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eleVaTOR PiTCH
Often, economic policies are directed toward outcomes 
that are measured as counts. Examples of economic 
variables that use a basic counting scale are number of 
children as an indicator of fertility, number of doctor 
visits as an indicator of health care demand, and number 
of days absent from work as an indicator of employee 
shirking. Several econometric methods are available for 
analyzing such data, including the Poisson and negative 
binomial models. They can provide useful insights that 
cannot be obtained from standard linear regression 
models. Estimation and interpretation are illustrated in 
two empirical examples.

aUTHOR’S main meSSaGe
Empirical analyses often encounter variables on a 0, 1, 2, etc., scale, such as hours of work or the annual number of doctor 
visits made by a person. Policymakers may be interested in the distributional effects of a reform on such outcomes, not 
just the mean effects. For example, does a policy affect heavy users of a service more than occasional users? Poisson and 
negative binomial models and their extensions can answer such a question, and they are no more complicated than a 
linear regression model. Hurdle models are useful for predicting the effect of a policy on the probability of a zero count as 
opposed to a count of one or more.

Counting on count data models
Quantitative policy evaluation can benefit from a rich set of 
econometric methods for analyzing count data
Keywords: Poisson regression, negative binomial distribution, zero-inflation, hurdle model

Pros

 Count data regressions provide an appropriate, 
rich, and flexible modeling environment for non-
negative integers, 0, 1, 2, etc.

 Poisson regression is the workhorse model for 
estimating constant relative policy effects.

 Hurdle and related models allow distinguishing 
between extensive margin effects (outcome 
probability of a zero) and intensive margin effects 
(probability of one or more counts).

 With count data, policy evaluations can move 
beyond the consideration of mean effects and 
determine the effect on the entire distribution of 
outcomes instead.

Cons

 Count data models impose parametric 
assumptions that, if invalid, can lead to incorrect 
policy conclusions.

 While many software packages implement 
standard count models, such as the Poisson and 
negative binomial models, more elaborate models 
may require some programming by the researcher.

 A count data approach does not solve the 
fundamental evaluation problem: absent a 
randomized controlled experiment, identifying 
policy effects from observational data can be 
marred by selection bias, requiring plausibly 
exogenous variation in the form of a quasi-natural 
experiment.
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mOTiVaTiOn
Count data models allow for regression-type analyses when the dependent variable 
of interest is a numerical count. They can be used to estimate the effect of a policy 
intervention either on the average rate or on the probability of no event, a single event, or 
multiple events. The effect can, for example, be identified from a comparison of treatment 
and non-treatment units while adjusting for confounding variables, or from a difference-
in-differences comparison, where the effect of the policy is deduced from comparing the 
pre-post change in the outcome distribution for a treatment group with the pre-post 
change for a control group.

Obtaining results from a Poisson regression model is no more complicated than running 
a linear regression model, and the interpretation of the results is equally straightforward. 
Indeed, while the Poisson model expresses the mean as an exponential function of the 
explanatory variables, and is thus a non-linear model, it preserves many features of the 
linear regression model. In fact, it is a member of the class of generalized linear models [1].

DiSCUSSiOn OF PROS anD COnS
Comparing linear models and count data models

In a linear model, the range of the dependent variable is typically taken to be the set of 
real numbers; in a count data model, it is the set of natural numbers including zero. In a 
linear regression model, slope coefficients indicate the absolute change in the expected 
outcome associated with a unit change in x (for example, from x0 = 0 to x1 = 1), whereas 
in a count regression model with exponential conditional mean function, coefficients give 
the relative change in the expected outcome associated with a unit change in x. Consistent 
parameter estimation in both cases relies solely on a correctly specified mean function.

While the robustness and generality of the ordinary least squares estimator for the 
linear model is well understood, it is perhaps less well known that the non-linear Poisson 
maximum likelihood estimator, as an instance of pseudo maximum likelihood estimation, 
has similar properties [2]. Such robustness is of great practical relevance, as it means that 
the estimators for the parameters in the Poisson regression model are consistent even if 
the assumption for the distribution is incorrect, as is often shown to be the case.

