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Abstract: 
This paper addresses the continuity of attitudinal and perceptual indicators in hybrid 
discrete choice models and the main objective of this work is to compare the 
consequences of treating the indicators as continuous or ordinal outcomes, given 
different assumptions about the way in which these are stated. Based on tradition and for 
computational reasons, such indicators are predominantly treated as continuous 
outcomes. This usually neglects their nature (as respondents are normally asked to state 
their preferences, or level of agreement with a set of statements, using a discrete scale) 
and may induce important bias. 

We conducted an analysis based on simulated data and real data (two case studies) and 
were able to find that the distribution of the indicators (especially when associated with 
non-uniformly spaced thresholds) may lead to a clear deterioration of the model’s 
predictive capacity, especially when assuming continuous indicators. Along the same line, 
higher relative variability among the latent variables increases the differences between 
both approaches (ordinal and continuous outcomes), especially concerning goodness-of-
fit of the discrete-choice component. It was not possible to identify a relation between 
the predictive capacity of both approaches and the amount of available information. 

Finally, both case studies using real data show an improvement in overall goodness-of-fit 
when considering the indicators as ordinal outcomes, but this does not translate in a 
better predictability of the discrete choices. 
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1. INTRODUCTION 

The study of unobserved latent variables is a hot topic nowadays. When it cannot be 
assumed that the outcome satisfies the property of continuity (as in the case of discrete, 
ordinal or nominal variables), the modeller usually relies on unobserved continuous 
constructs; this way, it is assumed that the underlying factors, represented through latent 
variables, explain the observed non-continuous output. 

Discrete choice (DC) modelling (McFadden, 1974) is a special case of dealing with 
nominal variables. Here, it is assumed that individuals face a set of alternatives associated 
with a particular underlying utility function that depends on both the characteristics of the 
individuals and the alternatives’ attributes. Observed choices are considered to be the result 
of a maximization process, where individuals opt for the alternative associated with the 
highest expected utility. 

An important limitation of this framework is that it only allows for observed variables to 
impact utility. The effort of combining discrete choice models with other unobserved latent 
variables, accounting for unobserved factors that may be relevant in the decision making 
process, such as attitudes and perceptions, led at the 80s to propose the first versions of 
hybrid discrete choice (HDC) models (McFadden, 1986; Train et al., 1987), an approach 
currently based on the Multiple Indicators MultIple Causes (MIMIC) model (Zellner, 
1970; Bollen, 1989). Here it is assumed that latent variables (associated with attitudes and 
perceptions) explain a set of indicators previously gathered from the individuals (through 
so called measurement equations), while being explained by a set of characteristics from 
the users and the alternatives (through so called structural equations). HDC modelling 
basically consists in the use of latent constructs associated with a MIMIC model as 
explanatory variables in a DCM framework. 

Despite not having a great impact in its origins (mainly due to computational issues), HDC 
modelling was revitalized during the last decade (Ben-Akiva et al., 2002). Since then, the 
approach has gained popularity and has become a standard tool in travel behaviour 
research  (v. Acker et al., 2011; Ashok et al., 2002; Raveau et al., 2012; Alvarez-Daziano 
and Bolduc, 2013; Bahamonde-Birke and Ortúzar, 2014a; among many others). 

Notwithstanding, the indicators are usually considered as a linear continuous expression of 
the latent variables (Vredin-Johansson et al., 2006; Bahamonde-Birke and Ortúzar, 2014b; 
Yañez et al., 2010; Alvarez-Daziano and Barla, 2012). This approach may induce an 
important bias, as respondents are normally asked to state their preferences, or level of 
agreement with a set of statements, using a discrete scale (Likert, 1932). Even if the 
modeller allows for the individuals to state continuous indicators, it is highly doubtful 
whether respondents would take this into consideration and decimal numbers may be 
underrepresented in favour of integers. Even more, it is a debatable point if the individual 
considers equally all values in the scale, as simplifying heuristics (Tversky and Kahneman, 
1974) may cause some levels to be ignored (leading for instance to an overrepresentation 
of the extremes and the midpoint).  

Therefore, the indicators should not be treated as discrete outcomes, but rather as ordinal 
ones (Daly et al., 2012). However, the impact of considering the indicators as ordinal 
outcomes has major implications in terms of computational costs, as model estimation gets 
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considerable more involved, especially when considering specifications not leading to 
close-forms expressions for the probabilities, such as Ordered Probit model (OPM). That is 
the reason why researchers considering ordinal indicators, tend to rely on the Ordered 
Logit model (OLM; Daly et al., 2012; Hess et al., 2013). 

