For example, the

MFBVAR achieves the highest significant PS score for a very small threshold, while the other

well-performing models, i.e. the models for the indices of the Stock market and industry confi-

dence and the pool of models for the sentiment indices perform best for the common threshold

of w = 0.5. By contrast, the PS score for the Markov-Switching models for the confidence

index in retail sale, real GDP, industrial production and the unemployment rate is not statisti-

cally different from zero indicating that these models do not have any discriminatory skill for

the real-time detection of recession periods. For the remaining approaches the threshold for

which they are most useful varies. For the QFBVAR and the Google Trends indicator a low

threshold works best, while the Markov-Switching pools and the univariate models for the

new passenger car registrations yield the highest PS score for an intermediate threshold. Over-

all, these results illustrate that the absolute values of the real-time recession signals issued by

the alternative approaches should be interpreted very carefully. In particular, signals obtained

with different approaches which are equal in absolute value cannot necessarily be interpreted

as being equally strong.
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a) MFBVAR, w = 0.1

bct = 1 bct = 0

b̂ct = 1 30 14

b̂ct = 0 3 73

b) INDCONF w = 0.5

bct = 1 bct = 0

b̂ct = 1 32 13

b̂ct = 0 1 74

Notes: The entries display the number of Hits (b̂ct = bct = 1), False Alarms (b̂ct = 1, bct = 0), Misses

(b̂ct = 0, bct = 1) and Correct rejections (b̂ct = bct = 0) over the period from January 2004 until December

2013. bct = 1 (bct = 0) denotes a recession (expansion) month. b̂ct = 1 (b̂ct = 0) denotes a recession
(expansion) forecast. For the model abbreviations refer to the notes for figure (3).

Table 5: Contingency table.

According to the entries in table (4) the MFBVAR achieves a maximum PS score that is

slightly lower than that of the univariate Markov-Switching model for the industry confidence

index. To understand the significance of this difference, a closer look at the contingency table

for both models might be warranted. Table (5) shows the contingency table for the threshold

value w that maximizes the PS scores of the two models. The columns contain the number

of months in which a recession did and did not occur in the period from January 2004 until

December 2013 and the rows display the number of times these event were forecast. Out of

a total of 33 recession months in the sample, the MFBVAR misses three months, while the

industry confidence index model misses only one. Moreover, for the 87 non-recession months

the MFBVAR issues one more False Alarm than the model for the industry confidence index.

Against the background of the high uncertainty in the precise determination of the start and

end months of a recession, these differences seem to be rather small.

Nonetheless, it should be noted that depending on the purpose of the forecast and the

forecaster’s loss function missed recessions and False Alarms could actually be very costly and

even small differences between alternative approaches might be very relevant in practice. It is

also important to be aware of the characteristics of the alternative evaluation procedures. For

example, all formal measures used above treat Misses and False Alarms symmetrically which

might be inappropriate when the economic costs of the two differ (see Knedlik (2014) for an

application with asymmetric weights). As pointed out by Lahiri and Wang (2013), for known

economic costs of these two types of errors decision theoretic frameworks could be used to

derive binary real-time recession signals. However, this goes beyond the scope of this paper.

In summary, the results of the formal evaluation presented in this section indicate that the

MFBVAR and the Markov-Switching model for the confidence index in industry deliver the

most accurate real-time recession signals in terms of calibration, sharpness and discriminatory

skill and that they perform more or less equally well.
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7 Robustness

In the following robustness analysis, I first investigate whether the performance of the MFB-

VAR described in section (6) is robust with respect to two aspects, namely the variables that

are included in the model and the recession definition used to compute the MFBVAR real-time

recession probabilities. Secondly, I assess to what extent the performance of the linear opinion

pools can be improved by applying the beta transform proposed by Ranjan and Gneiting (2010)

and described in section (4.3.2).

Regarding the variables included in the estimation of the MFBVAR, the results of section (6)

suggest that the sentiment indices could be crucially important for the accuracy of the model’s

real-time recession signals. To verify this conjecture, I estimate a version of the model that ex-

cludes the Economic Sentiment index and the confidence indices in construction and retail sale

(MFBVAR(9)) from the list of variables in table (2). Additionally, I assess the performance of a

version of the MFBVAR that includes only the most useful sentiment index, i.e. the confidence

index for the industry sector, and quarterly real GDP (MFBVAR(2)).

