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Abstract

This paper builds a model of high-frequency equity returns by separately modeling the dynamics of
trade-time returns and trade arrivals. Our main contributions are threefold. First, we characterize
the distributional behavior of high-frequency asset returns both in ordinary clock time and in trade
time. We show that when controlling for pre-scheduled market news events, trade-time returns of the
near-month E-mini S&P 500 futures contract are well characterized by a Gaussian distribution at very
fine time scales. Second, we develop a structured and parsimonious model of clock-time returns using a
time-changed Brownian motion composed with a general, non-Lévy directing process. Particular cases
of this model allow for leptokurtosis and volatility clustering in clock-time returns, even when trade-
time returns are Gaussian. Finally, we highlight conditions on the directing process which are required
in order to generate proper volatility dynamics while simultaneously matching the unconditional dis-
tribution of returns. In-sample fitting and out-of-sample realized volatility forecasting demonstrate the
strength of our model relative to leading candidates.
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1 Introduction

Modern electronic exchanges function in a manner that outwardly display the properties that are

expected of an efficient, liquid market. Bid-offer spreads are narrow in comparison to the price of

the underlying instrument being traded, volumes are high, high-frequency traders compete to make

markets, and information regarding price discovery is disseminated at nearly the speed of light (see,

e.g. Brogaard et al. (2013) and Hasbrouck and Saar (2013)). Within such an environment, the

disparate, shifting spectrum of intentions of a wide range of market participants is continuously

being aggregated, and so a naive, but nonetheless reasonable, expectation is that the Central Limit

Theorem should play a fundamental role, and that short-period returns should adhere to a Gaussian

distribution.

Indeed, from the pioneering work of Bachelier (1900) through the development of the Black-

Scholes options pricing model (Black and Scholes (1973)), modern finance has traditionally held that

market price movements can be approximated to a somewhat useful degree by a Gaussian random

walk. In reality, observed distributions of market returns are markedly non-Gaussian. Regardless

of venue and asset class, returns distributions invariably have fat tails and display the phenomenon

of volatility clustering. A rich literature exists which describes both the characterization and the

modeling of the observed departures from normality (for a review, see Bouchaud (2005)).

In this contribution, we carry out a ground-level re-examination of the process that generates

short-period market returns within the context of high-frequency trading (over time scales ranging

from milliseconds to minutes). We analyze six complete months of recent, millisecond-resolution

tick data from the extremely liquid near-month E-mini S&P 500 futures contract traded at the

Chicago Mercantile Exchange.

Our analysis begins with a significant empirical insight: outside of pre-scheduled news an-

nouncement periods, high-frequency asset returns are well described by a Gaussian distribution

when trade time is employed. Brada et al. (1966) introduced the notion of trade time to show

that asset returns distributions are nearly Gaussian if the returns process is subordinated with

successive transactions (trades) acting as the subordinator. Mandelbrot and Taylor (1967) showed

that a Gaussian random walk composed with a subordinating trade-time process is fully consistent
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with a fat-tailed, Lévy-stable distribution, as suggested in Mandelbrot (1963). Clark (1973) used

an alternative subordinator, time measured by volume of transactions, to obtain similar results.

More recently, Ane and Geman (2000) shows that coarsely sampled intra-day returns also conform

to a Gaussian distribution when measured in trade (transaction) time.

Our analysis demonstrates that the Gaussianity of trade-time returns does not immediately

extend to high-frequency intra-day returns. That is, high-frequency, trade-time returns exhibit

heavy tails and volatility clustering when considered unconditionally throughout the day. However,

by excluding the periods surrounding pre-scheduled news events, we confirm the existence of trade-

time Gaussianity as well as a lack of volatility persistence.

Building on the empirical observations above, our paper makes two theoretical contributions.

First, we develop a general time-changed Brownian motion model for high-frequency asset returns,

similar to those of Press (1967), Mandelbrot and Taylor (1967) and Clark (1973), but allowing for

more general (non-Lévy) directing processes. In particular, we allow the directing process to be

characterized by inter-trade durations which follow the autoregressive conditional duration (ACD)

model of Engle and Russell (1998) as well as the Markov-Switching Multifractal Duration (MSMD)

model of Chen et al. (2013) and Zikes et al. (2014), which builds on the work of Mandelbrot et al.

(1997), Calvet et al. (1997) and Fisher et al. (1997), as well as subsequent work by Calvet and Fisher

(2001), Calvet and Fisher (2002) and Calvet (2004). In this dimension our work differs substantially

from that of Ane and Geman (2000): where they begin with a nonparametric estimate of the

distribution of clock-time asset returns and work backwards to implicitly define the nonparametric

density of trades that would be consistent with trade-time Gaussianity, we work forwards by first

compounding a parametric distribution of trade-time returns with a parametric model of duration

times (and hence, an associated trade arrival process) to characterize the distribution of clock-

time returns. Our contribution is significant because it promotes a structured and parsimonious

approach to approximating the observed evolution of asset returns.

Second, we develop conditions under which the directing process can generate realistic dynamics

for asset returns. The early work on subordinated Brownian motion, cited above, focused entirely

on the unconditional distribution of returns. Our work, however, shows that this same class of
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models is flexible enough to capture volatility persistence when the proper directing process is

used. In a similar vein, Carr and Wu (2004) show how this class of models can account for the

leverage effect.

The financial econometrics literature has utilized stochastic time changes to explain volatility

dynamics, but this has typically been done by working with volatility directly. Madan and Seneta

(1990) is an early example of this. More recently, Andersen et al. (2007), Andersen et al. (2010) and

Todorov and Tauchen (2014) “devolatize” intra-day clock-time returns using short-term volatility

measures in order to achieve conditional Gaussianity. Such devolatization devices are akin to

stochastic time changes in that they control for the random flow of information and assume that

the underlying returns process is Gaussian. The upshot is that they use latent volatility as a

surrogate for information content while we use the observed transaction record. Our theoretical

choice to focus on transactions is a result of the strong empirical evidence suggesting that this is

the proper device for time deformation.

Using Monte Carlo simulations, we show that our compound duration model is a good charac-

terization of observed clock-time returns and that the stochastic transformation between clock time

and trade time for our data is most effectively explained using MSMD durations. In particular,

we highlight the in-sample strengths of both versions of our model (ACD and MSMD durations)

relative to a benchmark compound Poisson as well as a more traditional GARCH model that has

been adapted to high-frequency data (Engle (2000)). We also conduct an out-of-sample realized

volatility forecasting exercise which demonstrates that despite its high degree of parameterization,

the compound MSMD model significantly outperforms competing models.

Our paper proceeds as follows. We begin by describing our data in Section 2 and provide an

analysis of the distributional characteristics of the data during news-affected and non-news-affected

subperiods in Section 3. In Section 4, we describe the model and determine conditions under which

it can produce volatility dynamics. Section 5 estimates the model and compares Monte Carlo

simulations with observed data while Section 6 reports out-of-sample realized volatility forecasting

results. Section 7 concludes.
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2 Data

In this paper we focus our analysis exclusively on the Chicago Mercantile Exchange (CME) near-

month E-mini S&P 500 Futures contract (commodity ticker symbol ES). Although the CME pro-

vides a variety of E-mini products, the E-mini S&P 500 futures contract is the most heavily traded,

and for this reason it is commonly referred to as the E-mini. As indicated by its name, the E-mini

(ES) is a futures contract that trades at 1/5th the size of the standard S&P 500 futures contract.

It has a notional value of 50 times the index. We obtained the full record of trades for the period

1 January 2014 to 31 December 2014 by parsing the CME historical files, encoded in FIX format,

which we use to estimate and evaluate our model in Section 5.