2. THEORETICAL BACKGROUND 

When considering a MIMIC model, the analyst assumes the existence of latent variables, 
which are a function of positively observed explanatory variables and, eventually, of other 
latent constructs (Kamargianni et al., 2014; Link, 2015). This way, the above-mentioned 
structural equations may take the following form (assuming a linear specification): 

*X X ηη α α η υ= ⋅ + ⋅ +         (2.1) 

Here, η and η∗ are vectors describing sets of jointly dependent endogenous latent 
constructs, X a set of exogenous observed explanatory variables and υ an error term that 
can follow any distribution, but is usually assumed to be normally distributed with mean 
zero and a given covariance matrix Ση. αx and αη are matrices of parameters to be 
estimated.  

In a MIMIC structure, this set of equations will always be unidentified (it is mandatory), so 
that it is necessary to consider it in conjunction with a measurement equations set. The 
latter may be described in the following manner (again assuming a linear specification):   

XI X ηγ γ η ς= ⋅ + ⋅ +          (2.2) 

where I is a vector of exogenous indicators and ς an error term, the distribution of which 
will depend on the assumptions regarding the indicators. Finally γx and γη are matrices of 
parameters to be estimated.  

Sufficient and necessary conditions for identification of the equations’ sets are well-known 
(Bollen, 1989) and it is necessary to constrain either some parameters or the variance 
associated with the error terms of the structural equations1 (which is preferred in this 
work, given the fact that it simplifies selecting the parameters to be constrained). That 
being the case, the model can be estimated maximizing the likelihood function (once the 
structural equations have been reduced): 

( | , ; , , , ) ( | , *; , )L P I X f X d
η

η α γ ς υ η η α υ η= ⋅ ⋅∫      (2.3) 

As mentioned in the previous section, for the sake of simplicity as well as for historical 
reasons (the first models relying on this structure were based on that assumption; 
Morikawa et al., 1996; Ben-Akiva et al., 2002) the indicators have been considered 
continuously distributed. This way, assuming normally distributed error terms with mean 

                                                 
1 It is important to notice that it only applies when working with more than one measurement equations. In 
other case it is necessary to impose one additional constrain. 
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zero and a diagonal covariance matrix ΣΙ for the measurement equations, the probability in 
equation (2.3) can be depicted in the following manner: 

1( | , ; , , ) X

I I

I X
P I X ηγ γ η

η α γ υ φ
σ σ

− ⋅ − ⋅ 
=  

 
     (2.4) 

where σΙ are the elements in the diagonal of ΣΙ and are parameters to be estimated. φ stands 
for the pdf of the standard normal distribution. 

When the indicators are no longer considered to be a continuous response, but ordinal 
variables (as they indeed are), equation (2.4) does not longer apply. In this case the 
probability of observing a given output would be given by: 

1

1

( | , ; , , , ) ( | , ; , , , )
( | , ; , , , ) ( | , ; , , , )

n X n

n X n X

P I n X P X X
P X X P X X

η

η η

η α γ ς υ ψ γ γ η ψ η α γ ς υ

ψ γ γ η η α γ ς υ ψ γ γ η η α γ ς υ
−

−

= = < ⋅ + ⋅ ≤

= < ⋅ + ⋅ − < ⋅ + ⋅
(2.5) 

Here, Ψ   are thresholds to be estimated and n describes a given level of the ordinal 
variable I. This has m different levels of I, Ψ0  = −∞ and Ψm =  ∞, with the intermediate 
thresholds increasing monotonically. Depending on the specification of the error term ς, 
which is normally assumed to be either normally or logistically distributed, with mean zero 
and diagonal covariance matrix ΣΙ, equation (2.5) will lead to an OPM or OLM framework, 
respectively.  

Combining a MIMIC model with a DC framework (considering latent variables into the 
utility function of one or more alternatives) leads to a HDC model, where under the 
assumption of additive linearity, the utility functions may be described in the following 
fashion:    

j XU X ηβ β η ε= ⋅ + ⋅ +         (2.6) 

where βx and βη are vectors of parameters to be estimated and ε an error term that is 
usually assumed to follow an EV1 distribution with the same mean for all alternatives and 
a given covariance matrix. If the covariance matrix is considered to be diagonal, the choice 
probabilities will be given by a Logit model; if not the choice situation will be described by 
other member of the Generalized Logit family (for identifiability purposes some 
components of the covariance matrix must be constrained without loss of generality; 
Walker et al., 2007). A given alternative j will be selected if Uj>Uk ∀ k ≠ j; in this case the 
dummy variable yj takes a positive value. The likelihood function for the integrated 
framework will then take the following form: 

( | , ; , , , ) ( | , ; , , , ) ( | , *; , )L P I X P y X f X d
η

η α γ ς υ η α β ε υ η η α υ η= ⋅ ⋅ ⋅∫   (2.7) 

Observing equation (2.7), it is clear that the discrete choice component of the HDC model 
can be considered as just another measurement equation for the integrated framework, with 
the difference that its output is discrete and not ordinal. Moreover, when working with only 
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one indicator, it would be enough to constrain the variances of the structural equations, as 
the discrete choice component will provide the additional information required to identify 
the model as it would be another indicator.  