To assess the robustness of the performance of the MFBVAR with respect to the recession

definition used to extract real-time recession probabilities from the model’s predictive distribu-

tion, I consider the following alternatives. First, I assess the performance of MFBVAR real-time

recession signals based on weak real GDP growth rates below 0.1% rather than below zero over

a sequence of at least two consecutive quarters (MFBVARslow growth). This might increase the

timeliness of the model’s real-time recession signals since at the onset of most recessions the

GDP decline is often quite muted (see pabel (b) of figure (1)). Moreover, I consider a multi-

variate approach that is closer to the recession definition used by the CEPR (Artis et al. (2003)),

see also section (2)) and which, among others, also requires monitoring employment condi-

tions and the state of the industrial sector in the euro area. In particular, I use the MFBVAR’s

joint predictive distribution of real GDP, industrial production, the unemployment rate, the

Economic Sentiment index, the confidence index in industry and the Stock market index to

compute the odds that several of these variables simultaneously signal a deterioration of eco-

nomic conditions. I include the soft indicators to not risk that the recession signals are delayed.

However, since my previous results suggest that the soft indicators are prone to delivering False

alarms, I define this alternative recession criterium as the odds that four out of the six above-

listed indicators deteriorate repeatedly for at least three consecutive months (MFBVAR4/6). As

final alternative, I use the MFBVAR estimate for latent monthly real GDP to assess recession

risks in real-time, which I define as the odds that real GDP growth in the current month is part

of a sequence of at least three months displaying negative growth rates (MFBVARmonthly GDP).

Table (6) presents the results of my robustness analysis for the performance of the MFB-

VAR, while the corresponding real-time recession signals are depicted in figure (6) in appendix

A 3. The first row contains the results of the benchmark model version as presented in sec-

tion (6), while the results for the model versions that include alternative sets of indicators are

presented in the middle part of the table. Finally, the last rows contain the results for the bench-

mark model including all variables listed in table (2), but where the aforementioned alternative

recession definitions were used for the computation of the real-time recession signals.
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QPS ROC PS*

MFBVAR 0.11 0.06 0.75 (w = 0.1)

MFBVAR(2) 0.11 0.10 0.67 (w = 0.3)
MFBVAR(9) 0.15*** 0.13 0.59 (w = 0.2)

MFBVARslow growth 0.09** 0.06 0.72 (w = 0.5)

MFBVAR4/6 0.13 0.04 0.67 (w = 0.1)

MFBVARmonthly GDP 0.12 0.06 0.69 (w = 0.2)

Notes: The evaluation sample ranges from January 2004 until December 2013. QPS: quadratic probability score,
ROC: receiver operating characteristic, PS*: maximum Peirce skill score obtained with the binary event classifier
w.***(**,*) denote that the QPS is significantly different from the QPS for the MFBVAR at the 1% (5%,10%) level.
For the model abbreviations refer to the text.

Table 6: Robustness of the performance of the MFBVAR.

According to the entries in table (6), the performance of the model deteriorates clearly if

all sentiment indices are excluded. The MFBVAR(9) achieves a significantly larger QPS than

the benchmark, while the ROC score and the maximum PS score both decrease. The most

important variable, however, turns out to be the confidence index in industry. The MFBVAR(2)

that only includes this index in addition to real GDP achieves the same QPS as the benchmark

model and only slightly higher ROC and maximum PS scores.11

Regarding the alternative conditions to define real-time recession risks, only the version

based on slow growth rather than negative growth rates can significantly improve upon the

benchmark in terms of the QPS, while the approaches based on the joint deterioration of four

monthly indicators or the estimate for latent monthly real GDP perform just as good. Moreover,

the differences in the ROC scores and the maximum PS scores between the three alternatives

are very small. Hence, the performance of the MFBVAR real-time recession signals turns out to

be quite robust with respect to the exact definition of real time recession risks.

Finally, it remains to be investigated whether the performance of the Markov-Switching

linear equal weighted pools can be improved by applying the beta transformation proposed

by Ranjan and Gneiting (2010) and described in section (4.3.2). The upper part of table (7)

repeats the results from section (6) for the linear equal weights pools, while the lower part of

table (7) presents the results for the ex post best performing beta transformed pools in terms

of the QPS score. These were obtained through a grid search over alternative values for α,

the parameter of the beta distribution. The real-time recession signals of the original and the

optimally transformed are depicted in figure (6) in appendix A 4.

