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Expectations Model: the UK case

Aleksandar Vasilev
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Abstract

This study follows Rotemberg and Woodford (1998) and estimates a three-equation

model of output, interest rate and inflation, in order to evaluate alternative rules by

which the bank of England may decide on setting the main interest rate. As in the

original paper, the model setup is a rational-expectations setup, augmented with nom-

inal price-setting frictions a la Calvo (1983). The model-generated impulse responses

match quite wll the estimated responses to a monetary shock. In addition, when addi-

tional shocks are added, the theoretical model can account for the fluctuations in the

UK data as well as an unrestricted VAR(1) does.
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1 Introduction

In this paper Rotemberg and Woodford’s (1998) small structural econometric model will be

used to evaluate quantitatively monetary policy rules for the case of UK monetary author-

ity. The micro-founded New Keynesian model, based on inter-temporal optimization of both

monopolistic suppliers and atomistic consumers, and augmented with nominal frictions in

output prices. Since the model incorporates forward-looking specifications of some of the

structural relations and agents have rational expectations, it responds to the Lucas (1976)

critique of econometric policy evaluation.1

The methodology used in the paper follows the four steps described in Rotemberg Woodford

(2008). In the first step, a vector-auto-regression model of order one (VAR(1)) will be esti-

mated, in order to capture the joint dynamics of interest rates, inflation and output. The

estimated VAR(1) will serve a two-fold purpose: on the one hand, it will be used to identify

the monetary policy rule used by the Bank of England (BoE). Following Taylor (1993), the

policy rule used by BoE will be assumed to be an interest rate one, which is set up to offset

negative effects of shocks on inflation and real activity (proxied by output). More specifically,

the interest rate will be a function of weighted inflation and output. From the VAR, we can

quantify the way the variables of interest (output, inflation and interest rate) respond when

subjected to stochastic disturbances to the Taylor rule. The produced response functions

then would give us an idea about the nature of the propagation mechanism in the the econ-

omy when the current interest rate rule is in place.

In the second step, the setup laid in Rotemberg and Woodford (1998) will be presented

in a stylized manner. The main source of nominal frictions in the model with optimizing

households and monopolistically-competitive firms is the Calvo-type (1983) price adjustment.

More specifically, an individual firm may decide to keeps its price fixed, since changing prices

is costly due to some menu costs. As a result, prices will be re-set only when a stochastic

shock is big enough to justify adjustment. Model parameters will be calibrated to minimize

the distance between the impulse responses from the VAR and the simulated ones.

1In addition, since the econometric framework is derived from individual inter-temporal optimization,

and thus the ”observational equivalence” problem is solved.
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In the third step, the model parameters estimated from the earlier step will be combined

with the theoretical model and the VAR in order to identify the shocks in the structural

equations. Those VAR residuals are interpreted as shocks to technology, preferences, and

monetary disturbances. From the estimated residuals the underlying stochastic processes

followed by monetary policy innovations, technology progress and shocks to tastes can be

obtained. Once the constructed shocks are incorporated, the theoretical model provides as

good fit as the unrestricted VAR. The good fit of the micro-founded model is good news

for the applicability of the benchmark Rotember and Woodford (1998) model for monetary

policy analysis.

Lastly, the calibrated quantitative model will be used to simulate the effect of hypothetical

monetary policy rules. In that way, using the estimated historical shock series, alternative

paths for the UK economy will be simulated. The rest of the paper is organized as fol-

lows: Section 2 describes the econometric specification. Section 3 presents Rotember and

Woodford’s (1998) model setup. Section 4 estimates model parameters. Section 5 describes

the identification of the shock processes. Section 6 simulates the model under alternative

monetary policy rules, and Section 7 concludes.