3. SIMULATION EXERCISE  

The main objective of this work is to compare the consequences of treating the indicators 
as continuous or ordinal outcomes, given different assumptions and distributions regarding 
the way in which they are stated. As both specifications cannot be directly compared 
statistically (given the underlying assumptions), we will conduct a qualitative analysis 
based on the likelihood for the overall model and for the discrete choice component only 
(which is the part, we aim to reproduce as accurately as possible2). Along the same line, 
we want to analyse if both specifications are affected by other characteristics of the 
sample, such as the variability of the structural equations (the importance of the stochastic 
part relative to the deterministic part which is independent of the normalization), the 
distribution of the indicators and the number of observations.  

For that reason, we conducted first a simulation exercise. This allows us to analyse the 
aforementioned effects in a controlled environment (free of undesired effects) as well as to 
vary the characteristics we want to examine, when generating the samples.   

3.1 Generation of the Datasets 

Following Williams and Ortúzar (1982) we generated different samples of simulated 
individuals behaving compensatory in a binomial Logit framework, according to the 
following structural and utility equations: 

1 1 2 2 3 3 4 4X X X Xη η η ηη α α α α υ= ⋅ + ⋅ + ⋅ + ⋅ +      (3.1) 

1 1 2 2X XU X Xηβ β η β ε∆ = ⋅ + ⋅ − ⋅ +        (3.2) 

Here, Xη1 follows a discrete uniform distribution across the population, taking the values 0 
and 1 (or, alternatively, Bernoulli distributed with q = 0.5). Similarly, Xη2 follows a 
discrete uniform distribution in the range [0; 2]. Xη3 and Xη4 are assumed to be continuous 
uniformly distributed across the sample in the ranges [0; 2] and [0; 3], respectively. 
Finally, Xη3 and Xη4 follow normal distributions N(4, 2) and N(8, 1.5), respectively. 

All α and β  parameters were fixed to 1 (to ease the comparison of the results). The error 
term of the reduced utility function is independent and identically distributed following a 
Logistic distribution with mean 0 and scale parameter 1 (in accordance with the binomial 
Logit framework) for all observations. Regarding the distribution of υ we considered it to 
be normally distributed with mean 0 and three different cases (named Case 1, Case 2 and 
Case 3), which differ only on the variability of the parameter by assuming standard 
deviations equal to 0.5, 1 and 2, respectively. 

                                                 
2 Focusing the analysis on parameter recovery is not expedient as magnitudes depend on the normalization, 
which is in turn, affected by the fact that in the estimation we are neglecting the assumptions used in the 
generation of the database.  
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We also considered two indicators the measurement equations of which are simply the sum 
of a latent variable η and an error term ς, which distributes standard Normal. However, the 
situation is not as simple as by using a Likert-scale we only allow for the stated indicators 
to take integer values between 1 and 5. Therefore, it is necessary to define the way to relate 
this continuous equation to discrete indicators. We considered six different cases:  

a) Case A: This corresponds to the simplest assumption, i.e. normalizing the results of 
the measurement equations, so that all are contained between 0 and 5, and then 
associating the results contained in the different quintiles of the distribution to the 
respective level of the indicators. This case resembles the assumptions behind 
treating the indicators as continuous variables. 

b) Case B: Thresholds are established, so that the levels of the indicators have a 
uniform distribution. 

c) Case C: As above, but the distribution of the levels follows a discrete 
approximation of an inverted triangular distribution. This case attempts to depict an 
overrepresentation of the extremes. 

d) Case D: As above, but the distribution of the levels follows a discrete 
approximation of a triangular distribution. This case attempts to depict an 
overrepresentation of the intermediate levels. 

e) Case E: As above, but the distribution of the levels follows a discrete 
approximation of an exponential function of the form: 

1( )
2

xef x
e

−
=

−
 

f) Case F: As above, but the distribution of the  levels follows a discrete 
approximation of an exponential function of the form: 

( ) xf x e e= −  

Figure 1 represents graphically the different cases considered.  

