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Abstract

Public programs often use statistical profiling to assess the risk that appli-

cants will become long-term dependent on the program. The literature uses

linear probability models and (Cox) proportional hazard models to predict

duration outcomes. These either focus on one threshold duration or impose

proportionality. In this paper we propose a nonparametric weighted survivor

prediction method where the weights depend on the distance in character-

istics between individuals. A simulation study shows that an Epanechnikov

weighting function with a small bandwidth gives the best predictions while

the choice of distance function is less important for the performance of the

weighted survivor prediction method. This yields predictions that are slightly

better than Cox survivor function predictions. In an empirical application

concerning the outflow to work from unemployment insurance, we do not find

that the weighting method outperforms Cox survivor function predictions.
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1 Introduction

Many public administrations use profiling rules to assign services with limited avail-

ability. Unemployment benefit agencies, for example, classify unemployed individ-

uals in terms of their likelihood to find work and use this to allocate active labor

market programs, such as job search assistance.1 Also other government programs

with non-universal access, like welfare-to-work programs (e.g., Bolhaar et al., 2015)

and reintegration services for the disabled, use an allocation mechanism. Moreover,

(influenza) vaccination programs (e.g., Simonsen et al., 2007), cancer screening pro-

grams (e.g., Walter and Covinsky, 2001) and other forms of preventive policies are

typically targeted to a selected group of individuals based on the risk of dying from

the disease and the benefits from vaccination or early diagnosis and treatment. Pro-

filing and targeting methods are thus applied in many different fields, like public

health, medicine, unemployment insurance, sickness absenteeism and disability in-

surance (Benitez-Silva et al., 2004), poverty alleviation in developing countries (e.g.,

Ravallion and Chao, 1989; Elbers et al., 2007), marketing, and as a screening device

in security checks (Persico and Todd, 2005).2

In this paper, we propose a weighted survival prediction method for profiling.

This method predicts the entire individual survivor function. Compared to linear

probability models estimating the probability of duration exceeding a particular

threshold, as has been previously done for profiling purposes (e.g., Eberts, 2002),

our weighted survivor prediction method provides more information. Furthermore,

the weighted survival prediction method does not rely on the parametrization and

proportional hazards assumption needed when estimating the survivor function in a

1Unemployment profiling rules are used, for instance, in the U.S., Denmark, the Netherlands,

Australia, Switzerland and Germany, often in combination with caseworker discretion (e.g. Frölich

et al., 2003; Rosholm et al., 2004; Frölich, 2008; Behncke et al., 2009, 2010; Collewet et al., 2010).

Some studies attempt to estimate the impact of unemployment profiling and targeting methods

on unemployment insurance benefit claims. Black et al. (2003b) estimate that the U.S. Worker

Profiling and Reemployment Services system reduced the mean number of weeks of benefit receipt

by 2.2 weeks. Using a regression discontinuity approach exploiting the limited number of slots for

reemployment services that individuals with the same profiling score can be assigned to, Black

et al. (2007) estimate a reduction of 1.96 weeks of benefit receipt and a $203 reduction in the

amount of benefits received. O‘Leary et al. (2005) find that targeting reemployment bonuses to

individuals most likely to exhaust benefits using a profiling model can increase cost-effectiveness,

although no steady decline in average benefit payments is found. Behncke et al. (2009) did not find

an impact of a Swiss pilot targeting model, but attribute this to the fact that caseworkers, who in

the end allocated labor market programs to job seekers, ignored the prediction for two thirds of

the job seekers.
2For more detailed references on applications in other fields, we refer to, for instance, Staghøj

et al. (2007) and Behncke et al. (2009).
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(Cox) proportional hazards model, which is often used for profiling.3 Proportionality

in the hazard rate for the prediction individual and previously observed sample

individuals can easily be violated, for instance, because of changes in the economic

environment. We compare the prediction quality of the weighted survival prediction

method to the quality of alternative profiling methods in a simulation study and in

an empirical application in unemployment insurance.

Rosholm et al. (2004) discuss two reasons why early identification, around the

time of inflow in a particular state, of individuals who might benefit from various

services is important. First, it allows for targeting of preventive policies in an

early stage. Second, from an efficiency point of view, it helps to prevent providing

services to individuals who are perfectly capable of moving out of the state without

assistance. In addition, information on the expected time spent in a state can be

used in determining the social security burden and in designing policies or, more

specifically, the computation of required premia. Finally, Machin and Manning

(1999) argue that active labor market policies should be targeted to individuals

when duration dependence in their job finding is most pronounced.

There are several ways to identify individuals to whom particular services are

allocated. First, allocation may be based solely on decisions of caseworkers.4 Sec-

ondly, a deterministic rule can be used assigning everyone in a particular state to

specific services. Thirdly, one could use statistical methods to target services. Sta-

tistical methods rely on the idea that individuals close in terms of characteristics

that have predictive power for the outcome under consideration, are likely to have

similar outcomes as well. Therefore, these methods use observed spells in the state

of interest for individuals in earlier cohorts to predict the duration in the state for

an individual newly entering the state.

Statistical treatment rules have recently received quite some attention in the

literature (e.g., Manski, 2000; Berger et al., 2001; Manski, 2004; Dehejia, 2005; Plesca

and Smith, 2005). One can distinguish between two types of statistical methods:

profiling and targeting. Profiling methods predict outcomes in absence of program

participation and then assign services based on the predicted outcome. Frölich et al.

(2003) state that profiling relies on assumed positive correlation between the profiling

score and the effectiveness of the programs. Furthermore, when using profiling as

3The proportional hazards assumption states that the ratio of the hazard rates of individuals

with certain characteristics is constant over time. As a consequence, the rate at which the hazard

changes over time is assumed to be independent of the covariates.
4Bell and Orr (2002) found that caseworkers were not able to consistently identify the persons

who would benefit most from the considered job training programs. Lechner and Smith (2007)

concluded the value of caseworkers to be small compared to random assignment of active labor

market policies.
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an assignment tool, it is implicitly assumed that programs are actually effective.

Targeting models do not rely on these assumptions. Targeting differs from profiling

in the sense that heterogeneity in program impacts across individuals is explicitly

taken into account by computing potential outcomes under each program. Which

of the methods is to be preferred depends, amongst others, on the goal that policy

makers have in mind. Although equity goals in program allocation can be attained

using profiling, efficiency considerations usually require targeting methods (Berger

et al., 2001).

Various types of statistical models, outcome measures and covariates have been

used for profiling and targeting in the literature. Some profiling models, like the

U.S. Worker Profiling and Reemployment Services model, use a binary outcome

model with unemployment insurance benefit exhaustion as the dependent variable

(Black et al., 2003b). Other profiling models use a linear probability model with

an indicator for unemployment duration exceeding a particular threshold as the

outcome (e.g., Wong et al., 2002; Eberts, 2002). These outcomes have been criticized

by Black et al. (2003a) who argued that dichotomization disregards a large part of

the variation in the data. They suggested to use the fraction of benefits claimed

as the dependent variable, as was actually done in the Kentucky Profiling Model

(Berger et al., 2001).5 An alternative approach is the proportional hazard models

for the time spent in unemployment in order to compute the probability of surviving

in unemployment for an additional number of weeks (Rosholm et al., 2004).

Black et al. (2003a) argue that richer models, including more covariates, do a bet-

ter job. Covariates that have been included are, amongst others, (un)employment

history and labor market attachment, gender, age, education, occupation and lo-

cal labor market conditions. Nevertheless, the predictive power of profiling models

has been found to be relatively modest (see Berger et al. (2001) for a comparison).

Lowsky et al. (2013) recently proposed a method similar to our weighted survival

prediction method in the medical literature. However, whereas they use a simple

Mahalanobis distance metric and constant weighting function, we consider alterna-

tive distance and weighting functions also taking into account the importance of

individual characteristics for prediction of the duration outcome.

The results from our simulation study indicate that the proposed weighted sur-

vivor prediction method performs somewhat better than a Cox model prediction of

the survivor function. The specification of the weights used in the weighted survival

prediction method matters more for the performance of the method than the choice

of distance metric. In particular, we find that an Epanechnikov weighting function

5Another continuous outcome employed in the Swiss targeting system discussed in Behncke

et al. (2009) is the predicted number of months of subsequent stable employment within a particular

time frame.
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with a small bandwidth performs best. The empirical application shows no signifi-

cant difference in prediction quality of the weighted survivor prediction method and

a Cox prediction of the survivor function.