2 Econometric Specification and VAR estimation

This section provides the econometric characterization of the monetary policy regime and

the estimated quantitative effect of monetary shocks under the Taylor rule, which is assumed

to represent the reaction function of the UK monetary authority:

rt = r? +
nr∑
k=1

µk[rt−k − r?] +
nπ∑
k=0

φk[πt−k − π?] +

ny∑
k=0

θk[yt−k − y?] + εt (2.1)

where rt is the interest rate on 3-month Treasury bill rate, πt is the rate of inflation between

t− 1 and t, yt is the output gap, measured as percentage deviation of real GDP from trend,

y? is the long-run value of yt (”potential output”). The smoothing parameters µk denote the

weights attached to lagged interest rates, and φk and θk are the weights attached to inflation

rate and the output gap. Lastly, r? and π? are the long-run target interest and inflation rate,

respectively. The {εt} series are the exogenous i.i.d disturbances to the monetary policy that
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are hitting the economy.2

In order to identify those monetary policy shocks and to estimate the coefficients of the re-

gression equation (2.1) above, an important assumption will be imposed, namely that shock

at time t has no effect on output or inflation during the same period, i.e monetary policy

comes into effect with a lag. This will allow Ordinary least Squares (OLS) method to be

used to produce coefficient estimates, which are consistent.

Next, we estimate the Taylor rule equation as a part of a three-variable exactly identi-

fied VAR model, where the variables included are the interest rate, the inflation rate, and

detrended real GDP. From the VAR, it will be easy to obtain the impulse response functions

to the monetary shock under the followed Taylor rule. The sample period for the VAR is

1980:1- 1995:2, thus the time series are long enough to provide a sensible estimation. The

particular starting point was chosen to get rid of the oil price shock effect in the 70s. As

explained above, a recursive VAR (which is a type of a structural VAR), will be employed

as an estimation strategy with a state vector

Zt = [rt, πt+1, yt+1]
′. (2.2)

As explained above, interest rate is the first one in the causal chain. The estimated system

is of the form

TZ̄t = AZ̄t−1 + ēt, (2.3)

where

TZ̄t = [Z ′t, Z
′
t−1, Z

′
t−2], (2.4)

and as in Woodford and Rotemberg (1998), T is a lower triangular matrix with ones on the

diagonal and non-zero off-diagonal elements only in the first three rows. Next, matrix A

is one whose first three rows contain the VAR estimates. Lastly, the first three rows of ēt

contain the VAR residuals and the other elements are equal to zero.3 The VAR coefficients

2As in Rotemberg and Woodford (1998), those are assumed to be serially uncorrelated.
3Note that the first element of the residual vector et represents the identification of the monetary shock

εt.
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are displayed in Table 1. Given the research question, the most interesting equation from

the system is the first one because it describes the interest rate rule:

rt − r? = 0.621(rt−1 − r?) + 0.184(rt−2 − r?)− 0.009(rt−3 − r?) + 0.276(πt − π?)

+0.4(πt − π?) + 0.158(πt − π?) + 0.002(yt − y?)− 0.001(yt−1 − y?)− 0.003(yt−2 − y?), (2.5)

where the coefficients for y are multiplied by 4 to adjust for annual data. This specification of

the monetary policy rule indicates a significant interest-rate smoothing, as the µk coefficients

are all significant and sum to 0.81. Indeed, the third coefficient is negative, but the overall

dynamics of the real interest rate is dominated by the persistence in the first and second lag

of interest rate.

Next, the responses of interest rate, inflation and output to a a one-standard-deviation

shock that raises the interest rate (unexpectedly) by about eight-tenths of a percent, as done

in Rotemberg-Woodford (1998), and plotted in Figure 1. In each panel, the central dashed

line indicates the point estimate of the impulse response function (IRF), while the two other

indicate the confidence band.4 The empirical impulse responses are in line with the conven-

tional wisdom on the subject. First, interest rates are increase only temporarily: according

to the VAR estimates, for 4 quarters. Second, output does not decline until two quarters

later, and three quarters later, returns to normal. Lastly, inflation also declines with a lag,

with the greatest decline occurring 2 quarters later than the shock, and returns to normal

another four lags after the drop. The estimated effects featured by the IFRs are important,

as they give us some indication about possible features that a micro-founded model should

possess in order to generate predictions that match the data. That is, we need our model

to produce temporarily lowers both π and y, and these negative effects occur with a lag, in

case the monetary authority implements a surprise tightening by raising the interest rate.

