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This paper proposes an enhanced approach to modeling and forecasting volatility using high 
frequency data. Using a forecasting model based on Realized GARCH with multiple time-frequency 
decomposed realized volatility measures, we study the influence of different timescales on volatility 
forecasts. The decomposition of volatility into several timescales approximates the behaviour of 
traders at corresponding investment horizons. The proposed methodology is moreover able to 
account for impact of jumps due to a recently proposed jump wavelet two scale realized volatility 
estimator. We propose a realized Jump-GARCH models estimated in two versions using maximum 
likelihood as well as observation-driven estimation framework of generalized autoregressive score. 
We compare forecasts using several popular realized volatility measures on foreign exchange rate 
futures data covering the recent financial crisis. Our results indicate that disentangling jump 
variation from the integrated variation is important for forecasting performance. 
An interesting insight into the volatility process is also provided by its multiscale decomposition. 
We find that most of the information for future volatility comes from high frequency part of the 
spectra representing very short investment horizons. Our newly proposed models outperform 
statistically the popular as well conventional models in both one-day and multi-period-ahead 
forecasting. 
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Modeling and forecasting exchange rate volatility in

time-frequency domain
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Opletalova 21, 110 00, Prague, Czech Republic
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Abstract

This paper proposes an enhanced approach to modeling and forecasting volatility
using high frequency data. Using a forecasting model based on Realized GARCH
with multiple time-frequency decomposed realized volatility measures, we study
the influence of di↵erent timescales on volatility forecasts. The decomposition of
volatility into several timescales approximates the behaviour of traders at corre-
sponding investment horizons. The proposed methodology is moreover able to
account for impact of jumps due to a recently proposed jump wavelet two scale
realized volatility estimator. We propose a realized Jump-GARCH models esti-
mated in two versions using maximum likelihood as well as observation-driven
estimation framework of generalized autoregressive score. We compare forecasts
using several popular realized volatility measures on foreign exchange rate futures
data covering the recent financial crisis. Our results indicate that disentangling
jump variation from the integrated variation is important for forecasting per-
formance. An interesting insight into the volatility process is also provided by
its multiscale decomposition. We find that most of the information for future
volatility comes from high frequency part of the spectra representing very short
investment horizons. Our newly proposed models outperform statistically the
popular as well conventional models in both one-day and multi-period-ahead
forecasting.

Keywords: Realized GARCH, wavelet decomposition, jumps,
multi-period-ahead volatility forecasting
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1. Introduction

In contrast to the conventional framework of a generalized autoregres-
sive conditional heteroscedasticity (GARCH) model, volatility is directly
observed and can be used for forecasting when high frequency data are ap-
plied.1 While Hansen and Lunde (2005) argue that GARCH(1,1) can hardly
be beaten by any other model, recent active research shows that with help
of high frequency measures, we can improve the volatility forecasts signifi-
cantly. Mcmillan and Speight (2012) for example utilize intra-day data and
show that we can obtain forecasts superior to forecasts from GARCH(1,1).
Louzis et al. (2013) assesses the informational content of alternative realized
volatility estimators using Realized GARCH in Value-at-Risk prediction.
We aim to extend this line of research by investigating the importance of
disentangling jump variation and integrated variance in recently developed
framework, which combines appeal of a widely used GARCH(1,1) and high
frequency data. Moreover, we employ recently developed multiscale estima-
tors which decompose volatility into several investment horizons2 and allow
us to study the influence of intraday investment horizons on the volatility
forecasts.

Traders on financial markets make their decisions over di↵erent time
horizons, for example, minutes, hours, days, or even longer such as months
and years (LeBaron, 2001; Ramsey, 2002; Gençay et al., 2005; Corsi, 2009).
Nevertheless, majority of the empirical literature studies the relationships
in the time domain only aggregating the behavior across all investment

IWe are grateful to the editor Lorenzo Peccati and two anonymous referees for many
useful comments and suggestions, which greatly improved the paper. We are also grate-
ful to David Veredas and Karel Najzar, and seminar participants at the Modeling High
Frequency Data in Finance 3 in New York (July 2011) and Computational and Financial
Econometrics in Oviedo (December 2012) for many useful discussions. The research lead-
ing to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement No. FP7-SSH- 612955 (FinMaP).
Support from the Czech Science Foundation under the 13-32263S project is gratefully
acknowledged.

⇤Corresponding author, Tel. +420(776)259273, Email address: barunik@utia.cas.cz
1A vast quantity of literature on several aspects of estimating volatility using high

frequency data is nicely surveyed by McAleer and Medeiros (2008).
2An investment horizon refers to the length of time that an investor expects to hold

a security or portfolio.
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horizons. A notable exception is the Heterogenous Autoregressive approach
(HAR) for realized volatility proposed by Corsi (2009). Although staying
in the time domain solely, Corsi (2009) builds his model on the idea of the
investors’ heterogeneity.

In our work, we ask if wavelet decomposition can provide better insight
into the foreign exchange volatility modeling and forecasting.3 Wavelets
are often successfully used as a de-noising tool (Haven et al., 2012; Sun
and Meinl, 2012). One particularly appealing feature of wavelets is that
they can be embedded into stochastic processes, as shown by Antoniou and
Gustafson (1999). Thus we can conveniently use them to extend the theory
of realized measures to obtain decomposed volatility as shown by Fan and
Wang (2007), or Barunik and Vacha (2014). One of the common issues
with the interpretation of wavelets in economic applications is that they are
filter, thus they can hardly be used for forecasting in econometrics. Models
based on wavelets are often outperformed by simple benchmark models, as
shown by Fernandez (2008). Rather, they can provide a useful “lens” into
the spectral properties of the time series. Our wavelet-based estimator of
realized volatility uses wavelets only to decompose the daily variation of
the returns using intraday information, hence the problem with forecasts is
no longer an issue. As wavelets are used to measure realized volatility at
di↵erent investment horizons, we can construct a forecasting model based
on the wavelet decomposed volatility conveniently.

Several attempts to use wavelets in the estimation of realized variation
have emerged in the past few years. Høg and Lunde (2003) were the first
to suggest a wavelet estimator of realized variance. Capobianco (2004), for
example, proposes to use a wavelet transform as a comparable estimator of
quadratic variation. Subbotin (2008) uses wavelets to decompose volatility
into a multi-horizon scale. One exception is the work of Fan and Wang
(2007), who were the first to use the wavelet-based realized variance esti-
mator together with the methodology for estimation of jumps. In Barunik
and Vacha (2014), we revisit and extend this work and using large Monte
Carlo study we show that this estimator improves forecasting of the volatil-
ity substantially when compared to other estimators. Moreover, in Barunik
and Vacha (2014) we attempt to use the estimators to decompose stock
market volatility into several investment horizons in a non-parametric way.

Motivated by previous results, this paper focuses on proposing a model

3Our interest is in return variation, although models attempting to capture the prices
directly may be of interest.
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which will improve the modeling and forecasting of foreign exchange volatil-
ity. Similarly to Lanne (2007), Andersen et al. (2011), and Sévi (2014)
we use the decomposition of the quadratic variation with the intention of
building a more accurate forecasting model. Our approach is very di↵er-
ent though, as we use wavelets to decompose the integrated volatility into
several investment horizons and jumps. Moreover, we employ recently pro-
posed realized GARCH framework of Hansen et al. (2012). In contrast to
popular HAR framework of Corsi (2009), Realized GARCH allows to model
jointly returns and realized measures of volatility, while key feature is a
measurement equation that relates the realized measure to the conditional
variance of returns. In addition, we benchmark our approach to several
measures of realized volatility and jumps, namely realized volatility esti-
mator proposed by Andersen et al. (2003), the bipower variation estimator
of Barndor↵-Nielsen and Shephard (2004), the median realized volatility of
Andersen et al. (2012), and finally jump wavelet two-scale realized variance
(JWTSRV) estimator of Barunik and Vacha (2014) in the framework of
Realized GARCH, and we find significant di↵erences in volatility forecasts,
while our JWTSRV estimator brings the largest improvement. We use Re-
alized GARCH models of Hansen et al. (2012) as well as realized GAS of
Huang et al. (2014) based on the observation-driven estimation framework
of generalized autoregressive score models to build a realized Jump-GARCH
modeling strategy. In addition, we also utilize Realized GARCH with mul-
tiple realized measures (Hansen and Huang, 2012) to build a time-frequency
model for forecasting volatility.