 
Figure 1 – Considered distributions for the indicators. Simulation exercise3. 

                                                 
3 The actual distribution of the indicators considered in Case A depends on the variability of the structural 
equations. The distribution presented in Figure 1 corresponds to Case 1A (slight variability). 
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Altogether we generated 18 different samples of 25,000 pseudo-individuals. Additionally, 
and in order to test the influence of sample size we simulated populations of 5,000; 1,000 
and 500 individuals. In this case we considered all six distributions for the indicators, but 
only Case 2 regarding the variability of the structural equations.   

3.2 Estimation results 

Our first interest was the influence of the indicators’ distribution as well as of the 
variability of structural equations on the model results. With this goal we estimated models 
for the 18 full-size samples, considering two different specifications: in the first one, we 
treated the indicators as continuous outputs and assumed that the error terms of the 
measurement equations distributed Normal; in the second specification, we considered the 
indicators to be of an ordinal nature and assumed logistically distributed error terms for the 
measurement equations; this leads to an OLM specification. Even though given the fashion 
in which the data was generated it would be more appropriate to consider an OPM 
specification, we opted for the logistic distribution, as this is the most common assumption 
when dealing with ordinal indicators in HDC models (given its computational advantages).  

The models were estimated simultaneously using PythonBiogeme (Bierlaire, 2003). 
Taking advantage of the fact that we are dealing with only one latent variable the log-
likelihood was computed via numerical integration. Table 1 presents results for the overall 
model for all cases analysed. The upper results correspond to the assumption of discrete 
indicators while the inferior ones are related to the continuous specification. 

Table 1 – Goodness-of-fit of the overall model. Simulation exercise. 

 Case A Case B Case C Case D Case E Case F 

Case 1 -44,560.6 -69,244.4 -63,194.6 -61,367.4 -58,165.0 -63,240.4 
-44,520.5 -76,888.0 -88,821.7 -62,045.2 -66,678.6 -69,676.9 

Case 2 -46,874.2 -72,506.4 -66,258.0 -64,676.7 -61,426.4 -66,457.5 
-46,886.0 -79,939.7 -91,551.2 -65,347.4 -69,365.6 -72,582.8 

Case 3 -49,234.6 -74,317.8 -68,402.9 -66,808.3 -63,671.9 -68,478.3 
-48,140.6 -79,794.7 -91,524.9 -66,060.2 -69,402.5 -72,704.8 

As can be observed, the log-likelihood depends strongly on the distribution of the 
indicators. In line with our expectations, a greater relative variability in the structural 
equations affects negatively the log-likelihood of the estimated model. Regarding the 
estimation’s assumptions, the discrete specification appears to clearly outperform the 
assumption of continuous indicators, when the distribution of the indicators is not linearly 
related to the continuous results of measurement equations (Case A). Additionally this 
former distribution provides the best overall fit, notwithstanding the assumptions 
considered in the estimation. The worst goodness-of-fit is associated with Case C 
(overrepresentation of the extremes), which is the case departing the most from the 
assumptions of Case A. 

To offer a better comparison between both assumptions for the indicators, Table 2 presents 
the results for the logarithm of direct likelihood ratio (DLR; upper cell). The table also 
shows the logarithm of the DLR between both approaches considering the DC component 
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of the model only (the likelihood of the model estimated under the OLM assumption is 
considered in the numerator of the DLR).  

Table 2 – DLR between both approaches under different variability. 

 Case A Case B Case C Case D Case E Case F 

Case 1 -40.13 7,644.5 2,5627.3 677.8 8,513.6 6,436.6 
-0.045 1.577 3.391 0.096 3.044 1.665 

Case 2 11.79 7,433.3 25,293.2 670.7 7,939.2 6,125.3 
612.7 604.4 621.1 599.1 652.3 609.3 

Case 3 -1,094.1 5,476.9 23,122.0 -748.1 5,730.6 4,226.5 
1,910.9 1,823.8 1,900.4 1,800.6 1,892.2 1,838.8 

As mentioned before, the OLM specification clearly outperforms the continuous 
assumption in cases B, C, E and F, while the results are not conclusive for cases A and D 
(which present the most similar distribution of all considered cases). Nevertheless, the gap 
appears to diminish (or increase in favour of the continuous assumption), when the relative 
variability of the structural equation increases.  