As it turns out, the optimal beta transform can improve the performance of the alternative

pools relative to the untransformed linear equal weights pool, especially in terms of calibration.

However, the overall gains in accuracy are rather small.

11An evaluation of the point and density forecasts of the different model versions can be found in appendix A 1.
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QPS CAL SHARP ROC PS*

MSP-All 0.168** 0.057 0.056 0.16 0.58 (w = 0.4)

MSP-SI 0.154 0.100 0.090 0.09 0.68 (w = 0.5)

MSP-BICC 0.215*** 0.053 0.002 0.45 0.13 (w = 0.5)

MSP-All, α∗ = 3.4 0.151* 0.028 0.060 0.16 0.57 (w = 0.1)

MSP-SI, α∗ = 6.1 0.128 0.066 0.093 0.10 0.68 (w = 0.5)

MSP-BICC, α∗ = 1 0.215*** 0.053 0.002 0.45 0.13 (w = 0.5)

Notes: Refer to notes for table (6). CAL: calibration score, SHARP: sharpness score, MSP: combination of proba-

bilistic forecasts fromunivariate Markov-Switching models for, ALL: all univariate MS models, SI: the Economic

Sentiment index, the confidence indices in industry and retail sale and the Stock market index, BCCI: industrial

production, the unemployment rate and new passenger car registrations. Upper part of the table: linear pools,

lower part: optimal beta transform.

Table 7: Robustness of the performance of the linear opinion pools.

Moreover, in comparison to the MFBVAR, the optimal pool that includes all univariate Markov-

Switching models and the optimal BCCI pool in the spirit of Anas et al. (2008) perform still

significantly worse, while for the optimal pool of models for the sentiment indices there is no

statistically significant difference.

8 Conclusion

The evidence presented in this paper shows that the predictive distribution of the back-, now-

and forecasts obtained with a linear mixed-frequency Bayesian VAR (MFBVAR) can be used to

extract very accurate monthly real-time recession signals for the euro area. Evaluated over the

period from January 2004 until December 2013 the probabilistic real-time recession forecasts

of the MFBVAR outperform those obtained with the univariate regime-switching models for

a number of hard and soft monthly economic indicators, their linear combinations and a real-

time recession index obtained with Google Trends data as measured by the quadratic proba-

bility score, the receiver operating characteristic and the Peirce skill score. Only the univariate

Markov-Switching model for the confidence index in industry delivers real-time recession sig-

nals that are more or less as accurate as those of the MFBVAR.

The real-time recession signals obtained with the remaining soft indicators, namely the Eco-

nomic sentiment index and the indicator for confidence in retail sale, are very badly calibrated

and yield a high number of recession signals in non-recession periods. This could suggest that

these variables are possibly driven by more than economic fundamentals. The hard economic

indices considered here, i.e. industrial production and quarterly real GDP growth, perform

particularly poor in terms of sharpness and thus have no discriminatory skill to separate reces-

sions from periods of economic expansion in real-time. The reason for this is most likely the
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long publication lag of the respective data. The Google Trends real-time recession index, which

is obtained as a population weighted mean of the query shares for the word ”recession” in

the eleven largest euro area countries, accurately signals the beginning of the Great Recession

2008/2009 and the end of the recession in connection with the European debt crisis 2011/2013.

However, in between these two recession periods its signals are not very clear-cut which can

possibly be attributed to the uncertainty about the occurrence of a double-dip recession at the

time.

The robustness analysis indicates that for the good performance of the MFBVAR the inclu-

sion of the confidence index in industry is crucial. Moreover, the results show that the consid-

eration of a multivariate recession definition that requires the joint monitoring of several soft

and hard economic indicators does not significantly increase the accuracy of the MFBVAR’s

real-time recession signals compared to the benchmark case where only the evolution of real

quarterly GDP growth is assessed.

Further, the robustness analysis provides evidence that the performance of the linear opin-

ion pools of the probabilistic forecasts of the various univariate regime-switching models can

be increased if an optimal beta transformation as suggested by Ranjan and Gneiting (2010) is

applied. However, even the ex-post optimized pools are not more accurate than the MFBVAR

or the univariate Markov-Switching model for the confidence index in industry.

