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Abstract

We propose a general framework for measuring frequency dynamics of connectedness
in economic variables based on spectral representation of variance decompositions.
We argue that the frequency dynamics is insightful when studying the connectedness
of variables as shocks with heterogeneous frequency responses will create frequency
dependent connections of different strength that remain hidden when time domain
measures are used. Two applications support the usefulness of the discussion, guide
a user to apply the methods in different situations, and contribute to the literature
with important findings about sources of connectedness. Giving up the assumption
of global stationarity of stock market data and approximating the dynamics locally,
we document rich time-frequency dynamics of connectedness in US market risk in the
first application. Controlling for common shocks due to common stochastic trends
which dominate the connections, we identify connections of global economy at busi-
ness cycle frequencies of 18 up to 96 months in the second application. In addition,
we study the effects of cross-sectional dependence on the connectedness of variables.
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1 Introduction

Economic markets grew in size and became intertwined during the last decades in an un-
precedented fashion. The evolution of economic markets not only caused the change in
magnitude of connections but also a change in the structure of the markets and their
connections. With this surge, the importance of evaluation of connections among differ-
ent parts of markets grew, and understanding financial and macroeconomic connectedness
became central to many areas of research as risk management, portfolio allocation, and
business-cycle analysis. Academics being painfully aware of the unsuitability of the stan-
dard correlation-based measures have concentrated on the development of more general
frameworks while overlooking the actual sources of connectedness. In this work, we argue
that it is crucial to understand the frequency dynamics of the connectedness as shocks
to economic activity impact variables at different frequencies with different strength. To
consider the long-term, medium-term, and short-term frequency responses of shocks, we
propose a general framework which will allow us to measure the connectedness of economic
variables at frequency bands of interest.

The distinction between short-term and long-term parts of systems became evident
with the dawn of co-integration (Engle and Granger, 1987). Assuming and levering co-
integration in the system, subsequent literature builds a preliminary notion of disentangling
frequencies in connectedness (Gonzalo and Ng, 2001; Blanchard and Quah, 1989; Quah,
1992). Given the decomposition to the long-term common stochastic trend and deviations
from trend, one can move the projection in such a way that error to one series will be a
shock to long-term trend and the other will be a shock to the deviation from the trend.
A shock with strong long-run effect will have high power at low frequencies and in case it
transmits to other variables, it points to long-run connectedness. For example, in case of
stock markets, low frequency spillovers may be attributed to permanent changes in expec-
tations about future dividends (Balke and Wohar, 2002). While low frequency spillovers are
documented by the literature, connectedness at business cycles, or even higher frequencies
are not. Hence, we address this call by proposing a general framework for decomposing
the connectedness to the frequency band of interest. Similarly to Dew-Becker and Giglio
(2013), who set asset pricing into the frequency domain, we view the frequency domain as
a natural place for measuring the connectedness between economic variables.

As noted by Diebold and Yilmaz (2009, 2012), and later Diebold and Yilmaz (2014),
variance decompositions from approximating models are convenient framework for em-
pirical measurement of connectedness. Precisely, Diebold and Yilmaz (2009) define the
measures based on assessing shares of forecast error variation in one variable due to shock
arising in another variable in the system. To identify uncorrelated structural shocks from
correlated reduced-form shocks, Diebold and Yilmaz (2012) use the generalized variance
decomposition of Pesaran and Shin (1998), which moreover allows to define directional
connectedness. This approach quickly became popular and recognized by researchers due
to its universality.

Being interested in frequency origins of connectedness in variables, one may think about
using different forecast horizons of variance decomposition. Staying in time domain, hetero-
geneous frequency responses of shocks impacting future uncertainty with different strength
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will stay hidden, as the effects are simply aggregated through frequencies. To see this, let
us consider two examples of bivariate autoregressive process with opposite signs of coeffi-
cients. The positive coefficients in the first example will create large connectedness driven
by low frequencies of the cross-spectral density. With increasing forecast horizon of vari-
ance decompositions, one will measure higher connectedness in the process. In the second
example, the negative coefficients of the same magnitude will create equal connectedness
as in the first case at all forecasting horizons, although connections come solely from the
high frequencies due to anti-persistent nature of the process.

Instead of assessing shares of forecast error variation in a variable due to shock arising in
another variable, we are hence interested in assessing shares of forecast error variation in a
variable at a specific frequency. This is a natural step to take, as it will show the long-term,
medium-term, and short-term impacts of a shock, which can conveniently be summed to
total aggregate effect, if needed. For the purpose of frequency dependent measurement,
we define spectral representation of generalized forecast error variance decomposition. In-
stead of impulse responses of the shocks, we work with its Fourier transforms—frequency
responses. In the frequency domain, we are simply interested in the portion of forecast
error variance at a given frequency that is attributed to shocks in another variable. Our
work is inspired by previous research of Geweke (1982, 1984, 1986), and Stiassny (1996)
who use related measures in more restrictive environments.

Our spectral representations are useful if we work with stationary data, though, eco-
nomic time series are often of nonstationary nature. Most prolific example is cointegrated
data, which share common stochastic trends commonly expressed as linear combination
of the shocks of a system. In words of Granger and Yoon (2002): “economic data are
cointegrated because they respond to shocks together.” Common stochastic trends makes
it even more difficult to understand how the system is connected at various horizons as
connections are dominated by the strong relationship. With careful treatment, we extend
our notion of frequency dependent measurement of connectedness also to case when data
share common stochastic trends and make possible measurement of true business cycles
connections.

In addition to introducing the frequency dynamics into the measurement of connected-
ness and considering important cointegrating dynamics, we also study how cross-sectional
correlations impact the connectedness. Higher contemporaneous correlation do not neces-
sarily need to indicate connectedness in a sense literature tries to measure it. A good ex-
ample is recent crisis of 2007–2008, when stock markets recorded strong cross-sectional cor-
relations biasing the contagion effects estimated by many researchers (Forbes and Rigobon,
2002; Bekaert et al., 2005).

The theoretical discussion is followed by two relevant applications on financial and
macroeconomic data that help us to show the usefulness of the framework and guide a
user to apply the introduced methods appropriately in different situations. In the first
application, we study an important problem of connectedness of market risk. We use the
spectral representations of variance decompositions locally to recover the time-frequency
dynamics of connectedness in the US stock market, and we document rich dynamics in
frequency responses of shocks in volatilities. Dynamics of connectedness is mainly driven
by frequencies from one day up to one month, although this does not hold in the period
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of turmoils with increased level of uncertainty. In these periods the total connectedness
increases, and the increase is mainly due to short-term contemporaneous correlations, as
well as causal longer term connectedness.

In the second application, we attempt to measure connectedness of industrial produc-
tion in G-7 countries at business cycles frequencies. Motivated by the work of Greenwood-
Nimmo et al. (2015) who find transmission of shocks to occur gradually with increasing
horizons in variance decompositions on similar data, we address the problem with spectral
representations. Common shocks driving business cycles, which are confirmed by litera-
ture (Stock and Watson, 2005; Canova et al., 2007; Kose et al., 2008) will dominate the
variance decompositions with its strong frequency responses. Especially when measuring
directional connectedness, effects of common shocks make it difficult to see the directions
of connectedness at business cycles. Controlling for these permanent shocks, we measure
connectedness at business cycles as commonly defined in the literature, and document fre-
quency dependent connectedness due to shocks with different frequency responses in data.

2 Measuring connectedness in frequency domain

As argued by Diebold and Yilmaz (2014), variance decompositions can intuitively be used
for measurement of connectedness between economic variables. A natural way to measure
its frequency dynamics is to consider the spectral representation of variance decompositions
based on frequency, instead of impulse responses of shocks. Frequency domain being natural
place to study the long-run, medium-run, or short-run connectedness shifts our focus from
assessing share of variances due to shocks to assessing share of spectra. Stiassny (1996)
introduced a first notion of spectral representation for variance decompositions, although
in restrictive setting. In our work, we define general spectral representation of variance
decompositions, and show how we can use them for defining the frequency dependent
connectedness measures.

The spectral representations of variance decompositions can also be viewed as more gen-
eral way of measuring causality in frequency domain. Geweke (1982) proposes a frequency
domain decomposition of the usual likelihood ratio test statistic for Granger causality, and
Dufour and Renault (1998); Breitung and Candelon (2006); Yamada and Yanfeng (2014)
provide a formal framework for testing causality on various frequencies. Geweke (1984);
Granger (1969) develop a multivariate extensions, but all the analysis is done using par-
tial cross-spectra and is therefore silent on indirect causality chains. Hence, this part of
literature is also part of our motivation to propose a more general framework.

Before defining the connectedness measures in frequency domain, we briefly discuss the
notion of measuring connectedness introduced by Diebold and Yilmaz (2012) using the
generalized forecast error variance decompositions (GFEVD), as we build on these ideas in
frequency domain later in the text.

2.1 Measuring connectedness with variance decompositions

An intuitive way to measure the connectedness between variables is to consider vector
auto-regression (VAR) estimates and its forecast error variance decomposition (FEVD).
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Formally, let us have the n-variate process xt = (xt,1, . . . , xt,n) described by the structural
VAR(p) at t = 1, . . . , T as

Φ(L)xt = εt,

where Φ(L) =
∑

h ΦhL
h is n×n p-th order lag-polynomial and εt is white-noise generated

by (possibly non-diagonal) covariance matrix Σ. Assuming that the roots of |Φ(z)| lie
outside the unit-circle, the VAR process has following MA(∞) representation

xt = Ψ(L)εt,

where Ψ(L) is an n× n infinite lag polynomial matrix of coefficients.
The usual FEVD derived directly from impulse responses of the system does not have

straightforward interpretation as the shocks to variables are not identified. A shock to
variable j does not necessarily appear alone, or orthogonally, to shocks to other variables.
Hence, to identify the shocks and derive meaningful FEVD we need to employ some identi-
fication scheme. Diebold and Yilmaz (2009) use the standard Sims’ recursive identification
where the errors are standardized by Cholesky decomposition of the covariance matrix. The
standardization matrix from Cholesky decomposition, however, depends on the ordering of
the variables in the VAR system implying dependence of any measures devised using this
identification scheme on reordering of variables. For this reason, Diebold and Yilmaz (2012)
use the generalized VAR setting (Pesaran and Shin, 1998) that mitigates the issue by im-
posing additional assumption of normality of the shocks. Additional convenient feature of
this identification scheme is possibility to consider a directional connectedness measures. In
our work, we stay within the generalized framework, although the spectral representation
can be analogously defined to any other identification scheme and approximating model.
With this respect the next sections present general results.

Generalized FEVD can be written in the form1 (for detailed derivation of the formula
see Appendix A)

(θH)j,k =
σ−1kk

∑H
h=0 ((ΨhΣ)j,k)

2∑H
h=0(ΨhΣΨ′h)j,j

, (1)

where Ψh is a n × n matrix of coefficients corresponding to lag h, and σkk = (Σ)k,k. The
(θH)j,k denotes the contribution of the kth variable of the system to the variance of forecast
error of the element j. Due to one of the notable implications of the generalized VAR
framework the effects do not add up to one within columns by definition. To standardize
the effects we define (

θ̃H

)
j,k

= (θH)j,k /
∑
k

(θH)j,k .

