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ABSTRACT 

Although hybrid choice models are fairly popular nowadays, the way in which different 

types of latent variables are considered into the utility function has not been 

extensively analysed. Latent variables accounting for attitudes resemble socio-

economic characteristics and, therefore, systematic taste variations and 

categorizations of the latent variables should be considered. Nevertheless, 

categorizing a latent variable is not an easy subject, as these variables are not 

observed and consequently exhibit an intrinsic variability. Under these circumstances it 

is not possibly to assign an individual to a specific group, but only to establish a 

probability with which an individual should be categorized in given way. 

In this paper we explore different ways to categorize individuals based on latent 

characteristics, focusing on the categorization of latent variables. This approach 

exhibits as main advantage (over latent-classes for instance) a clear interpretation of 

the function utilized in the categorization process, as well as taking exogenous 

information into account. Unfortunately, technical issues (associated with the 

estimation technique via simulation) arise when attempting a direct categorization.  
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We propose an alternative to attempt a direct categorization of latent variables (based 

on an auxiliary variable) and conduct a theoretical and empirical analysis (two case 

studies), contrasting this alternative with other approaches (latent variable-latent class 

approach and latent classes with perceptual indicators approach). Based on this 

analysis, we conclude that the direct categorization is the superior approach, as it 

offers a consistent treatment of the error term, in accordance with underlying 

theories, and a better goodness-of-fit. 
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JEL: C35, C50



1 
 

1. INTRODUCTION 
Although firstly suggested during the 80s (McFadden, 1986; Train et al., 1987), hybrid 
discrete choice models (HCM) did not become a hot topic in travel behaviour research 
until revitalized by Ben-Akiva et al. (2002). Then, it was possible to solve a series of 
computational issues that had prevented this approach becoming a standard tool in discrete 
choice (DC) modelling. 

Starting from the usual hypotheses of discrete choice modelling (McFadden, 1974), HCM 
aim to enrich the model, taking into account unobserved characteristics of the individuals 
and of the alternatives. This way, indicators (usually stated on a Likert-scale; Likert, 1932) 
related with attitudes toward life and perceptions about the alternatives on offer, are 
gathered from a sample of individuals. As these indicators are not considered attributes on 
their own, but rather an expression of underlying attitudes and perceptions, the modeller 
usually relies on a Multiple Indicators MultIple Causes (MIMIC) model (Zellner, 1970; 
Bollen, 1989), allowing for the identification of unobserved latent variables explaining the 
indicators. It is assumed that these variables also affect the typical utility function of the 
DC-model, enriching it with exogenous information captured through the indicators. 

Although this approach has become popular (v. Acker et al., 2011; Ashok et al., 2002; 
Daziano and Bolduc, 2013; Bahamonde-Birke and Ortúzar, 2014a; among many others), 
the way in which different types of latent variables are considered into the utility function 
has not been extensively analysed; in fact, they are generally introduced in a simplistic 
additive fashion, while being explained only by characteristics of the individuals (Vredin-
Johansson et al., 2006; Yañez et al., 2010; di Ciommo et al, 2013). That being the case, 
Chorus and Kroesen (2014) argue (rightly) that these types of models do not allow deriving 
policy implications. 

On another hand, Bahamonde-Birke et al. (2015) argue that we must distinguished 
between attitudes (including attitudes toward alternatives and toward perceptions), based 
on the individual’s experience and temperament (Allport, 1935; Pickens, 2005) and real 
perceptions, related to the way in which individuals perceive their environment (Lindsay 
and Norman, 1972), as the latter are influenced by the characteristics of the alternatives 
and not only by those of the individuals (Pickens, 2005). They state that attitudinal latent 
variables (in contrast with real perceptions) resemble the socioeconomic characteristics of 
the individuals and hence they should be treated in the same fashion. That being the case, 
systematic taste variations and categorizations of the latent variables should be considered, 
rather than just including variables accounting for attitudes in an additive fashion. For 
example, it may be preferable to identify environmentally aware or wealthy individuals, 
rather than attempting to associate them with a value in a continuous scale; moreover, it is 
highly disputable that this characteristics should have a linear impact on decisions.   

It is important to note that categorizing a latent variable would depict de facto a latent class 
model (Kamakura and Russell, 1989; Bhat, 1997) - beyond theoretical issues, related to 
causality - with every category representing a different latent class. In fact, by starting from 
a latent class model and attempting to enrich the identification of the classes by using 
indicators, the modeller could face a similar problem. 

In this paper we provide a theoretical discussion about the different factors affecting the 
categorization of latent variables, as well as their consequences. In the same line, we 
consider previous attempts that have been conducted to deal with this problem. Finally, we 
propose an alternative way to categorize latent variables and test our hypotheses with the 
help of two study cases (real data). We compare the results obtained, following the 
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previously described approaches and offer a discussion about the implications and 
assumptions of the various methods. This discussion offers valuable insights about the way 
in which attitudes should be treated in hybrid discrete choice models. 

2. METHODOLOGICAL FRAMEWORK 
In a HDC framework (Ben-Akiva et al., 2002), individuals are assumed to exhibit utility 
functions which take the following shape (under the assumption of additive linearity): 

j XU X ηβ β η ε= ⋅ + ⋅ +         [2.1], 

where X stands for observed attributes of the alternatives and characteristics of the 
individuals, while η is a vector representing the unknown latent variables. βx and βη are 
vectors of parameters to be estimated, and ε an error term. If ε is considered to follow an 
EV1 distribution with the same mean for all alternatives and a diagonal covariance matrix, 
the choice probabilities will be given by a Logit model. If the covariance matrix is not 
diagonal, other member of the Generalized Logit family may describe the choice situation; 
finally, assuming a Normal distribution leads to the Probit model. For identifiability 
purposes, some components of the covariance matrix must be constrained without loss of 
generality (Walker et al., 2007). A given alternative j will be selected if Uj>Uk ∀ k ≠ j; in 
this case the dummy variable yj would take a positive value.  