Despite the fact that the E-mini is a futures contract that does not trade on equities ex-

changes, its statistical behavior characterizes the dynamics of the equity markets as a whole. This

is attributed to its liquidity and the relationship of price formation and information transmission

between the futures and equities exchanges in Illinois and New Jersey, as studied in Laughlin et al.

(2014).

E-mini futures trade Monday through Friday, starting at 5:00 p.m. Central Time on the previous

day and ending at 4:15 p.m., with an additional daily maintenance trading halt from 3:15 p.m. to

3:30 p.m., Central Time. We aggregate multiple trades occurring within single milliseconds as unit

transactions and assign to them the final, in-force price of the millisecond as the price of the trade.

While not a perfect approximation, this assumption exploits the fact that multiple transactions

with the same time stamp are nearly always attributable to a single aggressor order filling several

resting orders at the same price level and also allows us to circumvent singularities associated with

zero durations in our subsequent models. Our resulting data for the sample period contains a total

of 11,875,293 such transactions.

The quoted price of the E-mini corresponds to the index value of the S&P 500. The minimum

quoted price increment is ∆P = 0.25 index points, which corresponds to an actual increment of $50

× 0.25 = $12.50 for a single contract. For the remainder of the paper we will use quoted E-mini

prices, measured in points, which correspond directly to the S&P 500 index value. Between January

and June of 2014, the S&P 500 Index traded between Pmin = 1732 and Pmax = 1960, indicating a
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typical minimum percentage increment in the index price of 100× ∆P
(Pmin+Pmax)/2 ∼ 0.013%.

Because we are interested in investigating the distributions of intra-day asset returns during

news event periods and non-event periods, we consider subsamples of the data that sort accord-

ing to news events. Since the E-mini is a futures contract on a market aggregate, it is almost

exclusively affected by major macroeconomic announcements, and not by smaller scale, industry-

or firm-specific news. For this reason, we classify news event periods with the EconoDay calen-

dar (econoday.com), which lists major pre-scheduled news announcements in the U.S. and which

powers calendars for outlets such as Bloomberg and the Wall Street Journal. In particular, we

focus attention on the EconoDay ‘Market Moving Indicator’ and ‘Merit Extra Attention’ series, as

past experience dictates that these are the events most relevant to markets. Since 10:00 a.m. is

the most common news announcement time during regular market hours, we form an event-driven

dataset of all E-mini trades that occurred during a 1000-second (roughly 16-minute) window fol-

lowing a news announcement at that time. That is, the event-driven dataset is comprised of trades

from approximately 10:00-10:16 a.m. that follow any pre-scheduled news announcement during the

sample period. We form a corresponding non-event-driven subsample that constitutes all trades

during the same time window on days when announcements were not scheduled. A 1000-second

window encompasses participants ranging from the fastest algorithmic traders to human traders

who manually read the news, consider its implications, and trade on their resulting conclusions.

For the remainder of the paper, we will refer to the event-driven subsample as the active data

and the non-event subsample as the passive data. Our initial separation of daily data by news

resulted in 61 active data periods and 67 passive data periods, but due to complications with timing

event windows1, we discarded the 12 days corresponding to the University of Michigan Consumer

Sentiment reports, which reduced the sample to 57 active periods and 58 passive periods. Despite

the fact that trading is heavier following news events, the former sample is only about 20% larger:

364,264 records in the active data and 302,840 records in the passive data. Hence, our results below

1The University of Michigan Consumer Sentiment report is released twice monthly at 9:55 a.m., Eastern Time.

Since some of these announcements also coincided with other 10:00 a.m. announcements during our sample period,

a 1000-second time window would not have provided an appropriate filter relative to events on other days. For

uniformity, we simply exclude the Consumer Sentiment days.
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are not an artifact of clock time (both data sets are drawn from the same intra-day time periods)

or sample size.

3 Empirical Distributions of Intra-Day Asset Returns

In this section we emphasize some of the key features of observed intra-day asset returns distribu-

tions. We define clock-time returns as

rδ(t) = p(t)− p(t− δ) (1)

where p(t) is the price of an asset at time t and δ is the clock-time duration under consideration

(such as 1000 milliseconds). An alternative definition of returns can be provided in trade time,

where time increments are measured by a fixed number of trades:

rm(n) = p(n)− p(n−m), (2)

where n represents the n-th trade and m represents the number of trades in a unit of time. Note

that trade time is distinct from volume time: the former defines time by number of transactions

(regardless of the size of the transactions) while the latter defines time by number of contracts

traded. Although the two are closely related (volume is much less variable in trade time than

clock time) they are distinct. As mentioned in the introduction, Clark (1973) subordinates returns

with volume as a time increment. However, within the context of the historically well documented

volume/volatility relationship (Karpoff (1987), Gallant et al. (1992), Tauchen et al. (1996), Aldrich

(2013)), Jones et al. (1994) shows that there is little additional information content in volume

beyond the number of transactions. In each case, the objective is to use a measure of time that

controls for latent information arrival. We choose to follow Jones et al. (1994) and adopt number

of transactions as the best surrogate.

Empirical asset returns (measured in clock time) typically exhibit notable features such as

leptokurtosis and conditional heteroskedasticity, regardless of time scale. Much effort has been

expended over the course of decades to model the heavy tails of returns distributions (Mandelbrot

(1963)) as well as the strong autocorrelation of volatility (Engle (1982) and Bollerslev (1986)).
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In the subsequent analysis we show that the observations of Brada et al. (1966), Mandelbrot

and Taylor (1967), Clark (1973) and Ane and Geman (2000), that trade-time returns are nearly

Gaussian, extend to high-frequency, intra-day returns when controlling for pre-scheduled news

announcements.

3.1 Intra-day Clock-Time and Trade-Time Distributions

As reported in Section 2, the 57 active 1000-second time intervals contain 364,264 transactions, while

the 58 passive 1000-second time intervals contain a total of 302,840 transactions. This corresponds

to an average of 6.39 transactions per second in the active subsample and 5.22 transactions per

second in the passive subsample. In a prior data subsample, for 2013, we found the respective

averages to be closer to 3 and 4 transactions per second. To strike a balance, we assume in

the remaining analysis that 1 transaction corresponds to 0.25 seconds, or 250 milliseconds. We

consider time aggregated returns for δ = {250, 500, 1000, 4000, 10000, 30000} milliseconds (i.e. our

largest time scale is 30 seconds) and m = {1, 2, 4, 40, 400, 4000} trades, which according to our

approximation are roughly corresponding time intervals.

Figure 1 isolates empirical returns distributions for a single time scale during both active and

passive news regimes: δ = 10000 ms (10 seconds) and m = 40 trades. The upper row of plots

depict the empirical density functions of discretely observed returns over the entire sample period,

superimposed upon Gaussian distributions that are estimated by maximum likelihood. These are

shown with the vertical axis on a log scale in order to highlight discrepancies in the tails of the

distributions. The second row of plots in Figure 1 show corresponding quantile-quantile (Q-Q)

plots of the distributions in the upper panels. Departures from Gaussianity are highlighted via

nonlinearities in the Q-Q plots.

Figure 1 shows that intra-day clock-time returns have heavy tails for both active and passive

time periods, suggesting that the data generating process has higher probabilities of extreme events

than a Gaussian distribution, even during passive, non-event periods. The same is true of active-

period trade-time returns. The characteristic heavy tails of the empirical distributions are visible

in the Q-Q plots as a convex-concave departure from linearity. Remarkably, the empirical density
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Figure 1: Empirical density and Q-Q plots for clock-time and trade-time returns for both active and passive sub-

samples. The clock-time interval is δ = 10000 milliseconds (10 seconds) and the trade-time interval is

m = 40 (chosen to roughly match the clock-time interval).

and corresponding Q-Q plot in the last column of Figure 1 show that passive-period, trade-time

returns conform closely to a Gaussian distribution – they do not have the same propensity for

extreme events as the other datasets. This feature forms the backbone of our model in Section 4.