More telling than the overall log-likelihood, however, is to consider only the log-likelihood 
associated with the DC component of the model; first, this part is equal in both 
specifications and second, when considering a HDC, the focus remains on predicting the 
observed choices as accurately as possible and not the indicators. In this case, we cannot 
observe any significant difference when the relative variability of the structural equations 
is small but the gap increases dramatically as this variability gets larger (in opposition to 
the log-likelihood of the overall model). This finding applies to all distributions considered 
for the indicators. 

Regarding the number of observations available for estimation, we have calibrated models 
considering different sample sizes, as described in the previous section. Table 3 presents 
the results for the logarithm of the direct likelihood ratio for the overall model and for the 
DC component. The results are normalized by the number of observations in order to make 
them comparable (the results are normalized to 500 observations). 

Table 3 – Log-DLR between both approaches under different sample sizes. 
# of Obs. Case A Case B Case C Case D Case E Case F 

500  5.184 164.732 513.641 14.134 184.892 142.275 
13.318 13.035 13.444 12.724 13.653 13.293 

1,000 8.263 167.259 537.652 17.707 170.015 147.154 
17.193 17.094 17.385 16.877 16.264 17.151 

5,000 -1.014 148.560 513.535 11.458 155.781 125.595 
10.410 10.335 10.667 10.124 14.082 10.497 

25,000 0.236 148.666 505.863 13.414 158.785 122.506 
12.253 12.089 12.423 11.982 13.045 12.185 

As can be appreciated, there is no clear tendency regarding the goodness-of-fit and the 
number of observations used in the estimation. Moreover the gap between both approaches 
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(for the overall model and for the DC component only) appears to stay constant, 
notwithstanding the number of observations. 

Finally it must be remarked that, in this particular case, the convergence velocity of the 
continuous approach was about 50% superior, but it depends on the model structure and 
the starting values of the parameters.  

4. CASE STUDY 1 – ELECTROMOBILITY IN AUSTRIA 

To provide further information for our analysis, we repeated our experiment considering 
real data. Our first case study comes from the DEFINE project and a web-based survey 
conducted in Austria during February 2013. The sample is representative for the Austrian 
society.  

The survey considered a SP-experiment and was set in the context of choosing between 
different options of electromobility (for details see Bahamonde-Birke and Hanappi, 2015). 
The vehicle purchase experiment used a labelled experimental design including four choice 
alternatives referring to one propulsion technology each: conventional vehicles (CV), plug-
in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and electric vehicles 
(EV). Each of the alternatives was described by the following attributes: purchase price 
(PP), power (PS), fuel costs (FC) and maintenance costs (MC). In addition to these 
attributes, the EV was further characterised by the following attributes: full driving range 
(RA), availability of charging stations (LS) and policy incentives (IM). Charging station 
availability varied across three categories (low, intermediate and high) and was described 
qualitatively within a separate pop-up box. Policy incentives included a Park and Ride 
subscription for one year (IM2), investment subsidies to support private charging stations 
(IM3), and a one-year-ticket for public transport (IM4). 

Additionally, attitudinal indicators related to the degree of agreement with eight different 
sentences were collected. Bahamonde-Birke and Hanappi (2015) considered the following 
five of them to construct a latent variable related to the environmental attitude of the 
individuals:  “I am an ecologically aware person” (EcAwareness), “I pay attention to 
regional origins when shopping foods and groceries” (LocalFood), “I buy ecologically 
friendly products” (EcoFriendly), “Environmental protection measures should be enacted 
even if they result in job losses” (Protection) and “I pay attention to the CO2 footprint of 
the products I buy” (CO2Footprint). The level of agreement was stated using a six points 
Likert scale. Figure 2 describes the distribution of the indicators and Table 4 presents an 
overview of the variables that are relevant to our study4. 

As can be observed from Figure 2, the distribution of the indicators is quite variable. In 
some cases the mode is given by one of the central points (4), while in other the upper third 
is overrepresented, departing from the assumptions of the hypothesis of continuity. The 
shape of the distributions differs from the shapes considered in our simulation exercise, but 
broadly tend to depict an overrepresentation of the intermediate levels. 

                                                 
4 Bahamonde-Birke and Hanappi (2015) considered further variables and also estimated more involved 
models than the one considered in this study. For the purposes of this work, this specification is considered 
appropriate, as additional complexity would only add noise to our analysis as well as computational 
complexity. Bahamonde-Birke and Hanappi (2015) considered the attitudinal indicators to be a continuous 
expression of the latent variable. 
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Figure 1 – Considered distributions for the indicators. Case Study 1. 

Table 4 – Definition of the variables considered in the model. Case Study 1 
Variable Definition 

MidSkill Dummy variable indicating a career and technical education.  