4The confidence intervals are constructed using analytical derivatives of the responses with respect to the

parameters and the parameters’ covariance matrix.
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3 A Simple Model of Output and Inflation Determina-

tion

In this section we present Rotemberg and Woodford’s (1998) general equilibrium model is

presented. Its setup features a continuum of infinitely-lived households that are distributed

uniformly on the [0, 1] interval. Each household consumes the whole range of varieties pro-

duced in the economy, while at the same time each household i is also a producer of a single

differentiated good. Financial markets are complete. Household i’s objective is to

max
{Cit ,yit}∞t=0

E0

∞∑
t=0

βt[u(Ct
i; ξt)− v(yt

i; ξt)] (3.1)

s.t

Et

∞∑
T=t

δt,TS
i
t ≤ Et

∞∑
T=t

δt,T [pityt
i − Ti] + Ait, (3.2)

where the instantaneous felicity function of consumption u(.; ξt) is an increasing, concave

function, and the instantaneous utility function of laborv(.; ξt) is an increasing, convex

function,∀ξt. In addition, β is a discount factor, yt
i is the output of the good produced

by household i at time t and ξt is a vector of random disturbances. Ait denotes the nominal

value of the households’s financial assets at the beginning of period t, Tt denotes net nominal

tax payments at date t, and δt,T is the stochastic discount factor that defines the nominal

present value at t of nominal income in any given state at date T ≥ t.

The equilibrium condition that follows from the assumption of complete markets is that

Rt = Et
1

δt,t+1

, (3.3)

where Rt is the nominal interest rate on a risk-less one-period bond purchased in period t.

Households choose Ci
t at date t − 2. This assumption may seem strange at first sight, but

it is consistent with the internal logic of the model: consumption includes both consump-

tion and investment goods. Therefore, Rotemberg and Woodford appeal to the ”time-to-

build”argument, as in Kydland and Prescott (1982).
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Next, Ci
t is a Dixit-Stiglitz (1977) aggregate of the household’s consumption of differentiated

goods, given by

Ci
t = [

∫ 1

0

cit(z)
θ−1
θ dz]

θ
1−θ , (3.4)

and the constant elasticity of substitution is denoted by θ > 1.

next, total nominal spending at t across all the differentiated goods is Sit = PtC
i
t , where

Pt =

∫ 1

0

pit(z)1−θdz]
1

1−θ (3.5)

is the Dixit-Stiglitz price aggregator. The optimal demand of an individual variety is then

cit(z) = Ci
t

(
pit
Pt

)−θ
, ∀z, (3.6)

which is a standard result in the literature.

Solving for the equilibrium, the following FOCs are obtained:

Etuc(C
i
t+2; ξt+2) = Etλ

i
t+2Pt+2λ

i
tδt,T = βT−tλiT , T ≥ t. (3.7)

Therefore

λt = βEt[Rtλt+1]. (3.8)

Log-linearizing the equation around the steady-state yields:

λ̂t = Et[R̂t − πt+1 + λ̂t+1], (3.9)

where λ̂t, R̂t denote percentage deviations from λ?P ? and R?, and πt ≡ logPt/logPt−1 is the

rate of inflation. Note that the approximation is performed for a target inflation rate of zero,

π? = 0.

Next, iterating the equation forward produces

λt = r̂lt ≡
∞∑
T=t

Et[R̂T − πT+1] (3.10)
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where r̂lt denotes the percentage deviation in the long-run real rate of return.

Log-linearizing the optimality condition for consumption yields

−σ̃Et[Ĉt+2 − C̄t+2] = Etr̂
2
t+2 (3.11)

where

σ̃ = −uCCC/uC , (3.12)

and C̄(ξt) is an exogenous disturbance, function of the preference shock ξt.

Output is divided between consumption and autonomous government spending as follows

Yt = Ct +Gt, (3.13)

where

Gt = [

∫ 1

0

g
θ−1
θ

t dz]
θ
θ−1 . (3.14)

That is, individual purchases, gt(z), are chosen to maximize autonomous expenditure aggre-

gate.

Next, we log-linearize the market clearing equation to obtain

Ŷt = sCĈt + G̃t (3.15)

Substituting into the first-order condition for consumption, we obtain the model’s IS equation

Ŷt = −σ−1Et−2r̂lt + Ĝt, (3.16)

where σ ≡ σ̃/sC , and Ĝt = G̃t + sCEt−2C̄t is some composite exogenous disturbance term.