The latent variables are constructed in accordance with a MIMIC model and are a function 
of positively observed explanatory variables and, eventually, of other latent constructs 
(Kamargianni et al., 2014; Link, 2015).  This way, assuming a linear additive specification, 
these structural equations may be described in the following manner: 

*X X ηη α α η υ= ⋅ + ⋅ +         [2.2], 

where X, is once more the set of exogenous observed explanatory variables; η and η∗ are 
vectors of latent constructs and υ an error term following any distribution, but usually 
assumed to be Normal with mean zero and a given covariance matrix Ση. Finally, αx and 
αη are matrices of parameters to be estimated.  

In this framework, the structural equations set is unidentified1, and it is mandatory to 
consider it jointly with a measurement equations set (for identifiability purposes, the utility 
function itself may be considered as an extra measurement equation; Bahamonde-Birke 
and Ortúzar, 2015). Assuming a linear specification the latter may be represented as 
follows:   

XI X ηγ γ η ς= ⋅ + ⋅ +          [2.3], 

where I is a vector of exogenously gathered indicators and ς an error term, the distribution 
of which depends on the assumptions regarding the indicators; when considering the 
indicators as a continuous output, ς is usually assumed to be Normal (Vredin-Johansson et 
al., 2006; Daziano and Barla, 2012); in turn, when the indicators are considered to be of 
discrete nature, ς may be assumed to follow a Logistic distribution (Daly et al., 2012; Hess 
et al., 2013); in both cases the distributions have zero mean and a diagonal covariance 
matrix ΣΙ; finally, γx and γη are matrices of parameters to be estimated.  

                                                 
1 Even when considering both set of equations jointly, it is still necessary to fix certain parameters without 
loss of generalization (typically the variances of the structural equations) to achieve identification (Vij and 
Walker, 2014). 
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The estimation of the integrated framework may be performed sequentially (estimating 
first the MIMIC model and then considering the latent variables into the discrete choice 
component) or simultaneously. Nevertheless, estimating the model sequentially is not 
advisable as it may lead to biased results (Bahamonde-Birke and Ortúzar; 2014b). For 
simultaneous estimation, the likelihood function for the integrated framework would take 
the following form: 

 ( | , ; , , , ) ( | , ; , , , ) ( | , *; , )L P y X P I X f X d
η

η α β ε υ η α γ ς υ η η α υ η= ⋅ ⋅ ⋅∫   [2.4], 

where the first part corresponds to the likelihood of the discrete choice component and the 
second stands for likelihood of observing the gathered indicators. The third component 
corresponds to the distribution of latent variables over which the likelihood function must 
be integrated. 

Categorizing a latent variable 
This is not an easy subject (in contrast with observed socio-economic characteristics such 
as income or age), as these variables are not observed and consequently exhibit an intrinsic 
variability. Under these circumstances, it is not possibly to assign an individual to a 
specific group but only to establish a probability with which an individual should be 
categorized in given way. Moreover, as latent variables do no exhibit an unequivocal scale, 
it is not easy to establish thresholds for the categorization, and as such the process appears 
to be rather arbitrary. 

An intuitive approach to deal with the aforementioned problem would be to construct a 
dummy variable taking a positive value when a given latent variable ηc exceeds a certain 
threshold ψ. This way, it would be possible to establish a probability with which a certain 
individual should be categorized in a given way, defining a latent class model indirectly 
(when the dummy variables are introduced into the utility function). Then, it should be 
possible to calibrate the threshold and the likelihood function would take the following 
form (assuming only two categories, but extending the framework for more categories is 
straightforward): 

( | , ,0; , , , ) ( | , ; , , , ) ( | , *; , )

( | , ,1; , , , ) ( | , ; , , , ) ( | , *; , ) (1 )

c

c

L P y X P I X f X d P

P y X P I X f X d P

η

η

η α β ε υ η α γ ς υ η η α υ η

η α β ε υ η α γ ς υ η η α υ η

= ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ −

∫

∫
 [2.5], 

with the probability of an individual being categorized in certain fashion (Pc) given by: 

( | , , ) ( * 0)c c Xc c cP P s P X ηη ψ α υ α α η υ ψ= < = ⋅ + ⋅ + − <     [2.6] 

Unfortunately HDC models do not exhibit a close form for the probabilities (given their 
complex error terms structure) and therefore they are estimated using simulation (Ben-
Akiva et al., 2002; Bierlaire; 2003). This way we do not observe a continuous distribution 
for the error term υ   of the latent variable ηc, but rather a set of stochastic (or pseudo-
stochastic) draws describing a probability function. As a consequence, discontinuity issues 
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arise, the threshold cannot be calibrated and a perfect convergence of the algorithm cannot 
be theoretically assured2.  

a) Latent variable latent class approach (LVLC) 

