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- A Semi-Parametric Approach for Electricity Generation

Stefan Seifert∗
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Abstract

While productivity growth in electricity generation is associated with multi-

ple positive effects from an economic and environmental perspective, measuring

it is challenging. This paper proposes a framework to estimate and decompose

productivity growth for a sector characterized by multiple technologies. Using a

metafrontier Malmquist decomposition and frontier estimation based on stochas-

tic non-smooth envelopment of data (StoNED) allows for productivity estimation

with few microeconomic assumptions. Additionally, evaluation of productivity at

representative hypothetical units permits distribution-free analysis for the whole

distribution of power plant sizes. The proposed framework is used to analyze a

unique and rich dataset of coal, lignite, gas, and biomass-fired generators operat-

ing in Germany from 2003 to 2010. The results indicate stagnating productivity

for the sector as a whole, technical progress for biomass plants, and very high

productivity for gas-fired plants.
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1 Introduction

Productivity growth in electricity generation is associated with multiple positive ef-

fects: First, productivity growth can free resources for other uses, e.g., labor and

capital. Furthermore, productivity growth can lead to overall reduced consumption

of scarce natural resources, like fossil fuels. Therefore, productivity growth can also

reduce import dependencies. More productive use of combustible materials can re-

duce also CO2 emissions, either by reducing the fuel input or by replacing more CO2

intensive technologies (Davis and Wolfram, 2012). Thus, productivity growth may

ultimately help achieve ambitious climate goals. Finally, in addition to the positive

environmental effects, productivity growth in electricity generation can be translated

into lower electricity prices, a major input for the whole economy (Fabrizio et al., 2007).

To achieve such productivity gains, multiple channels are available.

Increasing technical efficiency of existing plants helps use resources more productively

and allows for reduced resource use within pre-existing industry structures. Further,

technical progress and learning allows to achieve new productivity levels with existing

technologies, but may demand a restructuring of the power plant fleet. Similarly, re-

ducing scale inefficiencies may facilitate productivity gains, but either needs technical

change to reduce potential scale inefficiencies (i.e. by increasing the range of optimal

plant sizes) or plants modified toward the optimal size. Finally, introduction of new

technologies, often with steep learning curves, may allow existing plants to achieve new

productivity levels (Jamasb, 2007). However, measuring productivity growth and dis-

entangling the different drivers (e.g. efficiency gains or technical change) is challenging

as the sector is characterized by heterogeneous technologies, in terms of fuel sources,

combustion technologies, and plant sizes.

Motivated by the need to develop a more accurate measure of productivity growth, this

paper proposes a framework to estimate and decompose productivity in a sector with

technological heterogeneity and applies it to analyze Germany’s electricity sector. The

use of a metafrontier Malmquist productivity index based on Chen and Yang (2011)

incorporates productivity growth at the subtechnology level when estimating sectoral

productivity developments. Analysis based on the semi-parametric stochastic non-

smooth envelopment of data (StoNED), as proposed by Kuosmanen and Kortelainen

(2012), estimates productivity growth with only a few microeconomic assumptions on

the shape of the production function while allowing for a parametric treatment of op-

erational inefficiency and random disturbance. The estimator also estimates overall

productivity growth without any distributional assumptions or assumptions about the

functional form while reducing sensitivity to outliers. Further, constructing hypothet-

ical but representative evaluation units measures productivity developments for the
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whole distribution of power plant sizes without influencing the frontier estimate. Us-

ing this framework, I measure productivity growth and its components for the first time

for the German electricity generating sector. The German electricity generating sector

is an important and an especially interesting case to study with considerable changes

in the industry structure, and with a special role of conventional energy sources. The

study uses a unique and uncommonly rich dataset of 1555 coal, lignite, gas and biomass-

fired power plants operating in Germany between 2003 and 2010.

Results show that the approach is stable for small and large samples and allows disen-

tangling the different effects at the subtechnology and sector levels. Empirical results

indicate that the German electricity generating sector has undergone a period of pro-

ductivity stagnation and technological regress. However, results also indicate technical

progress for biomass-fired power plants allowing them to catch-up to the productivity

of other technologies. Nonetheless, gas-fired plants are found to have the highest pro-

ductivity throughout the observation period.

The remainder of this paper is organized as follows. Section 2 gives an overview of Ger-

many’s electricity generating sector, and summarizes the related literature. Section 3

presents the model and the proposed productivity decomposition. Section 4 describes

the estimation strategy and section 5 presents the dataset. Section 6 explains the

results of the analysis, and section 7 concludes.

2 Background

2.1 Measuring productivity growth in electricity generation

The Malmquist productivity index is probably the most prominent approach to mea-

sure productivity growth and is also used to analyze electricity generation (e.g. Färe

et al., 1990). Based on the seminal paper by Caves et al. (1982), which introduced

this distance function based approach, a large number of productivity decompositions

have since been developed and applied to a variety of sectors (see Färe et al., 2008, for

an overview). To account for technological heterogeneity as in electricity generation,

O’Donnell et al. (2008) extend this approach based on the metafrontier framework, in

the spirit of Hayami and Ruttan (1970) and Battese et al. (2004), to measure produc-

tivity against the sector production function, also termed metatechnology, while ac-

counting for the productivity developments of subtechnologies. Chen and Yang (2011)

extend this approach to account for scale-related productivity growth as in Ray and

Desli (1997) while allowing for efficiency gains and technical change on the level of the

subtechnologies.

While this extended Malmquist approach is not applied to electricity generation, stud-
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ies accounting for heterogeneity in electricity generation use similar ideas to allow for

technological differences based on the power plants location (e.g. Zhang and Choi,

2013) or plant fuels (e.g. Seifert et al., 2014; Zhang et al., 2013). Accounting for

such technological differences when measuring productivity developments allows for

the identification of productivity trends as well as the major components on sectoral

and subtechnological level, i.e. efficiency gains, technical change, and scale adjust-

ments, which are generally deemed major drivers of productivity growth.

In the empirical literature on power plant productivity, results generally indicate rel-

atively small magnitude productivity changes in developed economies. For example,

Heshmati et al. (2014) find productivity decline between 1995 and 2006 for Korean elec-

tricity generation, and Atkinson and Primont (2002) find only small productivity gains

between 1961 and 1997 for United States electricity generation. Rungsuriyawiboon and

Stefanou (2008) and Genius et al. (2012) obtain similar results, i.e. partial productivity

growth with respect to labor, but not with respect to fuel. On the contrary, higher

productivity growth rates are reported by See and Coelli (2013) for Malaysia, and by

Du et al. (2013) and Gao and Van Biesenbrock (2014) for China, thus suggesting that

developing countries may not have exploited potential productivity gains.

Increasing efficiency and producing with best practice is one key element to increase

productivity. While a large number of studies address the measurement of inefficiency,1

the regulatory environment is critical for inducing efficiency gains. The introduction

of alternative regulatory schemes and more market-oriented mechanisms in the US is

shown to incentivize inefficiency reductions for both conventional combustion plants

(Craig and Savage, 2013; Fabrizio et al., 2007; Knittel, 2002; Kleit and Terrell, 2001)

and nuclear power plants (Davis and Wolfram, 2012). Further, evidence suggests that

such efficiency gains are actually driven by changes in the incentive structure imposed

by the regulatory framework, rather than by changes in ownership (Bushnell and Wol-

fram, 2005). To realize such efficiency gains, Cicala (2015) shows that deregulation

can improve fuel procurement practices leading to lower input prices. Likewise, Chan

et al. (2014) point out that fuel quality is a key determinant for efficiency of combus-

tion plants, and that operating and maintenance practices can lead to considerable

efficiency improvements. Labor quality is also identified as a major determinant of

power plant operational efficiency (Bushnell and Wolfram, 2007).