The remainder of this paper is structured in the following way. The next sec-

tion provides a theoretical description of the proposed weighted survivor prediction

method and discusses two alternative profiling models that are used as benchmark

models. Section 3 describes the possible choices for implementation of the weighted

survivor prediction method, that is how to determine similarity of individuals (the

choice of distance metric) and how to assign weights based on this distance. In sec-

tion 4, we describe the Monte Carlo simulation study that we conduct to investigate

the performance of the weighted survivor prediction method. The results of this

simulation exercise are discussed in section 5. The performance of the method in an

empirical application is illustrated in section 6. Finally, section 7 concludes.

2 Profiling methods in theory

Profiling methods aim to predict (points of) the survivor function for survival in

a particular state for an individual i newly entering that state, using information

on her observed characteristics xi.
6 More formally, interest lies in prediction of the

conditional survivor function S(t|xi) = Pr(T > t|xi). To obtain a prediction of

the survivor function, a set Ω of J observed (historical) spells in the state can be

exploited. For each spell j in Ω we observe the time of outflow to a state of interest,

τj, and L characteristics xj ((1×L)-vector) of the individual. We observe the same

covariates for prediction individual i. The duration τj may be right-censored.7 We

denote the distinct (ordered) observed failure times by t1 < t2 < ... < tk < ... < tK ,

whereK ≤ J . Using separate notation for observed individual durations and distinct

ordered failure times allows to deal with multiple individuals flowing out to the

state of interest at one particular failure time. The running variable in the survivor

functions and the hazard rates is denoted by t.

6It is possible to update predictions after survival up to a particular duration (as considered

by Rosholm et al. (2004)). In that case one has to account for dynamic selection effects, which can

be done by using only the selected set of individuals who survived for predictive purposes.
7Typically, interest lies in outflow to one particular state of interest. Therefore, we treat outflow

to any other state than the state of interest as a censored observation. This is similar to Rosholm

et al. (2004). An alternative would be to extend our proposed method to a weighted version of a

competing risks model and to use this for predictive purposes.
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2.1 Benchmark methods

Before discussing our weighted prediction method for profiling, we provide a brief

discussion of two profiling methods that are commonly used in the literature (see the

discussion and references in the introduction). These methods serve as a benchmark

in the Monte Carlo study in sections 4 and 5. The first benchmark method is a Cox

proportional hazards model (Cox, 1972), the second a linear probability model. Both

methods provide predictions of survival probabilities at several durations. From the

Cox proportional hazards model we can derive a prediction of the survivor function

for individual i following the procedure described by Kalbfleisch and Prentice (2002)

(p. 115-116) and Cameron and Trivedi (2005) (p. 596-597). In particular, we specify

a standard Cox proportional hazards model for the hazard rate,

λ (t|x, β) = λ0 (t) exp(xβ) (1)

Partial likelihood estimation using data on the J spells in Ω gives coefficient esti-

mates β̂ which are subsequently used to derive the maximum likelihood estimate of

the baseline survivor function, Ŝ0 (t). Finally, the predicted survivor function for

the prediction individual can be computed as

ŜCox (t|xi) = Ŝ0 (t)
exp(xiβ̂)

(2)

As a second benchmark, we obtain predicted survival probabilities from linear

probability models. In particular, we estimate the linear probability model

1{τj ≥ t} = γ0 + xjγ + uj (3)

on data for the J sample individuals and use the estimated coefficients γ̂ and co-

variate values xi to obtain a prediction of the probability of survival up to time t

for individual i, ̂Pr
(
τ ≥ t|xi

)
= γ̂0 + xiγ̂ (4)

Repeating this procedure for various duration thresholds t, the survival probability

at several durations can be computed and compared to alternative predictions of

the survivor function at these durations.8

2.2 Weighted survivor prediction method

The idea of our proposed weighted survivor prediction method is to match the

prediction individual i to M individuals in the sample (M ≤ N) that are comparable

8In theory, we can predict the survival probability at many durations to approximate a survivor

function. However, in applications described in the literature only one or a few duration thresholds

are used.
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to individual i in terms of a set of characteristics x that are correlated with the

outcome of interest.9 The observed time of outflow for those M individuals is then

used to construct a predicted survivor function for individual i. Given the available

information, a predicted survivor function is obtained in three steps:10

1. Map information on all covariates to a scalar measure of the degree of similarity

between individual i and each of the individuals j ∈ Ω. Therefore, we use a

distance metric d (·), resulting in the scalar dij ≡ d (xi, xj). This step basically

nests two choices:

• which covariates to consider in the computation of distance;

• specifying a distance metric d (·).

The choice of covariates involves a trade-off between bias and variance in pre-

diction, where more covariates introduce more variability and fewer covariates

result in larger bias (Stuart, 2010).

2. Assign a non-negative weight to each individual j ∈ Ω. Weights are denoted

by wij ≡ w
(
dij

)
, where w (·) is a particular weighting function. Weights can

be zero for individuals who are not sufficiently comparable to individual i. The

determination of weights consists of two components that show some parallels

with kernel and nearest neighbor methods:

• a distance bandwidth (h) or a fixed number of individuals receiving pos-

itive weight;

• a functional form, w (·), for the relationship between weight and distance.

3. Given weights wij, obtain a weighted predicted survivor function for prediction

individual i,

Ŝw
(
t|{wij, τj}j∈Ω

)
=
∏
k|tk≤t

(
1− ewk

rwk

)
(5)

with ewk =
∑
j∈Ω

wij · (1− cj) · 1{τj = tk} (6)

rwk =
∑
j∈Ω

wij · 1{τj ≥ tk} (7)

9Frölich (2008) proposed a targeting method that uses an extensive set of covariates for deriving

statistical predictions, while only a limited set of covariates is available for the prediction individual.

We do not consider a similar extension in this paper.
10The two steps of distance computation and assignment of weights could potentially be com-

bined in a one-step method similar to a multivariate kernel approach on all covariates. However,

in multivariate kernel methods correlations between covariates and differences in the variance are

more difficult to account for. Therefore, we do not consider such an approach in this paper.
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where ewk is the weighted number of spells ending at time tk, r
w
k is the weighted

number of spells at risk just before time tk, and cj is a censoring indicator equal

to one for a censored observation and zero otherwise.11

The weighted survivor function closely resembles the Kaplan-Meier estimator of the

survivor function (Kaplan and Meier, 1958). We add the weights to the computation

of the number of exits and the number of spells at risk similar to what has been

suggested by Lowsky et al. (2013). The original Kaplan-Meier estimator is obtained

when wij = 1, ∀j = 1, ..., J .

Our approach differs from Lowsky et al. (2013) in a number of ways. First, we

consider all kinds of distance metrics that differ in the extent to which they account

for unequal variances of covariates, correlation between covariates, and differences

in the effects of the covariates on the duration outcome of interest. Lowsky et al.

(2013) only use Mahalanobis distance, which does not take into account the im-

portance of covariates. Furthermore, Lowsky et al. (2013) use a k-nearest neighbor

approach, but eventually use a constant weighting function w (·) = 1 only. We con-

sider various specifications of the weighting function, also allowing weights to decline

with distance, to account for possible differences in predictive power as a result of

differences in distances between individuals.

3 Distances and weights

The previous section described the proposed weighted survivor prediction method

in general terms. As becomes clear from the first two steps in the discussion of

the method, implementation requires the choice of functional forms for the distance

metric and the weighting function. For this, several alternatives are available. The

next subsection describes the options that we consider for the distance metric and

in subsection 3.2 the choice of bandwidth and weighting function are discussed.

11The Kaplan-Meier estimator on continuous time data (without ties) uses observed failure

times to construct intervals that contain only one observed failure and uses discrete-time methods

after defining those intervals. In that case, at most one exit occurs in a particular interval, so that

the weighted predicted survivor function could as well be written as

Ŝw
(
t|{wij , τj}j∈Ω

)
=

∏
k|tk≤t

(
1− wik (1− ck)∑

j∈Ω wij1{τj ≥ tk}

)

On the contrary, in case of discrete time data, ties (i.e., multiple exits at one failure time) can

occur and the number of exits could exceed one, so that the definition of the weighted number of

exits in equation (6) applies.
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3.1 Distance metrics

With a relatively small number of discrete characteristics and a sufficiently large

data set, one can compare individual i solely to individuals with exactly the same

characteristics (exact matching). But, when the available data is rich on relevant

characteristics and/or contains continuous covariates, exact matching becomes in-

feasible (curse of dimensionality). Instead, we need to map the characteristics x

into a scalar using some distance metric d (·) before applying a matching or weight-

ing algorithm.12 When there are both discrete and continuous covariates, the two

types of matching can be combined by selecting those individuals exactly similar to

the prediction individual in terms of the discrete covariate and applying a distance

metric to the remaining covariates.