It also follows that the Poisson regression can be applied even when the dependent 
variable is not a count at all, but rather some continuous non-negative variable, such as a 
duration, a wage, or a price. An example is the application of Poisson models to estimate 
gravity equations for international trade [3]. An important caveat when using Poisson 
regression in such contexts (when the mean is assumed to be correctly specified but the 
distribution is potentially wrong) is that the usual formula for the standard errors is wrong. 
In many cases, standard errors will underestimate the true variability in the estimator and 
thus lead to overly small confidence intervals and inflated t-statistics. However, a simple 
adjustment is available, leading to so-called “robust” standard errors, which ought to be 
routinely reported.

Why use count data models?

There are two main uses of count data models in policy evaluation. Often, the focus is on 
determining the effect of a policy change on the average count. Other applications exploit 
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the fact that count data models yield predictions for the entire probability distribution. 
In a policy context, one can therefore determine the effect of the policy for each value of 
the outcome.

Figure 1 illustrates the situation in a hypothetical example using a Poisson model. It shows 
the predicted probabilities of the outcomes 0, 1, 2, etc., without the policy and with the 
policy. In this example, the outcomes are the number of doctor visits during a quarter (as 
an indicator of demand for health services), and the policy measure is the abolition of all 
co-payments and deductibles, that is, full insurance.

Figure 1. The effect of a policy on a count distribution

Source:  Author’s own.
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The computations in Figure 1 assume 1.65 average visits without the policy and 2.0 with 
the policy. Hence, the policy is associated with an increase in the mean outcome of about 
2.0/1.65 – 1 = 21%. On the other hand, the policy is also associated with a 5.8 percentage 
point decline in the probability of zero usage. For a Poisson model, the probability of a 
zero is simply computed as the exponential of the negative mean, which is 0.192 in the 
case without the policy and 0.135 in the case with it. Similarly, a Poisson probability 
function can be used to show that the probability of a one decreases by five percentage 
points and the probability of a four increases by four percentage points.

To the extent that policymakers are interested not only in the average effect of a policy, 
but also in its distributional consequences, this can be very useful information. However, 
results are closely tied to the underlying assumption of the parametric distribution model—
in this case, the Poisson distribution—and the plausibility of such analyses thus crucially 
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depends on the validity of this underlying assumption. Tests and alternative specifications 
are discussed below.

Researchers sometimes choose a compromise between a fully-fledged distributional 
analysis and consideration of mean effects only by distinguishing between extensive and 
intensive margin effects. Extensive margin effects refer to the effect of a policy on the 
probability of zero usage (non-usage), whereas intensive margin effects refer to the effect 
of a policy on the mean, conditional on the count being positive. The classic example 
would be the distinction between the effect of a wage tax change on the labor force 
participation decision on the one hand and on the decision by workers on how many 
hours to work on the other. Both extensive and intensive margin effects can be readily 
obtained for any count data model. Of particular interest in this context is the hurdle 
model, which treats the process of zeros differently from that of non-zero counts. Adding 
this extra flexibility is important in many applications.

Which count data model?

For all purposes beyond robust estimation of the exponential regression model, the count 
data approach forces the researcher to commit to a particular parametric distribution. 
An informed choice should be based on the putative properties of the underlying data-
generating process. For instance, if events occur completely randomly over time with 
constant probability, the Poisson model is appropriate. Such underlying randomness can 
be a reasonable assumption in the context of, for example, traffic accident frequencies. 
It is less satisfying in other contexts, such as worker absences, that are known to be more 
likely to occur on a certain day of the week [4].

The absenteeism example likely suffers from two further departures from the Poisson 
assumption. First, the chances of an absence tomorrow is higher for workers who were 
absent today. This is an instance of “occurrence dependence.” Second, workers are likely 
to differ in their intrinsic absence rates, with some workers being more likely than others 
to miss a day. This may depend on soft personality factors such as conscientiousness, 
but also on the family situation, for instance, if the worker has young children at home. 
If unobserved, these influences lead to so-called “unobserved heterogeneity.” Both 
occurrence dependence and unobserved heterogeneity invalidate the assumptions 
underlying the Poisson model. Unobserved heterogeneity leads to “overdispersion”: in the 
conditional model for y as a function of x, the variance increases overproportionally with 
the mean.

While the problem of occurrence dependence is not easily resolved, a powerful way to 
address unobserved heterogeneity arises whenever repeated observations on the same 
unit, or panel data, are available. For example, if there are data on the annual number 
of absences by a worker for several years, individual differences in absence propensities 
can be modeled directly, by including individual specific fixed effects. The panel Poisson 
regression model is easy to implement and shares many of the features known from the 
linear panel data model [5].