Thus the aggregate demand (AD) consists of the monetary policy rule, the term-structure

of the interest rate, and the IS equation.

Next, we describe the price-setting rule and specify the aggregate supply function. The

aggregate demand faced by an individual satisfies

yit = Yt

(
pt(i)

Pt

)−θ
, (3.17)
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and individual producers are assumed to be too small to affect either Yt or Pt.

Monetary policy in this model with monopolistic producers has a real effect because of

the Calvo (1983) pricing. Namely, a fraction 1 − α of sellers will choose a new price at the

beginning of any period. The rest will not change their prices. Of those who can change the

price, a fraction γ start charging the new price during that period, while 1 − γ share will

wait until next period to charge a new price due to the presence of menu costs.

Let p1t be the price set by sellers that decide at t − 1 upon a new price to take effect at

date t, and p2t denote the price set by sellers that decide at date t − 2 upon a new price

to take effect 2 periods later. These prices are chosen to maximize expected utility of sales

revenues less the disutility of output, at each future date and each future state in which the

price commitment still applies. More specifically, p1t solves

max
p1t

Φt−1(p) ≡ max
p1t

Et−1

∞∑
T=t

(αβ)T−t[λt(1− τ)pYT (
p

PT
)−θ −

v(YT (
p

PT
)−θ; ξT )]. (3.18)

Note that the factor αT−t appears as the probability that the price that is charged in the

beginning of period t is still in effect in period T ≥ t, and revenues are taxed at a rate τ

each period. Log-linearizing the FOC above around the steady-state yields

Et−1

∞∑
T=t

(αβ)T−t[(λT + ŶT − (θ − 1)p1t,T )− ω(ŶT − θp1t,T − ȲT )− (ŶT − θp1t,T )] = 0, (3.19)

where

ω ≡ vyyȲ /vy (3.20)

and

p1t,T ) ≡ log(p1t/PT ). (3.21)

Let

X̂t ≡
1− α
α

log(p1t/PT ), (3.22)
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so that

p1t =
1− α
α

1− αβ
1 + ωθ

[Et−1

∞∑
T=t

(αβ)T−t[−λ̂T + ω(T̂T − ȲT ) + (1 + ωθ)
T∑

s=t+1

πs] (3.23)

be the optimizing choice of the relative price in period t of goods with new prices chosen

just the period before.

Note that

Et−2λ̂t = −σEt−2[Ŷt − Ĝt] (3.24)

and after some manipulations

Et−1λ̂t = φt−1 − σEt−1[Ŷt − Ĝt], (3.25)

where

φt = Et−1

∞∑
T=t

(R̂t − πT+1)− Et−2
∞∑
T=t

(R̂t − πT+1). (3.26)

Substituting those into the expression for X̂t and after some algebra we obtain

X̂t =
1− α
α

1− αβ
1 + ωθ

[Et−1

∞∑
T=t

(αβ)T−t[(σ + ω)(Ŷt − Ŷ s
t ) + (1 + ωθ)

αβ

1− αβ
πT+1]− φt−1](3.27)

where

Ŷ s
t ≡

ω

ω + σ
Et−1Ȳt +

σ

ω + σ
Ĝt (3.28)

is a composite exogenous disturbance representing variation in the natural level of output.

Next, the price-setting decision of sellers that choose a new price p2t at t−2 to apply beginning

in period t has to be taken care of as well. Since such a price is expected to apply in periods

t+ j with the same probabilities, the objective function to maximize over p1t is Et−2Φt−1(p),

which results in the FOC given by Et−2Φ
′
t−1(p). This implies that logp2t = Et−2logp

1
t . The

price aggregator then evolves according to

Pt = [αP 1−θ
t−1 + (1− α)γ(p1t )

θ + (1− α)(1− γ)(p2t )
1−θ]

1
1−θ . (3.29)
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Dividing through by PT , log-linearizing and substituting out p2t yields

πt = γX̂t + (1− γ)[Et−2X̂t −
1− α
α

(πt − Et−2πt)]. (3.30)

Observing that

Et−2πt = Et−2X̂t, (3.31)

the following relation can be derived:

πt = ψX̂t + (1− ψ)Et−2X̂t, (3.32)

with

ψ ≡ γα/[1− γ(1− α)]. (3.33)

This equation shows how aggregate inflation results from the incentives of individual price-

setters to choose a higher relative price. Solving the equation forward produces

X̂t = κ(Ŷt − Ŷ s
t )) + βEt−1X̂t+1 −

κ

σ + ω
φt−1, (3.34)

where

κ ≡ (1− α)(1− αβ)(ω + σ)/α(1 + ωθ). (3.35)

Solving forward yields

X̂t = κEt−1(
∞∑
T=t

β(T − t)(Ŷt − Ŷ s
t ))− κ

σ + ω
φt−1. (3.36)

Substituting this into (3.32) yields

πt = (1− ψ)Et−2πt + ψ[κEt−1(
∞∑
T=t

β(T−t)(Ŷt − Ŷ s
t ))

− κ

σ + ω
(Et−1

∞∑
T=t

β(T−t)(R̂t − πT+1)− Et−1
∞∑
T=t

β(T−t)(R̂t − πT+1))]. (3.37)

This is nothing else but the aggregate supply equation, which relates variation in inflation to

the deviations of output from the potential one. Since prices are set in advance, expectations

of output level higher than the potential one also increase prices. Inflation declines when
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when the long-term interest rate at t exceeds expected level, with expectations formes in

t − 1. Such revisions in upward direction raise the returns households can expect to earn

from their revenues at t. They are inclined to do so by cutting prices.

Next, when conditional expectations of (3.32) are taken at date t − 2, ”the New Keyne-

sian Phillips Curve” is obtained:

Et−2πt = κEt−2(Ŷt − Ŷ s
t ) + βEt−2πt+1. (3.38)

If conditional expectations of (3.32) and (3.26) are taken at date t− 2 that yields

Et−2[R̂t − πt+1] = σEt−2[(Ŷt+1 − Ŷt) + (Ĝt+1 − Ĝt)]. (3.39)

The aggregate demand not only specifies a relationship between real interest rates and output

fluctuations that can be forecasted far into the future, but also allows for a more flexible

short-term relationship.

4 Estimation of Model Parameters

This section considers the estimation and calibration of the structural parameters α, β, γ, σ, θ

and ω. Our aim is to pick plausible estimates while at the same time matching the variances

of the three VAR disturbance terms and the IRFs of the three variables of interest to each of

the three innovations already mentioned. In order to obtain the monetary rule, the estimates

in the first column of Table 1 will be used, with the output coefficient divided by four, so

that the estimates will be identical to those that would have been obtained if interest and

inflation rate were not annualized.

It is the only the IRFs that provide information about the structural parameters. Thus

the parameters will be estimated with the ultimate aim of matching the empirical IRFs.

Note, however, that not all of them are identified. Starting with θ, we observe it only mat-

ters to determine κ, so it suffices to estimate the latter. In addition, γ and α only show up

in the composite term ψ = γα
1−γ(1−α) . Therefore, the set of identified parameters is β, κ, σ, ω, ψ.
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The first parameter, β will be calibrated from first moments in the data. Its inverse in

the model corresponds to the gross real rate of return. Thus β will be set to 0.99 because

that corresponds to 1 percent real quarterly return from UK data. Next, only a single func-

tion of ω and ψ is identified, rather than either one of those be identified independently. The

parameters ψ and ω only matter for determining the response of π at t+ 1, but the response

of just one variable at t + 1 cannot separately identify two parameters. In the case of ψ,

the impulse responses can only be used to put a lower bound on it, after the whole range of

variation in ω is considered. To ensure that ψ is strictly positive, there will be a subset of

producers that determines price changes two quarters in advance. This corresponds to the

γ < 1 case.

In order to calibrate α, which determines how frequently, on average, a producer changes the

price. Note that the mean time a set price remains in effect is 1
1−α . For a plausible value, will

be considered. Blinder’s (1998) estimate from microeconomic studies will be used,α = 0.66,

because his study covered a broad range of industries. His finding was that on average a

price is set for 1
1−α = 3 quarters.