The main contribution of the paper is thus threefold.4 First, we propose
several model extensions to utilize jumps in the popular Realized GARCH
frameworks, as well as build time-frequency model for forecasting volatil-
ity. Second, we use several popular measures as a benchmark to our time-
frequency model. Third, we bring interesting empirical comparison of all
frameworks in multiple-period-ahead forecasting exercise. We show that
the most important information influencing the future volatility in foreign
exchange is carried by the high frequency part of the spectra representing
very short investment horizons. This decomposition gives us an interesting

4Note that our research adds to recent operation research contributions using wavelets
in denoising of financial data, specifically high frequency data research (Haven et al., 2012;
Sun and Meinl, 2012; Marroquı et al., 2013), literature developing volatility models (Pun
et al., 2015; Date and Islyaev, 2015), literature contributing to forecasting volatility (Sévi,
2014; Charles, 2010; Christodoulakis, 2007) and studying stock market returns (Wang
et al., 2015; Doyle and Chen, 2013; Yang and Bessler, 2008; Buckley and Long, 2015).
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insight into the volatility process. Our newly proposed time-frequency mod-
els and Jump-GARCH models outperforms the existing modeling strategies
significantly.

2. Theoretical framework for time-frequency decomposition of re-

alized volatility

While most time series models are naturally set in the time domain,
wavelet transform help us to enrich the analysis of quadratic variation by the
frequency domain. Traders of the foreign exchange markets are operating
with heterogeneous expectations, ranging from minutes to days, or even
weeks and months. Hence volatility dynamics should be understood not
only in time but at di↵erent investment horizons as well. In this section,
we introduce a multiscale estimator that will allow these features and is
moreover able to separate the continuous part of the price process containing
noise from the jump variation. We will briefly introduce general ideas of
constructing the estimator, while for the details necessary to understand the
derivation of the estimator using wavelet theory, we refer to Barunik and
Vacha (2014). In addition, we introduce several other estimators commonly
used in the literature, which will serve as a benchmarks to us in the empirical
application.

In the analysis, we assume that the latent logarithmic asset price follows
a standard jump-di↵usion process contamined with microstructure noise.
Let y

t

be the observed logarithmic prices evolving over 0  t  T , which
will have two components; the latent, so-called “true log-price process”,
dp

t

= µ
t

dt + �
t

dW
t

+ ⇠
t

dq
t

, and zero mean i.i.d. microstructure noise, ✏
t

,
with variance ⌘2. In a latent process, q

t

is a Poisson process uncorrelated
with W

t

, and the magnitude of the jump, denoted as J
l

, is controlled by
factor ⇠

t

⇠ N(⇠̄, �2
⇠

). Thus, the observed price process is y
t

= p
t

+ ✏
t

.
The quadratic return variation over the interval [t � h, t], for 0  h 

t  T associated with the price process y
t

can be naturally decomposed into
two parts: integrated variance of the latent price process, IV

t,h

and jump
variation JV

t,h

QV
t,h

=

Z
t

t�h

�2
s

ds

| {z }
IV

t,h

+
X

t�hlt

J2
l

| {z }
JV

t,h

(1)

As detailed by Andersen et al. (2001) and Barndor↵-Nielsen and Shephard
(2002a), quadratic variation is a natural measure of variability in the loga-
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rithmic price process. A simple consistent estimator of the overall quadratic
variation under the assumption of zero noise contamination in the price
process is provided by the well-known realized variance, introduced by An-
dersen and Bollerslev (1998). The realized variance over [t� h, t] can be
estimated as

dQV
(RV )

t,h

=
NX

k=1

(�
k

y
t

)2 , (2)

where �
k

y
t

= y
t�h+( k

N

)h � y
t�h+( k�1

N

)h is the k-th intraday return in the

[t� h, t] and N is the number of intraday observations. The estimator
in Eq.(2) converges in probability to IV

t,h

+ JV
t,h

as N ! 1 (Andersen
and Bollerslev, 1998; Andersen et al., 2001, 2003; Barndor↵-Nielsen and
Shephard, 2001, 2002a,b).

While the observed price process y
t

is contamined with noise and jumps
in real data, we need to account for this, as the main object of interest is the
IV

t

part of quadratic variation. Zhang et al. (2005) propose solution to the
noise contamination by introducing the so-called two-scale realized volatility
(TSRV henceforth) estimator. They adopt a methodology for estimation of
the quadratic variation utilizing all of the available data using an idea of
precise bias estimation. The two-scale realized variation over [t� h, t] is
measured by

dQV
(TSRV )

t,h

= dQV
(average)

t,h

� N̄

N
dQV

(all)

t,h

, (3)

wheredQV
(all)

t,h

is computed as in Eq. (2) on all available data anddQV
(average)

t,h

is constructed by averaging the estimators dQV
(g)

t,h

obtained on G grids of

average size N̄ = N/G as dQV
(average)

t,h

= 1
G

P
G

g=1
dQV

(g)

t,h

, where the original

grid of observation times, M = {t1, . . . , tN} is subsampled to M (g), g =
1, . . . , G, where N/G ! 1 as N ! 1. For example, M (1) will start at
the first observation and take an observation every 5 minutes, M (2) will
start at the second observation and take an observation every 5 minutes,
ets. Finally, we average these estimators through the subsamples, so the
variation of the estimator is averaged.

The estimator in Eq. (3) provides the first consistent and asymptotic
estimator of the quadratic variation of p

t

with rate of convergence N�1/6.
Zhang et al. (2005) also provide the theory for optimal choice of G grids,
G⇤ = cN2/3, where the constant c can be set to minimize the total asymp-
totic variance.
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Since we are interested in decomposing quadratic variation into the inte-
grated variance and jump variation component, we introduce a methodology
for jump detection. Recent evidence from the volatility forecasting litera-
ture indicates that two sources of variation in the price process substantially
di↵er and impact future volatility in di↵erent ways. Before introducing our
estimator, we introduce two commonly used estimators of volatility and
integrated variation, which will be used as benchmark in the empirical ex-
ercise.