Technical progress and the introduction of new technologies also drive productivity

growth (Aghion and Howitt, 1992). Although learning by doing and learning by re-

search are typically considered as the two drivers of technical progress, they have

considerably different effects on the different subtechnologies of the electricity generat-

1For extensive overviews see Seifert et al. (2014); Song et al. (2013); Zhou et al. (2008).
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ing sector. As Rubin et al. (2015) and Jamasb (2007) illustrate, evolving technologies,

such as biomass and waste to electricity, show higher learning rates than mature tech-

nologies, such as coal and lignite combustion technologies. Other plant-level studies

question whether such learning rates actually transform into productivity gains finding

either low levels of technical progress (Atkinson and Primont, 2002; Genius et al., 2012)

or even technical regress (Oh, 2015; Heshmati et al., 2014). In contrast, See and Coelli

(2013) find considerable technical productivity growth for mature technologies as a

result of capacity installations. Further, increased competitive pressure, induced by

subsidized emerging technologies, such as wind and solar, or electricity deregulation,

can affect innovation and technical progress. The widely supported belief in ”creative

destruction” argues that competition actually forces firms to innovate in order to re-

main competitive. Experimental evidence supports the hypothesis (e.g Aghion et al.,

2014), although other theoretical (Vives, 2008) and empirical (Sanyal and Ghosh, 2013)

studies indicate a decline in innovation as a result of deregulation and competition.

Scale change or scale efficiency change is also a driver of productivity growth. Further,

not using economies of scale in the production of electricity may be directly translated

into damages to scale in the production of undesirable outputs, such as CO2 emis-

sions (Sueyoshi and Goto, 2013). From a production perspective, adjusting the scale

of a power plant fleet takes considerable time, even requiring a complete restructur-

ing of the fleet’s generation capacities. From a cost perspective, however, adjusting

to optimal scale size is not necessarily based on restructuring generation capacities.

Empirical analyses of scale effects typically indicate increasing returns to scale for elec-

tricity generation. Nerlove (1963), Christensen and Greene (1976), Betancourt and

Edwards (1987) and Kleit and Terrell (2001), who study US electricity generation, all

found considerable scale economies at low levels of output, which, however, diminish

with firm size. For Korean electricity generation, Oh (2015) indicates scale economies

across all firm sizes.

2.2 Germany’s electricity generating sector

With a total generation capacity of 190 GW, Germany’s power plant fleet is the largest

in Europe and the sixth largest in the world. Figure 1 shows that conventional com-

bustion plants, including coal, lignite, gas and biomass-fired power plants, account for

almost 95 GW. While capacities have been stable for coal and lignite, considerable

new installations and capacity extensions for gas and biomass have taken place. At

the same time, policy is fostering sizable investments in renewable energy sources. In
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Figure 1: Germany’s electricity generation capacities (top) and
generation (bottom) from 2000 to 2012 (Source: BMWi,
2012)

2013, wind and solar contributed around 70 GW in capacity, up from 15 GW 2003.2

Germany’s nuclear phase-out - agreed upon in 2002 and renewed in 2011 - will result

in 12 GW of capacity being eliminated by 2022. These changes in the capacity struc-

ture also impact the electricity generation. While coal and lignite are still the most

important single fuel sources accounting for nearly 50% of total generation, wind and

solar already contributed more than 10% of total generation in 2013. Similarly, for

gas-fired plants we observe a strong increase in output between 2000 and 2012 of more

than 50%.

Although Germany’s energy mix is undergoing long-term changes to enhance the role

of renewables, conventional combustion technologies are still required to not just back

up these intermittent sources, but also to partially replace nuclear capacity. Thus,

competition with the almost zero-variable cost competitors, wind and solar, will cause

considerable pressure on productivity developments in Germany’s conventional com-

bustion technologies. There is already discussion about the necessity of capacity mar-

kets for Germany (BMWi, 2014). Further, technological plurality underscores the need

to account for productivity development at the subtechnology level in order to derive

reliable productivity growth estimates of the existing industry structure.

2The newly installed capacities are of very different size. Accounting for installations above 10
MW between 2003 and 2010, the average renewable installation has a capacity of about 22 MW, while
gas-fired plants have an average size of more than 150 MW. Total installations above 10 MW for
gas-fired plants and renewables are both above 7 GW; however, 320 installations of renewables and
only 46 gas-fired plants above 10 MW were constructed from 2003 to 2010.
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3 Model

3.1 Production processes with heterogenous technologies

I (i = 1, ..., I) decision making units (DMUs, power plants in this case) are observed

in T (t = 1, ...T ) periods. Each power plant uses a technology to transform an m

dimensional input vector xit (x εRm
+ ) into scalar output yit (y εR). Further, denote

by Ψ∗t the entirety of feasible production plans, (xit, yit) ∈ Ψ∗t . In t, the boundary

of Ψ∗t can be represented by the production function f ∗t : Rm
+ → R+. Following mi-

croeconomic theory, f ∗t is a monotonically increasing, concave and continuous function

that gives the maximum output attainable for a given input level. Now, output of

firm i, yit, may deviate from this maximum for given inputs due to inefficiency u > 0

such that yit = f ∗t (xit) ∗ exp(−uit). This production function, termed metafrontier

(Hayami and Ruttan, 1970), represents the maximum production for each input level

for the I observations in period t. To model heterogeneity in electricity generation,

assume that each DMU has chosen one of C (c = 1, ..., C) technologies and could thus

realize all potential input-output combinations in Ψc
t . c represents the plants’ combus-

tion technology by fuel type, and choosing c prevents the plants from fuel-switching.

Therefore, this divides the sample into C groups with each group representing one

combustion technology. A production function f ct (group technology or subtechnology)

defines the attainable maximum output for a given level of input with technology c.

Again, observed output may deviate from this maximum due to inefficiency such that

yit = f ct (xit) ∗ exp(−ucit). By definition, the production possibility set for each group

technology is a subset of the metatechnology, Ψc
t ⊆ Ψ∗t . Therefore, the metatechnology

production function envelops all group technologies, f ∗t (x) ≥ f ct (x) ∀x.

To formalize the relationship between DMUs and frontiers, D∗t denotes the output dis-

tance function of a an input-output combination (xct , y
c
t ) to f ∗t . Likewise, denote the

distance of an observation that has chosen c to the corresponding f ct by Dc
t , and define

D∗t (x, y) = inf{φ∗ > 0 : (x, y/φ∗) ∈ Ψ∗t} (1)

Dc
t (x, y) = inf{φc > 0 : (x, y/φc) ∈ Ψc

t}

where φ∗ and φc give the potential expansion of output for a given input level rela-

tive to f ∗t and f ct . Doing so relates the locations of the metafrontier and the group

frontiers using the technology gap ratio (TGR). The TGR measures the distance be-

tween group and metatechnology for an input-output combination as TGRt(x, y) =
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D∗t (x, y)/Dc
t (x, y). If TGR = 1, technology c can produce maximum output for a given

input level. If TGR < 1, firms using this group technology can potentially achieve a

higher output level by switching to the technology defining the metafrontier for this

input level.