There are various ways in the literature in which characteristics can be mapped

into a scalar distance value. We consider 17 different distance metrics. An overview

is provided in Table 1. All distance metrics are weighted sums of the differences in

the covariates. In general, the distance metrics can be expressed as,

dij ≡ d (xi, xj) =
√

(xi − xj)W (xi − xj)′ (8)

where W is an L × L positive definite weighting matrix. The distance dij equals

zero for an individual j exactly similar to individual i in terms of all characteristics

x. Furthermore, distance is non-negative because of the weighted sum of squared

differences. Finally, the larger the distance is, the less comparable individual j is to

individual i.

The choice of weighting matrix ideally accounts for differences in the measure-

ment scale of covariates, the variance of covariates, the correlation between char-

acteristics and the importance of the characteristics in explaining the outcome of

interest. A difference in terms of a covariate with large variability contributes rel-

atively more to the total distance than a similar difference in terms of a covariate

with a smaller variance. Without a correction for the correlation structure, large

distances in terms of two correlated covariates receive a relatively large weight (e.g.,

Rosenbaum, 2009, p.168-169). And, intuitively, distance should be affected to a

larger extent by covariates that are important determinants of the outcome of in-

terest (Dickinson et al., 1986; Zhao, 2004). The distance metrics that we consider

differ in the extent to which they correct for these three components, as illustrated

in Table 1.

The simplest distance metric is the Euclidean distance which is the sum of the

squared differences in covariates, i.e., using the identity matrix as weighting matrix,

12Intuitively, this matching procedure is closely related to propensity score matching methods

used for treatment effect estimation (e.g., Rosenbaum and Rubin, 1983; Heckman et al., 1998).
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Table 1: Overview of distance metrics.

adjustment for:

distance metric variance covariance importance

(a) Euclidean distance no no no

(b) normalized Euclidean distance yes no no

(c) Mahalanobis distance yes yes no

Zhao’s distance yes1 yes1 yes

(d) ols estimates

(e) ols estimates divided by s.e

(f) linear prob. estimates

(g) Cox estimates

(h) exponent of Cox estimates

(i) one minus exponent of Cox estimates

(j) standardized Cox estimates

(k) exponent of standardized Cox estimates

(l) one minus exponent of standardized Cox estimates

(m)principal components distance yes yes yes

Imbens’ optimal distance yes yes yes

(n) ols estimates

(o) linear prob. estimates

(p) Cox estimates

(q) standardized Cox estimates

1 Using Zhao’s distance metric and variants thereof implicitly accounts for differences in the

variance and covariance of covariates through the estimated coefficients (Zhao, 2004).

W = I. This distance measure is sensitive to the scaling of covariates. On the

contrary, the normalized Euclidean distance explicitly accounts for the scaling of

covariates by using the inverse of the diagonal of the (sample) covariance matrix of

the covariates as weighting matrix, i.e., W = diag (Σx)
−1 (e.g., Abadie and Imbens,

2011).13 In addition, we can account for the covariance structure of covariates by

using Mahalanobis distance (e.g., Rubin, 1980).14 This distance metric uses the

13This essentially means standardizing the covariates and computing Euclidean distance on the

standardized variables.
14For some distributions of the covariates, such as a Bernoulli distribution with rare successes,

this distance metric does not work well (Rosenbaum and Rubin, 1983). Its performance is also

limited when there are many covariates, since this complicates estimation of the covariance matrix.

Stuart (2010) argues that this may be the result of this metric regarding all interactions of the

covariates as equally important, thereby matching on a quickly increasing number of interactions

when the number of covariates increases.
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inverse of the (sample) covariance matrix of covariates as the weighting matrix,

W = Σx
−1.

None of the aforementioned distance metrics corrects for the importance of co-

variates as determinants of the duration outcome. Although this could be partially

accounted for by choosing which covariates to include, Zhao (2004) suggests match-

ing methods for treatment effect estimation that explicitly take the importance of

covariates into account in the computation of distance. Zhao (2004) suggests to

weigh the differences in characteristics by the marginal effect of these characteris-

tics x on the outcome measure, where the marginal effect is estimated in a linear

model,15

dz (xi, xj) =
L∑
l=1

|xil − xjl| · |γ̂k| (9)

yj = γ0 +
L∑
l=1

γlxjl + εj (10)

where yj is the (duration) outcome of interest that we want to predict. This approach

does not explicitly correct for the variance and covariance of the covariates, but

partly accounts for it through the estimated γ coefficients (Zhao, 2004).

We consider multiple variants of Zhao’s distance metric. First, we account for the

uncertainty in the coefficient estimates by dividing the estimates by their standard

errors and thus use the t-statistic as weight on the difference (distance metric (e) in

Table 1),

dz,adj. (xi, xj) =
L∑
l=1

|xil − xjl| ·
|γ̂l|

ŝ.e. (γ̂l)
(11)

Imbens (2004) points out that misspecification of the model for the outcome

may yield inconsistent results. Since we are interested in a duration outcome, a

linear model may not be suitable. Therefore, we consider coefficient estimates from

a linear probability model for duration exceeding t (distance metric (f) in Table 1)

and coefficient estimates from a Cox proportional hazard model as weights on the

difference in equation (9).16 As opposed to a linear regression model, coefficient

estimates in the Cox model do not reflect marginal effects of the covariates on

15Note that this is equivalent to the specification in equation (8) with weighting matrix W =

diag(Γ), where Γ is the L× L-matrix formed by the outer product of the coefficients, γγ′, so that

W has the γ2
1 , ..., γ

2
L coefficients on the diagonal and zeros off the diagonal.

16In particular, we estimate the linear probability model 1{τj ≥ t∗} = γ0 +
∑L
l=1 γlxjl +uj and

the Cox proportional hazard model λ (t|xj) = λ0 (t) exp
(
γ0 +

∑L
l=1 γlxjl

)
, where λ (t|xj) is the

hazard rate and λ0 (t) the baseline hazard.
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duration. Marginal effects are not straightforward to derive from the Cox model.

Standardizing covariates may help in making coefficient estimates comparable in

magnitude so that differences in size correspond to differences in impacts. Besides,

instead of the absolute value of the coefficient estimate, we could use the exponent

or one minus the exponent of the estimated coefficients as weights in the distance

function. This captures the fact that a one unit increase in xl is associated with a(
1 − exp (βl)

)
λ
(
t|xold

)
increase in the hazard rate. This results in six additional

variants of Zhao’s distance metric, labeled (g) to (l) in Table 1.

An alternative approach to importance adjustment, applied in matching meth-

ods for treatment effect estimation, is discussed by Dickinson et al. (1986). They

address the importance of covariates in explaining the outcome of interest by us-

ing the coefficients on the principal components of the set of covariates as weights

in a modified Mahalanobis distance function. We follow their approach and con-

struct a distance measure based on all (normalized) principal components (vc) of

the covariates x,17

dpca (xi, xj) =
L∑
c=1

|vic − vjc| · |θ̂c| (12)

yj = θ0 +
L∑
c=1

θcvjc + εj

here yj again is the (duration) outcome of interest that we want to predict, such

that the coefficients measure the importance of each of the principal components for

the outcome of interest.