The connectedness measure is then defined as the share of variances in the forecasts
contributed by other than own errors, or equally as ratio of the sum of the off-diagonal

1Note to notation: (A)j,k denotes the jth row and kth column of matrix A denoted in bold. (A)j,·
denotes the full jth row, likewise for columns.
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elements to sum of the whole matrix (Diebold and Yilmaz, 2012)

CH = 100

∑
j 6=k

(
θ̃H

)
j,k∑(

θ̃H

)
j,k

= 100

1−
Tr
{
θ̃H

}
∑(

θ̃H

)
j,k

 ,

where Tr {·} is the trace operator. Hence, the connectedness is the relative contribution
to the forecast variances from the other variables in the system. Note that although CH
measures connectedness of whole system, directional connectedness measures can be con-
veniently defined within this framework. We will return to their definition later, already
using frequency decompositions.

2.2 Spectral representation for variance decompositions and con-
nectedness measures

Generalized forecast error variance decompositions (GFEVD) are central to measuring
connectedness, hence to define frequency dependent measures, we need to consider its
spectral counterpart. As can be noted from Equation 1 connectedness measure is based on
impulse response functions Ψj defined in time domain. As a building block of the presented
theory, we consider a frequency response function, Ψ(e−iω) =

∑
h e
−iωhΨh, which can be

simply obtained from Fourier transform of the coefficients Ψ, with i =
√
−1. A spectral

density of xt at frequency ω can then be conveniently defined as a Fourier transform of
MA(∞) filtered series as

Sx(ω) =
∞∑

h=−∞

E(xtx
′
t−h)e

−iωh = Ψ(e−iω)ΣΨ′(e+iω)

The power spectrum Sx(ω) describes how the variance of the xt is distributed over the
frequency components ω. Using the spectral representation for covariance, i.e. E(xtx

′
t−h) =∫ π

−π Sx(ω)dω, following definition naturally introduces the frequency domain counterparts
of variance decomposition.

Definition 2.1. Generalized causation spectrum over frequencies ω ∈ (−π, π) is defined as

(f(ω))j,k ≡
σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2
(Ψ(e−iω)ΣΨ′(e+iω))j,j

,

where Ψ(e−iω) =
∑

h e
−iωhΨh is the Fourier transform of the impulse response Ψ.

It is important to note that (f(ω))j,k represents the portion of the spectrum of jth
variable at frequency ω due to shocks in kth variable. In a sense, we can interpret the
quantity as a within frequency causation, as denominator holds spectrum of the jth variable
(on-diagonal element of cross-spectral density of xt) at given frequency ω. Based on this
notion, we will define a within frequency connectedness measures. The generalized causation
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spectrum can also be related to standard coherence measure, but only one way relation is
taken into account in here. Thus the word causation as introduced in Stiassny (1996) is
justified, as the weighing by respective variances and covariances brings restriction and
identification assumptions of the generalized VAR and hence we can interpret the measure
causally within the validity of the invoked assumptions on the system. The quantity we
consider is different from that of Stiassny (1996), which is reflected in the word generalized.

To obtain a natural decomposition of original GFEVD to frequencies, we can simply
weight the (f(ω))j,k by the frequency share of variance of the j variable. The weighting
function can be defined as

Γj(ω) =
(Ψ(e−iω)ΣΨ′(e+iω))j,j

1
2π

∫ π
−π (Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

,

and represents the power of jth variable at given frequency, which sums through frequencies
to a constant value of 2π. Note that while the Fourier transform of the impulse response
is in general a complex valued quantity, the generalized causation spectrum is the squared
modulus of the weighted complex numbers, hence producing a real quantity.

The following proposition formalizes the discussion, and is central to the development
of the connectedness measures in frequency domain.

Proposition 2.1. Suppose xt is wide-sense stationary with σ−1kk
∑∞

h=0 |(ΨhΣ)j,k| < +∞,∀j, k.
Then

(θ∞)j,k =
1

2π

∫ π

−π
Γj(ω) (f(ω))j,k dω.

Proof. See Appendix.

Proposition 2.1 defines the decomposition of GFEVD in the frequency domain. GFEVD
at H →∞ can then be viewed as weighted average of the generalized causation spectrum
(f(ω))j,k that gives us the strength of the relationship on given frequency weighted by power
of the series on the given frequency. The integral over admissible frequencies reconstructs
perfectly the theoretical value of original θ∞. The proposition is not only important theo-
retical result, but it also reminds us that when measuring connectedness with θH in time
domain, we are looking at information aggregated through frequencies ignoring heteroge-
neous frequency responses of shocks. It is also important to note that effects at the whole
range of frequencies influence θ∞, which is an important observation when one interprets
the measures defined using the spectral representation.

In economic applications, we are interested in assessing the short-term, medium-term,
or long-term connectedness rather than connectedness at a given frequency in most of the
cases. Hence, it is more convenient to work with frequency bands, which can be arbitrarily
chosen. For this purpose, we define the amount of forecast error variance created on an
arbitrarily chosen set of frequencies. The quantity is then given by integrating only over
the desired frequencies ω ∈ (a, b).

Formally, let us have a frequency band d = (a, b) : a, b ∈ (−π, π), a < b. The generalised
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FEVD on some frequency band d is defined as

(θd)j,k =
1

2π

∫
d

Γj(ω) (f(ω))j,k dω. (2)

Because the introduced relationship is an identity and the integral is linear operator, sum
over disjoint intervals covering the whole range (−π, π) will recover the original GFEVD.
Following remark formalizes the fact.

Remark 2.1. Denote by ds an interval on the real line from the set of intervals D that
form a partition of the interval (−π, π), such that ∩ds∈Dds = ∅, and ∪ds∈Dds = (−π, π).
Due to the linearity of integral and the construction of ds we have

(θ∞)j,k =
∑
ds∈D

(θds)j,k .

Using the spectral representation of GFEVD, it is straightforward to define connected-
ness measures on a given frequency band.

Definition 2.2. Let us define scaled GFEVD on the frequency band d = (a, b) : a, b ∈
(−π, π), a < b as (

θ̃d

)
j,k

= (θd)j,k /
∑
k

(θ∞)j,k .

• The frequency connectedness on the frequency band d is then defined as

CFd = 100


∑(

θ̃d

)
j,k∑(

θ̃∞

)
j,k

−
Tr
{
θ̃d

}
∑(

θ̃∞

)
j,k

 .

• The within connectedness on the frequency band d is then defined as

CWd = 100

1−
Tr
{
θ̃d

}
∑(

θ̃d

)
j,k

 .

The Definition 2.2 works with two notions: the frequency connectedness and the within
connectedness. The within connectedness gives us the connectedness effect that happens
within the frequency band and is weighted by the power of the series on the given frequency
band exclusively. On the other hand the frequency connectedness decomposes the original
connectedness into distinct parts that in sum give the original connectedness measure C∞.
Following remark formalize the notion of reconstruction of the connectedness.

Remark 2.2 (Reconstruction of frequency connectedness). Denote by ds an interval on
the real line from the set of intervals D that form a partition of the interval (−π, π), such
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that ∩ds∈Dds = ∅, and ∪ds∈Dds = (−π, π). We then have that

C∞ =
∑
ds∈D

CFds . (3)

Proof. See Appendix.

To illustrate the difference between the frequency and within connectedness, remember
that the typical spectral shape of economic variables has the most power concentrated on
low frequencies (long-term movements or trend). Hence, we could decompose the connect-
edness into two parts, the one that covers long-term movements and the one that covers
the short-term movements. Suppose that 90% of the spectral density is concentrated in the
long-term movements. Now, suppose that the connectedness on high frequencies is high,
say 80, and low on long-term, say 10. These numbers represent the within connectedness.
The total connectedness will be much closer to 10, because the short-term connectedness
of size 80 will be down weighted by the very low amount of spectral density on the short-
term. Otherwise said, even thought the short-term activities are very connected because
not much happens in terms of the system activity on the short-term, this connection be-
comes negligible in the system connectedness. This can be seen clearly in the simulations
in the following section.

The concepts of within and frequency connectedness coincide when whole frequency
band d = (−π, π) is considered. This is formalized by the following remark.

Remark 2.3. Let us have d = (−π, π). We then have

CFd = CWd . (4)

Proof. See Appendix.

2.3 Estimation of connectedness in frequency domain

The previous theory is devised in terms of theoretical quantities and the method of esti-
mation deserves to follow. Primarily, the standard VAR framework is not the only way
how to obtain the estimates of the behavior of the system. More advanced and often
more suited approaches can be devised. Diebold et al. (2015) use vector error correction
model (VECM) to obtain approximation of the behavior. Estimators that use shrinkage
or Bayesian approaches might be a viable alternative in many cases. In our applications,
we restrict ourselves to use of the standard VAR and VECM frameworks and leave other
methods for future investigation.

Having the estimates, two main issues remain. The first is the approximation of the
MA(∞) representation of the series and the second is the estimation of the theoretical
spectral densities.

The MA(∞) representation is used to compute the forecast error variance decomposition
that relates percentage of mean squared error (MSE) of forecasts of variable k due to shocks
to variable j. Because the computation of these theoretical quantities is based on an infinite
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process, we make it feasible by a finite MA(H) approximation. This is possible mainly due
to the fact that if the system is stable, there must exist H, such that

MSE(xk,H)−MSE(xk,H+1) < ε,

meaning that the error due to approximation disappears with growing H. Reverse would
mean that innovations would have permanent impact. Hence, we can in principle use two
ways to approximate the decomposition. First, we can use an ad hoc selected H that is
beyond doubt high enough. Or second, we can use a measure of similarity of matrices to
choose the appropriate H during the approximation. The Ψ̂h coefficients are then computed
through standard recursive scheme Ψ̂0 = I, Ψ̂h =

∑max{h,p}
j=1 Φ(j)Ψ̂h−1, where p is the order

of VAR and h ∈ {1, . . . , H}. Here we note that by studying the quantities in the frequency
domain, H serves only as an approximation factor, and have no interpretation as in the
time domain. In the applications, we advice to set the H high enough to obtain better
approximation of the quantities at all frequencies, especially when small frequency bands
are of interest.

Secondly, the spectral quantities are estimated using standard discrete Fourier trans-
forms. The following definition specifies accurately the used estimates of the quantities.

Definition 2.3. The cross-spectral density on the interval d = (a, b) : a, b ∈ (−π, π) , a < b∫
d

Ψ(e−iω)ΣΨ′(e+iω)dω

is estimated as follows ∑
ω

Ψ̂(ω)Σ̂Ψ̂′(ω),

for ω ∈
{⌊

aH
2π

⌋
, ...,

⌊
bH
2π

⌋}
where

Ψ̂(ω) =
H−1∑
h=0

Ψ̂he
−2iπω/H ,

and Σ̂ = ε̂′ε̂/T .

The decomposition of the impulse response function at the given frequency band is then
estimated as

Ψ̂(d) =
∑
ω

Ψ̂(ω), for ω ∈
{⌊

aH

2π

⌋
, ...,

⌊
bH

2π

⌋}
.