3.2 Estimating and decomposing productivity growth

Using the definition of a distance function introduced in equation 1, the output-oriented

Malmquist productivity index (MPI) is calculated following Färe et al. (1994a), which

is based on a constant returns to scale (CRS) technology as

MPIcrst (xt, yt, xt+1, yt+1) =
Dcrs
t (xt+1, yt+1)

Dcrs
t (xt, yt)

(2)

where the MPI measures productivity growth relative to some period-t benchmark

technology. However, as there is no argument to favor this over a period-t+1 benchmark

technology, typically the geometric mean of both is taken:

MPIcrst,t+1(xt, yt, xt+1, yt+1) =

[
Dcrs
t (xt+1, yt+1)

Dcrs
t (xt, yt)

×
Dcrs
t+1(xt+1, yt+1)

Dcrs
t+1(xt, yt)

]1/2
(3)

To account for a variable returns to scale (VRS) technology, the use of a scale change

factor following the decomposition by Färe et al. (1994b) differentiates three different

factors technical efficiency change (EC), technical change (TC) and scale efficiency

change (SEC), and superscript RTS refers to the returns to scale of the technology as

MPIcrst,t+1(xt, yt, xt+1, yt+1) = ECvrs × TCvrs × TCcrs/TCvrs × SC (4)

ECvrs =
Dvrs
t+1(xt+1, yt+1)

Dvrs
t (xt, yt)

(5)

TCRTS =

[
DRTS
t (xt+1, yt+1)

DRTS
t+1 (xt+1, yt+1)

× DRTS
t (xt, yt)

DRTS
t+1 (xt, yt)

]1/2
(6)

SEC =
Dcrs
t+1(xt+1, yt+1)/D

vrs
t+1(xt+1, yt+1)

Dcrs
t (xt, yt)/Dvrs

t (xt, yt)
(7)

Note that the VRS based Malmquist index measures productivity changes and its

components relative to a technology in two consecutive periods. An MPI score greater

than unity indicates productivity growth, EC > 1 indicates an increase in technical

efficiency over time, TC > 1 indicates positive technical change (i.e. an upward shift
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of the technology), and SEC > 1 indicates an increase in scale efficiency.3

Next, productivity growth in a sector with multiple group technologies is analyzed by

using a metafrontier Malmquist productivity index (MMPI) that measures productiv-

ity growth relative to the metafrontier as the benchmark technology with MMPI =

EC∗ × TC∗,vrs × TC∗,crs/TC∗,vrs. Note that the Malmquist decomposition neglects

the position of the frontier of the C subtechnologies relative to the metafrontier. The

relationship is incorporated by two additional decomposition factors following Chen

and Yang (2011). That is, a Pure Technological Catch-Up (PTCU) component is used

to measure the change of the TGR by comparing the TGR for one DMU in two con-

secutive periods. A Frontier Catch-Up (FCU) component measures the change in the

distance over a whole band of technology gaps. Define the two components

PTCU c
t,t+1 =

TGRc
t+1(xt+1, yt+1)

TGRc
t(xt, yt)

=
D∗t+1(xt+1,yt+1)/D

c
t+1(xt+1,yt+1)

D∗t (xt,yt)/D
c
t (xt,yt)

= EC∗ × 1

ECc

(8)

FCU c
t,t+1 =

[
TGRc

t(xt+1, yt+1)

TGRc
t+1(xt+1, yt+1)

× TGRc
t(xt, yt)

TGRc
t+1(xt, yt)

]1/2
=
TC∗t,t+1

TCc
t,t+1

(9)

A PTCU score larger than unity indicates a shrinking technology gap, i.e. a catch-

up relative to the metafrontier for a specific firm, where a value smaller than one for

the FCU component indicates a catch-up, but measured for the whole band of TGRs

between the input-output combinations in t and t+ 1.

Using the insights of Chen and Yang (2011), I derive an MMPI decomposition including

the FGNZ scale efficiency change component. First, MMPI is multiplied and divided

by PTCU and FCU relative to the VRS frontiers to derive

MMPIcrs =MMPIcrs × PTCU vrs × FCU vrs

× 1

EC∗,vrs
× ECc,vrs × 1

TC∗,vrs
× TCc,vrs

= [EC∗,vrs × TC∗,vrs × TC∗,crs/TC∗,vrs × SEC∗]× PTCU vrs × FCU vrs

× 1

EC∗,vrs
× ECc,vrs × 1

TC∗,vrs
× TCc,vrs (10)

where EC∗,vrs and TC∗,vrs can cancel out. Further, with ECc,vrs and TCc,vrs we already

have included a VRS-based group frontier Malmquist productivity index (GMPI),

GMPIvrs = ECc,vrs × TCc,vrs. Finally, multiplication and division adds the scale

3There is considerable debate about the interpretation of the Färe et al. (1994b) decompostion.
Ray and Desli (1997) propose a decomposition based on another scale change factor, but it is not
applicable to this study because it does not indicate scale effects in the one-output case if there is no
or little variation in the inputs.
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efficiency change component against the group frontier, and simplification yields

MMPIcrs =ECc,vrs × TCc,vrs × PTCU vrs × FCU vrs × SEC∗ × TC∗,crs/TC∗,vrs

=ECc,vrs × TCc,vrs × SECc × PTCU vrs × FCU vrs

× SEC∗/SECc × TC∗,crs/TC∗,vrs

=GMPIc,vrs × SECc × PTCU vrs × FCU vrs

× SEC∗/SECc × TC∗,crs/TC∗,vrs (11)

where MMPI measures productivity growth against the metafrontier. Again, MMPI >

1 indicates productivity growth, and MMPI < 1 indicates a decline. The decom-

position relates this productivity growth to productivity growth on a group frontier

level measured with a VRS group frontier Malmquist productivity index, GMPI, with

GMPIc,vrs = ECc,vrs × TCc,vrs. Again, GMPI > 1, EC > 1, and TC > 1 indicate

productivity growth, efficiency increase, and positive technical change, respectively.

PTCU and FCU work as outlined above.

Finally, two other components remain in the decomposition: The first, SEC∗/SECc,

relates the scale efficiency change component against the metafrontier and the groupfron-

tier. If SEC∗/SECc > 1, the scale gains against the metafrontier are greater than the

scale gains against the group frontier. The second, TC∗,crs/TC∗,vrs, indicates a greater

technical change at the optimal plant size compared to the technical change measured

against the VRS frontier if TC∗,crs/TC∗,vrs > 1, and vice versa.

4 Estimation strategy

4.1 Stochastic non-smooth envelopment of data

To measure productivity using the approach outlined in section 3.2 the boundaries of

the technology sets Ψ∗t and Ψc
t need to be estimated in order to measure the correspond-

ing distance functions D∗t and Dc
t . For the estimation of the group frontiers and the

metafrontier, I use stochastic non-smooth envelopment of data (StoNED) (Kuosmanen

and Kortelainen, 2012). This approach consists mainly of two steps: first, estimate a

piece-wise linear average production function g(x) using convex non-parametric least

squares (CNLS). This estimation is free of any distributional assumptions or assump-

tions on a functional form but incorporates shape restrictions based on microeconomic

theory. In a second stage, based on distributional assumptions, estimates for the pa-

rameters of inefficiency (u) are obtained to shift the estimated average production

function ĝ(x) upwards by the expected value of inefficiency to get a frontier estimate
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f̂(x), while taking a random disturbance (v) into account. Thus, this method combines

aspects of the two standard methods DEA and SFA.4

For the first stage, Kuosmanen (2008) derives a representation of the infinitely many

monotonically increasing, concave, and continuous (not necessarily differentiable) func-

tions that solve the corresponding least squares problem. Kuosmanen and Korte-

lainen (2012), who extend the approach to the case of a production function with

a multiplicative error term εi = vi − ui with noise vi and inefficiency ui such that

yi = f(xi) ∗ exp(εi) = f(xi) ∗ exp(vi − ui), derive a quadratic programming prob-

lem (QP) to obtain intercept and slope estimates for the average production function

based on the log-transformed multiplicative model.5 This paper uses the extension to

estimate the average production function gt(x) in each year separately for each group

technology and for the metatechnology by solving the following non-linear QP

min
α,β,ŷ

n∑
i=1

(ln yit − ln ŷit)
2 (12)

ŷit = αit + β′itxit

αit + β′itxit ≤ αht + β′htxit ∀i, h = 1, ..., n

βit ≥ 0 ∀i = 1, ..., n

where xit and yit represent all observed input-output combinations for plants using

technology c if a group frontier in t is estimated. Otherwise, include all in t observed

points if the metafrontier is estimated. The QP tries to find the α and β coefficients

that minimize the sum of the squared residuals ηit with ηit = ln yit − ln ŷit. α and β

are firm-specific estimates for intercept and slope of a firm-specific hyperplane tangent

to the average production function g(x). Microeconomic requirements on this hyper-

planes are imposed as constraints: The first constraint establishes a linear form for

the estimated hyperplanes, the second constraint imposes concavity of the estimated

function using Afriats theorem (Afriat, 1967), and the third constraint imposes mono-

tonicity. As no further restrictions are imposed on the sign of α, the estimated frontier

is allowed to have VRS. Note that a CRS model can be imposed by setting α = 0.

