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1 Growth Accounting

The aggregate production function is Cobb-Douglas

Yt = AtK
θ
t (γthtEt)

1−θ
(1)

where

Yt is aggregate output, At is total factor productivity, Kt is aggregate capi-
tal, ht is hours per employee, Et is aggregate employment.

The Cobb-Douglas production function is increasing and concave in all argu-
ments, CRS, differentiable, satisfies Inada conditions (ensure interior solutions)

γ ≥ 1 is the gross growth rate of the labour-augmenting technological progress.

In addition, there is also exogenous population growth at the rate of η ≥ 1,
i.e Nt = N0η

t, where Nt denotes the working-age population. Without loss of
generality (WLOG) we can normalize N0 = 1.

Growth Accounting

First, we will define some useful ratios: Let yt = Yt
Nt

, et = Et
Nt

(those two

are non-stationary), and xt = Kt
Yt

. Non-stationarity is an issue when we want to
solve for the steady-state, so we postpone detrending the model variables until
we finish with the growth accounting exercise.

Observe that

xt =
Kt

Yt
=
Kt/Nt
Yt/Nt

=
kt
yt

(2)

Yt
Nt

=
AtK

θ
t (γthtEt)

1−θ

Nt
(3)
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yt = At(
Kt

Nt
)θ(

γthtEt
Nt

)1−θ (4)

yt = Atk
θ
t γ

(1−θ)th1−θ
t e1−θ

t (5)

Divide both sides by yθt

yt
yθt

=
Atk

θ
t γ

(1−θ)th1−θ
t e1−θ

t

yθt
(6)

y1−θ
t = At(

kt
yt

)θγ(1−θ)th1−θ
t e1−θ

t (7)

y1−θ
t = Atx

θ
tγ

(1−θ)th1−θ
t e1−θ

t (8)

Raise to 1
1−θ power to obtain

yt = A
1

1−θ
t x

θ
1−θ
t γthtet (9)

Take logs from both sides

log yt =
1

1− θ
logAt +

θ

1− θ
log xt + t log γ + log ht + log et (10)

where

log yt is output per adult growth rate
logAt is TFP factor growth rate
log xt is K/Y growth rate
log γ is the trend growth rate
log ht is growth of the workweek (hours per employee)
log et is employment growth rate.

Note that for ”small” γ, log γ = γ − 1 at first approximation, thus

log yt =
1

1− θ
logAt +

θ

1− θ
log xt + t(γ − 1) + log ht + log et (11)

2 Model Description

The theoretical setup is a Dynamic Stochastic General Equilibrium (DSGE)
model used in Real Business Cycle (RBC) studies. There is an exogenous and
deterministic labor-augmenting technological progress. n addition, there are
also shocks to total factor productivity (TFP).
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2.1 Households

There is a unit measure of identical households. The population size, Nt, grows
at a constant gross rate η ≥ 1, i.e. Nt+1 = ηNt, and without loss of generality
(WLOG), we normalize N0 = 1. Households maximize total utility

E0

∞∑
t=0

βtU(Ct, ht, Et) (12)

where E0 is the expectation operator as of period 0; Ct is aggregate consump-
tion at time t; and 0 < β < 1 is the discount factor. The instantaneous utility
function is increasing, concave and satisfies the Inada conditions. We use the
following form for utility:

U(Ct, ht, Et) = ln(Ct)− α(1 + 40(ht − 40))Et (13)

Households save by investing in capital It, and as owners of capital, receive
income rtKt from renting the capital to the firms and wthtEt from selling their
labor services to firms; rt is the return to (private) capital and Kt denotes
the aggregate capital stock in the beginning of period t. Households are also
endowed with time that can be allocated to work or leisure. Aggregate labor
income is wthtEt, where wt is the hourly wage rate, ht is hours worked per
household, and Et is the employment level. Finally, households are owners
of the firms in the economy, and receive all profit in the form of dividents.
Households’ budget constraint is

Ct + It ≤ wthtEt + (1− τ)rrKt − π∗t (14)

where 0 < τ < 1 is the distortionary capital income tax rate, and π∗t is the
lump-sum tax/subsidy.

Aggregate physical capital evolves according to the following law of motion

Kt+1 = It + (1− δ)Kt (15)

where δ is the constant linear depreciation rate of capital.

Households act competitively by taking prices and policy variables as given.
They choose the aggregate paths {C∗t , h∗t , E∗t }∞t=0 to maximize Equation(12)
subject to Equations (13)-(15), and initial conditions for K0.