An alternative to overcome the problem above would be to rely on an auxiliary continuous 
distribution function, to establish the probability with which a certain individual would be 
categorized in given manner. This approach will lead to the latent variable/latent class 
specification (Walker and Ben-Akiva; 2002; Hess et al., 2013). This way the likelihood of 
the individual belonging to a certain latent class is given by the probability of the latent 
variable being smaller (or larger) than a threshold (to be calibrated), making use of the 
auxiliary function. If we assume this auxiliary function to be a Logistic distribution, 
equation [2.6], may be depicted as follows (Hess et al., 2013)3: 

( * )( )

1 1
1 1Xc c ccc XP

e e ηλ α α η υ ψλ η ψ ⋅ + ⋅ + −−= =
+ +

      [2.7], 

which is indeed a continuous expression. Unfortunately, this approach implies adding 
(artificially) the variability associated with the auxiliary distribution function (or of the 
latent class model, if we approach the modelling from this perspective) to the latent 
variable’s own variability υ. Even though it may be argued that the extra variability (which 
may be calibrated – note that in this specification λ is perfectly identified) represents the 
error induced in the categorization process, there is no clear statistical justification for that. 

To avoid the inclusion of the extra variability, the modeller may exogenously fix λ   at a 
high level, but when doing so mathematical issues arise. 

b) Latent class with psychometric indicators approach (LCPI) 

This approach (Hurtubia et al., 2014) does not attempt to categorize continuous latent 
variables per se, but rather to include psychometric indicators into a latent class 
framework. In this structure, it is assumed that the latent variable depends exclusively on 
positively observed characteristics of the individuals (X)4, while its error term follows a 
Logistic distribution with zero mean and scale parameter λ (which has to be fixed without 
loss of generality). Under this assumption, the probability of an individual belonging to a 
certain class is given by:   

( )

1
1XCc XP

eλ α ψ⋅ −=
+

         [2.8], 

As can be observed, this approach overcomes the variability issues of the LVLC, 
considering only the logistically distributed error term. The main difference between this 
approach and the HDC framework is that in this case the latent variable does not impact 
directly on the measurement equations, but rather indirectly. This way the measurement 
equations are just a function of positively observed characteristics of the individuals (X) 

                                                 
2 When considering the model sequentially by integrating over the domain of the latent variables, the model 
achieves perfect convergence, but the threshold remains unidentified and must be fixed a priori (Bahamonde-
Birke et al., 2015).  
3 In the original specification Hess et al. (2013) multiply ηc by a parameter to be estimated and fix λ, but it is 
straightforward to see that both specifications are equivalent. 
4 Even though the model by Hurtubia et al. (2014) only considers characteristics of the individuals as 
explanatory variables, it is straightforward to extend it for attributes of the alternatives. 
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and the parameters to be calibrated depend on the latent class the individual is associated 
with. Thus, under this approach equation [2.3] exhibits the following structure: 

XCI Xγ ς= ⋅ +          [2.9], 

where γxc is a latent class specific matrix of parameters. This leads to the following 
likelihood function (it is important to note that the original structure does not require 
integrating over the domain of the categorized latent variable, as the probability functions 
are given by closed-form expressions; it is straightforward to extend this approach in order 
to consider non-categorized latent variables): 

( | ,0; , , , ) ( | ,0; , , , )
( | ,1; , , , ) ( | ,1; , , , ) (1 )

c

c

L P y X P I X P
P y X P I X P

α β ε υ α γ ς υ
α β ε υ α γ ς υ

= ⋅ ⋅
+ ⋅ ⋅ −

     [2.10], 

This approach offers computational advantages (as it requires no integration over the 
domain of the latent variables) as well as statistical consistency. One disadvantage relies on 
the fact that it does not allow for the latent variable to be considered directly 
(continuously) into the measurement equations. This may be necessary, for instance, when 
using a latent variable accounting for wealth (under the presence of unreported 
information; Sanko et al., 2014) in a categorized fashion (Bahamonde-Birke and Hanappi, 
2015), among other specifications. 

Additionally, it must be pointed out that the interpretation of results tends to be rather 
obscure, especially in the case of the measurement equations, as these may be related to the 
absence of causality assumptions inherent to latent-class models. Opposite to the HDC 
framework, where it is assumed that the stated indicators are an expression of underlying 
attitudes and perceptions, in the LCPI approach the indicators are a tool to improve class-
identification (individuals would be more or less likely to belong to a certain latent class 
given the indicators they have stated) and no assumptions regarding their causes are made. 
Along the same line, the interpretation of the function used to categorize the individuals 
remains obscure (which is also a deficiency of latent-class models), as it is not easy to 
establish a clear meaning for it (opposite to the latent variables, for instance) and often it 
appears to be rather an ad-hoc function to classify the individuals. 

Finally, the complex structure of the LCPI framework (which requires the joint 
consideration of several sets of latent-class specific equations) is very demanding in terms 
of data variability. Hence, empirical identification issues arise and simpler structures must 
be favoured for the categorizing function (at the expense of a theoretical interpretation).  

c)  Direct categorization of latent variables approach (DCLV) 

Starting from the classical HDC framework (equations [2.1], [2.2] and [2.3]), we propose 
assuming an independent Logistic distribution with zero mean and given scale parameter 
(which can be fixed without loss of generality) for the error term υc1 of equation [2.2]5. 
Under this assumption equation [2.6] may be represented as a continuous expression. 