Alternative models can be derived under specific assumptions. For instance, a negative 
binomial model can be shown to arise as a consequence of either unobserved heterogeneity 
or occurrence dependence. If data are overdispersed, that model yields better predictions of 
the outcome probabilities. In particular, it predicts a higher proportion of zeros than does 
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a Poisson model with the same mean. If the probability of an event increases or decreases 
with the time since the last occurrence, a gamma-count model may be appropriate [6].

Hurdle models combine a binary probability model, which determines whether the 
outcome is zero or strictly positive, with a parametric specification of the conditional-on-
positives distribution [7]. Estimation using maximum likelihood proceeds in two steps, 
first using all observations for the binary response model and then using the subset of 
positive observations to estimate a truncated-at-zero count data model. Hurdle models 
can account for any degree of “excess zeros” and furthermore allow for an unrestricted 
estimation of extensive and intensive margin effects.

A related class of models with similar properties has frequently been used in applied 
health economics. Zero-inflated count data models assume that the data come from two 
distinct populations: one population that never experiences the event, and another one for 
which events are generated from a standard model. There are two types of zeros in such 
models, one stemming from the “never” population and the other from the “standard” 
population [7].

Non-random sampling is another issue arising in applied work. Unadjusted maximum 
likelihood estimation can lead to wrong inferences in such cases. Examples include 
truncation (as when observations with zero counts are not included in the sample), 
censoring (as when a survey asking for the number of children uses response categories 
such as “four or more” or reports on the “total” number of children for women under the 
age of 45, who may have more children later), and endogenous choice-based sampling 
(as when people with a large number of events are overrepresented in the sample) [8]. 
Since count data models fully specify the population distribution, it becomes quite 
straightforward to deal with such departures from random sampling in order to obtain 
consistent estimates of the population parameters.

example: application to the study of fertility

A natural application of count data models is in the analysis of fertility, as measured by the 
number of children ever born to a woman or the number of living children in a household. 
Modeling fertility encounters a number of interesting methodological challenges. In no 
particular order, these include the frequent presence of underdispersion (see [6]), the 
influence of infertility rather than individual choice on childlessness, and accounting for 
the fact that women surveyed may not yet have reached their completed (total) fertility.

The most radical approach for dealing with incomplete fertility excludes younger women, 
say those aged 45 or younger, altogether from the analysis. This approach has a couple 
of drawbacks, though. First, the omission of data on the current child-bearing generation 
results in a substantial lag in the collection of evidence on fertility patterns. This lag 
becomes more of a problem if fertility behavior is changing rapidly across cohorts. 
Second, the approach cannot be used if the number of children is based on household 
composition data, as children typically leave the household once they reach adulthood. 
In response, it is advantageous to include all women but to treat the number of children 
for younger women as a lower bound of completed fertility. A corresponding censored 
probability model is relatively simple to establish in the context of a parametric count 
data model. A parametric model can also be modified to allow for a culturally determined 
preference for two children, leading to “two inflation” observed in many data sets.
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The example in Figure 2 shows the total fertility rates over the last 40 years for two 
countries, Germany and the US, as well as the average for OECD countries. Total fertility 
rates are computed by summing the age-specific fertility rates observed in a given year to 
obtain the number of children for a hypothetical women whose fertility over her lifetime 
is equal to the realized fertility rate for women of different ages in that year. The period 
1970–2010 witnessed a marked decline in fertility, from 2.03 to 1.39 children per woman 
for Germany and from 2.76 to 1.74 for the OECD average; in the US the fertility rate 
stabilized around the replacement level after 1980.

Clearly, policymakers are interested in the causes for such a decline, and many studies 
have been conducted to sort out the relative contributions of labor market developments, 
longer education periods (and thus a higher age at first childbirth), to name but a few. An 
illustrative analysis using data on completed fertility from the US General Social Survey 
for 1974−2002 shows how count data models can be used in this context. Based on 5,150 
observations on women past childbearing age, the average number of children was 2.59, 
14.5% of women were childless, and the modal number of children (the number that 
appears most often) was two (26.6% of all women). A simple Poisson regression including 
only a linear time trend gives a coefficient of –0.01. A test provided by [9] yields evidence 
of some overdispersion. Hence, robust standard errors should be used. In this case, the 
trend is statistically highly significant, and according to the model the average number of 
children declined by approximately 1% a year during this period.