Figure 2 shows Q-Q plots of clock-time and trade-time returns during active and passive periods

for all time scales that we consider. The panels in the first and second rows of the figure compare the

empirical quantiles of the clock-time returns with the theoretical quantiles of the best-fit Gaussian

distributions for active and passive periods, respectively. The panels in the third and fourth rows

are the same for trade-time returns.

Not surprisingly, the upper rows of Figure 2 show that clock-time returns distributions are

markedly different from a Gaussian density over a variety of intra-day time scales, and exhibit pat-

terns of leptokurtosis, especially at fine time scales. In addition to the diminishing tail weight with

increasing δ, comparison of active-period and passive-period clock-time returns shows that active,

news-event periods have much heavier tails. This is exactly as we would anticipate, since periods

following news announcements should have a higher frequency of large price movements. The third
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Figure 2: Sample Q-Q plots for returns in both clock time and trade time and in both active and passive subsamples.

Each panel corresponds to a clock-time or trade-time interval during either the active or passive subsample

of data. The vertical axes depict sample quantiles of the data and the horizontal axes depict theoretical

quantiles of best-fit Gaussian distributions.

row of Figure 2 shows that trade-time returns during the active subsample are quite similar to

those of clock-time returns during active and passive subsamples: leptokurtosis diminishing with

m. The final row of the figure, however, highlights the surprising result noted above: during passive,

non-event time periods, trade-time returns conform quite closely to a Gaussian distribution.

Gaussianity of high-frequency, trade-time returns is not immediately apparent when studying

intra-day data because trading during news event periods has a large impact on the unconditional

distribution of returns. For considerations of space, we have not included Q-Q plots for the full

sample of data (without sorting on news events), however the corresponding empirical distributions

look quite similar to those we have shown for the active subsample. That is, trading during limited

periods of pre-scheduled news announcements has a very large impact on the tail probabilities of

10



the unconditional returns distributions. In contrast, as the bottom panels of Figure 2 indicate, if

one only considers returns during non-event times, a Gaussian distribution provides an excellent

fit. This is true for our very limited subsample of passive period returns (1000 seconds following

10:00 am on each day without a news announcement at that time) as well as for the full sample of

intra-day returns that excludes the 1000 second periods following each news announcement.

Figures 3 and 4 depict day-by-day sample autocorrelation functions (ACFs) of returns and

squared returns (respectively) for the clock-time and trade-time intervals considered in the Q-Q

plots of Figure 2. For each lag value on the x-axis, the 0.05, 0.5 and 0.95 quantiles of the ACFs are

depicted in dark red or blue. The corresponding ACF for the entire sample, treated contiguously,

is shown as a solid black line. We emphasize, however, that given the large breaks between the

daily subsamples of our data, it is not correct to compute the ACF for the entire data sample. The

black dotted lines depict 95% Bartlett bounds for the null hypothesis of no serial correlation.

It is generally accepted that asset returns exhibit no significant autocorrelation except at very

fine time scales, where bid/offer bounce and mean reversion induce negative correlation among

adjacent trades. Figure 3 corroborates these stylized facts: for all series and at all time scales,

returns show no autocorrelation except at the first lag, which demonstrates significant evidence of

reversion. The strength of the reversion is greatest at the finest time scales, but is still present

even for δ = 30000 ms and m = 120, where the ACF bundles for each dataset are slightly shifted

towards negative values and eclipse the negative Bartlett bounds.

ACFs of squared returns, shown in Figure 4, are typically used to diagnose the persistence of

volatility, which is a well documented property of financial asset returns. In particular, the panels in

the second row of Figure 4, which correspond to passive-period, clock-time returns, are exemplary

of the persistent nature of volatility: a high degree of autocorrelation at low lags and a subsequent

low-level of persistence over a long horizon, which is exhibited by the vertical displacement of

autocorrelation values for δ ≤ 1000 ms. A similar vertical asymmetry is also apparent for the active-

period clock-time returns. The remaining panels show that trade-time returns exhibit volatility

persistence at low lags, but that the persistence quickly disappears with no apparent long-horizon

autocorrelation (i.e. no vertical displacement of the distributions of autocorrelations).
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Figure 3: Sample autocorrelation functions of returns in both clock time and trade time and in both active and

passive subsamples. Each panel corresponds to a clock-time or trade-time interval during either the active

or passive subsample of data.

4 Model

Following Mandelbrot and Taylor (1967), we model asset prices as time-changed Brownian motion:

p(t) = σB(τ(t)), (3)

where {B(τ)} is standard Brownian motion and {τ(t)} is an increasing process known as the

directing process. We restrict attention to pure-jump directing processes, which is a characteristic

inherited by the price process. Intuitively, {τ(t)} is a stochastic time change which represents

business or transaction time. If {τ(t)} is restricted to be a Lévy process, then its increments are,

by definition, independent and it is referred to as a subordinator. Notable examples of such Lévy

directing processes are the Gamma process, which results in the Variance-Gamma model of Madan
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Figure 4: Sample autocorrelation functions of squared returns in both clock time and trade time and in both active

and passive subsamples. Each panel corresponds to a clock-time or trade-time interval during either the

active or passive subsample of data.

and Seneta (1990) and Madan et al. (1998), and the Exponential process, which is related to the

compound Poisson process. Our model, on the other hand, does not enforce the Lévy restriction

of independent increments, but allows for more general directing processes. In fact, the dynamics

of returns will depend importantly on the dynamics of the directing process.

For a given increasing, pure-jump directing process, {τ(t)}, we define two auxiliary processes:

ti = min
t
τ(t) = i, i = 1, 2, . . . (4)

N(t) =

∞∑
i=1

I{ti≤t}, t > 0. (5)

The point process {ti} represents the jump or transaction times and {N(t)} is the counting process

13



induced by the directing process. The point process increments,

di = ti − ti−1, (6)

are the durations between transactions. The assumption of a Lévy directing process implies in-

dependence of the point process and inter-trade durations. On the other hand, non-independent

increments to the directing process allows for time dependence in the processes defined in Equa-

tions (4) and (5) as well as the inter-trade durations.

The increments to the subordinated Brownian motion in Equation (3) can be expressed as

rδ(t) =

Nδ(t)∑
i=1

ri (7)

where

rδ(t) = p(t)− p(t− δ) (8)

Nδ(t) = N(t)−N(t− δ) (9)

ri
i.i.d.∼ N (µ, σ), ∀i. (10)

The interpretation is that increments to the subordinated Brownian motion are the summation of

a random number of standard Brownian increments. The probability density function of rδ(t) is,

f(rδ(t)|µ, σ) =
∞∑
k=1

f

(
k∑
i=1

ri

∣∣∣∣Nδ(t) = k, µ, σ

)
f(Nδ(t) = k). (11)

Equation (11) is a finite Gaussian mixture model with mixture weights that vary according to

the probability distribution of Nδ(t). The model can also be characterized as a two-stage hier-

archical model in which a number of trades is drawn from the distribution of Nδ(t) in the first

stage and a single δ-period return is drawn from the Gaussian distribution of rδ(t) =
∑Nδ(t)

i=1 ri ∼

N
(
Nδ(t)µ,

√
Nδ(t)σ

)
in the second stage.