1 ( * )
1( | , , ) ( * 0)

1Xc cc c Xc c c XP P s P X
e ηη λ α α η ψη ψ α υ α α η υ ψ ⋅ + ⋅ −= < = ⋅ + ⋅ + − < =

+
 [2.11] 

                                                 
5 Just in the case of the latent variable to be categorized. The error of additional latent variables may follow 
any distribution. 
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In order to include the latent variable directly into the measurement equations (as in 
equation [2.3]), it is still necessary to rely on simulation. For that matter we can construct a 
second latent variable, which is equivalent to the original one, but includes a simulated 
error term υc2, the specification of which is exactly the same as that considered in equation 
[2.11].6 This way the likelihood function is not subject to discontinuity issues, while it still 
may be integrated over the domain of the latent variables relying on simulation techniques.  

It is important to note that the DCLV framework would dominate the LCPI approach, as in 
this case is possible to include class specific parameters into the measurement equations 
(via the inclusion of a dummy associated with the categorized latent variable). 
Nevertheless, it must be pointed out that the inclusion of latent class specific parameters 
must be carefully considered and be in accordance with any underlying hypotheses. In 
other case, the modelling would be subject to the same problems of the latent class 
structures (LC, LCPI) and, therefore, it may be advisable to omit using latent class specific 
parameters in the measurement equation. 

Thus, the general specification (considering latent class specific parameters in the 
measurement equations) for the likelihood function following the DCLV approach 
(considering only two categories) is the following:  

( | , ,0; , , , ) ( | , ,0; , , , ) ( | , *; , )

( | , ,1; , , , ) ( | , ,1; , , , ) ( | , *; , ) (1 )

c

c

L P y X P I X f X d P

P y X P I X f X d P

η

η

η α β ε υ η α γ ς υ η η α υ η

η α β ε υ η α γ ς υ η η α υ η

= ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅ −

∫

∫
 [2.12], 

Limitations 
The main limitation associated with all the approaches mentioned above, is the necessity of 
a continuous closed-form expression (as the Logistic distribution) for the categorizing 
function. This may appear to be a rather innocuous limitation, but it has major implications 
when working with panel data (or pseudo-panel data). In this case, integration over the 
domain of the latent variables should be performed on an individual level (e.g. via random 
panel effects; Bhat and Gossen, 2004). Although it is possible to include random panel 
effects, the fact that the error terms associated with the categorizing function are 
independent, would cause the categorization to be, at least to a certain extent, independent 
for all choices of the same individual. 

Another inconvenient is related with the non-monotonicity of the categorizing function. 
This leads to the existence of local optima and therefore the categorization’s threshold will 
depend on the starting value. Nevertheless, this problem is common to all latent class 
approaches. 

3. CASE STUDIES  
To analyse the different approaches presented in Section 2, we compared them making use 
of empirical data. Even though in the previous section we allowed for the DCLV 
framework to consider latent class specific parameters in the measurement equations, it is 
highly disputable if it would be advisable (given the lack theoretical justification); 

                                                 
6 It is important to note that it would be necessary only to fix the scale parameter of one error term (the 
continuous or the simulated one) and the second could be estimated; but this is not advisable for statistical 
and theoretical consistency (we are assuming that both variables represent the same error term). 
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moreover HDC models usually do not even consider positively observed attributes in the 
measurement equations. For that reason, in our analysis we will just consider latent 
variables as explanatory variables in the measurement equations, when following the 
LVLC and DCLV approaches (the structure of both approaches will only differ in the 
specification of the error terms). This allows for a direct comparison between both 
approaches. 

LCPI models exhibit a totally different structure and, therefore, a fair comparison is not 
possible. First, because of the aforementioned empirical identification issues, it would not 
be possible to consider the same degree of complexity for the categorizing function 
(structural equations). In fact, when doing so, it was only possible to work with one of five 
indicators in Case study 1 and with none (out of two) in Case study 2, and for that reason 
simpler specifications should be analysed at the expense of the meaning of the classes 
being constructed. Second, a comparison of the goodness-of-fit would be spurious, as the 
LCPI must necessarily be more likely than models estimated according to the LVLC or 
DCLV specifications. In the LCPI classes are defined exclusively to maximize the 
goodness-of-fit and are not based on theoretical assumptions (additionally, the 
measurement equations would have more degrees-of-freedom). As a matter of fact, if we 
consider the likelihood of the discrete choice component only, it is clear that a simple 
latent class model (with no indicators) would outperform every competing approach 
(including the LCPI; Hurtubia et al., 2014), as in this case the latent classes do not have to 
satisfy, additionally, a distribution of indicators or theoretical assumptions.  

As a consequence we do not consider the LCPI in our empirical analysis, and our 
conclusions in this sense will be based exclusively on the aforementioned theoretical 
arguments.   

Case study 1 - Electromobility in Austria 
Our first case study comes from the DEFINE project and a web-based survey conducted in 
Austria during February 2013. The survey considered a SP-experiment and was set in the 
context of choosing between different options for electromobility (Bahamonde-Birke and 
Hanappi, 2015). The sample was representative of the Austrian society and consisted of 
1,449 respondents, where 787 of them were considered in the discrete choice experiment. 

This vehicle purchase experiment used a labelled experimental design, including four 
alternatives referring to different propulsion technologies: conventional vehicles (CV), 
plug-in hybrid-electric vehicles (PHEV), hybrid-electric vehicles (HEV) and electric 
vehicles (EV). Each alternative was described by the following attributes: purchase price 
(PP), power (PS), fuel costs (FC) and maintenance costs (MC). In addition to these 
attributes, the EV was further characterized by the following attributes: full driving range 
(RA), availability of charging stations (LS) and policy incentives (IM). Charging station 
availability varied across three categories (low, intermediate and high) and was described 
qualitatively using a separate pop-up box. Policy incentives included a Park and Ride 
subscription for one year (IM2), investment subsidies to support private charging stations 
(IM3), and a one-year-ticket for public transport (IM4). 