Furthermore, the QP delivers fitted values ŷit on these hyperplanes. The ŷit are typi-

4Similar to DEA, the production frontier is estimated without specification of a functional form
and based on only a few microeconomic assumptions concerning the shape of a production function
(concavity, monotonicity, and continuity). Similar to SFA, disentangling noise and inefficiency is
possible based on distributional assumptions for v and u. Thus, StoNED combines the advantages of
both methodologies and, as Kuosmanen and Kortelainen (2012) point out, DEA and SFA are special
cases of the StoNED with additional assumptions either on the error term (no noise for DEA), or the
functional form (specified f(x) for SFA)

5Additional assumptions: ui and vi are assumed to be independent. vi has a symmetric distribution
with finite variance σ2

v , ui takes only positive values and has a finite variance σ2
u.
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cally unique, whereas the αs and βs are typically non-unique. Therefore, following the

minimal extrapolation principle (Banker et al., 1984), using the lower envelope of these

fitted values estimates the average production function ĝ(x).6

To estimate the n ∗m+n parameters in the VRS case (n ∗m parameters under CRS),

the second and the third constraint sum up to n ∗n+n constraints (n ∗n under CRS).

Since the concavity constraints impose a large number of restrictions (n ∗ n), which is

computationally burdensome for large datasets, this paper uses a sweet spot approach

following Lee et al. (2013). This algorithm is based on the assumption that the relevant

hyperplane of an observation is most likely influenced only by observations close to the

unit of interest. Therefore, in a first stage, for each unit, only constraints relative to

observations within 30 percent of the maximum Euclidean distance of one arbitrarily

chosen input are included. After solving this initial model, the most violated constraint

for each observation is added. This procedure is repeated iteratively until no constraint

is violated, thus assuring optimality of the solution.

After obtaining the α and β coefficients in the first stage, the residuals, ηit, are used

to recover estimates for the parameters of the distributions of inefficiency and noise in

each t for each of the C group technologies and the metafrontier. Based on these esti-

mates, ˆg(x) is shifted to obtain a frontier estimate. To derive these parameters, more

detailed distributional assumptions are needed in advance. Following Kuosmanen and

Kortelainen (2012), a normal distribution is imposed for the noise term, v ∼ N(0, σ2
v).

The inefficiency term is assumed to take only positive values and to follow a half-normal

distribution, u ∼ |N(0, σ2
u)|. Thus, the composed error term εi = vi − ui is assumed

to follow a normal-half-normal distribution. To recover the variance parameters, σu

and σv, Kuosmanen and Kortelainen (2012) suggest decomposing the residuals from

the first stage (ηit) using a pseudolikelihood estimator (PSL), as proposed by Fan et al.

(1996) (FLW).7 Therefore, for each t and for each c a log-likelihood function for the

normal-half-normal model as a function of a single parameter λ ≡ σu/σv, with Φ de-

noting the cumulative distribution function of a standard normal, is expressed such that

6Thus, g(x) has a piece-wise linear shape similar to DEA.
7Kuosmanen and Kortelainen (2012) also consider a Method of Moments estimator similar to

modified ordinary least squares (MOLS). This estimator is less efficient and therefore not used in this
paper.
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lnL(λ) = −n ln σ̂ +
n∑
i=1

ln Φ

[
−ε̂iλ
σ̂

]
− 1

2σ̂2

n∑
i=1

ε̂i
2 (13)

with ε̂i = η̂i − (
√

2λσ̂)/[π(1 + λ2)]1/2 (14)

and σ̂ =

([
1

n

n∑
i=1

η̂i

]
/

[
1− 2λ2

π(1 + λ2)

])1/2

(15)

Maximization of the likelihood function delivers estimates of λ and subsequently σ̂.

Further, σ̂u = σ̂λ̂/(1+ λ̂) and σv = σ̂/(1+ λ̂) provide the estimates of σ̂u and σ̂v. Given

this estimate of the variance of the inefficiency, the expected value of inefficiency, µ̂,

is calculated as E(ui) = µ̂ = σ̂u ×
√

2/π. This estimation is carried out separately

for each technology and the metatechnology, in each of the T periods, and under CRS

and VRS, leading to 2 ∗ T (C + 1) estimates of σu, σv and µ. Next, to derive the

estimated production functions, the average production functions is shifted upwards

by the corresponding expected value of inefficiency such that f̂t(x) = ĝt(x) ∗ exp(µ̂t).

4.2 Construction of evaluation points

Typically standard Malmquist decomposition is based on balanced panel datasets, but

this is not the case for our sample.8 Therefore, to avoid the problem of unbalanced-

ness, I evaluate productivity changes for representative hypothetical evaluation units

that are not included in the estimation of the frontier. Estimating and decomposing

productivity growth with hypothetical units offers several advantages. First, frontier

estimation is done using the maximum number of observations without excluding ob-

servations for balancedness or distortions by imputed units. Second, constructing a

continuum of evaluation points obtains productivity growth estimates for the whole

range of relevant firm sizes. Third, creating hypothetical units allow the assumption

that the evaluated units contain on average no noise, i.e. it permits a deterministic

treatment of the distances to the frontiers, Dc
t and D∗t . Fourth, constructing hypothet-

ical evaluation units allows analysis of the dataset in this paper that is not possible on

real-world units due to data privacy limitations (see section 5).

8However, different adjustments are possible to use such methods for non-balanced panels (see
Kerstens and Van de Woestyne, 2014, for an overview): either drop the ”incomplete” observations or
backward merge observations that actually merged during the observation period. Other approaches
to balance the panel include imputation of missing data, creation of artificial units, and achieving
balancedness at least on a two-year basis. However, in this paper’s model set-up, such methods
are not to applicable, because inclusion of artificial units or exclusion of observations can alter the
precision of the StoNED estimator if included in the frontier estimation, or impact the productivity
growth estimate.
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For the analysis we construct for each c hypothetical observations (xcp, y
c
t,p) that rep-

resent average plants using c at the p-percentile of the plant size in terms of inputs,

with fixed inputs over time. The corresponding output is constructed as the expected

output including the expected inefficiency. To do so, for each c, we pool the observa-

tions over the whole observation period and draw for each of the m inputs the p-th

percentiles with p = {10%, 25%, 50%, 75%, 90%}. The corresponding output in t, yct,p,

is calculated as the value on ĝt
c,V RS(x) using the lower envelope of the fitted values

ŷc,V RSit of the StoNED QP under VRS (see Kuosmanen, 2008, Theorem 4.1). Note that

this lower envelope is constructed as a simple linear programming problem (LP) that

envelops the fitted values from the StoNED estimation similar to a VRS-DEA and

allows extrapolating points on ĝc,V RSt (x) for unobserved inputs. Slope and intercept

parameters a and b of this lower envelope are obtained by solving the following LP that

delivers the corresponding expected output for the evaluation unit

yct,p(x
c
p) = min

a,b
{a+ b′xcp | a+ b′xcp ≥ ŷcit} (16)

The corresponding frontier reference point ỹc,V RSt,p is derived by multiplication with the

expected value of inefficiency, µct

ỹc,V RSt,p = yct,p(x
c
p) ∗ exp(µ

c,V RS
t ) (17)

Deriving the frontier reference points on the CRS frontier and on the metafrontiers uses

a similar procedure. i.e. project the input on the relevant average production function,

and shift the projection by the corresponding expected value of inefficiency to obtain

the frontier estimate. Thus, I construct for each of the C groups five evaluation units

with fixed inputs over time and output corresponding to the estimated average VRS

production function in t, ĝc,V RSt (x). Note that each of these units inherits the expected

inefficiency relative to the VRS frontier. Thus, these hypothetical units resemble an

average plant at the p-percentile of its group c.