Barndor↵-Nielsen and Shephard (2004, 2006) develop bipower variation
estimator (BV), which can detect the presence of jumps in high-frequency
data. The main idea of the BV estimator is to compare two measures of the
integrated variance, one containing the jump variation and the other being
robust to jumps and hence containing only the integrated variation part.
In our work, we use the Andersen et al. (2011) adjustment of the original
Barndor↵-Nielsen and Shephard (2004) estimator, which helps render it
robust to certain types of microstructure noise. The bipower variation over
[t� h, t] is defined by

cIV
(BV )

t,h

= µ�2
1

N

N � 2

NX

k=3

|�
k�2yt|.|�k

y
t

|, (4)

where µ
a

= ⇡/2 = E(|Z|a), and Z ⇠ N(0, 1), a � 0 and cIV
(BV )

t,h

!
R
t

t�h

�2
s

ds. Therefore, cIV
(BV )

t,h

provides a consistent estimator of the inte-

grated variance. Although dQV
(RV )

t,h

provides a consistent estimator of the
integrated variance plus the jump variation, the jump variation may be es-
timated consistently as the di↵erence between the realized variance and the
realized bipower variation

plim
N!1

⇣
dQV

(RV )

t,h

� cIV
(BV )

t,h

⌘
= JV

t,h

. (5)

Under the assumption of no jump and some other regularity conditions,
Barndor↵-Nielsen and Shephard (2006) provide the joint asymptotic distri-
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bution of the jump variation.5 Using this theory, the contribution of the
jump variation to the quadratic variation of the price process is measured
by

cJV
(BV )

t,h

= {Z(BV )
t,h

>�
↵

}

⇣
dQV

(RV )

t,h

� cIV
(BV )

t,h

⌘
, (6)

where {Z(BV )
t,h

>�
↵

} denotes the indicator function and �
↵

refers to the cho-

sen critical value from the standard normal distribution. The measure of
integrated variance is defined as

cIV
(CBV )

t,h

= {Z(BV )
t,h

�
↵

}
dQV

(RV )

t,h

+ {Z(BV )
t,h

>�
↵

}
cIV

(BV )

t,h

, (7)

ensuring that the jump measure and the continuous part add up to the
estimated variance without jumps. Another popular estimator, which es-
timates the integrated volatility in the presence of jumps is the median
realized volatility (MedRV), introduced by Andersen et al. (2012):

cIV
(MedRV )

t,h

=
⇡

6� 4
p
3 + ⇡

✓
N

N � 2

◆
NX

k=3

med (|�
k�2yt|, |�k�1yt|, |�k

y
t

|)2 .

(8)
Under the assumption of no jump and some other regularity conditions,
Andersen et al. (2012) provide the joint asymptotic distribution of the jump
variation6 analogously to the BV estimator. The integrated variance and

5Under the null hypothesis of no within-day jumps,

Z(BV )
t,h =

dQV
(RV )
t,h �cIV (BV )

t,h

dQV
(RV )
t,hvuut

⇣�
⇡
2

�2
+ ⇡ � 5

⌘
1
N max

 
1,

dTQ
(BV )
t,h⇣

cIV (BV )
t,h

⌘2

! ,

where dTQ
(BV )

t,h = Nµ�3
4/3

⇣
N

N�4

⌘PN
k=5 |�k�4yt|4/3|�k�3yt|4/3|�k�2yt|4/3 is asymptoti-

cally standard normally distributed.
6Under the null hypothesis of no within-day jumps,

Z(MedRV )
t,h =

dQV
(RV )
t,h �cIV (MedRV )

t,h

dQV
(RV )
t,hvuut0.96 1

N max

 
1,

dTQ
(MedRV )
t,h⇣

cIV (MedRV )
t,h

⌘2

! ,
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jump variation can be consistently estimated as

cIV
(CMedRV )

t,h

= {Z(MedRV )
t,h

�
↵

}
dQV

(RV )

t,h

+ {Z(MedRV )
t,h

>�
↵

}
cIV

(MedRV )

t,h

, (9)

cJV
(MedRV )

t,h

= {Z(MedRV )
t,h

>�
↵

}

⇣
dQV

(RV )

t,h

� cIV
(MedRV )

t,h

⌘
. (10)

2.1. Estimation of jumps and time-frequency realized variance

Fan and Wang (2007) use a di↵erent approach to realized volatility mea-
surement. They use wavelets in order to separate jump variation from the
price process, as well as for estimation of the integrated variance on the
jump–adjusted data. In addition, wavelet methodology o↵ers decomposi-
tion of the estimated volatility into scales representing investment horizons.
Therefore, we can observe how particular investment horizon contributes
to the total variance. For a more detailed description of the wavelet trans-
form used as a building block of the estimation see Appendix A. In the
empirical section, we aim to study information content of investment hori-
zons for volatility forecasting, thus we describe the wavelet jump detection
and then introduce the wavelet estimator of integrated variance of Barunik
and Vacha (2014), which allows to decompose the volatility into several
investment horizons.

As in the previous Section, we assume the sample path of the price
process y

t

= p
t

+ ✏
t

will have a finite number of jumps. Following results of
Wang (1995) on the wavelet jump detection and further extension of Fan and
Wang (2007) to stochastic processes, we apply wavelet transform to detect
jumps. Using e↵ective localization properties of the wavelets, Fan and Wang
(2007) show a way how to distinguish between continuous and jump part of
the stochastic price process with i.i.d. additive noise. They use the first scale
of the discrete wavelet transform (the highest frequency) where the price
process p

t

dominates the noise ✏
t

only close to a jump location, otherwise
it is very small. In order to detect dominating part of the process y

t

, Fan
and Wang (2007) use the universal threshold of Donoho and Johnstone
(1994), defined as D

t

= d
t

p
2 logN , where d

t

= median{|W1,k|}/0.6745 for
k 2 [1, N ] is a robust estimate of standard deviation.7 When the absolute
value of the wavelet coe�cient at the first scale is greater than a threshold

where dTQ
(MedRV )

t,h = 3⇡N
9⇡+72�52

p
3

⇣
N

N�2

⌘PN
k=3 med (|�k�2yt|, |�k�1yt|, |�kyt|)4 is

asymptotically standard normally distributed.
7See Appendix A.1 for the definition of wavelet tranform.
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D
t

then the noise ✏
t

is relatively small and the dominance of p
t

is caused by
the jump part, therefore a jump is detected.

In the empirical part we adapt Fan and Wang (2007) procedure to
the “maximal overlap discrete wavelet transform” (MODWT). As a re-
sult a robust estimate of standard deviation has to be modified as: d

t

=p
2 median{|W1,k|}/0.6745 for k 2 [1, N ].8 Since we use the MODWT, we

have k wavelet coe�cients at the first scale, which corresponds to number
of intraday observations, i.e., k = 1, . . . , N . In case the absolute value of
the wavelet coe�cient |W1,k| is greater9 then the threshold D

t

than a jump
with size �

k

J
t

is detected as

�
k

J
t

=
⇣
y
t�h+( k

N

)h � y
t�h+( k�1

N

)h

⌘
{|W1,k|>D

t} k 2 [1, N ]. (11)

Following Fan and Wang (2007), the jump variation over [t�h, t] in the
discrete time is estimated as the sum of squares of all the estimated jump
sizes,

cJV
t,h

=
NX

k=1

(�
k

J
t

)2 . (12)

Fan and Wang (2007) prove that using (12), we are able to estimate the
jump variation from the process consistently with the convergence rate of
N�1/4.

Having precisely detected jumps, we proceed to jump adjustment of the
observed price process y

t

over [t� h, t]. We adjust the data for jumps by
subtracting the intraday jumps from the price process as:

�
k

y
(J)
t

= �
k

y
t

��
k

J
t

, k = 1, . . . N, (13)

where N is the number of intraday observations.
Finally, the volatility can be computed using the jump-adjusted wavelet

two-scale realized variance (JWTSRV) estimator on the jump adjusted data

�
k

y
(J)
t

. The estimator utilizes the TSRV approach of Zhang et al. (2005)
as well as the wavelet jump detection method. Another advantage of the
estimator is, that it decomposes the integrated variance into Jm+1 compo-
nents, therefore we are able to study the dynamics of volatility at various

8For more information about universal thresholds applied on the MODWT see (Per-
cival and Walden, 2000) and Gençay et al. (2002).