Additionally, attitudinal indicators related to the degree of agreement with eight different 
sentences were collected. Bahamonde-Birke and Hanappi (2015) considered the following 
five of them to construct a latent variable related to the environmental attitude of the 
individuals:  “I am an ecologically aware person” (EcAwareness), “I pay attention to 
regional origins when shopping foods and groceries” (LocalFood), “I buy ecologically 
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friendly products” (EcoFriendly), “Environmental protection measures should be enacted 
even if they result in job losses” (Protection) and “I pay attention to the CO2 footprint of 
the products I buy” (CO2Footprint). The level of agreement was stated using a six points 
Likert scale (Likert, 1932). Table 1 presents an overview of the variables that are relevant 
to our study7. 

Table 1 – Definition of the variables considered in the model. Case Study 1 
Variable Definition 

MidSkill Dummy variable indicating a career and technical education.  
HighSkill Dummy variable indicating a college education or higher. 

Vienna Dummy variable indicating a residence in Vienna. 

Male Dummy variable indicating masculine gender. 

Old Dummy variable indicating individuals older than 60 years 

MidAge Dummy variable indicating individuals older than 35 years, but no older than 60 year. 

Carsharing Dummy variable indicating that the individual relies on Car Sharing on a regular basis. 

CarUser Dummy variable indicating that the individual drives to their main occupational activity on a regular basis. 

PP Purchase price in €. 

FC, MC Fuel and maintenance cost in € / 100 km., respectively. 

PS Power of the engine in hp. 

RA Driving range in km. 

IM2, IM3, IM4 Dummy variables indicating the execution of the respective policy incentive. 

LSMid, LSHigh Dummy variables indicating medium or high availability of loading stations for EV. 

LV Green Latent variable Green accounting for environmental awareness. 

CLV Green Categorized latent variable Green accounting for individuals with high environmental awareness. 

EcAwareness Attitudinal Indicator for “I am an ecologically aware person”. 

LocalFood Attitudinal Indicator for “I pay attention to regional origins when shopping foods and groceries”. 

EcoFriendly Attitudinal Indicator for “I buy ecologically friendly products”. 

Protection Attitudinal Indicator for “Environmental protection measures should be enacted even if they result in job losses”. 

CO2Footprint Attitudinal Indicator for “I pay attention to the CO2 footprint of the products I buy”. 

 
We estimated two models following the approaches presented in the previous section, 
using PythonBiogeme (Bierlaire, 2003). Taking advantage of having just one latent 
variable, the log-likelihood was computed using numerical integration. The latent variable 
(LV Green) accounts for environmental awareness and was categorized in two levels. The 
inclusion of an individual specific dummy variable (accounting for environmentally 
concerned individuals) associated with the alternatives HEV, PHEV and BEV, was the 
only difference between both classes. The results for the models are presented in Table 2. 
The results of the t-test for statistical significance are presented in parenthesis and the log-
likelihood for the overall model, as well as for the DC component only, are also reported 
(the results for the measurement equations are presented in the appendix). The indicators 
were considered discrete outputs following an ordered logit (OLM) approach (Bahamonde-
Birke and Ortúzar, 2015). 

 

                                                 
7 Bahamonde-Birke and Hanappi (2015) considered further variables and also estimated more involved 
models than those considered in this study. For the purposes of this work, this specification was considered 
appropriate, as additional complexity would only add noise to our analysis, as well as computational 
complexity. 
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Table 2 – Parameter estimates. Case study 1. 
Variable Equation LVLC DCLV 

Vienna S.E. LV Green -0.333 (-2.56) -0.182 (-1.71) 
Male S.E. LV Green -0.597 (-5.58) -0.587 (-5.74) 
HighSkill S.E. LV Green 1.05 (6.16) 0.879 (5.89) 
MidSkill S.E. LV Green 0.536 (3.85) 0.477 (3.72) 
Old S.E. LV Green 1.09 (7.18) 0.955 (6.67) 
MidAge S.E. LV Green 0.657 (5.15) 0.615 (5.14) 
Carsharing S.E. LV Green 1.33 (4.9) 0.988 (4.99) 
CarUser S.E. LV Green -0.567 (-5.53) -0.474 (-5.7) 
Threshold C.F 3.76 (5.27) 2.23 (7.18) 
Scale Parameter C.F 0.538 (5.06) 1 (fixed) 
ASC_CV Utility CV 0 (fixed) 0 (fixed) 
ASC_HEV Utility HEV -0.0165 (-0.07) 0.0945 (0.41) 
ASC_PHEV Utility PHEV -0.235 (-0.94) -0.207 (-0.88) 
ASC_EV Utility EV -1.09 (-2.65) -0.982 (-2.36) 
PP Utility CV -1.21 (-7.92) -1.27 (-9.07) 
PP Utility HEV -1.8 (-22.39) -1.79 (-22.85) 
PP Utility PHEV -1.76 (-19.94) -1.77 (-20.48) 
PP Utility EV -1.66 (-9.79) -1.73 (-10.69) 
MC Utility CV, HEV, PHEV, EV -21.1 (-9.32) -20.6 (-9.6) 
FC Utility CV, HEV, PHEV, EV -21.4 (-14.96) -20.7 (-15.87) 
PS Utility CV 0.0327 (5.22) 0.0341 (5.74) 
PS Utility HEV 0.0353 (7.18) 0.0348 (7.37) 
PS Utility PHEV 0.0354 (7.2) 0.0367 (7.5) 
PS Utility EV -0.000269 (-0.05) -0.000232 (-0.05) 
PS * Male Utility CV -0.019 (-4.14) -0.0195 (-4.21) 
PS * Male Utility HEV -0.0164 (-3.38) -0.0164 (-3.38) 
PS * Male Utility PHEV -0.0155 (-3.16) -0.0162 (-3.26) 
PS * Male Utility EV -0.00302 (-0.55) 0.000491 (0.09) 
MidAge Utility HEV -0.266 (-2.5) -0.287 (-2.65) 
MidAge Utility PHEV -0.383 (-3.46) -0.374 (-3.48) 
MidAge Utility EV -0.784 (-4.55) -0.946 (-4.91) 
Old Utility HEV -1.18 (-5.82) -1.19 (-5.63) 
Old Utility PHEV -1.44 (-6.24) -1.35 (-6.07) 
Old Utility EV -2.55 (-9.02) -2.88 (-8.77) 
CLV Green Utility HEV 3.48 (6.86) 3.19 (6.56) 
CLV Green Utility PHEV 3.25 (6.08) 2.71 (4.84) 
CLV Green Utility EV 5.77 (8.5) 5.89 (9.83) 
RA Utility EV 0.00444 (6.25) 0.00459 (6.81) 
LSMid Utility EV 0.0121 (0.07) 0.0426 (0.25) 
LSHigh Utility EV 0.661 (4.22) 0.71 (4.43) 
IM3 Utility EV 0.306 (2.19) 0.305 (2.14) 
Log-likelihood 
Overall Model 