Equation (11) is a form of the mixture of distributions hypothesis (MDH, Epps and Epps (1976))

for asset returns and has been utilized in various forms in the finance literature since the work of

Press (1967). While certain cases of MDH models mix directly over time varying volatility, and

hence allow for temporal dependence in the directing process, much of the focus of stochastic time

change MDH models has been on Lévy directing processes, with the objective to match empirical
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moments of unconditional returns distributions. It is, in fact, the temporal dependence of the

directing process which governs the dynamics of return volatility, a result that we develop at the

end of this section. First, we highlight several specializations of the model in Equation (7), which we

compare in Section 5. It is important to note that these specializations can either be characterized

by their directing processes, associated point processes, counting processes or inter-trade durations.

With the exception of the compound Poisson process, we will typically find it convenient to focus

on their characterization in terms of inter-trade durations.

4.1 Compound Poisson Process

A starting point for modeling trade arrivals would be to assume they follow a Poisson process:

Nδ(t) ∼ Poisson(γδ)

where γ is the trade arrival intensity parameter. In this case Equation (11) becomes

f(rδ(t)|µ, σ) =
∞∑
k=1

1

σ
√

2πk
exp

{
−1

2

(
∑k

i=1 ri − kµ)2

kσ2

}
× exp{−γδ}(γδ)k

k!
. (12)

This is the compound Poisson process developed by Press (1967) and Press (1968). Although,

its density function cannot be obtained in closed form, it can be approximated by Monte Carlo

simulation: first making independent draws from the Gaussian distribution and then accumulating

random numbers of those Gaussians according to integer deviates drawn from the Poisson den-

sity. When δ is large relative to γ, the N (γδ,
√
γδ) density serves as good approximation to the

Poisson(γδ) density, which results in an approximate Gaussian density for rδ(t). However, for

small values of δ (very short calendar time intervals) the compound Poisson process does exhibit

leptokurtosis.

In this single case, we focus on the counting process as the representation of time deformation

and that the assumption of Poisson trade arrivals implies that inter-trade durations are distributed

as an Exponential random variable, with rate γ. This is also the only time deformation model

that we will consider which has Lévy increments. In the remainder of this section, we will focus on

models that represent time deformation with dependent, inter-trade durations.
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4.2 Compound ACD Process

Engle and Russell (1998) introduce a dynamic model for inter-trade durations known as the au-

toregressive conditional duration (ACD) process. Widely considered the benchmark for dynamic

models of inter-trade durations, the ACD process exploits a GARCH-style structure for expected

waiting times:

di = ψiεi (13)

ψi = ω +
m∑
j=0

αjdi−j +

q∑
j=0

βjψi−j , (14)

where di represents inter-trade durations, ψi = E [di] and εi represents an innovation at time i.

Engle and Russell (1998) refer to Equations (13) and (14) as the ACD(m,q) model and separately

consider both Exponential and Weibull innovations. As with the GARCH model, Engle and Russell

(1998) demonstrate that a simple Exponential-ACD(1,1) model is very effective at capturing the

dynamics of inter-trade durations.

While ACD models are typically combined with ARCH/GARCH models to generate high-

frequency asset price dynamics (Engle (2000)), we propose a compound-duration model of the form

in Equation (7), utilizing counting processes that are induced by ACD durations. We subsequently

refer to this model as the compound ACD processes.

4.3 Compound Multifractal Process

Chen et al. (2013) and Zikes et al. (2014) develop the Markov-switching multifractal duration

(MSMD) model, which builds on the multifractal volatility model of Calvet and Fisher (2001),

Calvet and Fisher (2002) and Calvet (2004). While Zikes et al. (2014) develop a general character-

ization of the MSMD model, we focus on the specific case considered by Chen et al. (2013). The

core components of the model are a set of k̄ latent state variables, Mk,i, that obey a two-state

Markov-switching process with varying degrees of persistence, γk, for k = 1, 2, . . . , k̄. That is, the
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distribution of trade durations, di, is governed by the equations,

di =
εi
λi

(15a)

εi ∼ Exp(1) (15b)

λi = λ
k̄∏
k=1

Mk,i (15c)

Mk,i =


M with probability γk

Mk,i−1 otherwise

(15d)

γk = 1− (1− γk̄)b
k−k̄

(15e)

M =


m0 with probability 1/2

2−m0 otherwise.

(15f)

Hence, the MSMD can be succinctly characterized by five parameters: k̄ ∈ N, λ > 0, γk̄ ∈ (0, 1),

b ∈ (1,∞) and m0 ∈ (0, 2]. The intuition is that conditional on knowing the values of the latent

state variables, inter-trade durations are Exponentially distributed with intensity parameter λi.

However, as time evolves, the latent states, Mk,i, switch values with varying degrees of persistence,

γk. This causes the unconditional distribution of trade durations to be a mixture of Exponentials,

which is consistent with the over-dispersion property of the observed data, described in Chen et al.

(2013). The latent states can be interpreted as shocks that have varying impacts over diverse

timescales, some having short-horizon and others have long-horizon effects. The value b governs a

tight relationship between the persistence parameters, γk, and is responsible for the parsimony of

the model: even with a large number of latent states, k̄, the model is always characterized by a

total of five parameters. The choice of b dictates the degree of heterogeneity in values of persistence

parameters. For more insight regarding the MSMD model, see Chen et al. (2013) and Calvet and

Fisher (2008).

The distribution of rδ(t) retains its hierarchical structure under the MSMD model, with the

number of trades per unit of time being drawn from a mixture of Poisson distributions in the first

stage. We refer to rδ(t) as a compound multifractal process when the Gaussian mixture weights

correspond to count probabilities associated with MSMD durations.
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The variability of the MSMD stochastic intensity parameter, λi, causes MSMD durations to ex-

hibit far greater heterogeneity than those of the constant-intensity Exponential. Chen et al. (2013)

liken stochastic intensity in duration models to stochastic volatility in returns models: “Just as

stochastic volatility ‘fattens’ Gaussian conditional returns distributions, so too does MSMD ‘over-

disperse’ exponential conditional duration distributions.” (p. 9). In fact, we find that stochastic

intensity plays the dual role of duration over-dispersion and returns tail fattening: the dispersion

of probability over a greater variety of counts, relative to the simple Poisson model, induces greater

heterogeneity in the Gaussian mixture, which generates fatter tails for rδ(t). Intuitively, the ran-

dom variable rδ(t) switches between a greater variety of differing sums of Gaussians with higher

probability. In addition, the compound multifractal model explicitly generates volatility persistence

by producing autocorrelation in the inter-trade duration distribution, via Markov-switching latent

states. Similar mechanisms in the ACD process result in leptokurtosis and volatility persistence for

clock-time returns.

4.4 Volatility Persistence

The compound returns model of Equations (7) – (10) is able to simultaneously generate fat tails and

volatility persistence. The latter feature, however, is dependent on the dynamics of the counting

process, which we now show.

THEOREM 1 Given a counting process N(t) and a Gaussian mixture process rδ(t) as specified

in Equations (7) – (10), then

γr2
δ ,k

= σ4γNδ,k, k = 0, 1, 2, . . . , (16)

where γXδ,k = Cov (Xδ(t), Xδ(t− δk)) is the kth δ-period autocorrelation for X ∈ {r2, N}.