Using labor costs data, ω parameter can also be pinned down from elasticity of marginal

cost with respect to output.5 That would require some additional structure to be imposed

in the model. More specifically, output will be assumed to be produced via the production

function

Y = f(H), (4.1)

where H is hours worked. If the representative household has a disutility of working g(H),

then

v(Y ) = g(f−1(Y )). (4.2)

That further implies that

v′ = g′/f ′, (4.3)

5In the model ω parameter measures the elasticity of the marginal disutility of producing output with

respect to the increase in output.
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hence

ω ≡ v′′Y

v′
= (

g′′H

g′
− f ′′H

f ′
)
f

f ′H
. (4.4)

Next, from the consumer maximization problem, the marginal rate of substitution between

consumption and hours is

wi = g′(H i)/u′(C). (4.5)

Log-linearizing the equation around the steady-state, and aggregating across labor markets

produces

g′′H

g′
f

f ′H
= εwY − σ, (4.6)

where

g′′H

g′
(4.7)

is the inverse elasticity of labor supply with respect to the real wage, and εwY is the elasticity

of average real wage with respect to the volatility in output that is not due to preference or

technology shocks. As in Rotemberg and Woodford(1998), we set εwY = 0.3.

One final assumption added will be that the production function is iso-elastic. Denoting

elasticity of output with respect to hours worked by η, one obtains that

−f ′′f/(f ′)2 = (1− η)/η. (4.8)

From the firm maximization problem it follows that

wi = f ′(H i). (4.9)

Thus, the share of wages in output equals η/µi, where µi is the markup of price over marginal

cost. As in Rotemberg and Woodford (1998), we set η = 0.75.6 Therefore,

−f ′′f/(f ′)2 = 0.33. (4.10)

Thus ω = 0.63 − σ. Lastly, using Woodford’s values, κ = 0.024, σ = 0.16, and ψ = 0.88,

which in turn imply γ = 0.63, ω = 0.47, and θ = 7.88.

6That is, we assume that markups are modest in size.
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In addition to displaying the empirical IRFs together with the confidence intervals, Fig.

1 also gives the theoretical responses that correspond to the estimated parameter value. In

each panel, the theoretical response is a solid line, while the estimated response is the mid-

dle dashed line. As the figure indicates, the theoretical responses of output, inflation and

interest rate match very closely the estimated responses. The model accounts well for both

the magnitude and the persistence of the monetary shock effect on output.

The positive shock to interest rate lowers inflation, and, as a result, raises the nominal

interest rate. From the IS equation, output falls. The increase in real interest rate relative

to the fall in output is relatively small, therefore a value of σ that is justifies such rela-

tive movements is also small. Note that inflation reverts more quickly to its mean in the

theoretical response compared to the estimated response from the unrestricted VAR.

5 Identification of the Shock Processes

This section describes how the time series for the three stochastic disturbances,εt, Ĝt and

Ŷ s
t , are constructed. It will be also shown how the VAR can be used to infer the stochastic

process generating these variables. Then responses of the three endogenous variables to the

shocks above are constructed for any given monetary rule.

The VAR system (2.3) is first pre-multiplied by T−1 to obtain

Z̄t = BZ̄t−1 + Uēt, (5.1)

where B = T−1A and the matrix U consists of zeros except for its upper 3× 3 block, which

is a lower triangular matrix with ones on the diagonal. Therefore, the historical time series

for the monetary shock εt can be derived from the following expression

εt = i′1(Z̄t −BZ̄t−1), (5.2)

where in is a vector whose n-th coordinate is unity and all others are zeros. Z̃t will be the

vector whose elements are the model’s theoretical predictions concerning the elements of
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Z̄t, the vector of historical time series. The new notation is introduced, as there is need to

distinguish between the historical law of motion, and the theoretical law of motion. After

some algebraic manipulations, the main structural equations of the previous section can be

written in terms of Z̃t as

M ′Z̃t −N ′
∞∑
j=1

Et−1Z̃t+j = Ĝt+1 (5.3)

P ′Et−1Z̃t +R′EtZ̃t+1 = Ŷ s
t+1 +

σ

σ + ω
Et(Ĝt+2 − Ĝt+1). (5.4)

Note that the time subscript is increased by 1 in both equations, so that the right-hand sides

represent exogenous shocks in period t.