9Using the MODWT filters, we need to slightly correct the position of the wavelet
coe�cients to get the precise jump position, see Percival and Mofjeld (1997).
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investment horizons. Following Barunik and Vacha (2014), we define the
JWTSRV estimator over [t� h, t], on the jump-adjusted data as:

cIV
(JWTSRV )

t,h

=
J

m+1X

j=1

cIV
(JWTSRV )

j,t,h

=
J

m+1X

j=1

✓
cIV

(average)

j,t,h

� N̄

N
cIV

(all)

j,t,h

◆
, (14)

where cIV
(average)

j,t,h

= 1
G

P
G

g=1

P
N

k=1

⇣
W (g)

j,k

⌘2
is obtained from wavelet coe�-

cient estimates on a grid of size N̄ = N/G, and cIV
(all)

j,t,h

=
P

N

k=1 (Wj,k

)2 is
the wavelet realized variance estimator at a scale j on all the jump-adjusted
observed data, �

k

y
(J)
t

. W
j,k

denotes the MODWT wavelet coe�cient at
scale j with position k obtained over [t� h, t].

Barunik and Vacha (2014) show that the JWTSRV is consistent estima-
tor of the integrated variance as it converges in probability to the integrated
variance of the process p

t

, and they test the small sample performance of the
estimator in a large Monte Carlo study. The JWTSRV is found to be able
to recover true integrated variance from the noisy process with jumps very
precisely. Moreover, the JWTSRV estimator is also tested in forecasting
exercise, which confirms to improve forecasting of the integrated variance
substantially.

2.1.1. Bootstrapping the jump test using JWTSRV

Although Fan and Wang (2007) showed the e↵ectiveness of the wavelet
jump detection, distribution properties of the estimated jump variation,
and hence any test statistic stay unknown. In order to test for the presence
of jumps using JWTSRV estimator, we propose to use the bootstrap test.
Main reason for bootstrapping the jump test is that consistent estimator
for the integrated quarticity is not analytically available for JWTSRV esti-
mator. More importantly, finite sample properties of the jump tests based
on functions of realized volatility estimators can be considerably improved
using bootstrap, as noted by Dovonon et al. (2014).

In order to obtain the bootstrapped distribution of test statistic under
the assumption of no jumps, we generate k intraday returns using estimated

integrated part of the quadratic variation as�
k

y⇤
t

=

q
(1/k)cIV

(JWTSRV )

t

⌘
i,t

,

with ⌘
i,t

⇠ N(0, 1) generated independently. dQV
(RV

⇤)

t

anddQV
(JWTSRV

⇤)

t

are
then estimated on the given day t. Generating b = 1, . . . , B realizations, we
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obtain

Z⇤
t,h

(b) =
dQV

(RV

⇤)

t,h

� cIV
(JWTSRV

⇤)

t,h

dQV
(RV

⇤)

t,h

, (15)

which can be used to construct a bootstrap statistic to test the null hypoth-
esis of no jumps as:

Z(JWTSRV )
t,h

=

d
QV

(RV

⇤)
t,h

�c
IV

(JWTSRV

⇤)
t,h

d
QV

(RV

⇤)
t,h

� E(Z⇤
t,h

(b))
q

V ar(Z⇤
t,h

(b))
. (16)

The bootstrap expectation and variance both depend on the data. We will
rely on the assumptions of Dovonon et al. (2014), who show that under
general conditions, this statistics will be normally distributed with limiting
variance one, although they provide this result for the BV estimator. While
we leave the rigorous treatment of this approach with JWTSRV estimator
for the future work, we have studied the properties of the bootstrap test
using simulations, which are available upon request from authors.

The integrated variance and jump variation can then be consistently
estimated as

cIV
(CJWTSRV )

t,h

= {Z(JWTSRV )
t,h

�
↵

}
dQV

(RV )

t,h

+ {Z(JWTSRV )
t,h

>�
↵

}
cIV

(JWTSRV )

t,h

,(17)

cJV
(JWTSRV )

t,h

= {Z(JWTSRV )
t,h

>�
↵

}

⇣
dQV

(RV )

t,h

� cIV
(JWTSRV )

t,h

⌘
. (18)

3. A forecasting model based on decomposed integrated volatili-

ties and jumps

Similarly to Lanne (2007), Andersen et al. (2011), and Sévi (2014),
we use the decomposition of the quadratic variation with the intention of
building a more accurate forecasting model. Our approach is very di↵er-
ent though, as we use wavelets to decompose the integrated volatility into
several investment horizons and jumps first. Then, we employ recently pro-
posed Realized GARCH framework of Hansen et al. (2012) and its variants.
Realized GARCH allows to model jointly returns and realized measures of
volatility, while key feature is a measurement equation that relates the real-
ized measure to the conditional variance of returns. We use the decomposed
realized measures in the Realized GARCH, and expect that our modifica-
tion will result in better in-sample fits of the data as well as out-of-sample
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forecasts. For comparison, we also use other estimators and study how they
improve the forecasting ability of Realized GARCH.

3.1. Realized Jump GARCH framework for forecasting

The key object of interest in GARCH family is the conditional variance,
h
t

= var(r
t

|F
t�1), where r

t

is a time series of returns. While in a standard
GARCH(1,1) model the conditional variance, h

t

is dependent on its past
h
t�1 and r2

t�1, Hansen et al. (2012) propose to utilize realized measures of
volatility and make h

t

dependent on them as well. The authors introduce
so-called measurement equation which ties the realized measure to latent
volatility. The general framework of Realized GARCH(p, q) models is well
connected to existing literature in Hansen et al. (2012). Here, we restrict
ourselves to the simple log-linear specification of Realized GARCH(1, 1)
with Gaussian innovations which we will use to build our model.

Realized GARCH makes use of realized measures of volatility to help
forecast the latent volatility process. In the previous sections, we have
motivated several estimators, which allow us to disentangle continuous part
and jump part of the quadratic return variation. While both parts may
carry important information about future volatility, we propose a modified
framework, which includes both.

There are essentially two possible treatments of jumps in the Realized
GARCH framework, depending on the belief about its endogenous or exoge-
nous nature. In a large study, Chatrath et al. (2014); Lahaye et al. (2011)
show that currency jumps can be explained by U.S. macro announcements
using the realized measures. This provides a good empirical evidence about
the exogenous nature of jump arrivals. By addition of estimated jumps into
the variance equation, we propose a Realized Jump-GARCH(1,1) model
(Realized J-GARCH) given by

r
t

=
p

h
t

z
t

, (19)

log(h
t

) = ! + � log(h
t�1) + � log(x

t�1) + �
J

log(1 + JV
t�1), (20)

log(x
t

) = ⇠ + � log(h
t

) + ⌧1zt + ⌧2z
2
t

+ u
t

, (21)

where r
t

is the return, x
t

and JV
t

are estimated continuous and jump com-
ponents of quadratic variation using BV, MedRV, or JWTSRV realized
measures, and z

t

and u
t

come from Gaussian normal distribution and are
mutually independent. ⌧1zt + ⌧2z

2
t

is leverage function. If jumps have a sig-
nificant impact on volatility forecasts, �

J

coe�cient should be significantly
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di↵erent from zero. For �
J

= 0, the model reduces to the original Realized
GARCH.

Hansen et al. (2012) motivate possibility of obtaining feasible multi-
period-ahead forecasts as one of the main advantages of this framework.
Multi-period-ahead predictions with the Realized GARCHmodel are straight-
forward with the use of vector autoregression structure for log(h

t

) and
log(x

t

). In this paper, we follow this simple approach. In order to obtain
multiple-period-ahead forecasts, we need to include jump component to the
forecasting structure. Once we are treating jumps as an exogenous process,
we simply use the ARMA structure for the log(1 + JV

t�1), which allows
to obtain the multiple-period-ahead forecasts analogously to the Realized
GARCH model.