Imbens (2004) discusses optimality of Zhao’s distance metric and derives a dis-

tance metric with a weighting matrix that combines the outer product of the regres-

sion coefficients and the variance-covariance matrix of the coefficient estimates.18

More specifically, the weighting matrix W = γ̂γ̂′ + var (γ̂) is used.19 As for Zhao’s

distance, we again consider the use of coefficient estimates from various model spec-

ifications.20

17The number of principal components equals the number of covariates (L) used in the con-

struction of the distance metric. Instead of using all principal components, it is possible to focus

on a selection of the principal components.
18Note that the variance-covariance matrix of the covariates enters the expression for the

variance-covariance matrix of the regression coefficients, since the latter equals σ2

n Σ−1
x (Imbens,

2004, p. 15).
19Imbens (2004) does not take the square root of the weighted differences in covariates, we do

this for comparability with the other distance metrics discussed in the paper.
20Imbens’ optimal distance metric basically combines the weighting matrices seen so far, by

adding the sample variance-covariance matrix of the coefficients to the outer product of the coeffi-

cient estimates. There are several ways in which these two elements can be combined. We studied
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3.2 Weighting functions

In step two of the weighted survivor prediction method the distances between the

prediction individual and each of the sample individuals {dij}Jj=1 are translated

into weights. The smaller the distance, the more comparable an individual is to

individual i, and the larger the weight she should receive in the construction of the

predicted weighted survivor function. This suggests the use of a weighting function

that is non-increasing in the (absolute value of)21 distance w′ (dij) ≤ 0. Furthermore,

weights are non-negative, w (dij) ≥ 0.22

We consider three functional forms of the weighting function, as summarized in

Table 2. First, we consider weights from a uniform density on the interval [0, 1].

wuni (dij) = 1

{
dij
h
≤ 1

}
(13)

where h is a particular bandwidth distance. All individuals with distance at most

as large as the bandwidth h receive equal and positive weight, whereas individuals

at a distance larger than the bandwidth are assigned zero weight. This is equivalent

to the constant weighting function used by Lowsky et al. (2013).

On the contrary, one may want individuals sufficiently close to individual i to

receive weights that are relatively close to each other, while weights decrease faster

for individuals outside this small neighborhood. This is for instance implied by using

Table 2: Overview of weighting functions and bandwidth parameters.

Weighting functions

uniform, Epanechnikov, Gaussian

Bandwidth parameter: qth quantile of observed distances

q ∈ {0.005, 0.01, 0.02, 0.05, 0.075, 0.10, 0.125, 0.15, 0.20, 0.25}

several alternative specification differing in the functional form for combining these two elements

(addition or element-wise product) and the functional form for including the Cox model coefficient

estimates (i.e., the raw estimate, estimate divided by its standard error, exponent of the estimate

and one minus the exponent of the estimate). These distance metrics did not perform consistently

better than Zhao’s distance metric and Imbens’ optimal distance metric. Therefore, we left the

results out of the paper, but results are available on request.
21Recall that, with the distance metrics discussed in the previous subsection, distances are

always non-negative.
22It is not necessary to normalize weights to sum to one, because the predicted weighted survivor

function is invariant to normalization of the weights.
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an Epanechnikov kernel as the functional form of the weighting function,23

wepan (dij) =
3

4

(
1−

(
dij
h

)2
)
· 1
{
dij
h
≤ 1

}
(14)

All of the aforementioned weighting functions assign zero weight to individu-

als outside the bandwidth. Alternatively, we consider a Gaussian kernel where all

individuals receive a positive weight,

wgauss (dij) =
1

h
√

2π
exp

(
−1

2

(
dij
h

)2
)

(15)

The weighting functions make use of a bandwidth distance h. The bandwidth

can be determined by choosing either a bandwidth parameter or a fixed number of

individuals to use in the construction of the prediction.24 We use the maximum of

the distances of the q% closest sample individuals as bandwidth parameter. More

specifically, we rank the distances from small to large and use the observed distance

of the sample individual at rank q×J
100

as the bandwidth distance h. The bandwidth

distance h differs with prediction individual i. This approach to the choice of band-

width is used in order to always have a fixed percentage of individuals within the

bandwidth. This boils down to using a fixed number of individuals for constructing

the prediction, except when using Gaussian weights.25 We consider various choices

for the parameter q summarized in Table 2.

23We also considered an inverse distance weighting function,

winv (dij) =
1

dij
· 1
{
dij
h
≤ 1

}
While Epanechnikov weights decay in a concave way with distance, inverse distance weighting

implies that weights decay in a convex way (i.e., the decay is quicker for smaller distances and slows

down when distance becomes larger). Inverse distance weights approach infinity for individuals

very close to individual i. As a consequence, the prediction relies heavily on a small number

of individuals. Ultimately, performance differences between Epanechnikov and inverse distance

weights turned out to be small, so we focus on Epanechnikov weights.
24The choice of weighting function and bandwidth in the assignment of weights show close par-

allels with kernel density estimation. Kernel density estimation uses, for example, cross-validation

methods to determine the optimal bandwidth. For now, we do not attempt to find the optimal

bandwidth choice.
25Using a fixed number of nearest individuals implies that, the more local information is avail-

able, the smaller the range of distances considered. A very small number of neighbors will result

in an extremely discontinuous predicted weighted survivor function. Intuitively, using only a few

neighbors means a larger influence of noise, whereas a large number of neighbors might be compu-

tationally burdensome and may imply that neighbors far away from individual i are actually not

that similar and hence increase variability of the estimate. Alternative approaches used in kernel

density estimation let the bandwidth depend on the distribution of observed distances.
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4 Monte Carlo simulation study

We are interested in the performance of the weighted survivor prediction method

proposed. Therefore, we compare its performance to the benchmark models often

used in the literature, i.e., the Cox predicted survivor function and linear proba-

bility model predictions of a set of survival probabilities. Besides, we discuss how

the choice of distance metric, the weighting function and the bandwidth choice af-

fect prediction quality. We investigate these two dimensions of the performance

in a Monte Carlo simulation study.26 The remainder of this section describes the

simulation study. In the first subsection we describe the data generating process.

The approach used to evaluate the performance of the weighted survivor prediction

method is discussed in subsection 4.2. Finally, subsection 4.3 provides an overview

of the set-up, i.e., parameter and distributional choices, for each of the Monte Carlo

experiments.

4.1 Data generating process

We consider two data generating processes that violate proportionality of hazard

rates. First, we consider the case where the shape parameter of duration dependence

depends on the covariates. In particular, the Weibull parameter α takes one of two

values, determined by an index function that depends on the covariates. The hazard

rate is specified as

λ (t|x, ν) = λ0 (t) exp (xβ) (16)

where λ0 (t) = αtα−1 with α =

α0 if xδ + ν < 0

α1 if xδ + ν ≥ 0

Obviously, α0 6= α1, and ν can be interpreted as unobserved heterogeneity. The

survivor function equals

S (t|x, ν) = exp
(
−tα exp (xβ)

)
where α =

α0 if xδ + ν < 0

α1 if xδ + ν ≥ 0
(17)

To simulate failure time data in this setting, we first obtain individual-specific draws

for α given draws for the covariates and unobserved heterogeneity ν and given values

of the δ parameters. We then draw random uniform numbers u ∼ U [0, 1] for the

survival probability and solve equation (17) for t, given the parameters α and β,

and random draws for the covariates (Bender et al., 2005). This yields individual

26The Monte Carlo simulation study is programmed in Ox and ran parallel on the Lisa Cluster.
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failure times τj equal to

τj =
(
− ln (uj)

exp (xjβ)

) 1
αj (18)

where αj = {α0, α1}.
In the second approach we add unobserved heterogeneity in a different way and

specify the hazard rate as

λ (t|x, ν) = λ0 (t) exp (xβ + ν) (19)

where λ0 (t) = αtα−1

We again assume a Weibull specification for the baseline hazard and ν describes

unobserved heterogeneity. The survivor function equals

S (t|x, ν) = exp
(
−tα exp (xβ + ν)

)
(20)

To simulate failure time data, we draw random uniform numbers u ∼ U [0, 1] for

the survival probability and solve equation (20) for t, given the parameters α and

β, and random draws for the covariates and unobserved heterogeneity. This yields

individual failure times τj equal to

τj =
(
− ln (uj)

exp (xjβ + νj)

) 1
α

(21)

Finally, to resemble actual duration data, we introduce censoring. We take a

fixed censoring threshold T , chosen in such a way that the simulated data have a

particular fraction of censored observations.27 Durations exceeding the censoring

threshold are capped at T and for these observations the censoring indicator cj is

set to one,

cj = 1
{
τj ≥ T

}
(22)

4.2 Measuring prediction quality

The theoretical survivor function can serve as a benchmark to evaluate the per-

formance of various profiling methods. It can be obtained by evaluating the data

generating process in equation (17) or (20) at a range of durations t, given individual

27The fixed censoring threshold simplifies the formula for the predicted weighted survivor func-

tion to

Ŝw
(
t|{wij , τj}j∈Ω

)
=

∑J
j=1 wij1{τj ≥ t}∑J

j=1 wij
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draws of the covariates x and unobserved heterogeneity ν. The prediction error can

be measured by the area between the individual-specific theoretical survivor func-

tion, S (t|xi, νi) and the predicted survivor function for that individual, Ŝ (t|xi).28 A

commonly used measure for the difference between two functions is the integrated

absolute prediction error (IAE),

IAEi =

∫ T

0

∣∣∣S (t|xi, νi)− Ŝ (t|xi)
∣∣∣dt (23)

We approximate the integrated absolute error by the mean absolute error (MAE).