18



Proof

γr2
δ ,k

= Cov (r2
δ (t), r

2
δ (t− kδ)) (17)

= Cov

Nδ(t)∑
i=1

ri

2

,

Nδ(t−kδ)∑
j=1

rj

2 (18)

= Cov


Nδ(t)∑
i=1

r2
i + 2

Nδ(t)−1∑
i=1

Nδ(t)∑
n=i+1

rirn︸ ︷︷ ︸
A

,

Nδ(t−kδ)∑
j=1

r2
j + 2

Nδ(t−kδ)−1∑
j=1

Nδ(t−kδ)∑
m=j+1

rjrm︸ ︷︷ ︸
B

 (19)

= E [Cov (A,B|Nδ(t), Nδ(t− kδ))]︸ ︷︷ ︸
=0

+Cov (E[A|Nδ(t)], E[B|Nδ(t− kδ)]) (20)

= Cov (Nδ(t)σ
2, Nδ(t− kδ)σ2) (21)

= σ4Cov (Nδ(t), Nδ(t− kδ)). (22)

= σ4γNδ,k. (23)

2

Theorem 1 shows that the persistence of squared returns is directly related to the persistence

of the counting process. An immediate implication follows.

LEMMA 1 Given a Lévy counting process, N(t), i.e. a renewal process, a Gaussian mixture

process rδ(t) as specified in Equations (7) – (10) does not exhibit serial correlation among its

squared values.

It follows from Lemma 1 that the compound Poisson process will not exhibit volatility persis-

tence. Further, any subordinated Brownian motion with a Lévy directing process, and its corre-

sponding Gaussian mixture model, will not generate volatility dynamics. On the other hand, the

ability of a non-Lévy directing processes to generate volatility dynamics will depend on the dynam-

ics of the counting process. This suggests that the ability of the compound ACD and MSMD models

to match volatility dynamics, will depend on the ability of their associated counting processes to

match the dynamics of observed transaction counts. The ACD and MSMD models accomplish

this by directly modeling serial dependence among inter-trade durations, which propagates to the

associated counting processes. While the result stated above is an exact, finite-sample result, Deo
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et al. (2009) establish conditions under which long memory in durations asymptotically propagates

to the associated counting process and clock-time returns within a pure-jump model. However, it

is important to note that in our model, serial correlation of durations is sufficient but not necessary

to generate the appropriate serial correlation in volatility via the counting process; it is possible

for trade-count persistence to exist in the presence of independent durations.

5 Estimation and Results

Using the non-event E-mini returns data described in Sections 2 and 3, we estimate the parameters

of the component distributions in Equation (11) and simulate from the mixture model. In particular,

we first estimate the duration models described in Section 4, which we then compound with an

estimated Gaussian distribution for trade-time returns to synthesize a distribution for clock-time

returns. Using Monte Carlo approximations for the distribution of clock-time returns, we evaluate

the candidate models using several measures of goodness-of-fit and distributional distance.

5.1 Estimation

Since the observed inter-trade durations are not a contiguous sequence of data, we estimate each

of the models on a daily basis, using the 1000 seconds of post 10:00 am data on the days without

news announcements at that time. The result is 58 sets of estimates, whose medians and standard

deviations are reported in Table 1. As a matter of comparison, we also report the single point esti-

mates for each model using the full sample of data as a single contiguous sequence of observations.

The following subsections provide details on estimation for each of the model components.

5.1.1 Poisson/Exponential

The assumption of Poisson-distributed trade arrivals with mean γ corresponds to duration times

that are Exponentially distributed with mean ν = 1
γ . It is trivial to show that the maximum

likelihood estimate of the Exponential mean is

ν̂ =
1

γ̂
=

1

n

n∑
i=1

di, (24)
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Model Parameter Median Std. Dev. Full Sample

Exponential γ 5.13e-03 1.95e-03 5.25e-03

MSMD λ 9.84e-02 1.49e-02 9.44e-02

MSMD γk̄ 6.28e-01 1.03e-01 6.40e-01

MSMD b 5.46e00 7.21e00 5.22e00

MSMD m0 1.24e-01 2.33e-02 1.30e-01

ACD ω 2.04e00 5.29e-01 1.95e00

ACD α 2.25e-01 3.00e-02 2.30e-01

ACD β 4.37e-01 8.93e-02 4.57e-01

Gaussian µ 0.00e00 5.58e-04 -3.88e-05

Gaussian σ 1.18e-01 6.27e-03 1.18e-01

Table 1: Parameter estimates for duration models and Gaussian trade-time returns distributions.

where di, i = 1, 2, . . . , n are the observed inter-trade durations. The median and standard deviation

of daily estimates of γ are reported in Table 1.

5.1.2 MSMD

Following Chen et al. (2013) and Zikes et al. (2014), we evaluate the likelihood of the MSMD model,

associated with Equations (15a) – (15f), using the nonlinear filtering method of Hamilton (1989) and

maximize the likelihood with a standard hill-climbing algorithm. To estimate all parameters of the

MSMD model, we iterate over candidate values of k̄ and estimate the remaining four parameters,

λ, γk̄, b, and m0. Although we do not report the full set of results here, we find that the log

likelihood (both the median of daily log likelihood values and the single value for the full sample)

is maximized for k̄ = 8, with a plateau that begins at k̄ = 7. For purposes of concision, we adopt

k̄ = 7 for the remainder of the paper.

21



5.1.3 ACD

As outlined in Engle and Russell (1998) the likelihood function for the ACD model can be obtained

in closed form. We obtain daily and full-sample estimates of the model via maximum likelihood.

5.1.4 Gaussian

Building on the empirical observations of Section 3 and the assumptions of the compound duration

model of Equation (7), we treat non-news trade-time returns as i.i.d. Gaussian random variables and

estimate their moments via maximum likelihood. In this case, the maximum likelihood estimates

of the parameters of the distribution are simply the sample average and standard deviation of

trade-time returns. Daily and full sample estimates are reported in Table 1.

5.2 Simulation and Evaluation

We obtain Monte Carlo approximations of clock-time returns distributions using the Gaussian

mixture model, expressed in Equation (11). We do this in a hierarchical fashion, first simulating

inter-trade durations from the Exponential, MSMD and ACD models, pairing the durations with

independent draws of trade-time returns from the estimated Gaussian density, and finally aggre-

gating individual returns within a fixed clock time interval. For each model, we generate a dataset

equivalent to the observed data: 58 days, each comprising 1e+06 milliseconds worth of data.

Following the procedure outlined above, we aggregate returns for clock-time intervals δ = {250,

500, 1000, 5000, 10000, 30000} milliseconds until we obtain n = {232000, 116000, 58000, 11600, 5800,

1914} clock-time returns, respectively, which correspond to the number of observations in the data

for those time intervals. The individual simulations under each of the duration models use the

same trade-time returns; they only differ in the elapsed time between observations. It is important

to mention two adjustments that we make in order to simulate clock time returns. First, since

E-mini returns are discrete and only observed at increments of 0.25 points, we simulate trade-

time returns from the continuous Gaussian distribution described above and then discretize to the

nearest 0.25 increment. For example, a simulated trade-time return of 0.13 would be discretized to

0.25, while a simulated trade-time return of 0.12 would be discretized to zero. Second, we perform
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a similar discretization of simulated durations (under all models) by rounding values to the nearest

millisecond. Since zero durations are not allowed in our framework, all simulated durations below

one millisecond are rounded upward.

As a matter of comparison, we also estimate and simulate clock-time returns under the ACD-

GARCH(1,1), suggested by Engle (2000), using ACD durations in the GARCH volatility equation.

In particular, following Engle (2000),

ri
di

= σiεi (25)

σ2
i = ω + αε2

i−1 + βσ2
i−1 + γd−1

i (26)

εi
i.i.d.∼ WN(0, 1). (27)

Since the compound Poisson process has no ability to generate serial correlation in clock-time return

volatility, the ACD-GARCH model is a more reasonable benchmark against which to compare the

compound duration model.