Using this definition the estimate of the generalized causation spectrum over the interval
d is then defined as follows

(
f̂(d)

)
j,k
≡

σ̂−1kk

((
Ψ̂(ω)Σ̂

)
j,k

)2

(∑
ω Ψ̂(ω)Σ̂Ψ̂′(ω)

)
j,j

.
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By employing the estimate of weighting function

Γ̂j(d) =

(∑
ω Ψ̂(ω)Σ̂Ψ̂′(ω)

)
j,j(∑

d

∑
ω Ψ̂(ω)Σ̂Ψ̂′(ω)

)
j,j

,

we estimate the decomposed GFEVD to a frequency band as

θ̂j,k(d) = Γ̂j(d)
(
f̂(d)

)
j,k
.

Then the connectedness measures ĈW and ĈF at a given frequency band of interest can
be readily derived by plugging the θ̂j,k(d) estimate into the Definition 2.2.2

2.4 Connectedness in cointegrated processes

Spectral representations from previous sections hold if we work with stationary processes.
However, in many cases the economic variables we study are nonstationary I(1) processes
exhibiting systemic variation. For an I(1) process, Ψ(1) = ∞, i.e. the infinite sum of
the coefficients is infinite. The source of integration can either be a deterministic trend
or non-stationarity driven through the coefficients. In the first case of the deterministic
trend, it is important to take it into account while modelling the system (by inclusion of
deterministic trend) and if done properly the analysis of GFEVD is the same as in the
case of the stationary processes because the trend does not enter the impulse response
functions that become stationary. In the second case, where the integration is driven
through the stochastic processes one has to think further about the strategy for estimating
connectedness.

Most prolific example of such system in economics is the cointegrated process3. There-
fore, let us have system defined by

∆xt = αβ′xt−1 +

p∑
i=1

Ξi∆xt−i + εt, (5)

where α,β are matrices of size n× l holding the loadings and cointegration vectors respec-
tively, Ξi are matrices of size n× n holding the short-run coefficients, and ε is white-noise
generated by (possibly non-diagonal) covariance matrix Σ. By simple manipulation a
VAR(p+1) representation of the system can be derived

Φ(L)xt = εt.

such that I −Φ(z) has determinant zero and rank equal to l. In the covariance stationary
case, the impulse responses that are needed for our analysis conveniently correspond to the

2The whole estimation is done using the package frequencyConnectedness in R software. The package
is available on https://github.com/tomaskrehlik/frequencyConnectedness.

3For complex exposition see Lütkepohl (2007).
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MA representation of the process. The integrated processes however do not possess valid
MA representation. Though unorthogonalized impulse response functions can readily be
computed recursively in the same fashion as in the case of the stable VAR system providing
us with the matrix Ψ(L) where the individual elements hold the unorthogonalized impulse
responses in form of the lag polynomials. This familiar notation, yet non-standard, eases
the exposition.

With careful treatment, one can think about further extending the ideas presented ear-
lier to nonstationary cases. The main issue one needs to deal with is that unconditional
GFEVD will be dominated by information at the zero frequency, as frequency response of
common shocks will have very high power at zero frequency. The information at remain-
ing frequencies will be shadowed as the limit of spectrum of the cointegrated process at
zero frequency is infinite,

∫ π
−π Sx(ω)dω →∞, giving the remaining frequencies zero weight

Γj(ω) = 0 in computation of (θd)j,k. Even in this case, definition of (f(ω))j,k is meaningful,
as it shows relative influence of shocks on frequency components of variation. Intuitively,
GFEVD will be created solely by long-run variance at zero frequency, as unconditionally
the relative contribution of other frequencies are negligible in terms of their variance. Let-
ting (f(0))j,k ≡ limω→0 (f(ω))j,k exist and noting the quantities are symmetric around zero
frequency in [−π, π] domain, the following proposition formalizes this notion.

Proposition 2.2 (Domination of zero frequency). Suppose xt is a cointegrated system
defined by Equation 5. Then

(θ∞)j,k =
1

π

(
lim
z→0+

∫ z+ε

z

Γj(ω) (f(ω))j,k dω +

∫ π

z+ε

Γj(ω) (f(ω))j,k dω

)
= (f(0))j,k ,

for all ε such that ε ∈ (0, z).

Proof. See the proof in Appendix

The proposition states that measuring connectedness of cointegrated processes including
zero frequency results in measuring the effects of shocks to common stochastic trends (first
integral from Proposition 2.2) and ignores the connection at other than zero frequencies
(as second integral from Proposition 2.2 is zero). Hence the measure neglects possible
connections at remaining frequencies which are of high importance during the move to
new equilibrium in the system. Such frequencies are of great interest in studying business
cycless connectedness, as will be argued in the next sections.

To measure these connections at business cycle frequencies, we adjust the measure to
only take into account the variance and connection contributions at frequencies excluding
zero. The following definition formalizes the measure.

Definition 2.4. Suppose xt is a cointegrated system defined by Equation 5. Then

(ξ∞)j,k =
1

π

∫ π

ε

Γ̃j(ω) (f(ω))j,k dω,

where

Γ̃j(ω) =
(Ψ(e−iω)ΣΨ′(e+iω))j,j

1
π

∫ π
ε

(Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ
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and ε is arbitrarily small.

Importantly, we have to note that the causation spectrum remains unchanged but is
weighted by different weights. We deliberately choose to use the notation ξ to stress the
difference from the traditional GFEVD denoted by θ. Using the measure ξ on the domain
(ε, π) we can define all the remaining measures of connectedness from previous sections
readily.

In essence, the approach of removing the zero frequency from the measures is equivalent
to applying an ideal filter to the series. To illustrate this, let us have the ideal filter such
that

B(e−iω) =

{
I for ω ∈ [−π, 0) ∪ (0, π]
0 for ω = 0

Then
x̃t = B(L)xt

and the spectral density of the filtered series will be

Sx̃(ω) = B(e−iω)Sx(ω)B′(e+iω)

= B(e−iω)Ψ(e−iω)ΣΨ′(e+iω)B′(e+iω)

Then by construction, x̃t is stationary, as B(1) = B(e−i0) = 0 and more importantly,

Sx̃(ω) =

{
Sx(ω) for ω ∈ [−π, 0) ∪ (0, π]
0 for ω = 0

Now, generalized causation spectrum of the filtered series x̃t can be defined as

(
f̃(ω)

)
j,k
≡

σ−1kk

∣∣∣(B(e−iω)Ψ (e−iω) Σ)j,k

∣∣∣2
(B(e−iω)Ψ(e−iω)ΣΨ′(e+iω)B′(e+iω))j,j

, (6)

which implies that (
f̃(ω)

)
j,k

= f(ω) for ω ∈ [−π, 0) ∪ (0, π].

While f̃ is equal to f on a frequency band (0, π], to obtain connectedness, all we need to
do is to alter the definition of weighting function as in Definition 2.4. This is also important
part to understand when interpreting estimates. Weighting without zero frequency implies
that Γ̃j(ω) will be different from Γj(ω) causing that these measures will not be directly
comparable to full variance decompositions of the system in relative terms.

A natural question arises why we proceed by removing the zero frequency but not filter-
ing the series by appropriate filter4 and computing the standard connectedness measures,
which might seem more natural? Applying univariate filters to the series and then mod-
eling them as a system might introduce spurious correlations between the series due to
cyclical properties of filters (Cogley and Nason, 1995; Murray, 2003). The problem might

4There are several widely used filters in the literature, for example Hodrick Prescott, Baxter King.
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be mitigated to some extend, but cannot be eradicated due to the nature of the problem,
as we always approximate an ideal filter with some error. Although theoretically same
approaches, proper statistical modeling with removal of the connection at zero frequencies
is superior to applying filters to the series and computing the connectedness measures to
the filtered series.

3 Generating the frequency dependent connectedness

To motivate the usefulness of the proposed measures, we study the processes that gen-
erate frequency dependent connectedness by simulations. We look at connectedness that
are induced through cross-sectional correlations or interactions between bivariate autore-
gressive (AR) processes. We illustrate the emergence of connectedness and their spectral
footprints through change in coefficients in the simplest bivariate VAR(1) case.5 Suppose
the simplest case that nevertheless illustrates the mechanics generating the data from the
following equations

y1,t = β1y1,t−1 + sy2,t−1 + ε1,t

y2,t = sy1,t−1 + β2y2,t−1 + ε2,t,
(7)

where (ε1,t, ε2,t) ∼ N(0,Σ) with Σ =

(
1 ρ
ρ 1

)
.

By altering the true coefficients generating the data, we study several cases with known
values of theoretical connectedness estimates. We start with a symmetric processes with
β = β1 = β2 with three important cases generating distinctly connected variables y1,t and
y2,t. First case is the β = β1 = β2 = 0, when we have two independent processes, which
have connectedness zero at all frequencies. Secondly, we study the connectedness of two
symmetrically connected AR processes with the parameter β = β1 = β2 = 0.9 and s = 0.09
or β = β1 = β2 = −0.9 and s = −0.09 generating equal total connectedness with different
sources from low and high frequencies of cross-spectral densities for positive and negative
values of coefficients respectively.

In addition to motivating the importance of frequency dynamics of connectedness, we
also show the importance of cross-sectional correlations, which translates to all frequencies,
and may bias the connectedness measures. Hence for all cases, we consider two extremes
of cross-sectional dependence: no correlation ρ = 0 and correlation of ρ = 0.9. To show
how the cross-sectional correlations impact the connectedness measures, we compute the
measures with additional step in estimation, considering only diagonals of the covariance
matrix of residuals, hence removing the cross-sectional dependence. In this way, we disen-
tangle the influence of correlations from the true dynamics. In the text we always present
only the estimates on the simulated data, and save the true values of measures in the
Table 6 in the appendix.

The Table 1 shows the results. We can see that the system connectedness of two
unconnected and uncorrelated processes is practically zero on both total and all spectral

5Other more elaborate simulation scenarios are outlined in the R package provided with the paper.
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Connectedness Connectedness without correlation

β s ρ Total (π/2, π) (π/4, π/2) (0, π/4) Total (π/2, π) (π/4, π/2) (0, π/4)

0.00 0.00 0.00 0.18 0.19 0.19 0.19 0.09 0.10 0.10 0.10
(0.16) (0.20) (0.18) (0.21) (0.10) (0.11) (0.11) (0.11)

0.00 0.00 0.90 44.68 44.75 44.74 44.72 0.47 0.41 0.41 0.41
(0.30) (0.36) (0.36) (0.42) (0.55) (0.51) (0.51) (0.50)

0.90 0.09 0.00 37.65 0.69 1.26 37.77 37.24 0.64 1.22 37.84
(4.55) (0.76) (0.76) (4.36) (4.64) (0.93) (0.92) (4.81)

0.90 0.09 0.90 49.24 43.97 44.15 49.36 35.31 0.37 0.79 35.07
(0.33) (0.64) (0.62) (0.27) (6.27) (0.45) (0.53) (5.10)

-0.90 -0.09 0.00 39.33 38.91 0.96 0.87 38.97 38.68 0.81 0.71
(3.90) (4.24) (1.19) (1.20) (4.31) (4.21) (0.88) (0.89)

-0.90 -0.09 0.90 49.40 49.43 43.81 43.77 35.10 35.74 0.44 0.37
(0.32) (0.23) (0.62) (0.63) (6.28) (4.95) (0.30) (0.29)

Table 1: Simulation results. The first three columns describe parameters for the simulation
as described in Equation 7. We set β = β1 = β2. The results are based on 100 simulations of
VAR with the specified parameters of length 1000 with a burnout period of 100. The estimate is
computed as mean of the 100 observations and the standard error is sample standard deviation.

parts. In case of correlated noises, the total connectedness with estimated correlation
matrix is estimated around 45 with equal footprint on all the scales. Considering only
diagonal elements from estimated covariance matrix of residuals, and hence removing the
cross-sectional dependence correctly estimates the connectedness zero at all frequencies.