HighSkill Dummy variable indicating a college education or higher. 

Vienna Dummy variable indicating a residence in Vienna. 

Male Dummy variable indicating masculine gender. 

Old Dummy variable indicating individuals older than 60 years 

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

Carsharing Dummy variable indicating that the individual relies on Car Sharing on a regular basis. 

CarUser Dummy variable indicating that the individual drives to their main occupational activity on a regular basis. 

PP Purchase price in  €. 

FC, MC Fuel and maintenance cost in € / 100 km., respectively. 

PS Power of the engine in hp. 

RA Driving range in km. 

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive. 

LSMid, LSHigh Dummy variables indicating medium or high availability of loading stations for EV. 

LV Green Latent variable Green. 

EcAwareness Attitudinal Indicator for “I am an ecologically aware person”. 

LocalFood Attitudinal Indicator for “I pay attention to regional origins when shopping foods and groceries”. 

EcoFriendly Attitudinal Indicator for “I buy ecologically friendly products”. 

Protection Attitudinal Indicator for “Environmental protection measures should be enacted even if they result in job losses”. 

CO2Footprint Attitudinal Indicator for “I pay attention to the CO2 footprint of the products I buy”. 

We estimated two models following the approaches presented in the previous section. 
Again, taking advantage of having just one latent variable, the log-likelihood was 
computed using numerical integration. The results for the models assuming continuous 
(MCT1) and ordinal indicators (OLM1) are presented in Table 5. The results of the t-test 
for statistical significance are presented in parenthesis and the log-likelihood for the overall 
model as well as for DC component is also reported (the results for the measurement 
equations are omitted, as they are not suitable for comparison). 
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Table 5 – Parameter estimates. Case study 1. 
Variable Equation MCT15 OLM1 
Vienna S.E. LV Green -0.135 (-2.01) 0.138 (2.04) 
Male S.E. LV Green -0.286 (-4.72) 0.302 (5.01) 
HighSkill S.E. LV Green 0.599 (6.64) -0.591 (-6.58) 
MidSkill S.E. LV Green 0.346 (4.72) -0.342 (-4.68) 
Old S.E. LV Green 0.621 (7.24) -0.608 (-7.13) 
MidAge S.E. LV Green 0.384 (5.27) -0.374 (-5.17) 
Carsharing S.E. LV Green 0.634 (4.59) -0.645 (-4.62) 
CarUser S.E. LV Green -0.346 (-6.67) 0.356 (6.85) 
ASC_CV Utility CV 0 (fixed) 0 (fixed) 
ASC_HEV Utility HEV -0.079 (-0.38) -0.0744 (-0.36) 
ASC_PHEV Utility PHEV -0.456 (-2.09) -0.454 (-2.09) 
ASC_EV Utility EV -0.954 (-3.21) -0.928 (-3.16) 
PP Utility CV -1.14 (-9.4) -1.13 (-9.42) 
PP Utility HEV -1.71 (-24.11) -1.71 (-24.13) 
PP Utility PHEV -1.75 (-20.82) -1.75 (-20.84) 
PP Utility EV -1.29 (-12.7) -1.28 (-12.77) 
MC Utility CV, HEV, PHEV, EV -17.5 (-9.22) -17.5 (-9.22) 
FC Utility CV, HEV, PHEV, EV -18.9 (-16.37) -18.8 (-16.39) 
PS Utility CV 0.0284 (5.76) 0.0284 (5.77) 
PS Utility HEV 0.0338 (8.32) 0.0338 (8.34) 
PS Utility PHEV 0.0373 (8.51) 0.0373 (8.54) 
PS Utility EV 0.00269 (0.71) 0.00268 (0.71) 
PS * Male Utility CV -0.0163 (-4.21) -0.0163 (-4.21) 
PS * Male Utility HEV -0.0144 (-3.4) -0.0143 (-3.38) 
PS * Male Utility PHEV -0.0136 (-3.17) -0.0135 (-3.16) 
PS * Male Utility EV -0.00605 (-1.36) -0.006 (-1.36) 
MidAge Utility HEV -0.266 (-2.57) -0.256 (-2.5) 
MidAge Utility PHEV -0.389 (-3.72) -0.379 (-3.66) 
MidAge Utility EV -0.652 (-4.71) -0.632 (-4.68) 
Old Utility HEV -0.997 (-7.06) -0.982 (-7.06) 
Old Utility PHEV -1.26 (-8.48) -1.25 (-8.5) 
Old Utility EV -1.86 (-9.17) -1.82 (-9.28) 
LV Green Utility HEV 0.591 (5.3) -0.58 (-5.29) 
LV Green Utility PHEV 0.558 (4.88) -0.546 (-4.87) 
LV Green Utility EV 1.03 (6.23) -0.991 (-6.36) 
RA Utility EV 0.00326 (8.14) 0.00325 (8.18) 
LSMid Utility EV 0.163 (1.25) 0.165 (1.27) 
LSHigh Utility EV 0.694 (5.78) 0.693 (5.8) 
IM3 Utility EV 0.233 (2.25) 0.232 (2.25) 
Log-likelihood 
Overall Model  -16,620.586  -16,202.677  