This procedure has three important implications for the Malmquist decomposition.

First, by assuming that the average unit does not incorporate noise, Dc
t and D∗t do

not need to be calculated using the widely used, and although unbiased, statistically

inconsistent estimator for E[ui|εi] suggested by Jondrow et al. (1982), but instead can

be based on the consistently estimated frontier. Thus, Dc
t and D∗t collapse to simple

ratios in the one-output case, and, for example, the distance function of input-output

combinations in t relative to the benchmark technology in t + 1 can be calculated

as Dc
t+1(x

c
t,p, y

c
t,p) = yct,p/ỹ

c,RTS
t+1,p . Second, as there is no variation in the inputs - xcp

is constant over time - PTCU = 1/FCU in each period, because the scale of the
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operations does not change. Latter implication also influences the interpretation of the

scale efficiency change component that now measures the change of the optimal scale

size over time, and not whether a firm moves closer to optimal scale size. Third, and

most importantly, the deterministic treatment of the inefficiency allows to measure the

MMPI independent of distributional assumptions. To illustrate this third implication,

replace the distance function in the MPI definition (equation 3) and let ξt be the

expected inefficiency in period t from some distributional assumption in the StoNED

estimation to see that inefficiency cancels out:

MPIcrst,t+1(xt, yt, xt+1, yt+1) =

[
Dcrs
t (xt+1, yt+1)

Dcrs
t (xt, yt)

×
Dcrs
t+1(xt+1, yt+1)

Dcrs
t+1(xt, yt)

]1/2
=

[
yt+1/yt ∗ exp(ξt)
yt/yt ∗ exp(ξt)

× yt+1/yt+1 ∗ exp(ξt+1)

yt/yt+1 ∗ exp(ξt+1)

]1/2
=
yt+1

yt
(18)

Thus, the overall productivity measures, MMPI and GMPI, are independent of dis-

tributional assumptions on the inefficiency component, but depend only on a few as-

sumptions, namely concavity, monotonicity and continuity of the production function.

However, the components of the decomposition may vary with the assumptions on the

distributions of inefficiency and noise.

5 Data

To estimate and decompose the productivity growth of Germany’s electricity genera-

tion, this paper uses the most comprehensive dataset ever compiled on conventional

generation capacities in Germany.9 For data privacy, the dataset only uses remote

data processing, and detailed information such as minima and maxima are not re-

ported. The dataset includes electricity generating facilities with a bottleneck capacity

of at least 1 MW in operation between 2003 and 2010. The sample includes large scale

electricity and heat suppliers, small scale power plants for industrial use including par-

tial autoproducers, as well as private, public, and mixed ownership facilities. Nuclear

plants are neglected due to Germany’s nucelar phase-out by 2022.

To adopt the framework presented in section 3 to the context of electricity and heat

generating power plants, we model all power plants in the sample together as metatech-

nology, while subtechnologies are based on the primary fuel of the production process.

The conventional combustion power plants considered as subtechnologies are coal, lig-

9The data supplied by the Research Data Centres of the Federal Statistical Office and the statistical
offices of the Länder are based on the monthly survey EVAS 43311 for power plants, and matched
with EVAS 43111 for labor input data.
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2003 2004 2005 2006 2007 2008 2009 2010
∑

Coal 22 27 27 27 29 28 27 27 214
Lignite 8 10 11 11 15 15 14 11 95
Gas 114 137 120 142 139 147 146 145 1090
Biomass 12 15 15 19 20 23 25 27 156

Meta 156 189 173 199 203 213 212 210 1555

Table 1: Sample sizes for four fuel subsets and total sample

nite, gas and biomass.10 In 2010, these four fuels produced over over 60% of German

electricity generation.

5.1 Key variables

Capital (CAPITAL), labor (LABOR), and combustion materials (FUEL) are used

as inputs to produce energy (ENERGY) in the form of heat and electricity as sole

output. The analysis focuses on operational rather than environmental performance

and therefore undesirable outputs are not included in the model specification.11

CAPITAL is approximated with the plants average available capacity in MW, the

average of the monthly available capacity throughout the year. Using the average rather

than the maximum capacity controls for potential capacity extensions or reduction

throughout the year. CAPITAL also includes the plant owner’s decision to maintain,

or not, full capacity. LABOR is the sum of hours worked. This measure is more

accurate to approximate labor input than a head count as it accounts for part-time

labor. FUEL is measured using the fuel input of the primary fuel in GJ. Since a

secondary fuel typically is used only for start-up, neglecting the secondary fuel input

is expected to have little influence on the results. ENERGY is the heat and electricity

supplied as sole outputs measured as the sum of both in MWh. Net values are used

because own consumption reduces the actual provided energy and it must not influence

a productivity measure.

10Specifically, the different groups contain plants with the following fuels:
Coal: Coal, coal coke, briquette and derivatives, and other coals
Lignite: Lignite, black lignite, lignite dust, briquette and coke, fluidized bed lignite, and other lignites
Gas: Natural gas, marsh gas, coke oven gas, furnace gas, and other synthetic gases
Biomass: Wood, straw, liquid biomass, biogas, landfill gas, biosolids, sewage sludge and gas, and
municipal wastes

11See Seifert et al. (2014) for an application of this dataset analyzing environmental performance
by including undesirable outputs in the form of CO2 emissions.
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5.2 Descriptive statistics

The panel comprises 1555 observations over the study period (see Table 1; also see

Table 7 to 10 in the Appendix). The number of firms increases over the observation

period from 156 in 2003 to over 200 plants from 2006 onward. Gas-fired plants represent

the largest part of the sample. The number of coal and lignite-fired power plants re-

mains stable across the study period, while the number of biomass-fired plants steadily

increases. For coal and gas-fired plants the sample covers between 30% and 40% of

the total capacity of plants using these fuels. For lignite-fired plants, these numbers

vary more strongly and between 33% (2004) and 80% (2008) are covered. Among the

biomass-fired plants about 10 to 18% of total available capacity is covered.

Lignite-fired plants are the largest plants in the sample, while especially biomass and

gas-fired plants are considerably smaller. For gas-fired plants, the data shows a right-

skewed distribution with a larger number of small plants. The stable mean and quantile

values support the choice of fixed inputs over time for the hypothetical evaluation units.

The hypothetical units emphasize the large dispersion in terms of plant size for the

combustion technologies (see Figure 2 for the evaluation units; also see Table 6 in the

Appendix). Note, however, the overlapping intervals for the different technologies, such

that e.g. the 90% quantile of the coal-fired power plants is larger than the 10% quan-

tile of the lignite-fired plants, meaning that only one combustion technology influences

parts of the metafrontier estimate, whereas the plants of different combustion tech-

nologies influence other parts. Thus, plants can be benchmarked against plants using

a different fuel when evaluated against the metafrontier. This is especially noticeable

for the biomass-fired plants, since the smallest biomass evaluation unit is larger than

the smallest gas-fired unit, but the largest biomass unit is still smaller than the largest

gas-fired unit.