In the case with AR coefficient equal to 0.9, the uncorrelated case shows that the
connection between the processes is on the long-run part (as is expected due to the spectral
density of the underlying process). On the other hand, introducing correlation increases
the total connectedness and most of all obfuscates the source of the dynamics. Considering
only diagonals of covariance matrix of estimated residuals, we can see that the correlation in
the estimated covariance matrix correctly exposes the underlying dynamics. The remaining
case with coefficient equal to -0.9 is very similar to the previous case with the difference
that the spectral mass is concentrated on the short frequencies. Otherwise the qualitative
results remain the same.

It is important to note that while coefficients with opposite signs of 0.9 and -0.9 generate
the time series with equal connectedness, its source is from different parts of spectra. This
example motivates the usefulness of our measures, which are able to locate precisely the
part of cross-spectra generating the connectedness.

Next we move to the case where the two processes are not symmetric. With the simu-
lation, we want to illustrate two important cases, how the connectedness arises. First, let
us keep the parameter s that governs the connection of the two processes through lagged
observation constant and change the spectral structure of the processes through the co-
efficient β2. The Table 2 shows that the connectedness in this case is arising due to the
increase in spectral similarity of the processes in question. One could take parallel from
physics and state if the two processes (time-series) can resonate, even a relatively small
interaction coefficient is capable to create strong connectedness.

On the other hand, keeping the structure of the processes constant and increasing the
parameter of interconnection increases the connectedness as is documented by Table 5.

This simulation suggests a possible sources of connectedness and motivates the useful-
ness of our measures. The role of covariance among the processes can be studied through
exclusion of the covariance terms, the role of similarity can be examined through individual
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Connectedness Connectedness without correlation

β1 β2 s ρ Connectedness (π/2, π) (π/4, π/2) (0, π/4) Connectedness (π/2, π) (π/4, π/2) (0, π/4)

0.90 0.90 0.09 0.00 36.75 0.74 1.35 38.57 37.06 0.56 1.14 38.03
(4.79) (1.32) (1.27) (3.94) (4.64) (0.45) (0.49) (4.24)

0.90 0.90 0.09 0.90 49.23 43.99 44.17 49.35 33.30 0.43 0.86 36.03
(0.32) (0.51) (0.49) (0.24) (5.90) (0.46) (0.53) (4.80)

0.90 0.40 0.09 0.00 5.62 0.43 0.95 7.50 5.69 0.29 0.82 7.36
(1.52) (0.31) (0.32) (2.19) (1.48) (0.07) (0.19) (1.94)

0.90 0.40 0.09 0.90 46.11 44.10 44.35 46.53 5.40 0.30 0.82 7.38
(0.36) (0.57) (0.53) (0.30) (1.62) (0.06) (0.17) (2.17)

0.90 0.00 0.09 0.00 2.70 0.42 0.93 4.21 2.54 0.31 0.78 3.95
(0.91) (0.38) (0.35) (1.16) (0.68) (0.08) (0.21) (1.23)

0.90 0.00 0.09 0.90 45.37 44.37 44.61 45.87 2.66 0.29 0.74 3.77
(0.36) (0.42) (0.39) (0.37) (0.78) (0.06) (0.16) (1.20)

0.90 -0.90 0.09 0.00 0.53 0.59 0.54 0.53 0.49 0.47 0.45 0.45
(0.15) (0.38) (0.20) (0.31) (0.10) (0.12) (0.10) (0.11)

0.90 -0.90 0.09 0.90 44.78 44.61 44.76 44.82 0.46 0.46 0.46 0.47
(0.30) (0.36) (0.35) (0.35) (0.09) (0.06) (0.11) (0.15)

Table 2: Simulation results. The first three columns describe parameters for the simulation as
described in Equation 7. The results are based on 100 simulations of VAR with the specified
parameters of length 1000 with a burnout period of 100. The estimate is computed as mean of
the 100 observations and the standard error is simple sample standard deviation.

spectral densities, however, as mentioned most of the economic series have similar spectral
densities (Granger, 1966). Our measures estimate the rich dynamics precisely.

4 Empirical applications

We apply the theory to measure the risk connectedness in financial markets as well con-
nectedness of economic business cycles. The two applications are distinct not only in their
economic nature, they differ in the data properties and treatment in measuring connect-
edness at frequencies. Hence the two applications do not only provide interesting insights
on how the data are actually connected, but also guide a user in correct application of the
introduced methods in different situations.

Before carrying out the empirical analysis, we describe two additional notions from the
connectedness theory that will facilitate the interpretation of the results. In the following
part, we introduce the notion of the directional connectedness and the connectedness table.

4.1 Directional connectedness, connectedness table

For the ease of interpretation and deeper understanding, Diebold and Yilmaz (2012) de-
fined the directional connectedness. As previously noted, the connectedness is a quantity
describing the size of connection of the whole system with respect to the whole system
as a reference. Hence, up to now we are provided with one number that measures the
system connectedness. One might be, however, often interested in the connection of the
individual elements to the other elements of the system. This can be achieved by looking
at the (frequency) elements of GFEVD itself, i.e. the components from which we construct
the connectedness measure. The example of connectedness table for n variables is shown
in Table 3.

The central part of the table shows the variance decompositions θ̃ and its frequency
counterparts θ̃ds in block elements. Each of the element hold total connectedness in the
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x1 . . . xn From Others

x1
(θ̃)1,1 . . . (θ̃)1,n C•→1(

θ̃d1

)
1,1

. . .
(
θ̃ds

)
1,1

(
θ̃d1

)
1,n

. . .
(
θ̃ds

)
1,n

Cd1•→1 . . . C
ds
•→1

...
. . .

...

xn
(θ̃)n,1 . . . (θ̃)n,n C•→n(

θ̃d1

)
n,1

. . .
(
θ̃ds

)
n,1

(
θ̃d1

)
n,n

. . .
(
θ̃ds

)
n,n

Cd1•→n . . . Cds•→n

To Others
C1→• . . . Cn→• C

Cd11→• . . . C
ds
1→• Cd1n→• . . . Cdsn→• CFd1 . . . CFds

Table 3: The directional connectedness table. Each block element of the table shows two rows.
Considering s frequency intervals d1 . . . , ds such that ∩ds∈Dds = ∅, the first row of each element
gives the overall connectedness and the second row gives the decomposition of the first row into
frequency bands di (it can sum to total connectedness from first row if all frequencies are used,
∪ds∈Dds = (−π, π)). The right-most column gives the influence of other variables to the particular
variable C•→j , the bottom row gives the influence going from the variable to other variables Ck→•
with corresponding frequency decompositions. Bottom-right element holds total connectedness
of the system C with frequency decompositions.

first row, and decomposition to d1 . . . , ds frequency intervals such that ∩ds∈Dds = ∅. Note
that in case the frequency bands cover the whole spectrum, i.e. ∪ds∈Dds = (−π, π), the
second row will sum to total connectedness in the first row. However, this is not the case
if we are studying connectedness of cointegrated system, where we do not consider zero
frequency due to reasons outlined in the previous section. Note that in this case, we only
replace θ̃ds by ξ̃ds in the connectedness table.

Generally, the elements on the diagonal are the forecast variance shares of the own
shocks. The reminding elements, (θ̃)j,k are the contributions of the kth variable to the
forecast variance of the jth variable. The elements in the bottom row denoted Ck→• give
the amount of variance going from the kth variable to all other variables, and is a sum
of (θ̃)j,k through j in a column excluding the own share, i.e. for all j 6= k. Likewise, in
the last column, the elements C•→j give the amount of variance contributed by all other

variables as a sum of (θ̃)j,k through k in a corresponding row excluding own share, i.e. all
k 6= j. The corresponding frequency decompositions of the directional connectedness are
Cdsk→• and Cds•→j respectively. Finally, the number denoted C in the bottom right corner gives
the total connectedness with its frequency decompositions CFds .

4.2 Connectedness of risk in major assets of the US market

The question how stock markets are connected has been studied by the literature exten-
sively in past decades. From studies focusing on causality effects, comovement, spillovers,
connectedness, and systemic risk, researchers primarily try to answer the question using
methods measuring the aggregate effects. In this section, we argue that it is important
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to measure frequency sources of connectedness, as shocks to volatility will impact future
uncertainty differently. For example fundamental changes in investor’s expectations will
impact the market in longer term. These expectations are then transmitted to surrounding
assets in the portfolio differently than shocks having short-term impact.

The very early literature measuring the connectedness of stock markets was predom-
inantly interested in contagion effects in market prices during crises. In already seminal
paper, Forbes and Rigobon (2002) have, however, shown that if we account for volatili-
ties of the price processes, the contagion effects disappear. This led to a rather strong
statement of no-contagion, and interdependence among the markets remained the main
effect of interest. Tse and Tsui (2002) concentrated on investigating the connection in the
multivariate GARCH framework. They report high cross-correlations on Forex market,
national stock market, and Hang Seng sectoral indices. Bae et al. (2003) investigate the
co-incidence of the extreme returns across markets and connect this measure by extreme
value theory. They evaluate the contagion effects among various parts of the world, such
as Latin America, Asia, and the United States, finding high coincidence of negative returns
across markets. Engle et al. (2012) provide exhaustive review of empirical literature on
volatility spillovers.

A broader picture was later provided by Diebold and Yilmaz (2009) who explicitly
investigated volatilities and returns separately, and uncovered contagion effects in volatili-
ties. In the same paper, authors side-step the controversial topic of contagion, which had
already been tied predominantly to financial crises and introduce the concept of spillovers
that refer to varying interdependency between the markets. Borrowing from both conta-
gion and interdependence notions, Diebold and Yilmaz (2009) define a rigorous framework
for measuring spillovers of returns and volatility across markets, coined a connectedness in
their subsequent work (Diebold and Yilmaz, 2014). The methodology has been successfully
used to measure connectedness effects in the literature by hundreds of studies in few years.
Still the literature is silent about origins of the connectedness in stock markets.

4.2.1 Data

Volatility, as one of the mostly studied quantities in the financial literature, is also largely
perceived as a risk measure. Hence, considering the connectedness of volatility, we investi-
gate the question how the risk in markets is connected at different frequencies. We study
the intra-market connectedness of seven major stocks representing largest sectors within
the US economy.6 Although the companies might live in the same economy, they are gen-
erally tightened by different aspects of it and as argued earlier, these aspects may have
different impact at frequencies.