Under the assumption that the VAR correctly captures the stochastic process followed by

the variables in Zt, the time series for Ĝt and Ŷ s
t can be reconstructed, conditional on the

assumption that agents’ expectations coincide with the VAR forecasts. This implies that

under the policy regime that generates the historical data, agents’ forecasts

Et−1Z̃t = BZ̄t. (5.5)

Thus, historical time series for Ĝt and Ŷ s
t can be reconstructed using the following

st ≡ [ĜtŶ
s
t ]′ = CZ̄t−1 +Dēt (5.6)

C =

(
M ′ −N ′B(I −B)−1

P ′ +R′B − σ
σ+ω

(N ′B −M ′(I −B))

)
B, (5.7)

D =

(
M ′

R′B + σ
σ+ω

(M ′(I −B) +N ′B2(I −B)−1)

)
U. (5.8)

Since the model incorporates forward-looking behavior, the simulations will also require that

agents’ beliefs about the stochastic processes generating the shock series be specified. In this

case, agents regard the vector of shocks st, from t = 1, together with the law of motion for

the stochastic process Z̄t, given a specified initial condition Z̄0 and the distribution from

which the i.i.d innovations ēt are drawn every period.

A complete simulation model consists of the Taylor rule, the distribution of the monetary

shock, the structural equations in this section, the law of motion of the real disturbances,

and the distribution of the shocks ēt. The model will determine the evolution of (Z̃t, Z̄t, st)
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given initial conditions (Z̃0, E0Z̃1, Z̄0), and the white noise shocks (εt, ēt). By supplying the

historical shock series computed above, counterfactual history can be simulated. Suitable

initial conditions would be Z̃0 = Z̄0), and E0Z̃1 = Z̄0, where Z̄0) is the historical data the

period before simulations begin.

In the case when the assumed monetary rule is the estimated historical one, and the con-

structed historical shocks are feeded in, the predicted series (Z̄t) will coincide with the

historical data series (Z̃t). This means that the identification of the shocks methodology

allows a complete reconstruction of the historical data as the unraveling of a stationary ra-

tional expectations equilibrium.

For purposes of counterfactual historical simulations, Rotemberg and Woodford (1998) do

not construct the historical shock series by substituting the historical data Z̄t−1 and VAR

residuals ēt into model equations. Instead, they use historical VAR residuals ē2t and ē3t

to construct the series e†t , and then simulate the model, starting from an initial condition

Z†0 = Z̄0, to generate the series (Z†t ). The series (e†t and (Z†t ) are then used to construct the

historical sequence of real shocks. Therefore, as pointed out in Rotemberg and Woodford

(1998), ”the method applied does not use the residuals from the structural equations, but

rather the component of those residuals that is orthogonal to the monetary shock and all

its lags.” Therefore, as a result of the modification, the simulated paths produced when the

estimated monetary rule is used no longer exactly equal the actual paths. This is important,

as the degree to which the simulated data track the actual data then becomes measure of

overall fir and an accuracy test for the structural model. As shown in the next section, the

estimated model with historical shocks as described above feeded in the framework accounts

well for the variation in real GDP, inflation, and nominal interest rate.

Another way of assessing the degree of correspondence between the Rotemberg and Wood-

ford (1998) theoretical model and the UK data is to compare the empirical auto- and cross-

correlation functions (ACFs and CCFs) for the three series of interest with the simulated

ones from the micro-founded model, where the stochastic processes for the shocks are spec-

ified following the methodology described in this section. The advantage of comparing the
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ACFs and CCFs is that those (second moment statistics) are invariant to the ordering of

the variables in the VAR. The comparison is shown in Figure 2, where in each of the nine

panels, the solid line indicates the theoretical cross-correlation function, and the dashed line

the empirical cross-correlation function that is implied by the unrestricted VAR analysis of

the UK data. It is clear that Rotemberg and Woodford’s (1998) model accounts for the

second moments of the UK data as well as the unrestricted VAR does. Moreover, the model

is able to reproduce the degree of persistence in inflation observed in data. Lastly, it is able

to match the negative correlation of output with the lagged nominal interest rate.