 -16,177.759  -16,169.571  

Log-likelihood 
DC Component 

 -6,612.876  -6,605.847  

 

As can be observed, the differences between the parameters obtained following both 
approaches are not large and many are not statistically different. This is valid for all 
parameters of the structural and measurement equations as well as for the utility functions, 
with the exception of the threshold parameter of the categorizing function. This parameter 
evidently exhibits a different value, as the LVLC approach is associated with a greater 
error and a wider distribution, implying that the threshold must be located further away 
from the expected value, in order to capture the same individuals.  

Regarding goodness-of-fit, the DCLV approach exhibits a better performance than the 
LVLC. This superior adjustment is mostly explained by the discrete choice component. 
This result is in accordance with our expectations, as the LVLC considers an additional 
error component, which is indeed unnecessary for the estimation of the model. Along this 
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line, the fact that the improvement in goodness-of-fit is mostly explained by the discrete 
choice component, is based on the fact that the categorization (and its additional error 
term) affects only the utility functions 

Case study 2 – Modal choice in Germany 
In this SP experiment respondents were asked to choose between different interurban 
public transport alternatives in Germany (regional and intercity trains, and interurban 
coaches). The experiment was carried out in three waves (January 2014, March 2014 and 
April/May 2014), contacting students and employees of two universities in Berlin (the 
Technische Universität Berlin and the Humboldt-Universität zu Berlin), as well as 
employees of member institutions of the Leibniz-Gemeinschaft (for further details refer to 
Bahamonde-Birke et al., 2014). Respondents were required to choose between a first 
pivotal alternative, representing a trip previously described, and a new one. Alternatives 
were described in terms of their travel time, fare, number of transfers, mode of transport - 
regional trains (RE), intercity trains (FVZ) and coaches (LB) - and a safety level. 

The original study considered several indicators, associated with different and complex 
latent variables. For the purposes of this work we only considered one latent variable 
(TrainFan) again, which is associated with the following two indicators: “Investing on the 
development of high-speed trains should be encouraged” (HSTrains) and “New high-speed 
rail lines should be built” (RailLines). Originally the indicators were stated in a 10-points 
Likert scale. For computational issues in this application (opposite to the original study), 
we reduced it to only five, aggregating consecutive levels. Table 3 presents an overview of 
the variables considered. 

Table 3 – Definition of the variables considered in the model. Case Study 2 
Variable Definition 

Old Dummy variable indicating individuals older than 50 years.  
Bahncard Dummy variable indicating ownership of a Deutsche Bahn yearly discount card. 

Woman Dummy variable indicating feminine gender. 

VeryLowIncome Dummy variable indicating a net income under 700€ p.m. 

LowIncome Dummy variable indicating a net income between 700€ and 1,500€ p.m. 

MiddleIncome Dummy variable indicating a net income between 1,500€ and 2,500€ p.m. 

HighIncome Dummy variable indicating a net income over 2,500€ p.m. 

Price Travel fare in €. 

TravelTime Travel time in minutes. 

Transfers Number of transfers. 

SafetyLevel Number of severely injured passengers and the number of fatalities in the overall network over a year. 

LV TrainFan Latent variable TrainFan. 

HSTrains Attitudinal Indicator for “Investing on the development of high-speed trains should be encouraged”. 

RailLines Attitudinal Indicator for “New high-speed rail lines should be built”. 