Log-likelihood 
DC Component  -6,625.468  -6,626.086  

As can be observed, the differences between the parameters obtained following both 
approaches are minor and not statistically different. Nevertheless and in line with our 
expectations, the most notable differences are related to the structural equations and the 
parameters associated with the latent variable in the DC model. The overall goodness-of-fit 
of the model considering ordinal indicators is much higher than the adjustment of the 
model neglecting the discrete nature of the indicators. Nevertheless, it does not translate 
into a better goodness-of-fit for the DC-component. Even more, the model considering 
continuous indicators predicts the choices stated by the individuals slightly better, which is 
counterintuitive as this model neglects the nature of the indicators. The difference between 
both models is however rather small and it cannot be concluded that one model would 
predict choices consistently better than the other. The situation resembles the cases with 
low relative variability of the latent variables in the simulation exercise. 

                                                 
5 Even though we considered the same specification reported by Bahamonde-Birke and Hanappi (2015), the 
results may exhibit minor variations given the estimation technique (numerical integration as opposed to 
simulated maximum likelihood).  
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5. CASE STUDY 2 – MODAL CHOICE IN GERMANY 

In this SP experiment respondents were asked to choose between different interurban 
public transport alternatives in Germany (regional and intercity trains, and interurban 
coaches). The experiment was carried out in three waves (January 2014, March 2014 and 
April/May 2014), contacting students and employees of two universities in Berlin (the 
Technische Universität Berlin and the Humboldt-Universität zu Berlin), as well as 
employees of member institutions of the Leibniz-Gemeinschaft (for further details  see 
Bahamonde-Birke et al., 2015). Respondents were required to choose between a first 
pivotal alternative, representing a trip previously described, and a new one. Alternatives 
were described in terms of their travel time, fare, number of transfers, mode of transport - 
regional trains (RE), intercity trains (FVZ) and coaches (LB) - and a safety level. 

The original study considered several indicators, associated with different and complex 
latent variables. For the purposes of this work we only considered one latent variable 
(TrainFan), which is associated with the following two indicators: “Investing on the 
development of high-speed trains should be encouraged” (HSTrains) and “New high-speed 
rail lines should be built” (RailLines). Originally the indicators were stated in a 10-points 
Likert scale. For computational issues in this application (opposite to the original study), 
we reduced it to only five, aggregating consecutive levels. As in the previous case, Figure 
3 and Table 6 present the distribution of the indicators and an overview of the variables 
considered, respectively.  

 
Figure 3 – Distributions for the indicators. Case Study 2. 

As in Case study 1, the distribution of the indicators exhibits an overrepresentation of the 
upper values, but in this case both distributions are rather similar and the upper levels 
appear to be uniformly distributed. They can be considered to be a mixture between cases 
B and D of the simulation exercise. 

Table 7 presents the results for models assuming continuous (MCT2) and ordinal 
indicators (OLM2). Again the log-likelihood was computed using numerical integration. 
The structure of the table is the same as in previous section. 
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Table 6 – Definition of the variables considered in the model. Case Study 2 
Variable Definition 

Old Dummy variable indicating individuals older than 50 years.  

Bahncard Dummy variable indicating ownership of a Deutsche Bahn yearly discount card . 

Woman Dummy variable indicating feminine gender. 

VeryLowIncome Dummy variable indicating a net income under 700€ p.m. 

LowIncome Dummy variable indicating a net income between 700€ and 1,500€ p.m. 

MiddleIncome Dummy variable indicating a net income between 1,500€ and 2,500€ p.m. 

HighIncome Dummy variable indicating a net income over 2,500€ p.m. 

Price Travel fare in  €. 

TravelTime Travel time in minutes. 

Transfers Number of transfers. 

SafetyLevel Number of severely injured passengers and the number of fatalities in the overall network over a year. 

LV TrainFan Latent variable TrainFan. 

HSTrains Attitudinal Indicator for “Investing on the development of high-speed trains should be encouraged”. 