2.2 Consumer Optimization Problem

Set up the Lagrangean

L = E0

∞∑
t=0

βt{ln(Ct)−α(1+40(ht−40))Et−Λt(Ct+Kt+1−(1−δ)Kt−wthtEt−(1−τ)rtKt+π
∗
t )}

(16)
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This is a standard concave programming problem, so the FOCs are both neces-
sary and sufficient for an optimum.

Ct : βt{ 1

Ct
− Λt} = 0→ 1

Ct
= Λt (17)

In economic terms, this means that an additional unit of consumption brings
additional utility equal to marginal utility of wealth, as measured by the shadow
price Λ of relaxing households’ budget constraint.

ht : −40αEt + Λtw
∗
tEt = 0 (18)

→ 40α = Λtw
∗
t (19)

The above optimality condition means that households equate the cost of work-
ing additional hour during the work week, measured in disutility from supplying
labor services, to the benefit, which is the marginal product of working an ad-
ditional hour.

Et : −α(1 + 40(ht − 40)) + Λtw
∗
t ht = 0 (20)

→ α(1 + 40(ht − 40)) = Λtw
∗
t ht (21)

This optimality condition means that households equate the cost of an additional
person working, measured in disutility from working, to the benefit, which is
the marginal product of an additional person working.

Kt+1 : −Λt + βEtΛt+1(1− δ + (1− τ)r∗t+1) = 0 (22)

→ Λt = βEtΛt+1(1− δ + (1− τ)r∗t+1) (23)

From the firm’s problem we obtain below that rt+1 = θ Yt+1

Kt+1

Plugging (17) in (22), we obtain

1

Ct
= βEt[

1

Ct+1
(1− δ + (1− τ)θ

Yt+1

Kt+1
)] (24)

The equation above says that if we cut consumption in the current period, we
increase saving by 1 unit. Saving is channelled to extra investment in capital,
which is the only asset in the economy. There is no direct benefit from owning
capital (it does not enter utility), only indirect one (providing capital income).
Therefore, can increase consumption in the next period by the product of this
additional unit of capital, which is by definition the marginal product of capital.
In addition, we can eat the undepreciated capital (we are in a ”putty-putty”
economy). All this additional consumption is discounted one period at the rate
β. This is a cost-benefit equalization: Cost is 1, while benefit is rt+1 + (1− δ).
If cost > (<) benefit, agent can short sell (buy) infinite amount of capital and
buy it back (sell) next period, realizing profit from that.

Aside from intertemporal optimality (choosing optimal allocations over time),
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agents in the economy have also some intra-temporal (within period) optimality
conditions to follow. The latter have to do with relative prices of consumption
to hours and employment, respectively. The two conditions are in the form of
marginal rate of substitution = relative price.

40α =
1

Ct
w∗t (25)

α(1 + 40(ht − 40)) =
1

Ct
w∗t ht (26)

Note: it seems there is a mistake in Hayashi-Prescott. When we divide side by
side (19) and (22), we obtain

40α

α(1 + 40(ht − 40))
=

Λtw
∗
t

Λtw∗t ht
(27)

Then

40

(1 + 40(ht − 40))
=

1

ht
(28)

or, 40ht = 1 + 40ht − 160, which does not have a solution.

Therefore, I use g(ht) = αht, which leads to a singular problem.

The FOCs that change are

α = Λtw
∗
t (29)

αht = Λtw
∗
t ht, (30)

hence the singularity follows.

Transversality condition: limt→∞β
t 1
Ct
Kt+1 = 0

The way of deriving the transversality condition is a bit ”esoteric” in the lit-
erature, as many economists do not really understand the full mathematical
machinery required to do so. For our purposes, we regard the transversality
condition as a kind of ”last” first-order condition. This is easy if we look at
the finite-horizon version of the problem. In the finite case, the Lagrangean
function is finite dimensional. The infinite horizon version can be thought of as
limt→∞Lt = L∞. In this sense, transversality condition is like taking the limit
to the boundary condition in the finite case. The name ”Transversality” comes
to remind you the condition tells what happens once we cross the boundary
(infinity and beyond).

Aside from the mathematical technicalities, the economic interpretation of the
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transversality condition is straightforward. It requires that the present dis-
counted value of the capital stock when we approach infinity is zero. If it were
not so, then the original solution (plan) was not optimal, as we can re-optimize
and increase the sum of discounted utilities.