Finally, the findings illustrate that the absolute values of the real-time recession signals

issued by the alternative approaches should be interpreted very carefully. The size of the op-

timal binary event classifier used to translate the probabilistic recession forecasts into binary

signals for the occurrence or non-occurrence of a recession varies considerably. In particular,

the widely used threshold of 0.5 turns out to be suboptimal in many cases.
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Appendix

A 1: Evaluation of MFBVAR an QFBVAR GDP growth point and density forecasts

In the following the results of the evaluation of the real GDP growth predictions of the MFBVAR

and the QFBVAR are reported. The evaluation period ranges from the first quarter of 2004 until

the fourth quarter of 2013. To compute the different evaluation measures, the first release of

euro area GDP growth is used to capture the real-time environment at the time the forecast

was made. In all tables, h∗ = 1 refers to the one quarter ahead forecast, while h∗ = 0 and

h∗ = −1 denote the nowcast and the backcast, respectively. IS denotes the information set, i.e.

the month of the current quarter, in which the back-, now- and forecast is computet.

The accuracy of the point forecasts is assessed with the mean squared forecast error which

is given as

MSFE =
1

T∗ ∑
T∗

t=1
(yt − ŷt)

2, (16)

where yt is the realized value of variable y in period t and ŷt denotes the respective point

forecast.

The accuracy of the density forecasts is assessed with several measures. The first is the

logarithmic score which is given as

LS =
1

T∗ ∑
T∗

t=1
−log

(
F(yt)

)
,

where F(.) denotes the predictive distribution.

The continuous ranked probability score (CRPS) is given as the average over

CRPSt =
∫ ∞

−∞

{
F(u)− I(u ≥ yt)

}2
du

or

CRPSt = EF|Y − yt| −
1

2
EF|Y − Y′|,

where EP the respective expectations operator and Y and Y′ are random draws from the mod-

els’ predictive cumulated distribution F(.) (see e.g. Gneiting et al. (2007)).

Note that all evaluation measures reported in the following are negatively oriented, i.e. the

smaller the score, the better.
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IS 1 2 3 1 2 3 1 2
h∗ = 1 h∗ = 0 h∗ = −1

MFBVAR 0.51 0.32 0.36 0.26 0.25 0.19 0.16 0.12

MFBVAR(2) 0.45 0.37 0.34 0.30 0.32 0.24 0.24 0.28
MFBVAR(9) 0.48 0.34 0.41 0.34 0.27 0.26 0.19 0.14

QFBVAR 0.45 0.45 0.43 0.42 0.42 0.28 0.29 0.29

Table 8: RMSFE.

IS 1 2 3 1 2 3 1 2
h∗ = 1 h∗ = 0 h∗ = −1

MFBVAR 1.26 1.14 1.13 1.08 1.07 1.03 1.00 0.97

MFBVAR(2) 1.22 1.16 1.13 1.11 1.12 1.07 1.05 1.06
MFBVAR(9) 1.26 1.16 1.16 1.12 1.08 1.05 1.01 0.98

QFBVAR 1.17 1.18 1.16 1.16 1.16 1.09 1.06 1.06

Table 9: Log score.

IS 1 2 3 1 2 3 1 2
h∗ = 1 h∗ = 0 h∗ = −1

MFBVAR 0.35 0.28 0.29 0.25 0.24 0.22 0.20 0.18

MFBVAR(2) 0.33 0.29 0.28 0.27 0.28 0.25 0.25 0.26
MFBVAR(9) 0.34 0.28 0.31 0.27 0.24 0.23 0.21 0.19

QFBVAR 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26

Table 10: CRPS.
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A 2: MFBVAR prior specification

For the parameters of the VAR A1, ..., Ap, C and Σ, I implement a normal inverse wishart prior

(see e.g. Kadiyala and Karlsson, 1997) that retains the main principles of the widely used Min-

nesota prior (see Litterman, 1986). This prior implies that A1, ..., Ap are assumed to be a priori

independently and normally distributed, while with respect to the constant C the prior is as-

sumed to be diffuse. The residual covariance matrix Σ is assumed to a priori follow an inverse

wishart distribution with scale matrix S̄ and degrees of freedom ᾱ.