For this, we compute the difference between the theoretical survivor function and the

prediction of the survivor function at a fixed number of durations. The MAE is the

average of these absolute errors over all grid points. We obtain this error measure for

the Cox prediction of the survivor function and for the predicted weighted survivor

function. In total, we evaluate 17 × 10 × 3 = 510 (i.e., # distance metrics ×
# bandwidths × # weighting functions) specifications of the weighted survivor

prediction method. For evaluation of the performance of linear probability model

predictions of a set of survival probabilities we directly compare the absolute errors

at a particular duration for various methods, without averaging over grid points.

4.3 Set-up of the simulation study

In the Monte Carlo study we repeatedly simulate a data set of J sample individuals

and P prediction individuals. A detailed description of the simulation procedure

can be found in Appendix A.1. In each of the experiments we set the value of

the duration dependence parameter α below one, meaning that the hazard rate

declines over time. Negative duration dependence is a reasonable assumption for

most applications in which the proposed profiling method can be applied, such as

job finding and recovery from sickness. We vary the exact specification of the data

generating process in the Monte Carlo experiments. An overview of the parameter

choices is provided in Tables 3 and 4. In each of the experiments, we simulate data

30 times and obtain predictions for 17 individuals for each of the data sets.

The baseline scenario (MC 1) has one discrete covariate, two (uniform) contin-

uous covariates, zero correlation between the covariates, and approximately 15% of

observations censored. The discrete covariate is drawn from a Bernoulli distribution

with parameter π = 0.3, the continuous covariates are drawn from a uniform distri-

bution on the interval [0, 1]. Covariate information is drawn simultaneously for the

J = 50, 000 sample individuals and the P = 17 prediction individuals. To obtain

28Censoring at a fixed point in time implies that we can compare the theoretical and predicted

survivor functions without an adjustment for censoring up to the censoring threshold T .
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Table 3: Parameter and distributional choices, fixed across simulations.

description parameter value

# data simulations D 30

# predictions for each data set P 17

# grid points for the grid of failure

times

R 1000

success probability Bernoulli distribu-

tion x1

π 0.3

coefficients simulation α {δ1, δ2, δ3, δ4, δ5}{−0.6, 1.89,−0.34, 0.75, 1.29}
fraction of T , determines evaluation

points linear probability model pre-

dictions

fT {0.25, 0.30, 0.40, 0.75}

distance quantile for threshold of lin-

ear probability model outcome

qt 0.3

Notes: The distance quantile qt determining the threshold for the linear probability

model outcome, t, is used in computation of distances (e.g., Zhao’s distance metric

with linear probability model estimates for importance adjustment). We set the

threshold t for construction of the linear probability model outcome such that

approximately qt × 100% of observed durations is below this threshold.

values for the duration dependence parameter α, we draw unobserved heterogeneity

from a standard normal distribution (ν in equation (16)).

Moreover, we consider a scenario with a larger fraction of censored observations

(25%, MC 2). The effect of one of the uniformly distributed covariates is set equal to

zero in MC 3. In MC 4 and 5 we introduce positive and negative correlation between

the continuous covariates. In MC 6 we extend the set of covariates and additionally

include two positively correlated standard normally distributed covariates. These

covariates are uncorrelated with the uniformly distributed covariates. Furthermore,

we study what happens when we replace the discrete covariate by a normally dis-

tributed covariate (MC 7). In MC 8 the number of individuals in the sample is

decreased to 5,000. Exact matching on the discrete covariate is considered in MC 9,

whereas MC 10 looks at the effect of changing the magnitude of the β coefficients.

We consider a broader range for the uniform distribution from which one of the

covariates is drawn in MC 11. Finally, in MC 12 we introduce non-proportionality

by adding unobserved heterogeneity, drawn from a normal distribution with mean

0.6 and variance equal to one, as discussed in subsection 4.1.29

29For the unobserved heterogeneity component in MC 12 we obtain draws from a N (0.6, 1)
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5 Results

The Monte Carlo experiments each result in 30× 17 (# data simulations × # pre-

diction individuals) absolute prediction errors for a set of linear probability model

predictions of survival probabilities. In addition, we obtain the same number of

mean absolute prediction errors for the Cox survivor function prediction and for

each specification of the predicted weighted survivor function. We focus on the

average performance over simulations of each of the methods. Therefore, in the

analysis, we compare the averages of all 30× 17 (mean) absolute errors for the var-

ious methods. Before comparing the performance of alternative profiling methods,

we first zoom in on the specification choice for the weighted survivor prediction

method. Subsection 5.1 discusses which specification works best and investigates

how the choice of distance metric, bandwidth and weighting function affects pre-

diction quality of the weighted survivor prediction method. From this, we select

the specification that typically performs best. Subsection 5.2 then compares the

performance of this specification of the weighted survivor prediction method to the

performance of the benchmark models.

5.1 Specification of the weights

The weights are a crucial component of the weighted survivor prediction method. In

section 3 we discussed 17 choices for the distance metric, 3 weighting functions and

10 bandwidth parameters, yielding 510 specifications for the weights. We estimate

the following regression model by OLS, separately for each Monte Carlo experiment,

to study the effect of each of the specification choices on average prediction quality,

log (average MAEmc
s ) = δ0 +

17∑
m=2

δdm1{distances = m} (24)

+
3∑

n=2

δwn1{weightings = n}+
10∑
o=2

δbo1{bandwidths = o}+ εs

where s subscripts observations and the mc superscript indexes the Monte Carlo

experiment. The outcome is the log of the average mean absolute error (i.e., the

MAE averaged over all 30 × 17 predictions), so that we have one observation for

each specification of the weighted survivor prediction method.30 As explanatory

distribution, since in that case the average (over all J sample individuals) of the unobserved

heterogeneity draws νj is approximately one third of the average magnitude of xjβ + νj . More

specifically, the average of xjβ is around 1.27 in each of the data simulations and the standard

deviation is approximately 0.52.
30The logarithmic transformation of the average MAE simplifies the interpretation of the coef-

ficients and the comparability of the results over Monte Carlo experiments. Coefficient estimates,
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variables we include sets of dummies for the specification choices, i.e. for the distance

metric, the bandwidth parameter and the weighting function. A negative effect of a

particular specification choice means that it is associated with a lower average MAE

and thus higher prediction quality than the reference distance, weighting function

or bandwidth.

Table 5 presents the estimation results. In the baseline Monte Carlo experiment

(column (1)), most of the estimated coefficients for the distance dummies are neg-

ative and significantly different from zero. This indicates that applying a distance

metric different from Euclidean distance yields a lower prediction error. Principal

components distance, normalized Euclidean distance and Mahalanobis distance do

not lead to a significant reduction in the prediction error. For the other distance

metrics we observe some differences in the magnitude of the decrease. Variants of

Zhao’s distance metric often lead to a reduction of about 5%-6% and variants of

Imbens’ optimal distance metric are associated with a 4% to 5% reduction in the

prediction error. Moreover, we find that Epanechnikov weights result in a signifi-

cant but small reduction in the average MAE. On the contrary, Gaussian weights

are associated with a significant and large increase of 7.9% in the average MAE. Fi-

nally, bandwidths below the reference bandwidth of 10% of the sample individuals

are associated with significantly lower average MAEs, whereas bandwidths exceed-

ing 10% yield a significant increase in the average MAE. The magnitude of the

decrease/increase ranges from 2.1% to 11.2%. The effects of the choice of band-

width thus appear to be larger than the effect of the choice of distance metric and

weighting function.31

The remaining columns of Table 5 illustrate that variants of Imbens’ optimal

distance metric perform quite well in most of the experiments, although there are a

few exceptions.32 In MC 3 (covariate with zero effect) and MC 11 (change in scale

of uniformly distributed covariate) the reduction in the average MAE is bigger when

applying one of the variants of Zhao’s distance metric. The size of the estimated

multiplied by 100, represent percentage changes in the average MAE compared to using the refer-

ence distance metric, weighting function or bandwidth.
31We also regressed the log of the average MAE on dummies for distance metrics and a full set of

interactions between the dummies for the weighting function and the dummies for the bandwidth

choices (excluding one of these interactions as the reference). The results more or less confirm

that a combination of Epanechnikov weights and a bandwidth of at most 7.5% yield the smallest

average MAEs. Results are available on request.
32For each Monte Carlo experiment, we tested the null hypothesis of equal effects of the four

variants of Imbens’ optimal distance metric. In nine out of twelve cases, the null hypothesis is

rejected at a 5% significance level. Exceptions are MC 8, MC 9 and MC 12. Similarly, we tested

for equality of the effects of variants of Zhao’s distance metric. For eight of the experiments,

this null hypothesis cannot be rejected. Appendix A.2 investigates the similarity of the distance

metrics.
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Table 5: Estimation results of the effect of distance metric, weighting function and

bandwidth on log average prediction quality

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

Distance metrics (baseline: Euclidean distance)