Also, as the price sequence has all entries being strictly positive, it does not
pay to leave any capital unused at the end of time.

2.3 Firms

There is a unit mass of firms as well. They all produce a homogeneous final
product using the same production function that requires physical capital and
labor hours. This allows us to aggregate total output using the same production
function

Yt = AtK
θ
t (γthtEt)

1−θ (31)

where At measures the level of Hicks neutral technology available to the econ-
omy in period t, 0 < θ, (1 − θ) < 1 are the productivity of capital and labor,
respectively.
Firms act competitively by taking prices and policy variables as given.Accordingly,
subject to Equation (29), Kt, ht, Et are chosen every period to maximize static
aggregate profit,

Πt = AtK
θ
t (γthtEt)

1−θ − r∗tKt − w∗t htEt (32)

2.4 Firm’s FOCs

Kt : θAtK
θ−1
t (γthtEt)

1−θ = r∗t (33)

Et : (1− θ)AtKθ
t (γtht)

1−θE−θt = w∗t (34)

ht : (1− θ)AtKθ
t (γtEt)

1−θh−θt = w∗t (35)

i.e. price of labor is equal to its marginal product, and the rental rate of capital
is equal to the marginal product of capital. Then

Πt = 0 (36)

2.5 Government budget constraint

Total government expenditure, G, and lum-sum transfers/taxes, are financed
by levying proportional taxes on capital income. It is assumed that government
conducts spending in a wasteful manner. Thus,

Gt = τr∗tK
∗
t + πt (37)

where only two of the three {Gt, πt, τ} policy instruments can be exogenously
set. We will choose the tax rate τ on capital income to be deterministic, and the
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path for {Gt} to be exogenously set. Then the path for {πt} will be endogenously
determined as a residual from the per-period budget balance constraint.

3 Decentralized Competitive Equilibrium

Given the paths of the policy instruments {Gt, πt}∞t=0, and initial conditions
for the state variable K0, a decentralized competitive equilibrium (DCE) is de-
fined to be a sequence of allocations {Ct, ht, Et, It,Kt+1}∞t=0, prices {rt, wt}∞t=0

and the tax tate {τ} such that (i) households maximize utility; (ii) firms maxi-
mize profits; (iii) all markets clear and (iv) the government budget constrain is
satisfied in each time period.

4 Transformed Optimality Conditions

Since labor-augmenting progress is the engine of the LR exogenous grwoth, we
transform variables to make them stationary.

We will define per capita units X̄t = Xt
Nt

and xt = X̄t
ηt in effective per capita

units, where Xt = {Yt, Ct, It,Kt, Et}

4.1 Transformed budget and physical capital constraints

4.2 Aggregate

Ct +Kt+1 − (1− δ)Kt +Gt = Yt (38)

4.3 Per capita

Ct
Nt

+
Kt+1

Nt
− (1− δ)Kt

Nt
+
Gt
Nt

=
Yt
Nt

(39)

C̄t + ηK̄t+1 − (1− δ)K̄t + Ḡt = Ȳt (40)

4.4 Stationary per capita

C̄t
γt

+ η
K̄t+1

γt
− (1− δ)K̄t

γt
+
Ḡt
γt

=
Ȳt
γt

(41)

ct + γηkt+1 − (1− δ)kt + gt = yt (42)

4.5 Transformed Production Function

4.6 Aggregate

Yt = AtK
θ
t (γthtEt)

1−θ (43)
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4.7 Per capita

Yt
Nt

= At
Kt

Nt

θ

(γtht
Et
Nt

)1−θ (44)

Ȳt = AtK̄
θ
t (γthtĒt)

1−θ (45)

4.8 Stationary per capita

Ȳt
γt

= At(
K̄t

γt
)θ(ht

Ēt
γt

)1−θ (46)

yt = Atk
θ
t (htet)

1−θ (47)

4.9 Transformed Optimality Condition (FOC Consump-
tion)

4.10 Aggregate

1

Ct
= ΛtNt (48)

4.11 Per-capita

1
Ct
Nt

= Λt (49)

1

Ct
= Λt (50)

4.12 Stationary per capita

γt

C̄
= Λt (51)

1

ct
= Λt/γ

t = λt (52)

4.13 Transformed Optimality Condition (physical capital)

4.14 Aggregate

Λt = βEtΛt+1(1− δ + (1− τ)θAKθ−1
t (γthtEt)