One question to consider is the contribution of changing socio-demographic conditions 
to this secular trend. After controlling for years of schooling and indicators for race (white 
= 1), low income (family income below average at age 16 = 1), living in a city at age 16, and 
migration status, the new estimate of the trend component is a 0.55% annual decline in 
fertility, in this case 55% of what it was without accounting for schooling, race, income, 
urban residence, and migration status. The other 45% of the decline is explained by these 

Figure 2. Trends in total fertility rates for Germany and the US, 1970–2010

Source:  Calculations based on data from OECD. OECD Factbook 2013: Economic, Environmental, and Social
Statistics. Paris: OECD Publishing, 2013. Online at: http://dx.doi.org/10.1787/factbook-2013-en
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factors. At the extensive margin, the Poisson model predicts that the probability of being 
childless has increased 2.9 percentage points over the 26-year-period for a mother with 
otherwise unchanged characteristics.

Estimating a linear regression model instead yields a predicted absolute effect of a –0.014 
annual decline in fertility, the equivalent of one child less every 70 years. In contrast to 
the Poisson model, the linear model implies varying relative effects, because for a given 
absolute change, the larger the predicted mean, the smaller the relative change. Taking the 
sample average over the implied relative effects yields an estimated 0.58% decline in the 
number of children each year. In this example, the average relative effect implied by the 
linear regression model is similar to the effect estimated from the Poisson model, but this 
does not need to hold in general. Note that practitioners wanting to estimate a constant 
relative effects model often use the linear regression model after having transformed 
the dependent variable by taking logarithms. This is not possible here, as the outcome 
variable is zero for a sizeable fraction of the data.

example: application to demand for health services

The German health care system, like that of most other countries, has experienced many 
policy changes in recent decades. Examples include spending caps for doctors, privatization 
of hospitals, introduction of diagnosis-related groups for hospital reimbursement, and 
new cost-sharing arrangements for users. Around 90% of the German population receive 
their health insurance coverage through the German statutory health insurance system. 
Reforms that have been analyzed using count data models include a 1997 reform that 
increased co-payments for prescription drugs and a 2004 reform that introduced a co-
payment for doctor visits. Both reforms had the professed objective of containing the 
rate of increase of health care expenditures by reducing demand for unnecessary medical 
treatment.

The 1997 reform increased the out-of-pocket cost of prescription drugs by a fixed 
amount. The relative effect of the 1997 reform was largest for small package sizes, where 
it amounted to a 200% increase. Social considerations resulted in several exemptions 
(for co-insured children and low-income households, a maximum cumulative annual co-
payment limit of 2% of annual gross income and 1% for the chronically sick), generating 
potential control groups in addition to the privately insured.

One way to assess the effectiveness of such reforms is to deduce policy responses in 
behavior from household survey data, such as the German Socio-Economic Panel. While 
such surveys are not tailored to provide information on health-related issues, there is 
usually some limited information on health insurance status (private or statutory) and 
on health care use (such as the number of hospital admissions and number of doctor 
visits during the three months prior to the annual interview). For the 1997 reform, one 
would ideally study the change in demand for prescription drugs, but this information is 
not available in the survey data. However, because prescriptions require doctor visits, the 
analysis could focus on the indirect cost-saving effects of potentially fewer doctor visits 
instead [9].

Since the number of visits is a count, quantitative evaluations of the effect of these reforms 
on demand for health services can employ count data models, using either pre-reform and 
post-reform comparisons or a difference-in-differences analysis [9], [10]. For instance, 
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to analyze the effect of the 1997 reform, German Socio-Economic Panel microdata for 
two years can be used, with 1996 data for the pre-reform period and 1998 data for the 
post-reform period. Respondents with statutory health insurance can be considered the 
treatment group and those with private insurance the control group. The control group 
establishes a baseline counterfactual trend in doctor visits pre- and post-reform, due, for 
example, to changes in general economic conditions. Any deviation from this baseline 
trend observed for the treatment group is then assumed to reflect the effect of the reform.