(b) norm. Eucl. −0.0004 0.0042 0.0211 0.0091 −0.0005 0.0353

(0.0201) (0.0176) (0.0329) (0.0144) (0.0139) (0.0242)

(c) Mahalanobis −0.0004 0.0042 0.0211 0.0081 0.0200 −0.1113∗∗∗

(0.0201) (0.0176) (0.0329) (0.0146) (0.0198) (0.0309)

(d) Zhao, ols −0.0606∗∗∗ −0.0525∗∗∗ −0.0671∗∗∗ −0.0243∗∗ −0.0486∗∗∗ −0.1417∗∗∗

(0.0156) (0.0135) (0.0228) (0.0103) (0.0130) (0.0305)

(e) Zhao, ols / s.e. −0.0609∗∗∗ −0.0552∗∗∗ −0.0705∗∗∗ −0.0298∗∗∗ −0.0327∗∗∗ −0.1019∗∗∗

(0.0154) (0.0133) (0.0223) (0.0101) (0.0124) (0.0300)

(f) Zhao, linear prob. −0.0498∗∗∗ −0.0577∗∗∗ −0.0549∗∗ −0.0264∗∗∗ −0.0461∗∗∗ −0.1198∗∗∗

(0.0149) (0.0133) (0.0220) (0.0100) (0.0127) (0.0280)

(g) Zhao, Cox −0.0611∗∗∗ −0.0510∗∗∗ −0.0668∗∗∗ −0.0240∗∗ −0.0492∗∗∗ −0.1389∗∗∗

(0.0157) (0.0135) (0.0228) (0.0103) (0.0131) (0.0301)

(h) Zhao, exp Cox −0.0578∗∗∗ −0.0447∗∗∗ −0.0465∗∗ −0.0223∗∗ −0.0467∗∗∗ 0.4476∗∗∗

(0.0160) (0.0136) (0.0233) (0.0105) (0.0131) (0.0462)

(i) Zhao, 1 - exp Cox −0.0508∗∗∗ −0.0446∗∗∗ −0.0661∗∗∗ −0.0169∗ −0.0431∗∗∗ 0.2689∗∗∗

(0.0148) (0.0129) (0.0231) (0.0099) (0.0121) (0.0256)

(j) Zhao, std Cox −0.0611∗∗∗ −0.0510∗∗∗ −0.0668∗∗∗ −0.0240∗∗ −0.0492∗∗∗ −0.1389∗∗∗

(0.0157) (0.0135) (0.0228) (0.0103) (0.0131) (0.0301)

(k) Zhao, exp std Cox −0.0301∗ −0.0207 −0.0148 −0.0089 −0.0304∗∗ 0.2228∗∗∗

(0.0172) (0.0147) (0.0274) (0.0114) (0.0127) (0.0249)

(l) Zhao, 1 - exp std Cox −0.0610∗∗∗ −0.0512∗∗∗ −0.0670∗∗∗ −0.0239∗∗ −0.0499∗∗∗ −0.0872∗∗∗

(0.0155) (0.0134) (0.0227) (0.0102) (0.0130) (0.0287)

(m) principal comp. −0.0141 −0.0168 0.0242 0.0034 −0.0112 −0.3448∗∗∗

(0.0174) (0.0145) (0.0254) (0.0134) (0.0129) (0.0292)

(n) Imbens, ols −0.0531∗∗∗ −0.0483∗∗∗ −0.0102 −0.0180∗ −0.0525∗∗∗ −0.7632∗∗∗

(0.0160) (0.0134) (0.0210) (0.0106) (0.0127) (0.0399)

(o) Imbens, linear prob. −0.0401∗∗∗ −0.0636∗∗∗ 0.0299 −0.0342∗∗∗ −0.0019 −0.5028∗∗∗

(0.0149) (0.0133) (0.0217) (0.0099) (0.0111) (0.0344)

(p) Imbens, Cox −0.0555∗∗∗ −0.0420∗∗∗ −0.0067 −0.0156 −0.0548∗∗∗ −0.7462∗∗∗

(0.0158) (0.0131) (0.0210) (0.0104) (0.0127) (0.0388)

(q) Imbens, std Cox −0.0208 −0.0197 −0.0644∗∗∗ −0.0022 0.0007 −0.5479∗∗∗

(0.0148) (0.0125) (0.0221) (0.0099) (0.0112) (0.0351)

Weighting functions (baseline: uniform weights)

Epanechnikov −0.0178∗∗∗ −0.0137∗∗∗ −0.0141∗∗ −0.0108∗∗∗ −0.0173∗∗∗ −0.0938∗∗∗

(0.0041) (0.0036) (0.0065) (0.0030) (0.0041) (0.0141)

Gaussian 0.0788∗∗∗ 0.0706∗∗∗ 0.0672∗∗∗ 0.0582∗∗∗ 0.0655∗∗∗ 0.3386∗∗∗

(0.0063) (0.0055) (0.0100) (0.0047) (0.0056) (0.0154)

Bandwidth choices (baseline: 10% bandwidth)

q = 0.005 −0.0440∗∗∗ −0.0328∗∗∗ 0.1013∗∗∗ −0.0161∗∗ −0.0259∗∗∗ −0.4010∗∗∗

(0.0094) (0.0086) (0.0198) (0.0072) (0.0084) (0.0320)

q = 0.01 −0.0504∗∗∗ −0.0411∗∗∗ 0.0230 −0.0265∗∗∗ −0.0387∗∗∗ −0.3406∗∗∗

(0.0089) (0.0078) (0.0156) (0.0066) (0.0071) (0.0297)

q = 0.02 −0.0534∗∗∗ −0.0411∗∗∗ −0.0236∗ −0.0327∗∗∗ −0.0399∗∗∗ −0.2536∗∗∗

(0.0083) (0.0073) (0.0125) (0.0060) (0.0067) (0.0282)

q = 0.05 −0.0402∗∗∗ −0.0302∗∗∗ −0.0356∗∗∗ −0.0249∗∗∗ −0.0297∗∗∗ −0.1178∗∗∗

(0.0067) (0.0060) (0.0099) (0.0052) (0.0061) (0.0257)

q = 0.075 −0.0211∗∗∗ −0.0161∗∗∗ −0.0204∗∗ −0.0139∗∗∗ −0.0165∗∗∗ −0.0512∗∗

(0.0061) (0.0054) (0.0102) (0.0047) (0.0055) (0.0246)

q = 0.125 0.0206∗∗∗ 0.0173∗∗ 0.0246∗ 0.0145∗∗ 0.0176∗∗∗ 0.0422∗

(0.0076) (0.0067) (0.0134) (0.0058) (0.0059) (0.0236)

q = 0.15 0.0402∗∗∗ 0.0346∗∗∗ 0.0520∗∗∗ 0.0286∗∗∗ 0.0353∗∗∗ 0.0788∗∗∗

(0.0089) (0.0078) (0.0147) (0.0068) (0.0072) (0.0233)

q = 0.20 0.0764∗∗∗ 0.0683∗∗∗ 0.1140∗∗∗ 0.0563∗∗∗ 0.0739∗∗∗ 0.1419∗∗∗

(0.0110) (0.0096) (0.0168) (0.0084) (0.0101) (0.0231)

q = 0.25 0.1120∗∗∗ 0.1009∗∗∗ 0.1737∗∗∗ 0.0836∗∗∗ 0.1179∗∗∗ 0.1957∗∗∗

(0.0125) (0.0107) (0.0187) (0.0096) (0.0129) (0.0232)

constant −2.5563∗∗∗ −2.2967∗∗∗ −3.3029∗∗∗ −2.5002∗∗∗ −2.6847∗∗∗ −2.2896∗∗∗

(0.0134) (0.0115) (0.0196) (0.0087) (0.0102) (0.0257)

observations 510 510 510 510 510 510

Notes: Robust standard errors are in parentheses.
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Table 5: Estimation results of the effect of distance metric, weighting function and

bandwidth on log average prediction quality (continued)

MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

Distance metrics (baseline: Euclidean distance)

(b) norm. Eucl. −0.0168 0.0050 −0.0000 −0.0386 −0.0571∗∗∗ 0.0009

(0.0230) (0.0256) (0.0062) (0.0474) (0.0196) (0.0041)

(c) Mahalanobis −0.0167 0.0055 0.0076 0.1612∗∗∗ 0.0395 0.0009

(0.0230) (0.0257) (0.0109) (0.0518) (0.0285) (0.0041)

(d) Zhao, ols −0.1165∗∗∗ −0.0573∗∗∗ −0.0425∗∗∗ −0.1211∗∗∗ −0.0747∗∗∗ −0.0062∗

(0.0222) (0.0216) (0.0058) (0.0414) (0.0173) (0.0031)

(e) Zhao, ols / s.e. −0.0499∗∗ −0.0608∗∗∗ −0.0425∗∗∗ −0.0804∗ −0.0558∗∗∗ −0.0058∗

(0.0212) (0.0213) (0.0058) (0.0460) (0.0177) (0.0033)

(f) Zhao, linear prob. −0.1013∗∗∗ −0.0502∗∗ −0.0504∗∗∗ −0.1271∗∗∗ −0.0130 −0.0062∗

(0.0210) (0.0205) (0.0054) (0.0400) (0.0163) (0.0032)

(g) Zhao, Cox −0.1173∗∗∗ −0.0577∗∗∗ −0.0430∗∗∗ −0.1181∗∗∗ −0.0759∗∗∗ −0.0062∗

(0.0223) (0.0216) (0.0059) (0.0404) (0.0174) (0.0032)

(h) Zhao, exp Cox −0.1142∗∗∗ −0.0543∗∗ −0.0387∗∗∗ 0.4810∗∗∗ −0.0788∗∗∗ −0.0051

(0.0228) (0.0219) (0.0058) (0.0486) (0.0177) (0.0034)

(i) Zhao, 1 - exp Cox −0.0938∗∗∗ −0.0500∗∗ −0.0476∗∗∗ 0.3712∗∗∗ −0.0563∗∗∗ −0.0066∗∗

(0.0199) (0.0209) (0.0056) (0.0471) (0.0161) (0.0030)

(j) Zhao, std Cox −0.1173∗∗∗ −0.0577∗∗∗ −0.0430∗∗∗ −0.1181∗∗∗ −0.0759∗∗∗ −0.0062∗

(0.0223) (0.0216) (0.0059) (0.0404) (0.0174) (0.0032)

(k) Zhao, exp std Cox −0.0484∗∗ −0.0268 −0.0141∗∗ −0.0340 −0.0740∗∗∗ −0.0029

(0.0224) (0.0230) (0.0057) (0.0393) (0.0179) (0.0035)

(l) Zhao, 1 - exp std Cox −0.1215∗∗∗ −0.0581∗∗∗ −0.0449∗∗∗ −0.0645∗ −0.0738∗∗∗ −0.0064∗∗

(0.0220) (0.0215) (0.0058) (0.0383) (0.0172) (0.0031)

(m) principal comp. −0.0987∗∗∗ −0.0039 0.0051 . −0.0634∗∗∗ −0.0008

(0.0193) (0.0231) (0.0062) . (0.0174) (0.0035)

(n) Imbens, ols −0.2065∗∗∗ −0.0696∗∗∗ −0.0322∗∗∗ −0.2269∗∗∗ −0.0633∗∗∗ −0.0213∗∗∗

(0.0250) (0.0200) (0.0052) (0.0411) (0.0179) (0.0038)

(o) Imbens, linear prob. −0.1581∗∗∗ −0.0641∗∗∗ −0.0380∗∗∗ −0.0594 0.1032∗∗∗ −0.0205∗∗∗

(0.0236) (0.0198) (0.0054) (0.0409) (0.0173) (0.0040)

(p) Imbens, Cox −0.2066∗∗∗ −0.0644∗∗∗ −0.0330∗∗∗ −0.2354∗∗∗ −0.0645∗∗∗ −0.0212∗∗∗

(0.0251) (0.0200) (0.0052) (0.0406) (0.0179) (0.0039)

(q) Imbens, std Cox 0.1976∗∗∗ −0.0366∗ −0.0331∗∗∗ 0.0043 −0.0462∗∗∗ −0.0170∗∗∗

(0.0267) (0.0192) (0.0052) (0.0391) (0.0178) (0.0036)

Weighting functions (baseline: uniform weights)

Epanechnikov −0.0479∗∗∗ −0.0058 −0.0004 −0.1007∗∗∗ −0.0290∗∗∗ −0.0055∗∗∗

(0.0073) (0.0061) (0.0019) (0.0148) (0.0055) (0.0010)

Gaussian 0.2377∗∗∗ 0.0545∗∗∗ 0.0124∗∗∗ 0.2314∗∗∗ 0.0946∗∗∗ 0.0239∗∗∗

(0.0103) (0.0086) (0.0027) (0.0179) (0.0077) (0.0014)

Bandwidth choices (baseline: 10% bandwidth)

q = 0.005 −0.1853∗∗∗ 0.1400∗∗∗ 0.0481∗∗∗ −0.3788∗∗∗ −0.0669∗∗∗ −0.0235∗∗∗

(0.0210) (0.0210) (0.0057) (0.0311) (0.0123) (0.0027)

q = 0.01 −0.1781∗∗∗ 0.0307∗∗ 0.0175∗∗∗ −0.3478∗∗∗ −0.0783∗∗∗ −0.0248∗∗∗

(0.0179) (0.0140) (0.0033) (0.0295) (0.0108) (0.0023)

q = 0.02 −0.1504∗∗∗ −0.0216∗∗ 0.0061∗∗ −0.3013∗∗∗ −0.0773∗∗∗ −0.0222∗∗∗

(0.0157) (0.0097) (0.0024) (0.0294) (0.0099) (0.0020)

q = 0.05 −0.0829∗∗∗ −0.0382∗∗∗ −0.0015 −0.1964∗∗∗ −0.0541∗∗∗ −0.0125∗∗∗

(0.0141) (0.0070) (0.0018) (0.0272) (0.0084) (0.0014)

q = 0.075 −0.0386∗∗∗ −0.0216∗∗∗ −0.0015 −0.0964∗∗∗ −0.0277∗∗∗ −0.0058∗∗∗

(0.0145) (0.0072) (0.0017) (0.0256) (0.0073) (0.0014)

q = 0.125 0.0350∗∗ 0.0207∗∗ 0.0033 0.0887∗∗∗ 0.0309∗∗∗ 0.0050∗∗∗

(0.0157) (0.0098) (0.0020) (0.0266) (0.0085) (0.0018)

q = 0.15 0.0674∗∗∗ 0.0401∗∗∗ 0.0085∗∗∗ 0.1663∗∗∗ 0.0629∗∗∗ 0.0096∗∗∗

(0.0161) (0.0112) (0.0026) (0.0277) (0.0101) (0.0020)

q = 0.20 0.1253∗∗∗ 0.0755∗∗∗ 0.0237∗∗∗ 0.2991∗∗∗ 0.1222∗∗∗ 0.0175∗∗∗

(0.0167) (0.0133) (0.0042) (0.0305) (0.0134) (0.0023)

q = 0.25 0.1771∗∗∗ 0.1112∗∗∗ 0.0459∗∗∗ 0.4100∗∗∗ 0.1788∗∗∗ 0.0245∗∗∗

(0.0169) (0.0147) (0.0063) (0.0334) (0.0163) (0.0025)

constant −2.6108∗∗∗ −2.5188∗∗∗ −2.6490∗∗∗ −2.7082∗∗∗ −2.7881∗∗∗ −1.7450∗∗∗

(0.0189) (0.0173) (0.0045) (0.0372) (0.0142) (0.0028)

observations 510 510 510 480 510 510

Notes: Robust standard errors are in parentheses.
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effects differs considerably across experiments.