1−θ) (53)

4.15 Per capita

Λt = βEtΛt+1(1− δ + (1− τ)θAK̄θ−1
t (γthtĒt)

1−θ) (54)
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4.16 Stationary per capita

λt = (β/γ)Etλt+1(1− δ + (1− τ)θAkθ−1
t (γthtet)

1−θ) (55)

where

λt = Λt/γ
t (56)

5 Per capita stationary DCE

Using this notation, we obtain the following per capita stationary DCE

yt = ct + ηγkt+1 − (1− δ)kt + gt (57)

yt = Atk
θ
t (htet)

1−θ (58)

λt = c−1
t (59)

λt = Etλt+1
β

γ
[(1− τ)θ

yt+1

kt+1
+ 1− δ] (60)

αct = (1− θ) yt
htet

(61)

where λt is the transformed shadow price associated with Equation (22) in
the households’ problem.

Therefore, the stationary DCE is summarized by the above system of six eqau-
tions in the paths of the following six variables (yt, ct, ht,Kt+1, λt) given the
path of the exogenous technology process {At}, whose motion is specified in the
next subsection.

5.1 Process for technology

To complete the model, we need to specify the process governing the exogenous
technology process. We assume it to follow an AR(1) process:

At = A1−ρAρt−1e
εt (62)

where A > 0 is a constant, 0 < ρ < 1 is the first-order autoregressive persistence
parameter and εt ∼ iidN(0, σ2) are stochastic shocks to productivity.

6 How do we work

We will log-linearize around the deterministic steady-state of the system. In
order to study fluctuations in a small neighborhood of the steady-state, we first
calculate it and calibrate the model in such a way that the parameters of the
model are able to match long-run behavior of the aggregate macroeconomic
variables.
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6.1 Data and Calibration

6.2 Data

The annual data required for the calibration can be obtained from Bureau of
Economic Analysis (NIPA accounts), OECD(Economic Outlook Database), US
Department of Labor, Bureau of Labor Statistics (BLS) and ECFIN Effective
Average Tax Base (Martinez-Mongray, 2000)

6.3 Calibration

The values of the model’s parameters are summarized in Table 1. In order to
calibrate the model, we proceed as follows. We set the value of (1 − θ) equal
to labor’s share of income (i.e. 0.578) using compensation of employees data
from the OECD Economic Outlook. This figure is similar to the one obtained
in Gollin (2000). Capital share θ is determined residually.

The discount rate 1/β equals 1 plus the ex post real interest rate, which can
be obtained from OECD Economic Outlook. This implies β = 0.964, which
is consistent with previous studies. The population gross growth rate η is set
equal to the post war labor force gross growth rate 1.016, obtained from Bureau
of Labor Statistics. The depreciation rate for physical capital δ is calculated
to be 0.049 on average. The scale parameter of the technology process A is set
to 1 WLOG. The parameters for the stationaty TFP process are as in Lansing
(1998) ρ = 0.933 and σ = 0.1.

Table 1: Parameter Values (base calibration)

Parameter Value Definition

A 1.000 Technological progress in goods production
θ 0.422 Productivity of private capital
1− θ 0.578 Productivity of effective labor
β 0.964 Discount factor
δ 0.049 Depreciation rate on physical capital
α 1.373 Weight on disutility from work
τ 0.48 Effective tax rate on capital income
ρ 0.933 AR(1) parameter technology
σ 0.01 SD of technology innovation

7 Steady-State

Suppressing time indices and shutting down stochasticity

y = c+ ηγk − (1− δ)k + g (63)
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y = c+ (ηγ − 1 + δ)k + g (64)

y = Akθ(he)1−θ (65)

λ = c−1 (66)

1 =
β

γ
[(1− τ)θ

y

k
+ 1− δ] (67)

αc = (1− θ)y/he (68)

7.1 Solving Analytically for the Steady-State

Algorithm: How to solve for the deterministic steady-state (A = 1):

1

β
= 1− δ + (1− τk)θA(

k

he
)θ−1 (69)

This gives us k
he . Then we know

w = (1− θ)A(
k

he
)θ (70)

c = y − δk (71)

c/k = y/k − δ = A(
k

hE
)θ−1 − δ (72)

i/k = (η − 1 + δ) (73)

Hence we know i/k. Then from MRS:

g(h)c = w = (1− θ)A(
k

he
)θ (74)

(g(h)/k)(c/k) = w = (1− θ)A(
k

he
)θ (75)

determines he.