 

Again, models were estimated following the LVLC and DCLV approaches. Estimation 
was performed using PythonBiogeme and considering numerical integration for the 
computation of the likelihood function. Indicators were considered discrete outcomes 
(OLM). Table 4 presents the results for both models. The structure of the table is the same 
as in the previous case (results for the measurement equations are presented, again, in the 
appendix). 
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Table 4 – Parameter estimates. Case study 2. 
Variable Equation MCT2 OLM2 

Old S.E. LV TrainFan 0.207 -0.36 -0.093 -0.41 
Bahncard S.E. LV TrainFan 0.684 -5.41 0.673 -5.46 
Woman S.E. LV TrainFan -0.686 (-5.64) -0.663 (-5.75) 
MiddleIncome S.E. LV TrainFan 0.368 -3.19 0.426 -3.24 
HighIncome S.E. LV TrainFan 0.515 -2.53 0.606 -2.82 
Threshold C.F 0.622 (1.44) -0.346 (-0.59) 
Scale Parameter C.F 10 (fixed) 1 (fixed) 
Inertia Utility Alternative 1 0.336 -13.48 0.345 -13.48 
FVZ Utility Alternative 1 and 2 0 (fixed) 0 (fixed) 
LB Utility Alternative 1 and 2 -1.17 (-12.65) -0.559 (-12.62) 
RE Utility Alternative 1 and 2 -0.167 (-9.59) 0.448 (-9.52) 
Travel Time Utility Alternative 1 and 2 -1.49 (-26.57) -1.56 (-26.57) 
Ln(Price) * Very Low Income Utility Alternative 1 and 2 -5.29 (-31.91) -5.41 (-31.9) 
Ln(Price)  * Low Income Utility Alternative 1 and 2 -4.7 (-26.28) -4.85 (-26.26) 
Ln(Price)  * Middle Income Utility Alternative 1 and 2 -3.63 (-14.98) -3.8 (-15) 
Ln(Price)  * High Income Utility Alternative 1 and 2 -2.54 (-7.81) -2.67 (-7.84) 
Safety Level Utility Alternative 1 and 2 -0.00374 (-4.59) -0.00408 (-4.59) 
Transfers Utility Alternative 1 and 2 -0.446 (-18.25) -0.46 (-18.25) 
FVZ * CLV TrainFan Utility Alternative 1 and 2 0.716 (4.93) 1.42 (5.27) 
Log-likelihood 
Overall Model 

 -10,543.642  -10,535.416  

Log-likelihood 
DC Component 

 -7,461.029  -7,453.871  

 

While in Case 1 all estimators (aside from the threshold) were not statistically different in 
both models, in Case 2 the parameters associated with the categorized latent variable are 
statistically different. As the categorized latent variable is considered in conjunction with 
the modal parameter of the intercity trains, it also affects the remaining modal parameters. 
This difference may be attributed to the fact that changing the distribution (the variability) 
of the categorizing function may allow for identifying different groups of people. In fact, 
taking a look at the threshold parameters, it seems (accounting for the wider variability of 
the LVLC) that the thresholds have been set at a different level.     

Notoriously in this case, when following the LVLC approach, the parameter associated 
with the scale parameter λ of the categorizing function diverged (at least in computational 
terms). For that reason it was necessary to fix it as 10 (greater values would lead to 
computational issues, when computing the Fisher information matrix, but neither the 
estimates nor the final value of the log-likelihood would be majorly affected).  

Again, the DCLV approach offers a better adjustment than the LVLC model, which may 
be mainly related to a better explanation of the discrete choices. Interestingly in this case, 
the scale parameter of the LVLC model suggests that the categorizing function should be 
as similar to a Dirac delta function as possible. In this limit, the LVLC model would 
collapse to the DCLV. Nevertheless, achieving this limit (or getting close to it) is not 
possible due to computational limitations; therefore, it is impossible to get rid of the error 
induced through the LVLC approach. 

4. CONCLUSIONS  
Categorizing a latent variable or in general terms, defining the conditions to categorize 
individuals based on their latent characteristics should offer significant advantages in 
discrete choice modelling. Nowadays, the dominant approach for categorizing individuals 
is the latent class approach, but this method may be subject to criticism given its inherent 
lack of causality assumptions and the obscure interpretation of the functions used to define 
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class-membership. Additionally, the approach does not take advantage of additional 
information, such as the perceptual and attitudinal indicators. This criticism may be 
overruled when latent-classes are used for identifying objective properties (such as missing 
information, lexicographic respondents, etc.); however, when attempting to model 
attitudes, perceptions, values and other latent characteristics of the individuals, alternative 
approaches may be favoured. 

In this work we explore different ways to improve the categorization of individuals, 
focusing on the categorization of latent variables. This approach exhibits, as main 
advantage, a clear interpretation of the function used in the categorization process (the 
latent variable), as well as taking exogenous information (perceptual and attitudinal 
indicators) into account. Unfortunately, technical issues (associated with the estimation 
technique via simulation) arise when attempting a direct categorization. Therefore, 
alternative strategies have been proposed.  

First, we considered the LVLC approach, which effectively overcomes these technical 
issues, but is associated with an artificial increase in the error. A second method is the 
LCPI approach, but it is guilty of the same deficiencies of latent class models: lack of 
causality assumptions, obscure interpretation of the class-membership function and 
additionally in this case, obscure interpretation of the measurement equations for the 
indicators and major issues related to empirical identifiability. It is important to mention 
that, by definition, this approach should offer superior goodness-of-fit than alternatives 
approaches, as the class-membership function is constructed to maximize the adjustment 
and not in order to satisfy a priori theoretical hypotheses; we consider this one of its major 
disadvantages. Finally, we propose an alternative way to attempt a direct categorization of 
latent variables (DCLV). This approach overcomes the error issues of the LVLC. 