Concretely, we investigate the connectedness between financial, technology, consumer
staples that are pro-cyclical, consumer staples that are counter-cyclical, communication,
energy, and health sectors. From each sector, we select the most liquid stock to represent
the sector,7 namely, Bank of America Corporation (BAC), Microsoft Corporation (MSFT),

6Sectors are defined in accordance with the Global Industry Classification Standard (GICS) and in a
similar manner as in Beber et al. (2011).

7We chose the stocks in order to best capture the total capitalization of the sector. Note that this is
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Figure 1: Dynamic frequency connectedness of the US market risk. Left plot represents the total
connectedness C, computed using Diebold and Yilmaz (2012) measure on moving window with length of
one year (250 days). Right plot represents the frequency connectedness CFds

with d1 ∈ [1, 5] days in solid
bold, d2 ∈ (5, 20] solid, d3 ∈ (20, 60] dotted bold, and d4 ∈ (60, 250] dotted lines. Note that all lines
through frequency bands ds sums the total connectedness C.

Walt Disney Company (DIS), Coca-Cola Company (KO), AT&T (T), Exxon Mobil Cor-
poration (XOM), and Pfizer (PFE) representing the sectors in the same order as named
earlier in this paragraph.

For the computation of volatility, we restrict the analysis to daily logarithmic realized
volatility computed using 5-minute returns8 during the 9:30 a.m. to 4:00 p.m. business
hours of the New York Stock Exchange (NYSE). The data are time-synchronized by the
same time-stamps, eliminating transactions executed on Saturdays and Sundays, U.S. fed-
eral holidays, December 24 to 26, and December 31 to January 2, because of the low
activity on these days, which could lead to estimation bias. The data span years 2005 to
2015 providing sample of 2660 trading days. The descriptive statistics of the data can be
found in the appendix Table 7. The period under study is informative in terms of market
development, sentiment, and expectations since we cover the 2007–2008 financial crisis and
its aftermath years. The data were obtained from the TICK Data.9

4.2.2 Time-frequency decomposition of US market risk connectedness

One of the issues that has recently gained importance in volatility modelling is giving up
the assumption of global stationarity of the data (Stărică and Granger, 2005; Engle and
Rangel, 2005) and focusing on local stationarity instead. When studying connectedness
of market risk using variance decompositions, it is important to face nonstationarity of
realized volatilities as zero frequency may dominate the rest of the frequencies in case
we study unconditional connectedness. The discussion gains importance when studying
frequency dynamics, as applying our measures blindly to the nonstationary data would
result to false inferences.

an approximate extent that varies over time.
8Realized volatility for a given day is computed as sum of squared intra-day returns.
9https://www.tickdata.com/
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Figure 2: Time-frequency dynamics of connectedness of the US market risk. Frequency connectedness
CFds

for d1 ∈ [1, 5], d2 ∈ (5, 20], d3 ∈ (20, 60], and d4 ∈ (60, 250] days representing day to week, week to
month, month to quarter, and quarter to year connectedness are depicted on vertical axis, while horizontal
axis shows time.

Giving up the assumption of global stationarity of the data, we assume the dynamics
come from shifts in the unconditional variance of returns. This leads us to convenient
approximation of nonstationary data locally by stationary models. In essence, our ap-
proach is closely related to the one taken by Stărică and Granger (2005), although we
study multivariate system with quite different tools. We use the spectral representations
of variance decompositions to recover the time-frequency dynamics of connectedness with
moving window of approximately one year (250 trading days), where we confirm station-
arity of volatility. Vector auto-regression with two lags is used to capture the dynamics in
the window.10

Focusing on locally stationary structure of the data, we do not report unconditional
frequency connectedness table as commonly done in the literature. Instead, we study the
time-frequency dynamics of connectedness. Figure 1 reports the time dynamics of the total
connectedness of system as measured by time domain variance decompositions in the left
part. One can quickly infer that the connectedness was rather low during first two year
period increasing dramatically during the 2007–2008 crisis, and varying in the aftermath of
the crisis considerably. Right plot of the Figure 1 presents the decomposition of the total
connectedness into frequency bands up to one week, one week to one month, one month to
one quarter, and one quarter to one year computed as CFds on the bands corresponding to
d1 ∈ [1, 5], d2 ∈ (5, 20], d3 ∈ (20, 60], and d4 ∈ (60, 250] days. Note the lowest frequency is
bounded at each time point by the window length.

The decomposition shows rich time-frequency dynamics of connections. Focusing on
the frequency dynamics, largest portion of connections is created from one week up to
one month, although higher frequencies up to one week play similar role in connectedness.
The most interesting observations can be made when considering time dynamics of the
frequency connections, as we cannot see any clear pattern of some frequency band dom-
inating all others. Instead, we infer rich time-frequency dynamics. While connectedness
has been driven mostly by information up to one month (d1 and d2) during the first three

10We have experimented with different lag lengths with no changes in results. This only confirms the
appropriateness of the approach, as large changes in time-frequency dynamics due to different lags in the
approximating VAR model would point to nonstationarities within windows, where larger number of lags
would be approximating the information in the low frequencies. In some sense, this analysis serves as a
robustness check. We make these results available upon request.
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years of the sample, the structure changed dramatically during the year 2008, and this
change lasted until the end of the year 2012. During this period, we observe rich dynamics
with lower frequencies playing role in connectedness. Before this dynamics returns to the
connectedness structure again during the year 2015, there is two year change with higher
frequencies driving the connectedness.

The Figure 2 shows the time-frequency dynamics from a different point of view, which
serves as a helpful complementary visualization. In this figure, frequency bands are de-
picted instead of the value of connectedness by the vertical axis, while horizontal axis
holds time. One can view this representation as looking at the three dimensional space
of connectedness at time and frequency domains from top, where the third axis showing
the strength of connectedness at each time-frequency point is highlighted by color. The
heat map representation is useful as one can more clearly see the decomposition of the
connectedness into time-frequency space.

Economically, periods with connectedness being created in high frequencies are periods
when stock markets seem to process information rapidly, and a shock to one asset in the
system will have impact mainly in a short-term (with frequency response at high frequen-
cies mainly). In case the connections come from the opposite part of the cross-spectral
density, lower frequencies, it points us to the belief that shocks are being transmitted for
longer periods (with frequency response at low frequencies mainly). This behavior may be
attributed to fundamental changes in investor’s expectations, which impact the market in
longer term. These expectations are then transmitted to surrounding assets in the port-
folio. Before making further conclusions about the nature of connectedness in US stock
market, we look deeper into its sources.

Until now, we have focused on the decomposition of the connections to frequency bands,
guaranteeing they will always sum to total connectedness. The frequency components are
in fact within spillovers, or causation spectra at frequency band weighted by the variance
share at the given band. Hence in case low frequencies hold large amount of information, it
will overweight other frequencies. While the frequency decomposition considering power of
shocks is important for relative comparison, it is useful to look at unweighted connections
as well. Ignoring information outside the considered band, connections within frequency
bands can be understood as pure unweighted connections. The Figure 3 shows the within
sectoral connectedness of the market in left plot. All frequencies share very similar time
dynamics, hence the rich time-frequency decomposition found in previous part is mainly
driven by power of frequency responses, as expected.

The main reason why we look at the pure within connectedness is to study the effect
of cross-sectional dependence on the connectedness. When using variance decompositions,
we are mainly interested in finding causal effects, but these can be biased due to strong
contemporaneous relations. To find if there is such a bias in the connections we measure,
we adjust the correlation matrix of VAR residuals by the cross-sectional correlations.

The right plot from the Figure 3 shows within connectedness adjusted for this correla-
tion effect. Strikingly, the structure changes dramatically, pointing us to the result that the
high frequency connectedness is mainly driven by cross-sectional correlations, while con-
nectedness at lower frequencies is not affected so heavily, mainly during the crisis. One can
infer that increase of system connectedness during the crisis is mainly created by increase
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Figure 3: Dynamic within connectedness of the US market risk on frequency bands. Left plot presents
the relative connectedness within the frequency band, CWds

with d1 ∈ [1, 5] days in solid bold, d2 ∈ (5, 20]
solid, d3 ∈ (20, 60] dotted bold, and d4 ∈ (60, 250] dotted lines. Right plot presents relative connectedness
within the frequency band without the effect of cross-sectional correlations.

in contemporaneous short-term correlations, and causal longer term connectedness.
While studying connectedness of the whole system, the time-frequency dynamics of

directional connectedness including pairwise connections, influences “from”, and “to” the
considered stocks may be of interest (i.e., all elements of Table 3) . Inevitably, reporting
all these interesting quantities would substantially inflate this already pregnant text. The
main purpose of our work is to introduce the quantities and their proper usage in different
situations, hence we leave their full usage to all applications which are sure to come in near
future.11

4.3 Macroeconomic connectedness at business cycle frequencies

While spectral representations assuming stationarity serve well the task of measuring con-
nectedness in stock markets, macroeconomic data demand more careful treatment due to
common stochastic trends they (may) share. To measure frequency dynamics of connections
between macroeconomic variables, one needs to consider the second part of the theoretical
discussions provided in earlier sections of this text.

Measurement of the business cycles and its connectedness has been an ongoing re-
search for many decades. An important strand of literature is interested in measuring the
convergence of the business cycles, which can be thought of as parallel to measuring its
connectedness. For rather exhaustive literature survey of recent results, see De Haan et al.
(2008). Recently, the macroeconomic connectedness has been addressed by means of vari-
ance decompositions (Diebold et al., 2015; Greenwood-Nimmo et al., 2015), although if we
want to see how economies are connected at various business cycles, the spectral quantities
devised in earlier sections need to be considered as connections at business cycles may be

11The time-frequency quantities from directional connectedness table are easily computable using the
package we provide to the paper.
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dominated by common stochastic trends.12 In the next sections, we contribute to this liter-
ature by measuring connectedness at business cycles, which are often hidden by dominant
common shocks in the system.

4.3.1 Data about industrial production

For analyzing the connectedness of global business cycles, we use the monthly index of
industrial production for the G-7 economies: the U.S., Canada, Japan, Germany, Italy,
France, and United Kingdom. The data span years 1978 through 2014, and was acquired
through the Federal Research Economic Data originating in the Organization for Economic
Co-operation and Development (OECD) dataset. The dataset is plotted in the Figure 4.

Figure 4 suggests that time series of industrial production may contain deterministic and
stochastic trends and may be (co)integrated. Augmented Dickey-Fuller test allowing for
linear trend does not reject the presence of unit root in logarithms of industrial production
levels. Maximum eigenvalue and trace test of Johansen assuming linear trends in log levels
of industrial production reject the hypothesis of at most one cointegrating relationship in
the data, but larger number of cointegrating relationships is never decisively rejected.13

4.3.2 Connectedness of global business cycles

As discussed in the theoretical part of this work, cointegrating relationship dominates the
connectedness at all other frequencies. Although industrial production data seem to share
no more than one common stochastic trend, we consider vector error correction model to
estimate the connectedness at business cycle frequencies. Furthermore, we will estimate
the spectral counterparts of connectedness measures excluding the zero frequency, which
holds the information about common permanent shocks.