3.2. Realized GARCH model based on decomposed integrated volatiles

In addition to jumps, we also utilize decomposition of JWTSRV to see
which investment horizon has impact on the future volatility as well. We
also expect each volatility component at di↵erent investment horizon to
carry di↵erent information, which should again help to enhance the final
forecasts. To be able to fully explore the decompositions, we use the ex-
tension of Realized Exponential GARCH model that can utilize multiple
realized volatility measures introduced by Hansen and Huang (2012). The
realized EGARCH model with j = 1, . . . , Jm + 1 volatility components at
di↵erent investment horizons estimated using JWTSRV in x

j,t

is

r
t

=
p

h
t

z
t

, (22)

log(h
t

) = ! + � log(h
t�1) + ⌧(z

t�1) + �0u
t�1, (23)

log(x
j,t

) = ⇠
j

+ �
j

log(h
t

) + �(j)(zt) + u
j,t

, (24)

where z
t

⇠ N(0, 1), and u
t

⇠ N(0,⌃) are mutually and serially independent,
and u

t

= (u1,t, . . . , uj,t

)0, and ⌧(z
t

) = ⌧1zt+ ⌧2(z2
t

�1), and �(j)(zt) = �
j,1zt+

�
j,2(z2

t

� 1).
Note that the model is di↵erent as the log(h

t

) equation has the u
t�1

instead of realized measure, and includes leverage function. For the case
when j = 1, model is equivalent to the previous one, and by simple sub-
stitution, we can obtain the relation of parameters directly (Hansen and
Huang, 2012). Hence the model with multiple equations is just a general-
ization of the previous work, which allows us to fully utilize the decomposed
volatility into several investment horizons, and so parameters in vector �0
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will provide a good guide for significance of various investment horizons on
volatility forecasts.

All the models are estimated by quasi-maximum likelihood farmework
(QMLE) and can be easily generalized by assuming di↵erent distributions
of z

t

and u
t

. Hansen et al. (2012) provide the asymptotic properties of the
QMLE, while (Hansen and Huang, 2012) extend it to the framework with
multiple realized measures, although the work is currently unfinished. The
quasi log-likelihood function is given by

`(r, x; ✓,⌃) = �1

2

TX

t=1

0

B@log(2⇡) + log(h
t

) + z2
t| {z }

=`(r)

+K log(2⇡) + log(|⌃|) + u0
t

⌃�1u
t| {z }

=`(x|r)

1

CA ,

(25)
where ✓ holds set of parameters to be estimated by maximizing the quasi
log-likelihood with respect to ✓ and ⌃. The log-likelihood can be divided in
two according to the contribution of realized measures to the log-likelihood
value, `(x|r) and contribution of returns, `(r). In the empirical analysis, we
report the two values as we use conventional GARCHmodel as a benchmark,
so we are able to compare the fits. It is again straightforward to obtain
multiple-period-ahead point forecasts using estimated parameters. For the
details, see for example Lunde and Olesen (2013)

3.3. Generalized Autoregressive Score Model with Realized Measures of Volatil-
ity and Jumps

Recently introduced observation-driven estimation framework of Gener-
alized Autoregressive Score (GAS) models due to Creal et al. (2013) has
recently gained considerable popularity. Huang et al. (2014) propose a new
observation-driven time-varying parameter Realized GARCH, in which the
dynamic latent factor is updated by the scaled local density score as a func-
tion of past daily returns and realized variance. The new framework is
robust to extreme outliers in observations, hence it may serve as a robust-
ness check to our modeling strategy. We again add jumps to the original
model, obtaining Realized Jump GAS Model as

r
t

=
p

h
t

z
t

, (26)

log(x
t

) = ⇠ + � log(h
t

) + d1(z
2
t

� 1) + d2zt + �u
t

, (27)

log(h
t+1) = ! + ↵S

t

�
t

+ � log(h
t

) + �
J

log(1 + JV
t�1), (28)
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where x
t

and JV
t

are estimated continuous and jump components of quadratic
variation using BV, MedRV, or JWTSRV estimators, and z

t

and u
t

come
from Gaussian normal distribution and are mutually independent. d1(z2

t

�
1)+d2zt is leverage function that introduces dependence between the return
shock and volatility shock. The main change in comparison to previous mod-
els is in the dynamics of the latent volatility, driven by the dynamic score,
where �

t

= @ ln p (r
t

, log(x
t

)|F
t�1; log(ht

), ✓) /@ log(h
t

) is the conditional
score at time t and S

t

= �E
t�1[@2 ln p (rt, log(xt

)|F
t�1; log(ht

), ✓) /@2 log(h
t

)2]�1

is the scaling matrix. Analogously to the QMLE framework, likelihood can
be separated to two parts, which we report in order to be able to compare the
fits. Assuming both z

t

, and u
t

follow independent standardized normal dis-
tributions, dynamic score reduces to �

t

= 1
2(z

2
t

�1)+ 1
�

u
t

�
�+ d1z

2
t

� d2

2 zt
�
,

S�1
t

= 1
�

2

⇣
�2 + 3d21 +

d

2
2

4 � 2d1�
⌘
+ 1

2 . Assuming exogenous ARMA struc-

ture for jumps, multiple-period-ahead forecasts are again obtained readily.

3.4. Forecast evaluation using di↵erent realized variance measures

To test significant di↵erences of competing models, we use the Model
Confidence Set (MCS) methodology of Hansen et al. (2011). Given a set of

forecasting models, M0, we identify the model confidence set cM⇤
1�↵ ⇢ M0,

which is the set of models that contain the best forecasting model given
a level of confidence ↵. For a given model i 2 M0, the p-value is the
threshold confidence level. Model i belongs to the MCS only if bp

i

� ↵.
MCS methodology repeatedly tests the null hypothesis of equal forecasting
accuracy

H0,M : E[L
i,t

� L
j,t

] = 0, for all i, j 2 M

with L
i,t

being an appropriate loss function of the i-th model. Starting with
the full set of models, M = M0, this procedure sequentially eliminates the
worst-performing model from M when the null is rejected. The surviving
set of models then belong to the model confidence set cM⇤

1�↵. Following
Hansen et al. (2011), we implement the MCS using a stationary bootstrap
with an average block length of 20 days.10 Two robust loss functions, mean
square error (MSE) and QLIKEare used in the MCS (Patton, 2011),while
root mean square error (RMSE) is reported in the Tables.

10We have used di↵erent block lengths, including the ones depending on the forecasting
horizons, to assess the robustness of the results, without any change in the final results.
These results are available from the authors upon request.
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4. Empirical application: Does decomposition bring any improve-

ment in volatility forecasting?