One of the main principles of the Minnesota prior is to center each equation of the VAR

around a random walk with drift. Thus the prior mean for A1, ..., Ap is specified as:

E[(Aℓ)ij] =

{
1 for i = j, ℓ = 1

0 otherwise
(17)

Moreover, the prior also incorporates the belief that more recent lags of a variable should pro-

vide more reliable information for the estimation than less recent lags. The zero coefficient prior

on more recent lags is therefore not imposed as tightly as on less recent lags. This is captured

by specifying the prior variance as

Var[(Aℓ)ij] =





λ2

ℓ2 for i = j
λ2σ2

i

ℓ2σ2
j

otherwise,
(18)

where ℓ = 1, ..., p is the lag length, λ = 0.2 is a hyperparameter governing the importance of

the prior beliefs relative to the data and σi/σj is a scale parameter adjusting the prior for the

different scale and variability of the data. For the implementation, σi is set equal to the standard

deviation of the residuals of a simple univariate autoregression for each variable.

Following Schorfheide and Song (2015) I augment the prior outlined above to constrain the

sum of coefficients of the VAR (see e.g. Sims and Zha, 1998) as well as to incorporate the belief

that the variables in the VAR follow a common stochastic trend.

I implement the prior outlined above using dummy variables YD and XD, which are given

as

YD =




diag(σ1...σn)
λ

0n(p−1)xn

diag(σ1...σn)

01xn

diag(µ1...µn)γ

ηµ1...ηµn




, XD =




diag(1...p)⊗diag(σ1...σn)
λ 0npx1

0nxnp 0nx1

01xnp c

P ⊗ diag(µ1...µn)γ 0nx1

(P′ ⊗ diag(µ1...µn)η)′ η




, (19)

where P is a (1xp) matrix of ones, c = 10−4 reflects the diffuse prior for the constant C, µ1, ..., µn

are the variable means and γ = 103λ and η = λ govern the tightness of the sum of coefficients

constraint and the common stochastic trend prior, respectively.
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With these dummy variables, the moments of the prior distributions for the parameters

A1, ..., Ap, C and the residual covariance matrix Σ can be computed as

E[(A1, ..., Ap, C)] = Ā = (XD′
XD)−1XD′

YD, (20)

Var[(A1, ..., Ap, C)] = V̄ = (XD′
XD)−1, (21)

S̄ = (YD − XD Ā)′(YD − XD Ā) (22)

and

ᾱ = TD − n(p − 1)− 1, (23)

where TD is the number of rows of YD.

Conditional on the most recent Gibbs draw i of the state vector Zi−1
t , Ai

1, ..., Ai
p, Ci and Σi are

sampled from their respective posterior distributions. In particular, the (A1, ..., Ap, C) follow a

multivariate t-distribution with mean Ã, covariance matrix S̃ ⊗ Ṽ and degrees of freedom α̃,

while Σ ∼ IW(S̃, α̃). The respective moments of these distributions can also be computed

using the dummy variables outlined in equation (19). In particular, augment the state vector

Zi−1
t with the dummy variables to obtain Y∗ = [(Zi−1

t )′, YD′
]′ and X∗ = [(Zi−1

t−1)
′, XD′

]′. Then

Ã = (X∗X∗)−1X∗Y∗, (24)

Ṽ = (X∗X∗)−1, (25)

S̃ = (Y∗ − X∗ Ã)′(Y∗ − X∗ Ã) (26)

and

α̃ = T∗ − np + 1, (27)

where T∗ is the number of rows of Y∗.
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A 3: Alternative MFBVAR real-time recession probabilities
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Notes: The displayed monthly real-time recession signals are computed as three month weighted moving aver-

ages over the original probabilities obtained with the alternative approaches (see footnote 10). The shaded areas

mark euro area recessions as dated by the CEPR business cycle dating committee. For the model abbreviations

refer to section (7).

Figure 5: Real-time recession signals for the euro area, MFBVAR robustness.
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A 4: The beta transformed linear opinion pools

(a) MSP-All
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(b) MSP-All, α  = 3,4

2004 2006 2008 2010 2012 2014
0

0.2

0.4

0.6

0.8

1

(c) MSP-SI
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(d) MSP-SI, α  = 6.1
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(e) MSP-BCCI
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Notes: The displayed monthly real-time recession signals are computed as three month weighted moving aver-

ages over the original probabilities obtained with the alternative approaches (see footnote 10). The shaded areas

mark euro area recessions as dated by the CEPR business cycle dating committee. For the model abbreviations

refer to section (7).

Figure 6: Real-time recession signals for the euro area, Pools robustness.
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