6 Simulation of Alternative Monetary Policy Rules

Thus section illustrates how the simulation model built in the previous two sections can be

applied to predict the effects of an alternative monetary rule. Fig. 3 provides the results in

a scenario, where a rule with the coefficients of the estimated historical rule was followed. In

each panel of this figure, the dashed line represents the actual data of the series, while the

solid one represents the simulation of the model under the assumption that the historical

sequence of monetary policy shocks as well as the historical series for the real shocks took

place. The dash-dot line represents a simulation in which the historical Taylor rule for the

interest rate was followed, but with all monetary shocks set to zero.

The plot of output shows the two paths are identical. That is an indication that, when

formulating monetary policy, the UK Monetary authority attaches a significant weight on

output. The plots for inflation and interest rate are different, and there is an important

reason why: In the absence of monetary shocks, simulation path for inflation is a straight

line, because the best policy is to keep inflation rate constant, and adjust interest rate to

smooth the fluctuations in output. In the case when the economy is hit by monetary shocks,

however, it is best for the monetary authority to fix the interest rate. That is depicted by

a horizontal LM curve, and an upward-sloping IS curve shifting around in the IS − LM
framework. When there is a positive monetary shock, e.g an increase in the demand for

real balances, Bank of England increases the money supply so that the new equilibrium

is at the same level of interest rate. However, output is now higher, thus IS shifts to the
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right. Similarly, in the case with negative shock money supply decreases, and output falls.

Thus, unexpected tight money has led to recession in the UK, and unexpected loose money

stimulated the economy. Therefore, it can be safely concluded that monetary shocks have

played an important role in driving output fluctuations.

7 Conclusion

This paper applied a rational expectations model for evaluating monetary policy that fits the

UK data as well as a recursive VAR. The model is simple, and is supposed to be understood

as a benchmark for more complicated and elaborated models. Its tractability allows for

easy applicability. In addition, since this unsophisticated model fits data closely, that is an

indicator that the model is not a bad description of reality. Models with explicit modeling of

the investment and capital accumulation processes, as well as the exclusion of labor supply

decision are left for future research.

It should be admitted that all the conclusions drawn from this study are have to be taken

with some caution because the generated responses of output, inflation and interest rates

to the stochastic disturbances may be sensitive to the particular specification od the model

chosen. It is possible that conclusions change if elastic labor supply or the structure or

producers’ markups change. The important message is, however, that models that specify

explicitly the channels of propagation of disturbances and their effects on real activity via the

use of monetary policy are useful because they go hand in hand with theory when deriving

econometric specifications.
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Table 1 

The Vector Autoregression 
Sample: 1980:1-1995:2 

 
 Rt πt+1 Yt+1 
Indep. 
Variables 

- - 0.001715 
(0.000346) 

Rt - 0.308024 
(0.09418) 

3.742599 
(8.886678) 

Rt-1 
 

0.6205  
(0.0001)    

0.0620 
(0.0000)   

-39.9682 
(0.0059) 

Rt-2 
 

 0.1842 
(0.0000)    

0.0434 
(0.0000)    

9.3121 
(0.0060) 

Rt-3 
 

-0.0093 
(0.0059)    

0.0006 
(0.0060)   

1.1155 
(25.5020) 

πt 
 

0.2761 
    (0.0001)    

0.1151 
(0.0000)    

26.9448 
(0.0079) 

πt-1 
 

    0.4100 
(0.0000)    

0.2430 
(0.0000)    

7.9641 
(0.0057) 

πt-2 
 

0.1581 
(0.0046)    

-0.0003 
(0.0059)   

0.0448 
(25.1097) 

Yt 
 

0.0006  
(0.0000)    

-0.1535 
(0.0000)    

-24.3564 
(0.0098) 

Yt-1 
 

    -0.00014 
(0.0000)    

0.0350 
(0.0000)    

10.8676 
(0.0053) 

Yt-2 
 

   -0.0006 
(0.0039)    

-0.0002 
(0.0056)   

-0.1991 
(24.5338) 

R2 0.76 0.41 0.95 
 

Standard Errors below estimates 
 
 
 



Figure 1: Estimated and Theoretical Responses to a Monetary Shock 
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Figure 2 Empirical and Theoretical Auto and Cross-Correlation 
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Figure 3: Actual and Simulates Paths 
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