4.1. Data description

Foreign exchange future contracts are traded on the Chicago Mercantile
Exchange (CME) on a 24-hour basis. As these markets are among the
most liquid, they are suitable for analysis of high-frequency data. We will
estimate the realized volatility of British pound (GBP), Swiss franc (CHF)
and euro (EUR) futures. All contracts are quoted in the unit value of the
foreign currency in US dollars. It is advantageous to use currency futures
data for the analysis instead of spot currency prices, as they embed interest
rate di↵erentials and do not su↵er from additional microstructure noise
coming from over-the-counter trading. The cleaned data are available from
Tick Data, Inc.11

It is important to look first at the changes in the trading system before
we proceed with the estimation on the data. In August 2003, for example,
the CME launched the Globex trading platform, and for the first time ever
in a single month, the trading volume on the electronic trading platform
exceeded 1 million contracts every day. On Monday, December 18, 2006,
the CME Globex(R) electronic trading platform started o↵ering nearly con-
tinuous trading. More precisely, the trading cycle became 23 hours a day
(from 5:00 pm on the previous day until 4:00 pm on current day, with a
one-hour break in continuous trading), from 5:00 pm on Sunday until 4:00
pm on Friday. These changes certainly had a dramatic impact on trading
activity and the amount of information available, resulting in di�culties in
comparing the estimators on the pre-2003 data, the 2003–2006 data and the
post–2006 data. For this reason, we restrict our analysis to a sample period
extending from January 2, 2007 through August 20, 2014, which contains
the most recent financial crisis. The futures contracts we use are automat-
ically rolled over to provide continuous price records, so we do not have to
deal with di↵erent maturities.

The tick-by-tick transactions are recorded in Chicago Time, referred to
as Central Standard Time (CST). Therefore, in a given day, trading activity
starts at 5:00 pm CST in Asia, continues in Europe followed by North
America, and finally closes at 4:00 pm in Australia. To exclude potential
jumps due to the one-hour gap in trading, we redefine the day in accordance
with the electronic trading system. Moreover, we eliminate transactions

11http://www.tickdata.com/
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executed on Saturdays and Sundays, US federal holidays, December 24 to
26, and December 31 to January 2, because of the low activity on these
days, which could lead to estimation bias. Finally, we are left with 1902
days in the sample. Looking more deeply at higher frequencies, we find a
large amount of multiple transactions happening exactly at the same time
stamp. We use the arithmetic average for all observations with the same
time stamp.

Having prepared the data, we can estimate the integrated volatility using
di↵erent estimators and use them within proposed forecasting framework.
For each futures contract, the daily quadratic variation is estimated using
the realized variance estimator. Integrated variance and jump variation are
estimated with the bipower variation, median estimator, and finally our
jump wavelet two-scale realized variance estimator. All the estimators are
adjusted for small sample bias. For convenience, we refer to the estimators in
the description of the results as RV, BV, MedRV and JWTSRV, respectively,
while the BV, MedRV, and JWTSRV estimators are used for decomposi-
tion of continuous and jump part of quadratic variation, and JWTSRV for
decomposition to various investment horizons. We use sampling frequency
of 5-minutes.

The decomposition of volatility into the continuous and jump part is de-
picted by Figure 1, which provide the returns, estimated jump and finally
integrated variance components using JWTSRV estimator for all three fu-
tures pairs. Figure 2 shows the further decomposition into several invest-
ment horizons. For better illustration, we annualize the square root of the
integrated variance in order to get the annualized volatility and we compute
the components of the volatility on several investment horizons. Figure 2
(a) to (e) show the investment horizons of up to 10 minutes, 10 to 20 min-
utes, 20 to 40 minutes, 40 to 80 minutes and up to 1 day, respectively.
It is very interesting that most of the volatility (around 50%) comes from
the 5-minute to 10-minute investment horizons band which is a new em-
pirical insight. Moreover, the longer the investment horizon, the lower the
contribution of the variance to the total variation.

4.2. In-sample fits

The main results of estimation and forecasting are presented in this
section. The estimation strategy is as follows. For each of three forex
futures considered, namely GBP, CHF and EUR, we first estimate bench-
mark GARCH(1,1) model. Then, we estimate the Realized GARCH (1,1)
with RV, which will serve as a benchmark model to our Realized Jump
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GARCH(1,1) with BV, MedRV, and JWTSRV. All these models are esti-
mated using QMLE and GAS model frameworks. Finally, we add Realized
GARCH model with multiple JWTSRV components to see the impact of
investment horizons on forecasts.12

Tables 1, 2 and 3 contain in-sample fits for GBP futures, CHF futures
and EUR futures on the full sample respectively. By observing partial log-
likelihood `(r), we can see immediately that all the Realized GARCH mod-
els bring significant improvement to the conventional GARCH(1,1) without
high frequency realized measures, reported by the first column (in test-
ing significance of the di↵erence, we restrict ourselves to use simple log-
likelihood ratio test).

When we focus on comparison of Realized GARCH models, we can ob-
serve further significant di↵erences. Our Jump-GARCH brings small im-
provements to the l(r) consistent with the literature, but large improve-
ments in terms of l(x|r) when compared to the benchmark Realized GARCH
with RV. As to the comparison of QMLE and GAS specifications, original
QMLE model outperforms GAS in terms of likelihood slightly. These ob-
servations hold for all three futures used in the study.

Further comparison of the Realized Jump-GARCH models with three
di↵erent realized measures reveals that JWTSRV and MedRV largely out-
perform BV, with JWTSRV bringing largest gains for CHF futures, and
MedRV winning the race for the rest. While log-likelihoods `(r, x) uncover
rather large di↵erences between the models, parameter estimates for the dif-
ferent realized measures are very similar to each other, and are consistent
with the estimates found in the literature.

The most important parameter �
J

is significantly di↵erent from zero for
BV and MedRV estimators, but not for JWTSRV estimator. We explain
this by more strict statistics for testing the null hypothesis of no jumps in
comparison to MedRV and BV, while we use bootstrap, which corrects the
statistics for small sample distortions. As pointed out by Dovonon et al.
(2014), the di↵erences maybe quite severe. Even with this result, we can

12All models are estimated with NLopt-BOBYQA optimization algorithm using nloptr
package in R version 3.2.1. Comparison of the models’ elapsed times (running on a
MacBook computer with Intel Core i5 2.6 GHz CPU) computed as 95% trimmed mean
from 30 runs is 0.25s for GAS models and 0.22s for MLE models. We note that we report
the elapsed times from our rather ine�cient algorithm, which become proportionally
slower with increasing number of parameters. Elapsed times can be significantly improved
with use of e�cient optimization algorithms.
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conclude that jumps bring significant improvement in the modeling and
Realized Jump-GARCH(1,1) outperforms benchmark Realized GARCH.

Finally, we focus on the Realized GARCHmodel with multiple measures,
where we use volatility decompositions to several investment horizons due
to our JWTSRV measure, and also include RV representing full quadratic
variation. We find �

j

coe�cients statistically di↵erent from zero for all three
futures. This means that volatility further decomposed to several invest-
ment horizons carry significant contribution to the future latent volatility.
Coe�cient is largest at the first scale, following the second, and the rest.
This points us to the result that mainly volatility from highest frequency
impacts the future volatility.

Turning our attention to �
j

, we can see that it is close to one (within
standard errors) for all investment horizons. Note however how ⇠

j

decreases
with decreasing scale. This mirrors the di↵erent contributions of the en-
ergy (variance of each volatility at di↵erent investment horizon j to total
variance) to the latent volatility. From Eq. (14) we know, that volatility
components at di↵erent horizons j always sum up to the total volatility.
But Realized GARCH model use logarithmic transforms, which do not hold
this property. Hence, the expected value of the parameter ⇠

j

will logically
be a total constant minus log(1/2j), as JWTSRV is simply sum of squared
wavelet coe�cients on intraday return, which is driven mainly by Brownian
motion. This points us to the conclusion that the most of the information
can be found in the high frequency part of the spetral density of returns.

4.3. Multi-period-ahead forecasting results

Motivated by a good in-sample performance of the models, we study
if inclusion of jumps in the model improves the volatility forecasts in our
newly proposed Realized Jump-GARCH models. We also wait to see if
the model with multiple investment horizons improves volatility forecasts,
and finally, it will be interesting to find out if the log-likelihood gains also
translate to good forecasting performance of the models.