As discussed earlier, the intuition behind excluding the zero frequency when measuring
connectedness is that common trends will dominate possible connections at all other fre-
quencies. The literature studying business cycles commonly defined to be no less than six
quarters and typically last fewer than 32 quarters, considers the use of filtered data. While
studying connectedness at business cycles on filtered data is simple alternative, the use of
filters commonly applied in the literature may be problematic as it may induce spurious
connectedness. Simple differencing will put heavy weight on high frequency components,
and alter timing relationship. More sophisticated filters, like low-pass Hodrick-Prescott
filter, or band-pass filters, are more appropriate but may introduce spurious correlations
between the series due to cyclical properties of filters (Cogley and Nason, 1995; Murray,
2003; Harvey and Trimbur, 2003).

While the prime concern in the literature using filters is to approximate the ideal filter,
our methodology sidesteps this problem, and in some sense can be viewed as equivalent
to estimating connectedness at ideally filtered data. To find connections of industrial
production at business cycles, exclusion of zero frequency from the spectral representation
of variance decompositions serves the purpose.

12Common shocks driving business cycles are confirmed by large literature, e.g. Stock and Watson
(2005); Canova et al. (2007); Kose et al. (2008)

13The results from unit root and cointegration testing are available upon request from authors.
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USA JPN GER ITA FRA UK CAN From

USA
46.8 4.9 2.1 0.7 6.8 5.1 33.6 53.2

21.0-8.5-6.0-2.9-2.4 3.4-2.3-1.5-0.8-0.7 3.7-2.5-1.5-0.6-0.3 1.8-0.8-0.4-0.2-0.1 5.7-0.6-0.9-0.9-1.4 1.6-1.1-1.8-1.8-2.7 11.0-3.2-2.9-1.7-1.6 27.1-10.5-8.9-5.9-6.8

14.7-7.0-5.5-3.4-3.7 3.0-2.8-1.9-0.8-0.6 5.4-3.5-2.3-1.0-0.7 3.9-1.3-0.7-0.3-0.2 6.7-2.0-2.3-2.1-2.9 0.4-1.0-2.2-2.4-3.7 2.4-1.0-2.1-2.4-3.5 21.8-11.7-11.5-9.0-11.7

JPN
9.6 65.8 8.4 1.7 5.3 6.1 3.2 34.2

3.3-0.2-0.4-0.4-0.7 8.4-6.6-6.6-5.5-7.5 3.2-1.7-1.5-1.2-1.6 2.3-0.7-0.4-0.2-0.2 1.6-1.4-1.3-1.0-1.3 3.0-1.7-3.2-3.2-4.5 3.0-3.3-5.7-5.5-7.8 16.3-8.9-12.4-11.6-16.2

2.3-0.3-0.1-0.0-0.0 7.9-5.8-6.4-5.5-7.6 1.8-0.7-0.7-0.7-1.0 2.2-0.5-0.3-0.2-0.3 0.9-1.1-1.3-1.1-1.5 4.0-3.2-5.1-4.8-6.7 2.1-4.0-6.2-5.8-8.0 13.3-9.8-13.7-12.5-17.4

GER
5.9 13.9 46.7 7.0 16.6 7.9 2.1 53.3

12.2-3.5-2.7-1.9-2.4 5.7-4.9-4.6-3.6-4.6 4.4-1.3-1.3-1.0-1.2 2.3-0.4-0.2-0.1-0.1 4.9-0.9-0.4-0.1-0.1 5.8-2.1-2.8-2.6-3.6 4.1-1.9-3.7-3.6-5.1 34.9-13.6-14.4-11.9-15.9

10.0-3.3-1.8-0.9-0.9 6.1-5.6-5.6-4.4-5.8 8.3-2.0-1.7-1.3-1.6 3.2-0.9-0.6-0.4-0.4 4.6-1.2-0.5-0.2-0.1 3.8-2.4-3.5-3.2-4.5 0.8-1.5-2.7-2.6-3.5 28.4-15.0-14.7-11.7-15.3

ITA
11.8 9.6 14.3 36.2 14.0 9.6 4.5 63.8

4.3-1.2-1.2-1.1-1.5 4.2-4.8-5.2-4.3-5.7 1.3-1.1-1.1-0.9-1.2 2.2-0.5-0.3-0.2-0.2 1.0-0.6-0.6-0.5-0.6 7.3-3.4-4.5-4.1-5.6 4.6-4.2-6.5-6.0-8.3 22.6-15.3-19.2-16.8-22.8

2.3-0.5-0.2-0.1-0.1 4.8-5.1-5.8-4.9-6.5 1.3-0.9-0.9-0.8-1.1 4.0-0.8-0.5-0.4-0.5 0.6-0.6-0.7-0.6-0.8 7.3-4.5-6.0-5.3-7.2 2.4-3.8-5.9-5.3-7.3 18.6-15.5-19.6-17.0-23.0

FRA
10.2 9.1 20.9 6.9 34.2 15.1 3.6 65.8

6.3-2.0-1.8-1.4-1.9 5.1-5.4-5.7-4.6-6.0 1.3-1.1-1.1-0.9-1.2 0.6-0.1-0.1-0.1-0.1 1.6-0.4-0.5-0.4-0.5 7.0-3.3-4.3-3.8-5.2 3.8-3.7-5.8-5.4-7.4 24.1-15.6-18.9-16.2-21.8

4.2-1.2-0.6-0.3-0.3 6.5-6.1-6.6-5.4-7.1 1.9-1.1-1.1-0.9-1.2 0.9-0.4-0.3-0.2-0.3 2.5-0.4-0.6-0.5-0.7 6.7-4.3-5.7-5.0-6.8 1.5-3.1-5.0-4.5-6.2 21.8-16.1-19.2-16.3-21.9

UK
7.9 3.8 3.3 5.0 5.6 69.6 4.8 30.4

14.5-4.7-3.5-2.0-1.9 6.1-4.5-2.8-1.2-0.8 3.8-2.0-1.3-0.7-0.5 2.9-0.1-0.0-0.0-0.0 3.1-0.1-0.1-0.1-0.2 13.2-3.9-2.4-1.0-0.6 12.7-4.1-3.1-1.4-0.8 43.2-15.6-10.9-5.2-4.2

10.0-3.3-2.5-1.6-1.8 10.1-6.9-4.4-1.9-1.3 7.9-4.0-2.8-1.5-1.4 3.9-0.5-0.2-0.1-0.1 2.4-0.2-0.2-0.3-0.4 12.1-4.5-2.7-1.0-0.5 5.4-1.8-1.4-0.6-0.2 39.8-16.7-11.6-5.9-5.2

CAN
19.3 5.8 1.0 0.2 2.8 3.5 67.3 32.7

21.6-9.1-6.5-3.2-2.6 3.3-1.6-1.2-0.7-0.8 2.7-2.0-1.2-0.5-0.2 1.1-0.3-0.2-0.1-0.1 3.4-0.5-0.8-0.8-1.3 3.5-1.6-1.6-1.3-1.6 13.1-5.0-3.7-1.7-1.2 35.6-15.2-11.5-6.5-6.5

15.7-7.5-6.0-3.8-4.1 3.1-2.9-1.9-0.9-0.7 5.3-3.9-2.6-1.2-0.8 3.3-1.1-0.6-0.3-0.2 3.7-1.6-2.0-1.9-2.8 1.3-1.4-2.1-2.1-3.0 3.0-1.5-2.4-2.2-3.1 32.5-18.4-15.4-10.1-11.5

To
64.8 47.0 49.9 21.6 51.0 47.3 51.7 47.6

62.2-20.7-16.1-10.0-11.0 27.8-23.5-21.0-15.1-18.6 16.0-10.4-7.8-4.7-5.1 10.9-2.3-1.2-0.6-0.6 19.7-4.0-3.9-3.5-4.8 28.2-13.1-18.3-16.7-23.2 39.1-20.4-27.9-23.5-31.0 29.1-13.5-13.7-10.6-13.5

44.6-16.0-11.2-6.7-7.3 33.6-29.5-26.3-18.4-22.0 23.6-14.0-10.5-6.0-6.1 17.5-4.6-2.7-1.5-1.5 18.8-6.8-7.1-6.2-8.5 23.6-16.8-24.5-22.8-31.8 14.6-15.3-23.4-21.1-28.9 25.2-14.7-15.1-11.8-15.1

Table 4: Global business cycles connectedness. Each cell of the table shows three rows. The first row holds total connectedness
computed using Diebold and Yilmaz (2012) measure. The second row holds frequency connectedness CFds with d1 ∈ [1, 18], d2 ∈ (18, 36],
d3 ∈ (36, 72], d4 ∈ (72, 96] months and d5 holding the rest excluding the zero frequency. The third row correspond to connectedness
excluding the cross-sectional correlations.
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Table 4 prints the total connectedness of industrial production using original Diebold
and Yilmaz (2012) measure in first row of each element as well as our frequency decompo-
sitions measuring connectedness at business cycles at remaining rows. We estimate vector
error correction model (VECM) with constant and deterministic trends to compute vari-
ance decompositions. Frequency bands are chosen to mimic the usual definition of business
cycles at 18, 36, 72, and 96 months.

We begin the discussion with overall connectedness, measured using forecast horizon of
9 months. The choice of forecast horizon is important in this framework, as with longer
horizons we will be closer to effects from common shocks due to cointegration of the system.
In a similar analysis, Greenwood-Nimmo et al. (2015) note that with increasing horizon
directional connectedness intensifies, and rapidly converges to their long-run values. While
authors attribute this to transmission of shocks occurring gradually, we add that this
behavior is due to long frequency response of the shocks. Increasing horizon will then only
approximate better the permanent effects of shocks, moreover the nature of the shocks will
not allow to isolate the connectedness at business cycle frequencies, as discussed earlier.
Here, using frequency responses of shocks and our spectral representation of measures will
be useful.

Before discussing frequency dependent connectedness, we briefly summarize the general
connectedness of the system. As expected, global connections are large, reaching value of
47.6. The US proves its largest influence on the rest of countries with directional connect-
edness of 64.8 for transmitting shocks, but is also quite open to receiving shocks (53.2).
The shocks from the US have largest impact on Canada, although it is worth noting that
all other countries are influenced largely by the US as well. The rest of the connections we
document share similar patterns of connectedness with those confirmed by the literature.
Most closely, Diebold et al. (2015) report connectedness of G-6 countries with slight differ-
ences, which are attributable to different sample length, and exclusion of Canada from the
sample.

A contributive part of the Table 4 is in the second and third row of each element,
showing business cycles connectedness. Note that exclusion of the zero frequency from
the causation spectra does not allow the decomposition to sum to original measures. We
stress, that variance decompositions with forecast horizon, and spectral representations at
business cycles frequencies are not directly comparable in relative terms, as they were in
the previous analysis on stock market data. Hence it may well happen that connectedness
across business cycles will sum to higher number than original connectedness, as it is
weighted by frequencies excluding zero. On the other side, frequency connectedness is
indeed comparable across different frequency bands approximating business cycles directly.