6 Results

6.1 Frontier estimation results

Figure 3 and 4 report the results of the frontier estimates for the different technolo-

gies as well as the metafrontier in terms of annual expected efficiency (also see Table

11 in the Appendix).12 A value of 1 indicates full efficiency and no potential output

expansion with the same technology. In general, results reveal rather low expected

inefficiency in Germany’s electricity generating sector, i.e. on average the power plants

12All calculations use R 3.2 (R Core Team, 2015) with the packages quadprog, alabama, bbmle and
lpSolve. Detailed results for the frontier estimates are available from the author upon request.
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Figure 2: Descriptive statistics: Hypothetical evaluation units

operate close to the best practice frontiers spanned by plants with the same fuel. As

expected, under the VRS assumption the large scale baseload plants fired with coal

and lignite perform best with on average 98.6 and 98.3% expected efficiency. This can

be explained by the usage of a mature technology with few technological differences

among the plants, and constantly high load. The on average smaller gas- and biomass-

fired also operate on average on a high efficiency level, which indicates potential output

expansion of only 2%. Figure 3 and 4 also indicate a stable upward trend of efficiency

of gas-fired plants carrying over to the metafrontier results, as the gas-fired plants are

the largest subsample. Under the CRS assumption, the results are similar with highest

efficiency scores for baseload plants and higher intertemporal variations for the gas-

and biomass-fired plants.

Tables 2 and 3 report the technology gap ratios (TGR) between the meta- and group

frontier estimates (also see Tables 12 to 15 in the Appendix). Gas-fired plants show the

smallest technology gap, meaning that they generally operate closest to the metafron-

tier. Coal-fired plants show a technology gap at the beginning of the observation period

that eventually closes over time. On the contrary, the largest gap can be found for

biomass-fired plants with considerable variation over time. This means that switching

the combustion technology from biomass to gas would have resulted in a considerable

increase in potential output for the plants. Finally, the lignite-fired plants show that
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Coal Lignite Gas Biomass

2003 0.9636 0.9621 0.9804 0.8118

2004 0.9646 0.9558 0.9778 0.9784

2005 0.9764 0.9771 0.9786 0.9212

2006 0.9736 0.9738 0.9838 0.9160

2007 0.9748 0.9648 0.9812 0.9403

2008 0.9764 0.9669 0.9877 0.9302

2009 0.9820 0.9736 0.9829 0.9855

2010 0.9948 0.9759 0.9647 0.9857

Table 2: Average TGR over time

their technology gap decreases with plant size.13

In summary, the frontier estimation results indicate fairly low inefficiency in the Ger-

many’s electricity generating sector. The results also emphasize a high productivity of

gas- and coal-fired plants, whereas biomass and small lignite-fired plants continue to

exhibit noteworthy technology gaps. The indicated savings potentials are much lower

than in Seifert et al. (2014), which uses nearly identical data and a similar model spec-

ification. While both the inefficiency estimates and the technology gaps remain the

same order, the magnitude is lower.14

Two further methodological points should be noted here. First, while the results show

that the metafrontier envelops all group frontiers, this is not automatically the case.

To ensure this envelopment, one may consider using a further constraint in the frontier

estimation similar to the SFA metafrontier approach suggested by Battese et al. (2004).

Second, the potential inconsistency of CRS and VRS frontier estimates, i.e. the CRS

does not envelop the VRS in every point or intersects it, infers that the frontier refer-

ence points of all observations should be compared for the different scale assumptions.

In this paper, if such an inconsistency occurs, the CRS frontier estimate is shifted up

by increasing the corresponding σu such that CRS equals VRS in the most productive

scale size similar to DEA (cp. Bogetoft and Otto, 2011, for details).While ad-hoc, this

solution at least provides consistency of the scale change components.

13As large lignite-fired plants are the largest plants in the sample, there are no comparable tech-
nologies. Thus, lignite-fired plants necessarily span the metafrontier at the upper end, leading to
almost no technology gap. Conversely, the smallest lignite-fired plants operating at the scale of gas-
and coal-fired plants indicate indicate a considerable technology gap.

14The differences can be explained by the frontier estimation approach. Seifert et al. (2014) use
a deterministic sequential DEA approach that strongly reacts on highly efficient units, whereas the
StoNED approach assumes noise in the data. Thus, a sequential DEA approach may underestimate
efficiency in the presence of noise, while StoNED might overestimate efficiency when there is little
noise present.
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Coal Lignite Gas Biomass

10% 0.9769 0.9484 0.9798 0.8949

25% 0.9742 0.9591 0.9772 0.9326

50% 0.9718 0.9705 0.9773 0.9465

75% 0.9757 0.9817 0.9814 0.9479

90% 0.9802 0.9840 0.9824 0.9463

Table 3: Average TGR per plant size

6.2 Malmquist decomposition results

MMPI

The MMPI measures productivity growth against the sector production function, and

an MMPI of 1 indicates no productivity change over the observation period. Further,

productivity is evaluated at 20 hypothetical evaluation units that resemble average

plants of the different subtechnologies. Figure 5 summarizes the estimates of annual

productivity growth on the metafrontier level plotted against the plant size in log MW

(see Table 16 for details).

Overall, MMPI shows very small productivity changes at nearly all evaluated points.

As Figure 5 highlights, medium sized plants show productivity losses over the study

period, but the smallest and largest evaluated points show productivity gains. With

the exception of small biomass-fired plants, no evaluation point has annual productiv-

ity changes larger than 1%. Coal- and lignite-fired plants show a small reduction or

stagnation in productivity over all analyzed input quantiles. Similarly, overall produc-

tivity changes for gas-fired plants are fairly small, irrespective of the analyzed input

quantile. Gas-fired plants show annual productivity gains of about 0.2% for the smaller

quantiles, but also stagnation or small losses for larger plants. Biomass plants show

large productivity gains especially at the lower quantiles. These large gains can be

explained by strong gains in the first period, 2003 to 2004, which can be attributed to

poor data availability for this plant size in the first years. Excluding the first years of

these observations, however, leads to annual productivity gains over the whole range

of inputs, thus indicating a robust productivity increase for these plants.

MMPI decomposition

Decomposing the overall productivity measure helps to understand the underlying

mechanics of productivity growth. Table 4 reports the results of the suggested decom-

position as productivity growth on the group level (GMPI) and Table 5 indicates the
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Coal Lignite Gas Biomass

10% 0.9944 0.9978 0.9971 1.2047

25% 0.9953 0.9989 0.9948 1.0288

50% 0.9978 1.0004 0.9938 1.0071

75% 0.9988 1.0003 0.9934 1.0052

90% 1.0004 1.0008 0.9932 1.0040

Table 4: Geometric mean of GMPI:
average annual productivity growth
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Coal Lignite Gas Biomass

ECc,vrs 0.9990 1.0009 1.0063 0.9925

TCc,vrs 10% 0.9994 0.9967 0.9954 1.1017

25% 1.0000 0.9972 0.9943 1.0182

50% 1.0007 0.9984 0.9938 1.0074

75% 1.0006 0.9989 0.9936 1.0064

90% 1.0009 0.9997 0.9935 1.0058

PTCU 10% 1.0045 1.0019 0.9981 1.1054

25% 1.0047 1.0020 0.9969 1.0232

50% 1.0050 1.0021 0.9971 1.0124

75% 1.0044 1.0021 0.9982 1.0116

90% 1.0042 1.0021 0.9981 1.0105

SECc 10% 1.0001 0.9997 0.9990 0.9994

25% 1.0006 0.9997 0.9982 0.9996

50% 1.0012 0.9997 0.9983 0.9995

75% 1.0012 0.9996 0.9994 0.9995

90% 1.0012 0.9996 0.9999 0.9995

SEC∗ 10% 1.0000 1.0000 0.9993 1.0000

25% 1.0003 1.0003 0.9992 1.0000

50% 1.0007 1.0013 0.9997 1.0000

75% 1.0011 1.0018 1.0000 1.0000

90% 1.0014 1.0018 1.0001 1.0001

TC∗,crs 10% 0.9949 0.9948 0.9973 0.9967

25% 0.9953 0.9952 0.9974 0.9950

50% 0.9958 0.9963 0.9966 0.9950

75% 0.9962 0.9968 0.9954 0.9949

90% 0.9967 0.9977 0.9954 0.9954

TC∗,vrs 10% 0.9949 0.9949 0.9980 0.9967

25% 0.9951 0.9949 0.9982 0.9950

50% 0.9951 0.9950 0.9970 0.9950

75% 0.9951 0.9950 0.9954 0.9949

90% 0.9953 0.9959 0.9953 0.9952

Table 5: Geometric means GMPI decomposition components
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components of the decomposition, namely an efficiency change, technical changes, scale

efficiency changes and pure technological catch up (see Figure 6 to 9 in the Appendix

for time series plots of the decomposition results on the subtechnology level).