We tested the aforementioned approaches with the help of two case studies. The LCPI 
approach was not considered (based on the just described theoretical concerns, as well as 
its empirical identifiability issues). Hence, we just considered the LVLC and DCLV 
approaches.  

In the first case study, it was not possible to establish the existence of major differences in 
the estimated parameters (aside from the threshold parameter), but in the second case 
study, the differences in the variability of the class-membership function led to a different 
categorization. In line with our expectations, the DCLV approach offered a superior 
goodness-of-fit, as the LVLC introduced an additional error term. The improvements in 
goodness-of-fit were mainly explained by a better adjustment of the discrete choice 
component.  

Based on our empirical results and theoretical analysis, the DCLV appears to be the 
superior approach. On the one side, it offers a consistent treatment of the error term, which 
is in accordance with the underlying theory. Along this line, it offers a better performance 
than the LVLC approach, in terms of the goodness-of-fit. Finally, the approach performed 
stably (no identification issues) for the considered case studies (opposite to the LCPI). 

To end, it must be remarked that all approaches are based on non-monotonic categorizing 
functions leading to the existence of local optima. Therefore, different starting values must 
be evaluated. Additionally, is must be mentioned that the approaches do not allow 
considering the correlation among the responses provided by the same individual, when 
working with panel-data (at least to a certain extent). Further research must be conducted 
in this regard. 
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Appendix 1 

Appendix 1 – Parameter estimates for the measurement equations. Case study 1. 
Variable Equation LVLC DCLV 

Scale Parameter M.E. EcAwareness 0.959 (16.14) 0.954 (16.1) 
Threshold 1 M.E. EcAwareness -3.25 (-15.18) -3.18 (-15.29) 
Threshold 2 M.E. EcAwareness 0.0152 (0.09) 0.0719 (0.42) 
Threshold 3 M.E. EcAwareness 3.05 (12.85) 3.1 (13.22) 
Threshold 4 M.E. EcAwareness 5.06 (14.74) 5.1 (14.9) 
Threshold 5 M.E. EcAwareness 7.01 (12.11) 7.05 (12.16) 
Scale Parameter M.E. LocalFood 1.18 (14.89) 1.22 (14.89) 
Threshold 1 M.E. LocalFood -1.76 (-9.58) -1.68 (-9.51) 
Threshold 2 M.E. LocalFood 0.655 (3.74) 0.692 (4.11) 
Threshold 3 M.E. LocalFood 2.59 (12.3) 2.59 (12.79) 
Threshold 4 M.E. LocalFood 4.23 (15.2) 4.2 (15.63) 
Threshold 5 M.E. LocalFood 7.17 (10.56) 7.09 (10.7) 
Scale Parameter M.E. EcoFriendly 0.988 (15.94) 1.02 (16.06) 
Threshold 1 M.E. EcoFriendly -2.68 (-12.98) -2.58 (-13.01) 
Threshold 2 M.E. EcoFriendly -0.727 (-4.12) -0.664 (-3.92) 
Threshold 3 M.E. EcoFriendly 1.28 (6.9) 1.3 (7.32) 
Threshold 4 M.E. EcoFriendly 2.88 (12.85) 2.88 (13.32) 
Threshold 5 M.E. EcoFriendly 6.77 (12.65) 6.69 (12.87) 
Scale Parameter M.E. Protection 0.442 (13.06) 0.446 (13.05) 
Threshold 1 M.E. Protection -7.7 (-13.42) -7.59 (-13.39) 
Threshold 2 M.E. Protection -3.33 (-11.57) -3.25 (-11.54) 
Threshold 3 M.E. Protection 1.3 (5.53) 1.34 (5.83) 
Threshold 4 M.E. Protection 4.12 (10.97) 4.14 (11.15) 
Threshold 5 M.E. Protection 8.04 (11.84) 8.03 (11.91) 
Scale Parameter M.E. CO2Footprint 0.951 (16.84) 0.95 (16.77) 
Threshold 1 M.E. CO2Footprint -4.39 (-17.52) -4.32 (-17.61) 
Threshold 2 M.E. CO2Footprint -1.92 (-10.27) -1.86 (-10.29) 
Threshold 3 M.E. CO2Footprint 0.276 (1.56) 0.329 (1.92) 
Threshold 4 M.E. CO2Footprint 1.89 (9.4) 1.93 (9.85) 
Threshold 5 M.E. CO2Footprint 5.31 (14.73) 5.35 (14.89) 

 

Appendix 2 

Appendix 2 – Parameter estimates for the measurement equations. Case study 2. 

Variable Equation LVLC DCLV 

Scale Parameter M.E. HSTrains 1.13 (8.48) 1.09 (7.6) 
Threshold 1 M.E. HSTrains -3.74 (-13.3) -3.77 (-12.42) 
Threshold 2 M.E. HSTrains -2.21 (-11.8) -2.21 (-11.3) 
Threshold 3 M.E. HSTrains -0.179 (-1.47) -0.16 (-1.37) 
Threshold 4 M.E. HSTrains 1.43 (10.12) 1.47 (10.56) 
Scale Parameter M.E. RailLines 2.03 (3.9) 2.23 (2.84) 
Threshold 1 M.E. RailLines -2.83 (-12.73) -2.74 (-11.66) 
Threshold 2 M.E. RailLines -1.5 (-10.01) -1.44 (-9.44) 
Threshold 3 M.E. RailLines 0.0287 (0.26) 0.0539 (0.53) 
Threshold 4 M.E. RailLines 1.4 (9.91) 1.4 (9.81) 

 

 