Table 4 shows sizeable connectedness at business cycle frequencies. Looking at how the
system was connected at business cycles, we find that largest connectedness comes from
frequencies higher than business cycles (i.e. 1 – 18 months) with value of 29.1, although the
remaining business cycles are connected with values of 13.5, 13.7, 10.6, and 13.5 respectively.
To summarize, response of shocks is distributed evenly over frequencies, and connectedness
at the business cycles frequencies seems to dominate the rest.

Looking at individual countries, we can see that the US contributes to all other countries
mostly at shorter than 18 month horizons (with the value of 62.2) although contributions
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from business cycles frequencies are not negligible, with 18 – 36 month interval being the
most important reading connectedness of 20.7. Interestingly, results are not influenced by
cross-sectional correlations (shown by third row of each element in Table 4). On the other
hand, Canada seems to contribute by shocks with different frequency response equally.
Here, pairwise connection between the US and Canada is notable, as the US reception of
shocks from Canada is mostly influenced by contemporaneous correlations. While the US
transmits shocks at all business cycle frequencies to Canada, influence from Canada to the
US diminishes after controlling for cross-sectional correlations.

The UK and Japan seem to influence all other countries at all business cycles similarly.
This means that shocks from these countries with frequency responses at all business cycles
exist and are influential. On the other side, both these countries receive less shocks at all
business cycles frequencies.

Italy and France transmit shocks with different strength, but the shocks to their indus-
trial production influence other countries only at very short-term, less than business cycles
frequencies. On the opposite, both countries receive shocks at all business cycles equally
with large strength.

Having discussed the connectedness of G-7 countries at different business cycles, we pro-
vided a second important application of the methodology proposed by this paper, which
guides users in the situation when measuring frequency dependent connectedness in a coin-
tegrated system. We believe that the application is not autotelic though, as the discussion
contributes to the literature measuring business cycles connectedness.

5 Conclusion

In this work, we contribute to the understanding of connectedness between economic vari-
ables by proposing to measure its frequency dynamics. Based on the spectral representa-
tions of variance decompositions and connectedness measures, we provide a general frame-
work for disentangling the sources of connectedness between economic variables. As shocks
to economic activity impact variables at different frequencies with different strength, we
view the frequency domain as a natural place for measuring the connectedness between
economic variables.

As noted by Diebold and Yilmaz (2009, 2012), and later Diebold and Yilmaz (2014),
variance decompositions from approximating models are convenient framework for empir-
ical measurement of connectedness. Diebold and Yilmaz define the measures based on
assessing shares of forecast error variation in one variable due to shock arising in another
variable in the system. Focusing on frequency responses of shocks instead, we are inter-
ested in the portion of the spectrum as counterpart of variance at given frequency that is
attributed to shocks in another variable. Moreover, we elaborate on the role of correlation
of the residuals in the magnitude and spectral shape of the connectedness.

In the empirical part, we investigate the prolific examples of the connectedness, namely
connectedness of stock market risk in the US market and connectedness of the largest world
economies at different business cycles. Our results underline the importance of proper
measurement of dynamics across time and frequencies and emphasize the important role
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of cross-sectional correlation in the connectedness origins.
Monitoring connectedness of stock market risk, we approximate the data locally and

obtain rich time-frequency dynamics of connectedness. We conclude that the dynamics is
mainly driven by frequencies from one day up to one month, although this does not hold in
the period of turmoil with high levels of uncertainty. In these periods the total connected-
ness increases, and the increase is due to contemporaneous correlations at short-term, and
causal longer term connectedness. Economically, periods with connectedness being created
in high frequencies are periods when stock markets seem to process information rapidly,
and a shock to one asset in the system will have impact mainly in a short-term. In case the
connections come from the lower frequencies, it points us to the belief that shocks are being
transmitted for longer periods. This behavior may be attributed to fundamental changes
in investor’s expectations, which impact the market in longer term. These expectations are
then transmitted to surrounding assets in the portfolio.

Turning our attention to the macroeconomic application, our measures demonstrate
importance of proper assessment of common stochastic trends in data dominating the
possible connections at business cycles. Careful treatment of the proposed methods allow
us to find the rich frequency dynamics in connections of industrial productions at real
business cycles. Application of the methodology to industrial production of G-7 countries
reveals different connections at business cycles. This implies that shocks transmitted from
countries have different frequency response, creating different connectedness at business
cycle frequencies.

Our results open new fascinating routes in understanding connectedness of economic
variables with important implications. The further research applying our measures to wide
areas of macroeconomics and finance will be important in uncovering the connections of as-
sets within market, or industry, connections across asset classes, international markets, and
provide grounds for further research in risk management, portfolio allocation, or business
cycle analysis where understanding origins of connections is essential.
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A Derivation of the GFEVD

Let us have the MA(∞) representation of the GVAR model (details in (Pesaran and Shin,
1998; Dees et al., 2007)) given as

xt = Ψ(L)εt, (8)

with the covariance matrix of the errors Σ. Because the errors are assumed to be serially
uncorrelated, the total covariance matrix of the forecast error conditional at the information
in t− 1 is

ΩH =
H∑
h=0

ΨhΣΨ′h. (9)

Next we define the covariance matrix of the forecast error conditional on knowledge of
today’s shock and future expected shocks to j-th equation. Starting from the conditional
forecasting error,

γkt (H) =
H∑
h=0

Ψh [εt+H−h − E(εt+H−h|εk,t+H−h)] , (10)

assuming normal distribution, we have

γkt (H) =
H∑
h=0

Ψh

[
εt+H−h − σ−1kk (Σ)·k εk,t+H−h

]
. (11)
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Finally the covariance matrix is

Ωk
H =

H∑
h=0

ΨhΣΨ′h − σ−1kk
H∑
h=0

Ψh (Σ)·k (Σ)′·k Ψ′h. (12)

Then

∆(j)kH = (ΩH −Ωk
H)j,j = σ−1kk

H∑
h=0

((ΨhΣ)j,k)
2 (13)

is the unscaled H-step ahead forecast error variance of k-th component with respect to j-th
component. Scaling the equation yields the desired

(θH)j,k =
σ−1kk

∑H
h=0 ((ΨhΣ)j,k)

2∑H
h=0(ΨhΣΨ′h)j,j

(14)

B Proofs

Proposition 2.1. To prove the equality we need the following:

1

2π

∫ π

−π
Γj(ω) (f(ω))j,k dω =

1

2π

∫ π

−π

(Ψ(e−iω)ΣΨ′(e+iω))j,j
1
2π

∫ π
−π (Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2
(Ψ(e−iω)ΣΨ′(e+iω))j,j

dω

=
1

2π

∫ π

−π

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2
1
2π

∫ π
−π (Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

dω

=

1
2π

∫ π
−π σ

−1
kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2 dω
1
2π

∫ π
−π (Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

=
σ−1kk

∑∞
h=0

(
(ΨhΣ)j,k

)2
(
∑∞

h=0 (ΨhΣΨ′h))k,k

= (θ∞)j,k
(15)

Hence, the proof essentially simplifies to proving two things

1

2π

∫ π

−π
σ−1kk

∣∣∣(Ψ (e−iω)Σ
)
j,k

∣∣∣2 dω = σ−1kk

∞∑
h=0

(
(ΨhΣ)j,k

)2
(16)

1

2π

∫ π

−π

(
Ψ(e−iλ)ΣΨ′(e+iλ)

)
j,j
dλ =

(
∞∑
h=0

(ΨhΣΨ′h)

)
k,k

(17)
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For the following steps we will leverage the standard integral

1

2π

∫ π

−π
eiω(u−v)dω =

{
1 for u = v

0 for u 6= v.
(18)

This integral is mostly useful in cases when we have series
∑∞

h=0 φhψh and we want to ar-
rive to spectral representation. Note that

∑∞
h=0 φhψh = 1

2π

∫ π
−π
∑∞

v=0

∑∞
u=0 φuψve

iω(u−v)dω.
Leveraging this knowledge we prove the Equation 16

σ−1kk

∞∑
h=0

(
(ΨhΣ)j,k

)2
= σ−1kk

∞∑
h=0

(
n∑
z=1

(Ψh)j,z (Σ)z,k

)2

= σ−1kk
1

2π

∫ π

−π

∞∑
u=0

∞∑
v=0

(
n∑
x=1

(Ψu)j,x (Σ)x,k

)(
n∑
y=1

(Ψv)j,y (Σ)y,k

)
eiω(u−v)dω

= σ−1kk
1

2π

∫ π

−π

∞∑
u=0

∞∑
v=0

(
n∑
x=1

(
Ψue

iωu
)
j,x

(Σ)x,k

)(
n∑
y=1

(
Ψve

−iωv)
j,y

(Σ)y,k

)
dω

= σ−1kk
1

2π

∫ π

−π

(
∞∑
u=0

n∑
x=1

(
Ψue

iωu
)
j,x

(Σ)x,k

)(
∞∑
v=0

n∑
y=1

(
Ψve

−iωv)
j,y

(Σ)y,k

)
dω

= σ−1kk
1

2π

∫ π

−π

(
n∑
x=1

(
Ψ
(
eiω
))
j,x

(Σ)x,k

)(
n∑
y=1

(
Ψ
(
e−iω

))
j,y

(Σ)y,k

)
dω

= σ−1kk
1

2π

∫ π

−π

((
Ψ
(
e−iω

)
Σ
)
j,k

)((
Ψ
(
eiω
)
Σ
)
j,k

)
dω

= σ−1kk
1

2π

∫ π

−π

∣∣∣(Ψ (e−iω)Σ
)
j,k

∣∣∣2 dω
(19)

We use the switch to the spectral representation of the MA coefficients in the second
step. The rest is manipulation with the last step invoking the definition of modulus squared
of a complex number to be defined as |z|2 = zz∗. Note that we can use this simplification
without loss of generality, because the MA(∞) representation that is described by the
coefficients Ψh has always symmetric spectrum.

Next we concentrate on the Equation 17 levering similar steps and the positive semidefinit-
ness of the matrix Σ that ascertains that there exists P such that Σ = PP ′.
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∞∑
h=0

(ΨhΣΨ′h) =
∞∑
h=0

(ΨhP ) (ΨhP )′

=
1

2π

∫ π

−π

∞∑
u=0

∞∑
v=0

(
Ψue

iωuP
) (

Ψve
−iωvP

)′
dω

=
1

2π

∫ π

−π

∞∑
u=0

(
Ψue

iωuP
) ∞∑
v=0

(
Ψve

−iωvP
)′
dω

=
1

2π

∫ π

−π

(
Ψ
(
eiω
)
P
) (

Ψ
(
e−iω

)
P
)′
dω

=
1

2π

∫ π

−π

(
Ψ
(
eiω
)
ΣΨ′

(
e−iω

))
dω

(20)

This completes the proof.

Remark 2.2. Using the Remark 2.1 and appropriate substitutions, we have:

∑
dz∈D

CFdz =
∑
dz∈D


∑(

θ̃dz

)
j,k∑(

θ̃∞

)
j,k

−
Tr
{
θ̃dz

}
∑(

θ̃∞

)
j,k

 = 1−

∑
dz∈D Tr

{
θ̃dz

}
∑(

θ̃∞

)
j,k

=

1−
Tr
{∑

dz∈D θ̃dz

}
∑(

θ̃∞

)
j,k

= C∞

(21)

where the next to last equality follows from the linearity of the trace operator.