The GMPI estimates also indicate little productivity changes on the group level similar

to the MMPI results. While the GMPI results are nearly identical to MMPI results

for lignite-fired plants, there is a greater variation in productivity estimates for the

coal-fired plants. For the gas-fired plants, the GMPI indicates stronger productivity

decline compared to the MMPI. One noteworthy difference is that the GMPI indicates

productivity gains for all evaluated units in the group of biomass-fired plants with

annual productivity growth between 0.4 and 2.8%, excluding the smallest evaluation

point. Thus, productivity growth for the biomass-fired plants measured in the group is

higher than measured against the metafrontier for the same evaluation units. Note that

this productivity growth for a subset of the power plant fleet cannot be detected when

looking only at the sector as a whole. Further, the differentiation by technology avoids

the problem of smaller subsamples becoming smoothed out by larger subsamples.

The Efficiency Change (EC) component reflects the change in the distance of the av-

erage plant to the best practice for the different group frontiers. Since EC depends

only on the shift factor from the average production function to the frontier in two

consecutive periods, i.e. the expected inefficiency µt and µt+1, the calculated EC is

identical for the different evaluation units. In general, the efficiency change compo-

nent indicates trends similar to the GMPI, with smaller changes for baseload plants

and higher volatility for small scale plants. Again, results are of small magnitude and

range between 0.75% average annual efficiency loss for biomass and 0.6% efficiency

increase for gas. As the expected efficiency estimates in Figure 3 and 4 show, average

intra-group efficiency is already fairly high for each technology. Annual estimates indi-

cate a positive trend only for the gas-fired plants, while the larger estimated efficiency

change component of biomass-fired plants is due to a higher variance.

The Technical Change (TC) component reflects the annual shift of the frontier irre-

spective of the potential efficiency or scale effects. Thus, the TC component does

not evaluate changes for the average firm, but rather the changes at the best practice

frontier. The results of each technology show the same direction for all plant sizes,

i.e. common frontier shifts over the whole range. While the results indicate technical

regress for lignite and gas-fired plants, the TC component indicates almost no frontier

shift for coal-fired plants. On the contrary, strong positive values between 0.6 and

10% technical change are found for the biomass plants. Again, the strongly positive

values for the small biomass plants is driven by a large change in the early years, but

a positive trend is also found when omitting these periods. Overall, the results are in
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line with the expectations given the overall few installations of capacity for coal and

lignite. On the other hand, biomass combustion technology, which is not as mature as

the other technologies, allows for larger initial productivity gains.

The Pure Technological Catch Up (PTCU) components measures the group frontier

shifts relative to the metafrontier shifts. The PTCU component does not evaluate

changes for the average firm, but instead evaluates changes at the best practice of a

group relative to the best practice for the whole sector. The results indicate catch-

up for coal, lignite, and biomass, while values below one are found for gas. Again,

the magnitude of this effect is low for coal, lignite and gas, and more pronounced for

biomass. Comparing the PTCU component and TC components with the TGR, re-

veals an interesting pattern. The generally higher values for PTCU compared to the

TC component indicate that group frontiers partly catch-up to the metafrontier due to

the latter’s downward shift. In other words, overall production potentials in the sector

decreased across the study period. The comparison also indicates that the decrease

in TGR for coal and biomass (see Table 12 and Table 15) is partly driven by tech-

nology developments in the whole sector. Finally, the negative PTCU and TC scores

for gas-fired plants indicate that gas is losing production potentials more rapidly than

the sector as a whole. Total productivity, however, remains rather stable, because the

effects are partly offset by the positive efficiency development of gas-fired plants.

The Scale Efficiency Change (SECc, SEC∗) components against both metafrontier and

group frontiers indicate the changes in optimal firm sizes. Given that initial scale ef-

ficiency estimates are already high, with a minimum of 96% for biomass-fired plants

and around 98% for the other technologies, only small gains are available in terms

of scale efficiency. The result is now reflected in the very small SEC component for

all technologies. Further, results indicate stable scale efficiencies and almost no scale

efficiency change effects against both, metafrontier and group frontiers.15

The nearly identical Metafrontier Technical Change components (TC∗,crs, TC∗,vrs) em-

phasize the flat shape of the VRS frontier. Generally, the results indicate losses of pro-

duction possibilities of about 0.5% annually. Thus, the German electricity generating

sector faced technical regress in the 2003 to 2010 period over the whole set relevant

plant sizes. This is in line with Seifert et al. (2014) that find only few frontier-shifting

DMUs over the observation periods.

15Seifert et al. (2014) find higher inefficiencies stemming from having non-optimal plant size, thus
emphasizing the effect of the estimation method on the results. The StoNED results indicate a very
flat shape of the VRS production function close to the CRS function, whereas the DEA estimate by
Seifert et al. (2014) indicates considerable gaps between these frontiers.
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7 Conclusion

This paper proposes a framework to estimate productivity growth in electricity gener-

ation, a sector characterized by multiple production technologies. A Malmquist pro-

ductivity index accounts for productivity developments on sectoral and subtechnology

level, including standard productivity decomposition factors (efficiency change, techni-

cal change, scale efficiency change). Frontier estimation with the stochastic non-smooth

envelopment of data (Kuosmanen and Kortelainen, 2012, StoNED,) allows a flexible,

non-parametric estimation of overall productivity changes with few microeconomic

assumptions. The use of representative hypothetical evaluation points estimates pro-

ductivity changes for the whole range of relevant plant sizes without any distributional

assumptions, and allows the use of a non-balanced panel without imputation of addi-

tional data points. The framework is applied to measure and decompose productivity

growth in the German electricity generation sector based on a unique and rich dataset

of coal-, lignite-, gas-, and biomass-fired generation operating from 2003 to 2010.

The results indicate relatively small productivity changes irrespective of the fuel source,

and an overall reduction in production potential, i.e. technical regress and a down-

ward shift of the sector production function. Coal- and lignite-fired plants, the mature

baseload technologies, generally indicate stable productivity over the observation pe-

riod and little variability in the decomposition factors, where gas-fired plants indicate

technical regress offset by efficiency gains that lead to an overall stagnation of produc-

tivity. Although biomass-combustion technology is undergoing considerable positive

technical change, catching up to other sources, its production potentials are not fully

captured. The resulting biomass-fired productivity gains are accompanied by an effi-

ciency decrease, thus suggesting that newly installed capacities drove the frontier shift

and not technical enhancement of existing installations. Compared to the literature

on electricity generating sector productivity, the productivity growth estimates in this

paper are of a magnitude similar to other studies, with an overall stagnation of produc-

tivity in electricity generation in an developed economy. The results support existing

explanations of productivity changes similar to See and Coelli (2013), i.e. a technology

with considerable capacity installations to possess higher rates of technical change, al-

though no translation into overall productivity gains is detected. Similar to Heshmati

et al. (2014), the results indicate no productivity gains for mature technologies, but

unlike Heshmati et al. (2014), no stable downward trend in productivity is detected.