8 Linearization

8.1 Linearized Market Clearing

ct + ηγkt+1 + gt − (1− δ)kt = yt (76)

ln(ct + ηγkt+1 + gt − (1− δ)kt) = ln(yt) (77)

d ln(ct + ηγkt+1 + gt − (1− δ)kt)
dt

= d ln(yt) (78)

(
1

ct + ηγkt+1 + gt − (1− δ)kt
)[
dct
dt

c

c
+ γη

dkt+1

dt

k

k
− (1− δ)dkt

dt

k

k
] =

dyt
dt

1

y
(79)

1

y
[ĉtc+ γηk̂t+1k − (1− δ)k̂tk] = ŷt (80)
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−[
ηγ

y
]k̂t+1 = [

c

y
]ĉt − ŷt − [

(1− δ)k
y

]k̂t (81)

−ω1k̂t+1 = ω2ĉt − ŷt − ω3k̂t (82)

where ω1 ≡ ηγ
y , ω2 ≡ c

y , ω3 ≡ (1−δ)k
y

8.2 Linearized Production Function

yt = Atk
θ
t (htet)

1−θ (83)

ln yt = lnAt + θ ln kt + (1− θ) lnht + (1− θ) ln et (84)

d ln yt
dt

=
d lnAt
dt

+ θ
d ln kt
dt

+ (1− θ)d lnht
dt

+ (1− θ)d ln et
dt

(85)

1

y

dyt
dt

=
1

A

dAt
dt

+
θ

k

dkt
dt

+
(1− θ)
h

dht
dt

+
(1− θ)
h

det
dt

(86)

0 = −ŷt + Ât + θk̂t + (1− θ)ĥt + (1− θ)êt (87)

0 = −ŷt + Ât + ω4k̂t + ω5ĥt + ω5êt (88)

where ω4 ≡ θ, ω5 ≡ 1− θ

8.3 Linearized FOC for consumption

λt = c−1
t (89)

lnλt = − ln ct (90)

d lnλt
dt

= −d ln ct
dt

(91)

1

λ

dλt
dt

= −1

c

dct
dt

(92)

0 = −ĉt − λ̂t (93)

8.4 Linearized No-arbitrage condition

λt = β/γEt[λt+1((1− τ)θ
yt+1

kt+1
+ 1− δ)] (94)

lnλt = lnEt[λt+1((1− τ)θ
yt+1

kt+1
+ 1− δ)] (95)

d lnλt
dt

=
d lnEt[λt+1((1− τ)θ yt+1

kt+1
+ 1− δ)]

dt
(96)

λ̂t = Et[λ̂t+1 + [
(1− τ)θy

((1− τ)θ yt+1

kt+1
+ 1− δ)k

ŷt+1 −
(1− τ)θy

((1− τ)θ yt+1

kt+1
+ 1− δ)k

k̂t+1]

(97)
Observe that (1− τ)θ yk + 1− δ = γ/β
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λ̂t = Et[λ̂t+1 + [
β(1− τ)θy

γk
ŷt+1 −

β(1− τ)θy

γk
k̂t+1] (98)

λ̂t = Etλ̂t+1 +
β(1− τ)θy

γk
Etŷt+1 −

β(1− τ)θy

γk
Etk̂t+1 (99)

λ̂t = Etλ̂t+1 + ω9Etŷt+1 − ω9Etk̂t+1 (100)

where ω9 ≡ β(1−τ)θy
γk

8.5 Linearized Marginal Rate of Substitution

1

αct
=

1

wt
(101)

αct = wt (102)

α ln ct = lnwt (103)

α
d ln ct
dt

=
d lnwt
dt

(104)

α
1

c

dct
dt

=
1

w

dwt
dt

(105)

αĉt = ŵt (106)

8.6 Linearized Exogenous Technological Process

At+1 = A(1−ρ)Aρt e
εt+1 (107)

lnAt+1 = (1− ρ) lnA+ ρ lnAt + εt+1 (108)

d lnAt+1

dt
= (1− ρ)

d lnA

dt
+ ρ

d lnAt
dt

+
dεt+1

dt
(109)

1

A

dAt+1

dt
= ρ

1

A

dAt
dt

+ εt+1 (110)

where for t = 1 dεt+1 ≈ ln(eεt+1/e) = εt+1 − ε = εt+1 since ε = 0

Ât+1 = ρÂt + εt+1 (111)
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