We use all the Realized GARCH models to produce h = {1, 5, 10}-day-
ahead forecasts based on rolling basis. Table 4 compares RMSE of all the
models. To see if the forecasts are statistically di↵erent, we use the Model
Confidence Set (MCS) with two robust loss functions, MSE and QLIKE.
Models, which are included in the MCS with the use of both loss functions
are highlighted in bold. In addition, we provide ranking of the models
according to the both loss functions within MCS in the superscript. First
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number is ranking due to MSE, second one is ranking of the models due to
QLIKE.

Turning to the results in the Table 4, we can see that Realized GARCH
model with multiple investment horizons is never rejected13 from the Model
Confidence set by neither of the loss functions. Moreover, for GBP and EUR
futures, it ranks as the best forecasting model with exception of forecasting
horizon of 10 days, when it ranks as second according to QMLE. The model
also delivers lowest RMSE of the forecasts, and ranks second to fifth with
CHF futures outperformed mainly by GAS estimates.

Another model, which is never rejected by neither of the loss functions
from MCS is the Realized Jump GAS model with our JWTSRV. For all
three futures and all forecasting horizons, the model ranks as second best,
to eighth best depending on the loss function. Similar results are delivered
also with the use of MedRV, when the model often ranks third to fifth
best, with one exception of forecasting EUR futures at horizons of five
days. Realized Jump GAS model with BV is the third best model, as it is
rejected from the MCS only for EUR futures with QLIKE loss function.

Most of the Realized (Jump) GARCH models estimated using QMLE
are rejected from MCS by one of the loss functions. The only exception is
CHF forecasts at 10-day-ahead horizon, when the Realized Jump GARCH
model with BV measure ranks best using both loss functions.

Overall, the log-likelihood gains from QMLE estimates do not translate
to better out-of-sample forecasts, as GAS outperforms the MLE models.
Realized Jump-GARCH largely outperforms benchmark Realized GARCH
with RV, and finally our multiple horizon model outperforms all the models
delivering lowest loss functions most of the times. Thus jump variation as
well as further decomposition of volatility to di↵erent scales bring significant
improvement to the volatility forecasts in all tested forex futures.

5. Conclusion

In this paper, we investigate how the decomposed integrated volatilities
and jumps influence the future volatility using realized GARCH framework.

13Note that we use ht as predictor of volatility in the models. Some researchers report
that restricting parameters � = 1 may improve the predictive performance in this case.
We, however do not document significant improvement on our dataset, and make the
results with restricted models available upon request.
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Utilizing a jump wavelet two scale realized volatility estimator, which mea-
sures foreign exchange volatility in the time-frequency domain, we study
the influence of intra-day investment horizons on daily volatility forecasts.

After the introduction of wavelet-based estimation of quadratic varia-
tion together with forecasting model, we compare our estimators to sev-
eral most popular estimators, namely, realized variance, bipower variation,
and median realized volatility in the forecasting exercise. Using several
Realized GARCH specifications estimated by QMLE, GAS, and multiple
realized measures, the wavelet-based estimator proves to bring significant
improvement in the volatility forecasts. Models incorporating jumps im-
prove forecasting ability significantly. Next, we find that while realized
Jump GAS models do not outperform other models in terms of in-sample
fits, they largely outperform the MLE-based estimates in the forecasts at
all forecasting horizons.

Concluding the empirical findings, we show that our wavelet-based es-
timators bring a significant improvement to the volatility estimation and
forecasting. It also o↵ers a new method of time-frequency modeling of re-
alized volatility which helps us to better understand the dynamics of stock
market behavior. Specifically, it uncovers that most of the volatility is cre-
ated on higher frequencies.
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Table 1: Results for the GBP futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, Realized Jump-GARCH
with BV, MedRV, and JWTSRV estimated using MLE (Realized (Jump) GARCH) and GAS (Realized (Jump) GAS), and finally

Realized GARCH with multiple cIV
(JWTSRV )

j,t volatility decompositions on di↵erent investment horizons. Robust standard errors
are reported in parentheses.

GARCH Realized (Jump) GARCH Realized (Jump) GAS Realized GARCH with multiple JWTSRVj

RV BV MedRV JWTSRV RV BV MedRV JWTSRV RV j = 1 j = 2 j = 3 j = 4 j = 5

! 0.092 0.040 0.095 0.122 0.161 0.013 0.008 0.010 0.014 ! 0.019
(0.059) (0.030) (0.034) (0.036) (0.036) (0.008) (0.009) (0.009) (0.010) (0.009)

� 0.951 0.757 0.731 0.716 0.707 0.996 0.996 0.996 0.995 � 0.994
(0.007) (0.018) (0.020) (0.021) (0.021) (0.002) (0.003) (0.003) (0.003) (0.003)

� 0.046 0.224 0.235 0.244 0.242 0.237 0.261 0.275 0.283 �j -0.011 0.128 0.050 0.008 0.023 0.013
(0.007) (0.018) (0.019) (0.020) (0.020) (0.017) (0.019) (0.020) (0.020) (0.021) (0.029) (0.024) (0.016) (0.011) (0.008)

�J 0.015 0.008 0.002 0.017 0.009 0.002
(0.005) (0.004) (0.004) (0.005) (0.005) (0.005)

⌧1 -0.027
(0.005)

⌧2 0.032
(0.004)

⇠ -0.128 -0.368 -0.455 -0.602 -0.009 -0.229 -0.320 -0.450 ⇠j -0.273 -1.252 -2.052 -2.875 -3.659 -3.876
(0.131) (0.145) (0.153) (0.155) (0.064) (0.136) (0.143) (0.145) (0.125) (0.134) (0.136) (0.140) (0.144) (0.139)

� 1.070 1.127 1.147 1.189 1.040 1.091 1.113 1.150 �j 1.112 1.168 1.180 1.199 1.198 1.231
(0.039) (0.043) (0.045) (0.046) (0.021) (0.041) (0.043) (0.043) (0.036) (0.039) (0.040) (0.041) (0.042) (0.041)

⌧1/d1 -0.017 -0.024 -0.025 -0.028 0.079 0.064 0.056 0.058 �j,1 -0.014 -0.028 -0.026 -0.021 -0.020 -0.032
(0.008) (0.007) (0.007) (0.007) (0.005) (0.005) (0.005) (0.005) (0.008) (0.007) (0.008) (0.010) (0.013) (0.015)

⌧2/d2 0.087 0.072 0.066 0.068 -0.003 -0.008 -0.009 -0.010 �j,2 0.087 0.060 0.065 0.074 0.087 0.209
(0.006) (0.005) (0.005) (0.005) (0.007) (0.007) (0.007) (0.007) (0.006) (0.005) (0.006) (0.007) (0.009) (0.012)

`(x|r) -613 -533 -486 -506 -625 -546 -501 -523 -2543
`(r) -5849 -5825 -5824 -5823 -5825 -5825 -5825 -5823 -5825 -5825
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Table 4: RMSE (⇥10�4) from all forecasts for the GBP, CHF, and EUR at di↵erent
forecasting horizons h = {1, 5, 10}. Forecasts which fall into the 10% Model Confidence
Set (MCS) using both robust MSE and QLIKE loss functions are in bold. In addition,
ranking of the models included in the MCS is provided in the superscript, first is ranking
using MSE, second using QLIKE.