Figure 5 depicts daily sample autocorrelation functions for observed inter-trade durations, as

well as the daily simulations under each of the duration models. The faint lines represent ACFs

for each day and the darker lines represent 0.05, 0.5 and 0.95 quantiles of the distributions of

autocorrelations at each lag. By construction, the Exponential durations are independent of each

other, and so do not exhibit any serial correlation. The ACD and MSMD models, on the other

hand, do a much better job of capturing observed dynamics: the median ACD autocorrelation

remains elevated until lag 7 or 8, while that of the MSMD does not fall to zero until roughly lag

15. The empirical counterpart falls rapidly until lag 10-15, at which point it remains elevated at

a low level and with very slow decay. Further, the quantiles of the empirical autocorrelations are

heavily skewed toward positive values for the full range of lags that are depicted in the plot. This

low-level persistence of observed durations is not captured by any of the models, although the

MSMD performs slightly better than the ACD in this dimension: its quantiles are skewed towards

positive autocorrelation until about lag 40. It is important to note that while the MSMD model

appears to have some directional advantage in matching the autocorrelation structure of observed

durations, it is certainly much noisier than the ACD model.
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Figure 5: Daily sample autocorrelation functions for observed durations (blue) and durations simulated under the

estimated Exponential (red), ACD (yellow) and MSMD (green) models. Faint lines represent daily ACFs

and darker lines represent 0.05, 0.5 and 0.95 quantiles of the distributions of autocorrelations at each lag.

The dotted black lines are 95% Bartlett bounds for the null hypothesis of no serial correlation.

Figure 6 shows Q-Q plots of the clock-time returns simulations for each value of δ that we

consider. The panels in the first (red) row correspond to the compound Poisson (Exponential)

model, the second (yellow) row corresponds to the compound ACD model, the third (green) row

corresponds to the compound MSMD model and the fourth (purple) row corresponds to the ACD-

GARCH(1,1) model. The panels in the final (blue) row of the figure are a reproduction of the

E-mini passive-period clock-time Q-Q plots shown in Figure 2. We note that while the limits of

the y-axes are constant within row, they differ across rows: this was necessary in order to capture

the full range of quantiles across models and should be considered when comparing the models. It

is immediately apparent from the figure that the compound Poisson model does a very poor job of

capturing leptokurtosis, except at the lowest values of δ, where the tails of the distributions of the
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simulated returns are still lighter than those of the data. The compound ACD model only provides

a slight improvement. On the other hand, the compound MSMD and ACD-GARCH models exhibit

much heavier tails for all time scales – tails that are heavier than those of the data. Interestingly,

as δ increases, the central quantiles of the ACD-GARCH conform more closely to a Gaussian, with

only a very small proportion of extreme quantiles. These extreme tails are most likely the additive

result of persistence in both the volatility and duration equations: the simple GARCH(1,1) is

known to exhibit leptokurtosis, which now appears to be accentuated in the presence of duration

autocorrelation. The compound MSMD, however, exhibits more appropriate (although slightly

extreme) tail heaviness, which can be attributed to the fact that the MSMD model is interpreted as

a mixture of Exponential distributions. Compared to simple Exponential durations, the persistence

of the latent states in the MSMD model generates more variation in inter-trade durations, which

leads to a more heterogeneous mixture of Gaussian densities in Equation (11), resulting in a greater

degree of leptokurtosis.

Panels (a) and (b) of Table 2 report summary statistics that formalize the degree of leptokurtosis

in the simulated returns depicted in Figure 6. Under the null hypothesis of Gaussian clock-time

returns, the variance of the sample excess kurtosis, κ̂, is:

σ2
κ̂ =

24n(n− 1)2

(n− 3)(n− 2)(n+ 3)(n+ 5)
, (28)

where n is the number of clock-time returns during a single day (i.e. n = 4000 for δ = 250 ms).

An implication of this result is that
√
nκ̂

d→ N (0, 24) under the null hypothesis of Gaussianity.

Panel (a) of Table 2 reports the fraction of times κ̂ ∈ (−z1−α/2σκ̂, z1−α/2σκ̂), where z1−α/2 is the

(1 − α/2) quantile of the standard Normal density. We set α = 0.05. The values in the table

demonstrate that for low values of δ, all models and the data uniformly reject the hypothesis of

Gaussianity on all days. However, as δ increases, the simulated compound Poisson/Exponential

returns suddenly switch from near 100% rejection to very low rejection rates, while the compound

MSMD and ACD-GARCH(1,1) models attenuate their rejection rates by only a small amount. The

only model that reasonably tracks the data in this case is the compound ACD, which moderately

attenuates rejection rates for increasing δ.

Panel (b) of Table 2 reports the Kullback-Leibler divergences of the empirical distributions
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Figure 6: Sample Q-Q plots for simulated clock-time returns under each of the compound duration models consid-

ered in this paper as well as the ACD-GARCH(1,1). The bottom row of panels is a reproduction of the

E-mini passive-period clock-time Q-Q plots shown in Figure 2. Q-Q plots are shown for returns computed

across clock-time intervals δ = {250, 500, 1000, 5000, 10000, 30000} milliseconds.

of daily Kurtosis values for each model and each clock-time interval δ, relative to the theoretical

limiting Gaussian density under the null hypothesis for clock-time returns. In order to compute

the distance measures, we used a Gaussian kernel smoother to approximate the empirical density

of kurtoses. Once again, the compound Poisson/Exponential performs worst, with distances from

the limiting distribution that are much too low relative to those observed in the data. In a less

extreme manner, the same is true of the compound ACD model. This latter result is interesting in
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δ

Model 250 500 1000 5000 10000 30000

(a) Fraction of Accepted Hypotheses (Daily Kurtosis)

Compound Exp. 0.00e+00 0.00e+00 5.17e-02 9.48e-01 9.66e-01 9.31e-01

Compound ACD 0.00e+00 0.00e+00 0.00e+00 6.90e-01 9.48e-01 9.83e-01

Compound MSMD 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.38e-01

ACD-GARCH 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.90e-02 7.24e-02

Data 0.00e+00 0.00e+00 2.24e-01 6.90e-01 7.93e-01 9.48e-01

(b) Kullback-Leibler Divergence (Daily Kurtosis)

Compound Exp. 1.15e+02 2.33e+01 3.93e+00 1.06e-01 5.68e-02 4.44e-02

Compound ACD 4.63e+01 1.60e+01 6.55e+00 4.31e-01 8.85e-02 8.41e-02

Compound MSMD 7.91e+00 7.20e+00 5.96e+00 4.25e+00 3.35e+00 1.84e+00

ACD-GARCH 6.36e+00 5.30e+00 4.78e+00 2.92e+00 1.89e+00 5.15e-01

Data 4.45e+00 3.69e+00 3.02e+00 1.73e+00 1.10e+00 1.70e-01

(c) Fraction of Accepted Hypotheses (Ljung-Box)

Compound Exp. 9.66e-01 9.83e-01 9.83e-01 9.31e-01 9.66e-01 1.00e+00

Compound ACD 9.31e-01 9.14e-01 9.48e-01 9.66e-01 9.31e-01 9.83e-01

Compound MSMD 6.90e-02 1.38e-01 2.93e-01 7.41e-01 9.48e-01 9.83e-01

ACD-GARCH 6.90e-02 2.59e-01 8.10e-01 9.66e-01 1.00e+00 1.00e+00

Data 1.72e-01 6.21e-01 8.45e-01 9.48e-01 9.66e-01 9.83e-01

(d) Kullback-Leibler Divergence (Ljung-Box)