Remark 2.3. Using the definition of the connectedness, we have

CW(−π,π) = C∞ (22)

CF(−π,π) =

(
θ̃(−π,π)

)
j,k

n
−

Tr
{
θ̃∞

}
∑(

θ̃∞

)
j,k

=
n

n
−

Tr
{
θ̃∞

}
∑(

θ̃∞

)
j,k

= 1−
Tr
{
θ̃∞

}
∑(

θ̃∞

)
j,k

= C∞ (23)

Proposition 2.2. Let us take the original statement

lim
z→0+

∫ z+ε

z

Γj(ω) (f(ω))j,k dω +

∫ π

z+ε

Γj(ω) (f(ω))j,k dω

and evaluate the individual summands.
Regarding the second summand, let us first note that in case of the cointegrated pro-

cesses the unconditional variance is infinite. Hence, the Γj(ω) = 0 for any ω ∈ (ε, π), 0 <
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ε < π. Moreover, the causation spectrum does not exist for the integrated series, however,
we can use the spectrum of the ideally filtered series which exists and is equal to the original
spectrum on the interval (0, π].

Hence, we have∫ π

z+ε

Γj(ω) (f(ω))j,k dω =

∫ π

z+ε

Γj(ω)
(
f̃(ω)

)
j,k
dω =

∫ π

z+ε

0
(
f̃(ω)

)
j,k
dω = 0

due to the fact that the causation spectrum f̃(ω) is finite on the domain (z + ε, π).
For the part including limit let us suppose the ideal filter such that the spectrum of the

filtered series in 0 is well-defined rewrite

lim
z→0+

∫ z+ε

z

Γj(ω)
(
f̃(ω)

)
j,k
dω = lim

z→0+

∫ z+ε

z

(Ψ(e−iω)ΣΨ′(e+iω))j,j
1
π

∫ π
z

(Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2
(Ψ(e−iω)ΣΨ′(e+iω))j,j

dω

= lim
z→0+

∫ z+ε

z

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2
1
π

∫ π
z

(Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ
dω

= π lim
z→0+

∫ z+ε
z

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2 dω∫ π
z

(Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

= π lim
z→0+

d
dz

∫ z+ε
z

σ−1kk

∣∣∣(Ψ (e−iω) Σ)j,k

∣∣∣2 dω
d
dz

∫ π
z

(Ψ(e−iλ)ΣΨ′(e+iλ))j,j dλ

= π lim
z→0+

σ−1kk

∣∣∣(Ψ (e−iz) Σ)j,k

∣∣∣2
(Ψ(e−iz)ΣΨ′(e+iz))j,j

= π lim
z→0+

|B(z)|2σ−1kk
∣∣∣(Ψ (e−iz) Σ)j,k

∣∣∣2
|B(z)|2 (Ψ(e−iz)ΣΨ′(e+iz))j,j

= π lim
z→0+

σ−1kk

∣∣∣(B(z)Ψ (e−iz) Σ)j,k

∣∣∣2
(B(−z)Ψ(e−iz)ΣΨ′(e+iz)B′(+z))j,j

= π
σ−1kk

∣∣∣(B(0)Ψ (e−i0) Σ)j,k

∣∣∣2
(B(0)Ψ(e−i0)ΣΨ′(e+i0)B′(0))j,j

= π (f(0))j,k

(24)

The proof uses the l’Hospital rule. By this we have proven the second equality.
It remains to prove that

lim
H→∞

σ−1kk
∑H

h=0

(
(Ψ̃hΣ)j,k

)2
∑H

h=0(Ψ̃hΣΨ̃′h)j,j
=

σ−1kk

∣∣∣(B(0)Ψ (e−i0) Σ)j,k

∣∣∣2
(B(0)Ψ(e−i0)ΣΨ′(e+i0)B′(0))j,j

,
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where Ψ̃h =
∑h

i=1 ∆h, where ∆h is the h-lag of coefficients estimated on the differenced
series. Note that from the theoretical ideal filterB(ω) we move to the standard differencing
filter B(ω) = |1 − e−iω|2 in the following discussion. This is needed as the GFEVD is a
time-domain entity and we need appropriate non-forward looking filter to be able to pass
from the time-domain to the frequency domain. This is, however, of minor importance as
we use the filter to appropriately estimate the original coefficients and any non-forward
looking filter would perform similarly. Although, the differencing is handy in terms of ease
of manipulation.

H∑
h=0

(
h∑
i=0

∆iΣ

)2

=
z∑

h=0

(
h∑
i=0

∆iΣ

)2

+
H∑

h=z+1

(
h∑
i=0

∆iΣ

)2

=
z∑

h=0

(
∞∑
i=0

∆iΣ−
∞∑

i=h+1

∆iΣ

)2

+
H∑

h=z+1

(
∞∑
i=0

∆iΣ−
∞∑

i=h+1

∆iΣ

)2

(25)

Now, let us set z =
⌊√

H
⌋
.

H∑
h=0

(
h∑
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∆iΣ

)2
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∆iΣ−
∞∑

i=h+1
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∆iΣ

)
+

∞∑
h=b√Hc+1

( ∞∑
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(26)

Now, taking the 1/H limit of the expression, the first element converges to (
∑∞

i=0 ∆iΣ)
2
,
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the second term converges to zero because
((∑∞

i=h+1 ∆iΣ
)2 − 2 (

∑∞
i=0 ∆iΣ)

(∑∞
i=h+1 ∆iΣ

))
is bounded, and the third term converges to zero because 1

H

(∑∞
i=h+1 ∆iΣ

)
converges to

zero for H →∞. It suffices to notice that (
∑∞

i=0 ∆iΣ)
2

= (B(0)Ψ (e−i0) Σ)
2

The same argument would apply to the individual elements of the denominator.
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C Supplementary Tables and Figures

Connectedness as by DY12 Connectedness as by DY12, nullified correlation

β1 β2 s ρ Connectedness (π/2, π) (π/4, π/2) (0, π/4) Connectedness (π/2, π) (π/4, π/2) (0, π/4)

0.40 -0.40 0.00 0.00 0.15 0.20 0.20 0.19 0.08 0.07 0.07 0.07
(0.12) (0.21) (0.19) (0.21) (0.08) (0.07) (0.07) (0.07)

0.40 -0.40 0.00 0.90 44.76 44.78 44.78 44.79 0.11 0.13 0.13 0.12
(0.35) (0.35) (0.35) (0.36) (0.11) (0.18) (0.17) (0.17)

0.40 -0.40 0.20 0.00 3.37 3.49 3.30 3.20 3.48 3.44 3.47 3.49
(0.60) (0.99) (0.78) (1.08) (0.64) (0.67) (0.68) (0.69)

0.40 -0.40 0.20 0.90 45.03 43.88 45.49 45.98 3.53 3.55 3.55 3.55
(0.34) (0.48) (0.32) (0.31) (0.60) (0.54) (0.62) (0.67)

0.40 -0.40 0.59 0.00 23.11 23.07 22.86 22.75 23.14 22.93 22.93 22.97
(0.93) (1.55) (1.17) (1.90) (0.96) (1.18) (1.00) (1.27)

0.40 -0.40 0.59 0.90 46.86 41.53 47.75 48.43 24.38 23.00 22.80 22.74
(0.29) (0.70) (0.17) (0.16) (0.97) (0.90) (1.14) (1.45)

0.40 -0.40 -0.20 0.00 3.48 3.55 3.49 3.46 3.42 3.38 3.35 3.34
(0.64) (0.89) (0.80) (1.05) (0.65) (0.69) (0.67) (0.68)

0.40 -0.40 -0.20 0.90 45.03 45.84 44.45 43.45 3.56 3.43 3.41 3.40
(0.31) (0.28) (0.37) (0.46) (0.61) (0.65) (0.57) (0.54)

0.40 -0.40 -0.59 0.00 23.07 23.25 22.98 22.83 23.16 23.23 23.15 23.16
(0.94) (1.49) (1.08) (1.68) (1.04) (1.30) (0.95) (1.25)

0.40 -0.40 -0.59 0.90 46.88 48.31 45.31 39.56 24.70 23.07 23.09 23.13
(0.29) (0.17) (0.34) (0.78) (0.92) (1.56) (0.86) (0.85)

Table 5: Simulation results. The first three columns describe parameters for the simulation as
described in equation 7. The results are based on 100 simulations of VAR with the specified
parameters of length 1000 with a burnout period of 100. The estimate is computed as mean of
the 100 observations and the standard error is simple sample standard deviation. The numbers
are multiplied by hundred.

Figure 4: Industrial production (in logarithms) for the G-7 countries as used in the estimation.
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β1 β2 s ρ Connectedness (π/2, π) (π/4, π/2) (0, π/4)

0.0 0.0 0.00 0.0 0.00 0.00 0.00 0.00
0.0 0.0 0.00 0.9 44.75 44.75 44.75 44.75
0.9 0.9 0.09 0.0 40.50 0.30 0.90 41.15
0.9 0.9 0.09 0.9 49.47 44.25 44.41 49.51
-0.9 -0.9 0.09 0.0 40.50 40.77 0.34 0.24

-0.9 -0.9 0.09 0.9 41.28 41.01 45.22 45.22
0.9 0.4 0.09 0.0 5.66 0.32 0.88 7.48
0.9 0.4 0.09 0.9 46.09 44.25 44.48 46.56
0.9 0.0 0.09 0.0 2.59 0.32 0.80 3.97
0.9 0.0 0.09 0.9 45.40 44.25 44.51 45.98

0.9 -0.9 0.09 0.0 0.45 0.45 0.45 0.45
0.9 -0.9 0.09 0.9 44.76 44.26 44.97 45.26
0.4 -0.4 0.00 0.0 0.00 0.00 0.00 0.00
0.4 -0.4 0.00 0.9 44.75 44.75 44.75 44.75
0.4 -0.4 0.20 0.0 3.33 3.33 3.33 3.33

0.4 -0.4 0.20 0.9 45.01 43.52 45.62 46.28
0.4 -0.4 0.59 0.0 23.08 23.08 23.08 23.08
0.4 -0.4 0.59 0.9 46.87 40.94 47.86 48.64
0.4 -0.4 -0.20 0.0 3.33 3.33 3.33 3.33
0.4 -0.4 -0.20 0.9 45.01 46.05 44.27 43.00

0.4 -0.4 -0.59 0.0 23.08 23.08 23.08 23.08
0.4 -0.4 -0.59 0.9 46.87 48.51 45.13 38.84

Table 6: The true values for connectedness in the VAR settings.

BAC DIS KO MSFT PFE T XOM

Mean 0.018 0.012 0.009 0.012 0.012 0.011 0.012
Median 0.013 0.010 0.008 0.010 0.010 0.009 0.010

Standard Dev. 0.018 0.008 0.005 0.007 0.006 0.008 0.007
Skewness 3.820 3.980 4.339 3.367 3.537 4.209 5.455
Kurtosis 20.506 26.242 31.091 18.852 21.759 29.954 57.341

Table 7: Descriptive ststistics of the BPV realised volatilities of the sample.
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