Realized (Jump) GARCH Realized (Jump) GAS Multiple

RV BV MedRV JWTSRV RV BV MedRV JWTSRV JWTSRVj

GBP

h = 1 1.007(9) 1.003(7) 1.003(6) 1.004(8) 0.998(5,5) 0.988(4,4) 0.986(3,3) 0.982(2,2) 0.972(1,1)

h = 5 0.644(6,5) 0.658 0.660 0.661 0.643(5,3) 0.639(2,2) 0.641(3,4) 0.642(4,6) 0.633(1,1)

h = 10 0.561(2,1) 0.566(3,3) 0.569(5,4) 0.574(8,7) 0.572(7,6) 0.568(4,5) 0.571(6,8) 0.575(9,9) 0.558(1,2)

CHF

h = 1 1.497(3) 1.459(1) 1.517(6) 1.496(2) 1.591(3) 1.497(4,1) 1.530(7,5) 1.538(8,2) 1.509(5,4)

h = 5 1.087(5,5) 1.027(1,4) 1.095(6) 1.073(2) 1.211(6) 1.077(3,1) 1.120(7,7) 1.140(8,3) 1.087(4,2)

h = 10 1.155(7,2) 1.079(1,1) 1.119(3,7) 1.125(4,5) 1.224(9) 1.107(2,4) 1.136(6,8) 1.163(8,6) 1.126(5,3)

EUR

h = 1 1.280(9) 1.273(6) 1.253(4) 1.230(2,3) 1.279(8,5) 1.278(7) 1.264(5,4) 1.244(3,2) 1.221(1,1)

h = 5 0.981 0.970(8) 0.943(4) 0.927(2) 0.960(6) 0.961(7) 0.946(5) 0.930(3,2) 0.911(1,1)

h = 10 0.974 0.936 0.894(6) 0.905(3) 0.876(5) 0.870(7) 0.848(3,4) 0.848(2,1) 0.848(1,2)

Appendix: Figures
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(b) CHF futures
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Figure 1: Daily returns, estimated jump variation and IVt estimated by JWTSRV for
(a) GBP, (b) CHF and (c) EUR futures.
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Figure 2: Decomposed annualized volatility (by 252 days) of GBP, CHF and EUR futures
using JWTSRV, (a) volatility on investment horizons up to 10 minutes, (b) volatility on
investment horizons of 10 to 20 minutes, (c) volatility on investment horizons of 20 to
40 minutes, (d) volatility on investment horizons of 40 to 80 minutes, (e) volatility on
investment horizons up to 1 day. Note that sum of components (a), (b), (c), (d) and (e)
give total volatility.
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Appendix A. Wavelet transform

In this Appendix we briefly introduce basic ideas of wavelet transform.
Let us begin with the continuous wavelet transform which is a cornerstone
of the wavelet analysis. Further we introduce a special form of discrete
wavelet transform called the “maximal overlap discrete wavelet transform”
(MODWT) that we use in empirical part. Following Daubechies (1992) and
Chui (1992) we define doubly-indexed wavelet function – a wavelet14 as:

 
j,k

(t) =
1p
j
 

✓
t� k

j

◆
2 L2(R), (A.1)

where index k determines the exact position of the wavelet in time, whereas
the scaling index j controls how the wavelet is stretched or dilated, i.e.,
frequency resolution of the wavelet. The continuous wavelet transform,
W

j,k

, is a projection of a wavelet function  
j,k

onto the time series y(t) 2
L2(R):

W
j,k

=

Z 1

1
y(t) 

j,k

(t)dt. (A.2)

Hence, Eq.(A.2) tranforms y(t), time-domain process, into W
j,k

which is
time-frequency (or time-scale) space, where k is the position in time and j
corresponds to a specific frequency. Using the wavelet coe�cients W

j,k

we
can subsequently recover the time series y(t) as follows:

y(t) =
1

C
 

Z 1

0

Z 1

�1
W

j,k

 
j,k

(t)dk

�
dj

j2
, k>0. (A.3)

The continuous wavelet transform preserves variance of the analyzed time
series. It is an important property that allows us to work with the decom-
posed wavelet variance. Thus we can write:

x2 =
1

C
 

Z 1

0

Z 1

�1
|W

j,k

|2dk
�
dj

j2
. (A.4)

For a more detailed introduction to continuous wavelet transform and wavelets,
see Daubechies (1992), Chui (1992), and Percival and Walden (2000).

14An important conditions a wavelet function must fulfill is the admissibility condition:

C =
R1
0

| (f)|2
f df<1, where  (f) is the Fourier transform of a wavelet  (.). For more

details about wavelet filer conditions see Daubechies (1992)
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In empirical applications we work with discrete time series, thus some
form of discretization is needed. The discrete wavelet transform (DWT)15,
which is a parsimonious form of the continuous wavelet transform allows
for an analysis of discrete time series where only a bounded number of
scales is required. The discrete version of wavelet transform has, however,
some serious limitation that make its application to real time series rather
di�cult. These are mainly the sample size restriction to the power of two
and the starting point sensitivity of the wavelet transform.

Appendix A.1. Maximal overlap discrete wavelet transform

The MODWT is in some cases superior to the DWT for empirical data
analysis. For example, the problem of sample length restriction is connected
with downsampling procedure of the DWT. However, the construction of
MODWT does not use downsampling, thus vectors of the wavelet coe�-
cients at all scales have equal length, corresponding to the length of trans-
formed time series. As a consequence, the MODWT is not restricted to any
sample size. In addition, the MODWT is a translation-invariant; therefore,
it is not sensitive to the choice of the starting point of the examined time
series. Similarly as the CWT, the MODWT wavelet and scaling coe�cients
can be used for analysis of variance of a time series in the time-frequency
domain. Statistical properties of the MODWT variance estimators for non-
stationary and non-Gaussian processes are discussed in detail in Serroukh
et al. (2000). For additional details on the MODWT, see Mallat (1998) and
Percival and Walden (2000).

For computation of the MODWT coe�cients we apply the pyramid al-
gorithm of Mallat (1998). The procedure is based on filtering time series
with MODWT wavelet filters; the filtered time series is then filtered again
in a subsequent stages to obtain other wavelet scales. These scales contain
information localized at corresponding frequency bands of analyzed time
series.

Let us briefly introduce the pyramid algorithm. In the first stage, the
wavelet coe�cients are obtained via circular filtering of time series y

t

using
the MODWT wavelet and scaling filters h1,l and g1,l (Percival and Walden,
2000):

W1,k ⌘
L�1X

l=0

h1,l yk�l modN,

V1,k ⌘
L�1X

l=0

g1,l yk�l modN

, (A.5)

15For a definition and detailed discussion of the discrete wavelet transform, see Mallat
(1998), Percival and Walden (2000), and Gençay et al. (2002).
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where L
j

= 2j�1 (L� 1) + 1 defines a width of the wavelet and scaling
filters.16 After the first stage we obtain the wavelet and scaling coe�cients
at the first scale (j = 1). The algorithm continues with the second stage
where instead of y

t

we filter the sequence of scaling coe�cients from the
first stage V1,k, using the MODWT wavelet and scaling filters h2,l and g2,l
for the second scale, i.e.,

W2,k ⌘
L�1X

l=0

h2,lV1,k�l modN,

V2,k ⌘
L�1X

l=0

g2,lV1,k�l modN.

(A.6)

We may continue with more stages until the level of decomposition is j 
log2(N). For example, in case we need two levels of decomposition, i.e,
we apply two stages, we obtain two vectors of wavelet coe�cients; W1,k,
W2,k and a vector of the scaling coe�cients at scale two V2,k, where k =
0, 1, . . . , N � 1. Vectors of wavelet and scaling coe�cients reflect variations
at specific frequency bands. Generally, W

j,.

represents a frequency band
f [1/2j+1, 1/2j], whereas V

j,.

represents a frequency band f [0, 1/2j+1].

16For more information about wavelet filters see for example Percival and Walden
(2000).
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