RailLines Attitudinal Indicator for “New high-speed rail lines should be built”. 

 

Along the line of the previous case study, the differences among the parameters calibrated 
following the two different specifications are not statistically significant and the major 
disparities are related to the structural equations models. Again, the overall goodness-of-fit 
of the model considering the discontinuity of the indicators is superior, but this time, in 
line with our expectations, the simulation exercise and the results by Daly et al. (2012), the 
proper treatment of the attitudinal indicators is also associated with a better adjustment in 
the DC-component. However, the difference between the goodness-of-fit for the DC-
component is rather small and no conclusive result regarding the predictability of the HDC 
model, can be derived from the experiment. 

Table 7 – Parameter estimates. Case study 2. 
Variable Equation MCT2 OLM2 
Inertia Utility Alternative 1 0.337 (13.48) 0.337 (13.48) 
FVZ Utility Alternative 1 and 2 0 (fixed) 0 (fixed) 
LB Utility Alternative 1 and 2 -1.41 (-12.65) -1.41 (-12.62) 
RE Utility Alternative 1 and 2 -0.415 (-9.59) -0.413 (-9.52) 
Travel Time Utility Alternative 1 and 2 -0.0149 (-26.57) -0.0149 (-26.57) 
Ln(Price) * Very Low Income Utility Alternative 1 and 2 -5.27 (-31.91) -5.27 (-31.9) 
Ln(Price) * Low Income Utility Alternative 1 and 2 -4.69 (-26.28) -4.69 (-26.26) 
Ln(Price) * Middle Income Utility Alternative 1 and 2 -3.62 (-14.98) -3.62 (-15) 
Ln(Price) * High Income Utility Alternative 1 and 2 -2.52 (-7.81) -2.54 (-7.84) 
Safety Level Utility Alternative 1 and 2 -0.00374 (-4.59) -0.00375 (-4.59) 
Transfers Utility Alternative 1 and 2 -0.443 (-18.25) -0.443 (-18.25) 
FVZ * LV TrainFan Utility Alternative 1 and 2 0.293 (4.81) 0.298 (4.86) 
Log-likelihood 
Overall Model  -10,802.674  -10,548.544  

Log-likelihood 
DC Component  -7,460.603  -7,460.161  

 
 

6. CONCLUSIONS 

Despite the fact that attitudinal and perception indicators normally exhibit a discrete nature 
(even if the modeller would allow for stating continuous values), based on tradition and on 
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computational reasons they are still predominantly treated as continuous outcomes. Even 
though the number of studies treating indicators as they are (i.e. discrete) has risen in the 
last years, the importance of the bias imposed by treating them continuously has not been 
yet extensively analysed.  

We conducted a study based on simulated and real data, to examine the effects of the usual 
assumptions concerning attitudinal and perception indicators. Along this line, we examined 
the effect of the relative variability of the latent variables, the distribution of the indicators 
and the number of observations. 

Based on simulated data we were able to show that discrete distributions (for indicators) 
associated with non-uniformly spaced thresholds are associated with a clear deterioration 
of the overall goodness-of-fit, and that this phenomenon considerably increases when the 
estimators are treated as continuous outcomes. A higher relative variability of the latent 
variables appears, however, to reduce the gap between both approaches.  

When focusing exclusively on the predictive capacity of the DC-component (which is the 
part, modellers usually centre their efforts on), we discovered a clear worsening of the 
adjustment when treating the indicators continuously, as the relative variability of the 
latent variables increased. This deterioration applies to all distributions considered and is 
negligible when this variability is small. Concerning the number of observations, it was not 
possible to observe a clear tendency regarding the differences between both approaches 
and the amount of available information.   

Finally, we tested these findings with real data. In both case studies analysed, the 
distribution of the indicators departed from the traditional assumptions underpinning the 
hypothesis of continuity and, as expected, treating the indicators as ordinal outcomes offers 
a considerably better goodness-of-fit for the overall model. Unexpectedly, this 
improvement does not translate into a better predictive capacity of the discrete choices, as 
in the case associated with small relative variability of the latent variables in the simulation 
exercise. 

Although we were not able to establish that treating the indicators as ordinal variables 
when dealing with HDC models improves the model´s predictive capacity (when dealing 
with real data), it must be stressed that considering them as continuous neglects their 
nature and yields worse overall model goodness-of-fit. Therefore, we recommend 
considering indicators as ordinal outcomes. However, this treatment is associated with 
higher computational costs and, given the fact that there is no evidence of significant 
deterioration in forecasting abilities, a trade-off may be considered.    
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