Compound Exp. 8.66e-02 5.74e-02 1.20e-01 1.52e-01 1.22e-01 4.39e-01

Compound ACD 4.84e-02 3.51e-02 1.53e-01 1.76e-01 2.38e-01 1.92e-01

Compound MSMD 3.34e+00 2.66e+00 2.03e+00 7.86e-01 8.32e-01 1.31e+00

ACD-GARCH 3.38e+00 1.96e+00 7.92e-01 4.92e-01 6.43e-01 4.75e-01

Data 1.78e+00 6.00e-01 3.04e-01 2.05e-01 3.73e-01 3.90e-01

Table 2: Sample statistics under null hypotheses related to the distributions of daily kurtosis and autocorrelation

estimates of squared returns. Panels (a) and (c) report fractions of accepted null hypotheses and panels

(b) and (d) report Kullback-Leibler distances of empirical distributions of daily estimates from limiting

distributions under the null hypotheses. All statistics are computed for each of the compound duration

models considered in this paper as well as the ACD-GARCH(1,1) and the passive-period clock-time E-

mini data, using returns computed across clock-time intervals δ = {250, 500, 1000, 5000, 10000, 30000}

milliseconds.
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light of the fact that the compound ACD has the best rejection rates in panel (a). The remaining

models do a better job of tracking the data, with the ACD-GARCH model exhibiting distances

that are slightly more congruent with the data than those of the compound MSMD.

Although we do not show them here, the daily sample autocorrelation functions of returns

under each of the models exhibit no autocorrelation and look almost identical to those shown in

the bottom panels of Figure 3. One exception is the sharp negative autocorrelation at the first

lag: while none of the models captures the negative autocorrelation attributed to bid/offer bounce

and mean reversion in finely sampled data (low δ), this dynamic is not explicitly modeled in our

framework and is not expected to be present.

Figure 7 shows daily sample autocorrelation functions for squared returns simulated under each

of the duration models. The panels of Figure 7 correspond to those of Figure 6. Persistence among

the autocorrelations is present in all but the compound Poisson/Exponential model. The variability

of the compound MSMD, and ACD-GARCH(1,1) models appears to be much larger than that of

the data, and the shape of the autocorrelations for the ACD-GARCH models does not appear to

conform as closely to the data for low values of δ: in the case of the ACD-GARCH(1,1), the low-lag

autocorrelations begin at values that are too extreme and subsequently drop too quickly. The

compound ACD model, on the other hand, appears to exhibit both the right variability and shape,

relative to what is observed in the data, but for δ ≤ 1000 ms the distribution of autocorrelations is

symmetrically displaced around zero by lag 10, while that of the data remains positively displaced

for many more lags. This latter feature is captured by the compound MSMD model which, despite

excessive variation, has a distribution of autocorrelations with an appropriate displacement for low

values of δ.

To formalize the measures of daily autocorrelation among models, panels (c) and (d) of Table 2

report hypothesis rejection rates and Kullback-Leibler divergences for daily Ljung-Box statistics

computed using squared clock-time returns. The Ljung-Box statistic is defined as

Ql = n(n+ 2)

l∑
i=1

ρ̂2
i

n− i
,

where ρ̂i is the sample autocorrelation for lag i, n is the number of observations in the data (for each

day), and l is the number of lags over which the statistic is computed. Under the null hypothesis
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Figure 7: Sample autocorrelation functions for simulated clock-time squared returns under each of the compound

duration models considered in this paper as well as the ACD-GARCH(1,1). The bottom row of panels

is a reproduction of the E-mini passive-period clock-time ACFs shown in Figure 4. ACFs are shown for

squared returns computed across clock-time intervals δ = {250, 500, 1000, 5000, 10000, 30000} milliseconds.

that all autocorrelations are jointly zero, Ql ∼ χ2(l). For the summary statistics reported in

Table 2, we set l = 30, but the results are robust to a variety of other choices. Similar to panel

(a), panel (c) reports the fraction of times the daily Ljung-Box statistic fall within a one-sided

(1 − α) χ2 confidence interval: Q̂l ∈ (0, χ2
1−α(l)), where α = 0.05. The values in the table show

that the compound Poisson/Exponential and compound ACD models very rarely reject the null

hypothesis, unlike the data which frequently rejects for low values of δ. The remaining models
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display rejections rates that are similar to the data, with the ACD-GARCH(1,1) performing slightly

better for intermediate values of δ but the compound MSMD model performing best for both low

and high values of δ.

Panel (d) of Table 2 reports Kullback-Leibler divergences for the empirical densities of daily

Ljung-Box statistics relative to the theoretical χ2 distribution under the null hypothesis of no serial

correlation in squared clock-time returns. As with the rejection rates, the compound Poisson/Ex-

ponential and compound ACD models exhibit divergences that most different from those in the

data – almost uniformly too low across values of δ. The remaining models conform more closely

to the divergences observed in the data, with the ACD-GARCH model performing better than the

compound MSMD.

5.3 Discussion

The foregoing results highlight the strengths of compound duration models in the presence of a

time deformation process that exhibits serial correlation. While no model performs uniformly better

than the rest, the compound MSMD durations achieve a better balance in terms of matching both

the tail heaviness and volatility clustering that is observed in the data. Several observations are in

order.

First, the empirical results corroborate the finding of Theorem 1, which shows that the lack

of dependence in the compound Poisson trade arrival process renders it unable to deliver serial

correlation in volatility. On the other hand, the ability of the remaining models to capture volatility

persistence is directly related to the persistence of its inter-trade durations: the autocorrelation

structure observed in Figure 5 immediately propagates to Figure 7. Notably, the manner in which

the compound MSMD model exhibits a low level of volatility persistence for many lags when

δ ≤ 1000 ms is directly related to the low-level persistence of MSMD durations shown in Figure 5.

Second, we see that the compound Poisson model does not exhibit an appropriate degree of

leptokurtosis. While a more flexible distributional assumption for the trade arrival process might

rectify this deficiency, volatility dynamics will not be present when the directing process of Equa-

tion (3) is Lévy. In particular, although the variance gamma models of Madan and Seneta (1990),
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Madan et al. (1998) and Carr et al. (2002) are much better at capturing extreme events, the nature

of their directing processes precludes serial correlation in volatility.

Third, although the ACD-GARCH model does an acceptable job of capturing volatility dynam-

ics, it exhibits excessive leptokurtosis relative to the data for all horizons. We attribute this to

the fact that the ACD-GARCH compounds two mechanisms for generating tail-heaviness: first, it

models trade-time returns as a GARCH process and second, it allows the GARCH to depend on

autoregressive durations. In contrast, our empirical results in Section 3 suggest that trade-time

returns conform much more closely to a Gaussian random walk at fine time scales.

Fourth, despite empirical advances in measuring the leverage effect in high-frequency data (Aı̈t-

Sahalia et al. (2013)) and theoretical advances in explaining the leverage effect via time deformation

(Carr and Wu (2004)), we do not attempt to explain the leverage effect in this paper. Our model

treats the distributions of trade-time returns and trade arrival as independent, which, as suggested

by Renault and Werker (2011), is an oversimplification. This is a simplification we adopt in order

to focus on other influences that the trading process has on the distribution of asset returns and

their dynamics. Future research could generalize our model to jointly model trade-time returns

and durations and to incorporate the leverage effect. One method would be to require the baseline

MSMD intensity parameter λ to depend on past or concurrent returns, or other joint factors.

Fifth, a significant portion of the financial econometrics literature works directly with volatility

as a time deformation device. Madan and Seneta (1990), Andersen et al. (2007), Andersen et al.