For these health care reforms, as for others, there are good reasons to believe that not 
every affected person responds in the same way to the reform. In particular, extensive and 
intensive margin effects might differ—in this case, the effect on any visit compared with 
the effect on the non-zero number of visits. In the case of the 1997 reform, the chronically 
ill likely had less leeway to respond in order to avoid co-payments compared with people 
who were in good health. One would therefore expect a lower sensitivity to the reform at 
the intensive margin, in the right part of the outcome distribution, than at the extensive 
margin.

To address this issue, a study estimated various count data models and indeed found 
evidence of a differential response [10]. Based on hurdle models, the predicted probability 
of being a prescription drug user (at least one doctor visit) decreased an estimated 6.7% 
between 1996 and 1998, whereas the expected number of visits, conditional on use, 
decreased only an estimated 2.6%. In contrast, a simple Poisson model without hurdle 
leads to quite different effect estimates, a 3.0% decline at the extensive margin (as opposed 
to a 6.7% decline in the hurdle model) and 6.1% decline at the intensive margin. This 
illustrates a substantial bias of the standard Poisson model and highlights the need for a 
model with sufficient flexibility.

limiTaTiOnS anD GaPS

The reliability of conclusions on policy effects depends on the validity of the assumptions 
underpinning count data modeling. Several specification tests are discussed in [9], for 
example, for the Poisson assumption of equality between variance and mean against the 
alternative of overdispersion. In practice, it is hard to defend any count data model as 
being exactly true. Rather, such models should be regarded as approximations of the 
truth, the results being approximate effects. And for statistical inference, it is always good 
practice to report robust standard errors.

Similar to the linear regression model, identification and estimation of policy effects in 
count data models require exogenous, or “as if randomly assigned,” policy variation. This 
requirement is violated if, for instance, participants self-select into the policy “treatment” 
group in a non-random manner. Sometimes this problem can be solved by using multiple 
regression and including in the count model all the variables that might determine 
whether a person gets “treated” and thus affected by the policy intervention. If one has 
information on a variable that affects treatment but does not affect the outcome itself, 
the problem can be solved by including the predicted rather than the actual level of the 
treatment variable in the model. Such an approach is powerful and frequently used in 
linear models. It sometimes also works for count data models, but these applications are 
exceptions [11].

A further limitation arises in modeling time series counts. To illustrate the problem, 
consider the workhorse linear first-order autocorrelation process. If the present value is 
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a fraction ρ of the last period’s value plus a stochastic error, it will not be a non-negative 
integer, or count, even if the last period’s value and the error were. While some time series 
models can generate conditional and marginal distributions for the non-negative integer 
structure of the data, these models tend to be unwieldy. There is no equivalent yet to 
our understanding of linear Gaussian time series models and of how to deal with issues 
such as non-stationarity and co-integration. Regarding panel data, the Poisson model has 
well-developed and simple-to-estimate random and fixed effects extensions, but the other 
models, including the hurdle model discussed here, usually do not.

SUmmaRY anD POliCY aDViCe

As the saying goes, “Not everything that can be counted counts.” True, but often it does. 
The number of children, the number of workdays lost due to absenteeism, or the number 
of doctor visits are important societal outcomes. Crime is another major public policy 
concern, and count data models have been used to show that there is no short-term 
deterrent effect of capital punishment on homicide rates [12] and that serious crime, 
including murder, does not seem to be “contagious” [13].

Policymakers often are interested in the distributional effects of a reform on count 
outcomes. For instance, does a policy have a disproportionate impact on heavy users of 
health care services compared with occasional users? With continuous outcomes, such 
a research question would typically be addressed using quantile regression. With counts, 
such asymmetric responses can be modeled directly. With confidence in the assumptions 
underlying the Poisson model, these effects depend on a single parameter, as depicted 
in Figure 1. Simple departures, such as zero-inflated models, hurdle models, two-inflated 
models, and finite mixture models, allow for more flexible effects at various values of 
the outcome, while remaining “theory consistent,” in the sense that these models could 
have generated the data and are derived from a well-defined underlying data-generating 
process. Admittedly, these models, most of which were developed in the 1980s and 
1990s, are not yet taught as part of a standard curriculum in empirical methods, but 
their application in applied economic research has become increasingly common. With 
the increasing awareness among policymakers of the benefits of count data models, such 
models will likely become more common in policy studies as well.
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