We conclude that the StoNED approach combined with the proposed framework pro-

duces good estimates of productivity changes. Although the estimated frontier is flex-

ible in its shape, this paper confirms the application of the estimation procedure to

small datasets. Further, overall productivity evaluation is independent from distribu-
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tional assumptions and relies only on few microeconomic assumptions on the shape

of a production function. We note that while the proposed method could underes-

timate intertemporal changes as the frontier is less sensitive against a small number

of observations, it reduces the risk of overestimating productivity changes due to er-

roneous data. Measuring productivity growth against both the frontier of the sector

and the frontiers of the subtechnologies allows a more complete understanding of the

underlying mechanisms of productivity growth. That is, the framework can measure

productivity growth for a subset of a power plant fleet that would not otherwise be

captured when looking only at the sector as a whole. Further, the differentiation by

technology allows analysis of productivity growth in small subsamples with results that

would have otherwise been smoothed out by larger subsamples.
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A Appendix

A.1 Descriptive Statistics

10% 25% 50% 75% 90%

Coal

CAPITAL 26.23 92.00 306.00 625.00 834.23

LABOR 103.45 189.17 294.77 693.86 1515.17

FUEL 2047.64 5019.72 15955.95 28342.76 40014.60

Lignite

CAPITAL 35.00 71.33 843.33 1767.00 2645.83

LABOR 42.86 92.55 287.24 1036.20 1429.8

FUEL 2898.96 8031.95 52948.50 139666.15 214484.43

Gas

CAPITAL 0.81 1.63 4.10 20.00 110.80

LABOR 24.16 58.72 110.64 197.22 419.39

FUEL 25.73 73.52 212.83 906.29 4380.39

Biomass

CAPITAL 1.72 5.00 9.13 16.83 30.73

LABOR 20.59 33.45 85.16 146.58 326.47

FUEL 105.89 535.60 793.09 1748.89 3379.45

Note: Fuel input is measured in 1000 GJ, Labor in 1000 hours

Table 6: Descriptive statistics: Hypothetical evaluation units
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A.2 Annual expected inefficiency

VRS Coal Lignite Gas Biomass Meta

2003 0.9881 0.9830 0.9572 0.9991 0.9573

2004 0.9891 0.9856 0.9673 0.9609 0.9634

2005 0.9894 0.9785 0.9838 0.9990 0.9750

2006 0.9872 0.9788 0.9796 0.9993 0.9696

2007 0.9880 0.9896 0.9877 0.9730 0.9709

2008 0.9845 0.9864 0.9816 0.9975 0.9697

2009 0.9832 0.9840 0.9851 0.9644 0.9788

2010 0.9813 0.9894 1.0000 0.9476 0.9995

Mean 0.9863 0.9844 0.9803 0.9801 0.9730

CRS Coal Lignite Gas Biomass Meta

2003 0.9881 0.9829 0.9560 0.9991 0.9547

2004 0.9847 0.9813 0.9630 0.9601 0.9602

2005 0.9883 0.9780 0.9785 0.9984 0.9739

2006 0.9869 0.9787 0.9760 0.9993 0.9557

2007 0.9877 0.9842 0.9833 0.9726 0.9681

2008 0.9836 0.9844 0.9711 0.9611 0.9666

2009 0.9824 0.9837 0.9841 0.9642 0.9780

2010 0.9813 0.9878 0.9999 0.9447 0.9765

Mean 0.9854 0.9826 0.9765 0.9749 0.9667

Table 11: Annual expected efficiency for cross-sectional frontiers in
percentages under VRS and CRS
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A.3 Technology Gap Ratios

Coal 10% 25% 50% 75% 90% Mean

2003 0.9658 0.9630 0.9596 0.9635 0.9659 0.9636

2004 0.9644 0.9610 0.9582 0.9664 0.9729 0.9646

2005 0.9767 0.9743 0.9700 0.9770 0.9840 0.9764

2006 0.9789 0.9744 0.9681 0.9702 0.9762 0.9736

2007 0.9740 0.9726 0.9727 0.9754 0.9791 0.9748

2008 0.9758 0.9742 0.9736 0.9768 0.9816 0.9764

2009 0.9828 0.9793 0.9788 0.9818 0.9871 0.9820

2010 0.9968 0.9949 0.9935 0.9939 0.9949 0.9948

Mean 0.9769 0.9742 0.9718 0.9757 0.9802

Table 12: TGR: Coal

Lignite 10% 25% 50% 75% 90% Mean

2003 0.9425 0.9547 0.9674 0.9720 0.9738 0.9621

2004 0.9411 0.9458 0.9490 0.9696 0.9735 0.9558

2005 0.9563 0.9685 0.9751 0.9907 0.9948 0.9771

2006 0.9533 0.9644 0.9740 0.9872 0.9900 0.9738

2007 0.9449 0.9511 0.9677 0.9800 0.9802 0.9648

2008 0.9445 0.9564 0.9714 0.9798 0.9825 0.9669

2009 0.9497 0.9639 0.9778 0.9875 0.9893 0.9736

2010 0.9553 0.9681 0.9816 0.9865 0.9881 0.9759

Mean 0.9484 0.9591 0.9705 0.9817 0.9840

Table 13: TGR: Lignite
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Gas 10% 25% 50% 75% 90% Mean

2003 0.9778 0.9775 0.9784 0.9829 0.9854 0.9804

2004 0.9750 0.9727 0.9739 0.9815 0.9856 0.9778

2005 0.9830 0.9764 0.9720 0.9787 0.9828 0.9786

2006 0.9820 0.9832 0.9847 0.9870 0.9821 0.9838

2007 0.9830 0.9823 0.9809 0.9803 0.9795 0.9812

2008 0.9879 0.9879 0.9879 0.9878 0.9870 0.9877

2009 0.9847 0.9812 0.9813 0.9827 0.9844 0.9829

2010 0.9651 0.9565 0.9589 0.9704 0.9723 0.9647

Mean 0.9798 0.9772 0.9773 0.9814 0.9824

Table 14: TGR: Gas

Biomass 10% 25% 50% 75% 90% Mean

2003 0.4881 0.8357 0.9057 0.9118 0.9178 0.8118

2004 0.9730 0.9775 0.9790 0.9816 0.9806 0.9784

2005 0.9271 0.9071 0.9229 0.9245 0.9244 0.9212

2006 0.9211 0.9117 0.9164 0.9157 0.9149 0.9160

2007 0.9474 0.9396 0.9398 0.9389 0.9356 0.9403

2008 0.9351 0.9262 0.9308 0.9300 0.9287 0.9302

2009 0.9836 0.9810 0.9897 0.9922 0.9807 0.9855

2010 0.9840 0.9816 0.9874 0.9885 0.9872 0.9857

Mean 0.8949 0.9326 0.9465 0.9479 0.9463

Table 15: TGR: Biomass
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A.4 MMPI estimates

Coal Lignite Gas Biomass

10% 0.9984 0.9977 1.0017 1.0934

25% 0.9990 0.9981 1.0005 1.0105

50% 0.9997 0.9994 1.0000 0.9998

75% 0.9996 0.9999 0.9998 0.9988

90% 0.9999 1.0007 0.9997 0.9982

Table 16: Geometric mean of MMPI:
average annual productivity growth
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A.5 MMPI decomposition by fuel type
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Figure 6: MMPI decomposition for coal-fired stations
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Figure 7: MMPI decomposition for lignite-fired stations
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Figure 8: MMPI decomposition for gas-fired stations
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Figure 9: MMPI decomposition for biomass-fired stations
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