(2010) and Todorov and Tauchen (2014) are examples. We view both time-varying inter-trade

duration and time-varying volatility as outgrowths of a latent time deforming information process.

However, we work directly with durations because they are more primitive to the trading process

and because our empirical work suggests that this might be the most direct way to model time

deformation. We thus allow volatility to be a direct result of inter-trade duration, which is our

surrogate for a time deformation device.
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6 Realized Volatility Forecast Performance

Each of the models proposed in Section 4 and evaluated in Section 5 has a differing number of

parameters: the compound Poisson has 2, the compound ACD as 5, the compound MSMD has

7 and the ACD-GARCH(1,1) has 4. To deal with the potential issue of overfitting, and as an

alternate method of comparison, we evaluate each model’s performance in out-of-sample realized

volatility (RV) forecasting.

We begin with a new data set – all E-mini transactions during the period 1 July 2014 – 31 De-

cember 2014, which comprises all transactions in the six months subsequent to the data considered

in the previous sections of this paper. Using the new data, we propose the following forecasting

procedure: (1) for each day that the E-mini traded and for each model under consideration, use

all transactions from 2:15 - 3:00 p.m. to estimate the parameters of the model and to simulate one

hour of transactions/returns; (2) compute 1-minute and 5-minute realized volatility for the simu-

lated data and compare with observed 1-minute and 5-minute realized volatilities for E-mini returns

between 3:00 and 4:00 p.m. The overall objective is to utilize a contiguous segment of transactions

each day that are not affected by news announcements in order to estimate and forecast. Although

a number of news releases are regularly scheduled for 2:00 p.m. Eastern Time, the time span we

use for fitting and forecasting is free of macroeconomic news announcements during the test period.

Panel (a) of Table 6 reports summary quantiles for the empirical distributions of the realized

volatilities. There are a total of 110 days in the test period. δ-minute realized volatility is defined

as

RV (δ) =

T/δ∑
j=1

r2
δ (t+ jδ), (29)

where T is the total amount of time in the sample. In our case, T = 60 minutes and, as a result,

all of the estimates in the table correspond to hourly volatility computed under two values of δ.

As expected, panel (a) shows that hourly volatility is a very noisy quantity. This is both a result

of inherent noisiness, as well as estimation error. Although we have a wealth of data (thousands of

transactions for each day, during the time window under consideration), we cannot simply improve

our RV estimates by reducing δ and sampling the data more finely: microstructure effects introduce
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a bias that render this infeasible (Andersen et al. (1999)). Much of the empirical RV literature

has found 5-minute RV to be a suitable, bias-free quantity (Patton and Sheppard (2009)); we also

report 1-minute RV since it allows the use of more, albeit potentially bias affected, data.

(a) Realized Volatility Empirical Quantiles (%)

Time Interval Min 0.05 Median 0.95 Max

1 min 0.06556 0.1081 0.1869 0.5174 0.7187

5 min 0.04886 0.07867 0.1665 0.5170 0.9176

(b) RMSE (%)

Time Interval Compound Exp. Compound ACD Compound MSMD ACD-GARCH

1 min 0.4075 0.2556 0.1519 0.2097

5 min 0.4230 0.2799 0.1553 0.2316

(c) Diebold-Mariano Statistics

Comp. Exp. Comp. ACD Comp. MSMD ACD-GARCH

Comp. Exp. NA 7.35 8.88 7.01

Comp. ACD 7.12 NA 5.53 2.38

Comp. MSMD 9.75 14.41 NA -4.89

ACD-GARCH 20.54 2.20 -2.42 NA

Table 3: Out of sample realized volatility (RV) forecasting results. Panel (a) reports quantiles of the empirical

distributions of 1-minute and 5-minute RV. Panel (b) reports root-mean-square errors of 1-minute and

5-minute RV under each model. Panel (c) reports two sets of pairwise Diebold-Mariano statistics under

the null hypothesis of equal prediction accuracy among models – the values above the diagonal assume no

serial correlation in forecast errors and those below the diagonal truncate the error ACFs at lag k = 30.

Panel (b) of the table reports root-mean-square errors (RMSE) for both 1-minute and 5-minute

RV forecasts under each model. The results show that the compound MSMD model readily beats

each of the others in terms of out-of-sample RV forecasting, despite the fact that it has more pa-

rameters. Not surprisingly, the compound Poisson/Exponential performs worst. It is interesting,

however, that among the two remaining models the ACD-GARCH(1,1) exhibits much better fore-
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cast performance than the compound ACD. While the in-sample comparison was not decisively

better for either model, the out-of-sample performance suggests the relatively good in-sample re-

sults for the compound ACD might be a simple artifact of overfitting.

Panel (c) of the table reports two sets of Diebold and Mariano (1995) statistics. The statistics

proposed by Diebold and Mariano (1995) test the null hypothesis of equal predictive accuracy

for competing forecasts, even in the presence of contemporaneous and serial correlation. Since

our forecasts are separated by periods of time that are large relative to the forecast time scale,

it is not expected that serial correlation is an issue. We corroborate this fact with the empirical

autocorrelation functions, although we do not report them here for considerations for space. As

such, we compute Diebold-Mariano statistics both for the case of no serial correlation among

forecasts, as well as a rather long truncation lag of k = 30 for the ACF. The former statistics are

reported above the diagonal in panel (c) and the latter are reported below the diagonal. In all cases,

the test statistics are significant at the 5% level or better and demonstrate that the differences in

forecast performance reported in panel (b) are not a result of sampling error.

Our conclusion is that the compound MSMD model is significantly better at explaining realized

volatility out of sample. As with the in-sample fitting, this result suggests that the compound

MSMD model provides a fairly good representation of the stochastic process that drives asset price

dynamics.

7 Conclusion

The empirical and theoretical work of this paper is intimately linked to the work of Mandelbrot

(1963), Clark (1973), Brada et al. (1966), Mandelbrot and Taylor (1967) and Ane and Geman

(2000), which show that fat-tailed returns distributions are consistent with a Gaussian random

walk directed by an appropriate stochastic process. Our empirical insight is that after controlling

for pre-scheduled, market-wide news announcements, the subordinating process for a highly liquid

market aggregate (the E-Mini S&P 500 near-month futures contract) is simply characterized by a

model of high-frequency trade arrival. Our theoretical contribution is to compose a parsimonious

inter-trade duration model that serves as an appropriate directing process with a Gaussian random
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walk to arrive at a hierarchical model of returns in clock time and to show when this model can

simultaneously explain the dynamics and unconditional nature of observed returns. Returns in

the tail of the distribution arise as a consequence of faster random walks generated by periods

where the trading rate is high and volatility persistence is generated by serial correlation within

the trade arrival process. The upshot is that outside of pre-scheduled news-affected periods, the

observed non-Gaussianity in the E-mini returns distribution can be fully attributed to the temporal

clustering of trades.

Further work appears warranted. While the compound Markov Switching Multifractal Duration

model provides the best in-sample and out-of-sample fit compared to other models we consider, it

falls far short of explaining the low-level of persistence exhibited in observed inter-trade durations.

To the extent that trade-time returns abide by a random walk (as suggested by our empirical

work), improvements in modeling the directing process would yield excellent dividends in explaining

returns dynamics. Further, while we have treated durations and returns as mutually independent

processes, modeling their joint distribution could potentially enhance the model.

Finally, it is possible that the Gaussian spectrum of trade-time returns is a feature that is

largely specific to the heavily traded E-mini. Expanding the work of this paper to a broader set of

assets could lead to important innovations to the model. Additionally, it would be useful to adapt

the model to explain the evolution of returns under conditions of market stress.
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