With regard to the weighting function, the results are stable across Monte Carlo

experiments. In each of the experiments Gaussian weights are associated with sig-

nificantly higher average prediction errors than when applying uniform weights. The

magnitude of the effects ranges from a 2.4% increase to an increase of 33.9%. On the

contrary, Epanechnikov weights most often yield significant and sizeable reductions

in the average MAE compared to uniform weights (the reduction is insignificantly

different from zero in MC 8 and 9). In most of the experiments, the effect of the

choice of distance metric is somewhat larger than the effect of the choice of weighting

function. Finally, in all of the experiments we find that bandwidths below the refer-

ence of 10% yield significantly lower average MAEs, whereas bandwidths exceeding

10% are typically associated with higher average MAEs.

Of all weighting functions considered, Epanechnikov weights consistently yield

the smallest average MAEs on average. Therefore, we focus on specifications using

Epanechnikov weights and do a similar regression analysis as in equation (24) after

removing specifications using alternative weighting functions. The results, shown

in Table A.5 in Appendix A.4, confirm that typically bandwidths of at most 7.5%

perform best on average, although a 0.5% bandwidth forms an exception in some

experiments. The differences between 1%, 2%, 5% and 7.5% bandwidth are modest.

As in the previous regression analysis, there is some variation in the distance metric

yielding on average the smallest average MAE. In the remainder, based on the

results from the regression analysis, we restrict attention to specifications of the

weighted survivor prediction method with Epanechnikov weights and a relatively

small bandwidth of 2%.

For comparison to the benchmark methods in the next subsection, we want to

select one best performing specification. Given the choice of Epanechnikov weights

and a 2% bandwidth, we focus on the selection of a best performing distance met-

ric. There are several ways to define the best specification. First, we consider the

specification that most often (of all 30× 17 predictions) yields the minimum MAE.

Panel A of Table 6 characterizes the best performing distance metrics for each Monte

Carlo experiment. The value of the minimum error differs considerably across Monte

Carlo experiments. The table shows that Imbens’ optimal distance metric and in

particular the variant with importance adjustment using linear probability model

estimates performs best in many of the experiments. We consider this distance met-

ric, in combination with a 2% bandwidth and Epanechnikov weights, as the baseline

specification of the weighted survivor prediction method and use this for comparison

to alternative profiling methods in the next subsection.
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Table 6: Best performing distance metric in each Monte Carlo experiment, given

Epanechnikov weights & 2% bandwidth

Panel A: Distance metric most often yielding the minimum MAE.

error distance metric

MC 1 0.0718 (0.0489) (o) Imbens, linear prob. estimates

MC 2 0.0947 (0.0607) (o) Imbens, linear prob. estimates

MC 3 0.0362 (0.0182) (o) Imbens, linear prob. estimates

MC 4 0.0795 (0.0493) (f) Zhao, linear prob. estimates

MC 5 0.0638 (0.0356) (c) Mahalanobis

MC 6 0.0541 (0.0408) (o) Imbens, linear prob. estimates

MC 7 0.0894 (0.0558) (q) Imbens, standardized Cox estimates

MC 8 0.0786 (0.0458) (o) Imbens, linear prob. estimates

MC 9 0.0690 (0.0416) (o) Imbens, linear prob. estimates

MC 10 0.0561 (0.0809) (q) Imbens, standardized Cox estimates

MC 11 0.0596 (0.0521) (o) Imbens, linear prob. estimates

MC 12 0.1698 (0.1168) (i) Zhao, one minus exponent of Cox estimates

Panel B: Distance metric most often yielding an error that is one of the ten smallest

MAEs.

error distance metric

MC 1 0.0717 (0.0431) (g) Zhao, Cox estimates

MC 2 0.0946 (0.0563) (j) Zhao, standardized Cox estimates

MC 3 0.0364 (0.0184) (d) Zhao, ols estimates

MC 4 0.0790 (0.0462) (j) Zhao, standardized Cox estimates

MC 5 0.0641 (0.0360) (d) Zhao, ols estimates

MC 6 0.0524 (0.0349) (g) Zhao, Cox estimates

MC 7 0.0557 (0.0355) (g) Zhao, Cox estimates

MC 8 0.0782 (0.0465) (g) Zhao, Cox estimates

MC 9 0.0693 (0.0389) (j) Zhao, standardized Cox estimates

MC 10 0.0432 (0.0551) (e) Zhao, ols estimates divided by s.e.

MC 11 0.0542 (0.0500) (h) Zhao, exponent of Cox estimates

MC 12 0.1697 (0.1167) (h) Zhao, exponent of Cox estimates

Notes: The table shows, for each Monte Carlo experiment, the average MAE (where averaging

is over all 30× 17 predictions), the standard deviation in the MAE, and the distance metric for

the best performing specification, given the use of Epanechnikov weights and a 2% bandwidth.
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Table 6: Best performing distance metric in each Monte Carlo experiment, given

Epanechnikov weights & 2% bandwidth (continued)

Panel C: Distance metric yielding minimum average mean absolute prediction error

(MAE).

error distance metric

MC 1 0.0714 (0.0426) (k) Zhao, exponent of standardized Cox estimates

MC 2 0.0935 (0.0552) (c) Mahalanobis

MC 3 0.0358 (0.0186) (c) Mahalanobis

MC 4 0.0790 (0.0467) (i) Zhao, one minus exponent of Cox estimates

MC 5 0.0638 (0.0356) (c) Mahalanobis

MC 6 0.0435 (0.0250) (n) Imbens, ols estimates

MC 7 0.0556 (0.0357) (i) Zhao, one minus exponent of Cox estimates

MC 8 0.0781 (0.0468) (h) Zhao, exponent of Cox estimates

MC 9 0.0686 (0.0397) (f) Zhao, linear prob. estimates

MC 10 0.0429 (0.0544) (k) Zhao, exponent of standardized Cox estimates

MC 11 0.0541 (0.0499) (e) Zhao, ols estimates divided by s.e.

MC 12 0.1696 (0.1164) (b) norm. Euclidean

Panel D: Distance metric minimizing
(

Mean (µs)
)2

+ Var (µs).

error distance metric

MC 1 0.0714 (0.0094) (k) Zhao, exponent of standardized Cox estimates

MC 2 0.0935 (0.0135) (c) Mahalanobis

MC 3 0.0358 (0.0047) (c) Mahalanobis

MC 4 0.0790 (0.0111) (i) Zhao, one minus exponent of Cox estimates

MC 5 0.0638 (0.0096) (c) Mahalanobis

MC 6 0.0435 (0.0053) (n) Imbens, ols estimates

MC 7 0.0556 (0.0078) (i) Zhao, one minus exponent of Cox estimates

MC 8 0.0781 (0.0115) (e) Zhao, ols estimates divided by s.e.

MC 9 0.0686 (0.0089) (f) Zhao, linear prob. estimates

MC 10 0.0429 (0.0131) (k) Zhao, exponent of standardized Cox estimates

MC 11 0.0541 (0.0111) (e) Zhao, ols estimates divided by s.e.

MC 12 0.1696 (0.0283) (b) norm. Euclidean

Notes: The table shows, for each Monte Carlo experiment, the average MAE (where averaging

is over all 30× 17 predictions), the standard deviation in the MAE, and the distance metric for

the best performing specification, given the use of Epanechnikov weights and a 2% bandwidth.

Second, instead of considering the specification most often yielding the minimum

MAE, we could determine the best specification by counting how often a specification

belongs to the set of specifications yielding the ten smallest errors and select the

specification for which this is maximized.33 The results in Panel B of Table 6

33In addition, we studied which distance metric performs best in terms of the frequency with

which it yields prediction errors smaller than the Cox prediction of the survivor function. Panel
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illustrate that Zhao’s distance metric with Cox estimates for importance adjustment

often comes out as the best distance metric when using this definition.

Thirdly, instead of counting how often a specification yields the minimum or one

of the smallest errors, we could select the specification that minimizes the average

MAE. The results for the best performing distance metric, given the use of a 2%

bandwidth and Epanechnikov weights, according to this definition are shown in

Panel C of Table 6. The results show that there is somewhat more variation in the

best performing distance metric when using this definition instead of counting the

number of cases in which the metric performs best. In most of the experiments, the

minimum error is attained using some variant of Zhao’s distance metric.

Finally, we could additionally account for the variance in the mean absolute error

over data simulations and choose the specification s that minimizes

(
Mean (µd,s)

)2

+ Var (µd,s) whereµd,s =
1

P

P∑
p=1

MAEd,p,s, d = 1, ..., 30 (25)

where d subscripts the 30 data simulations and p subscripts the P = 17 prediction

individuals. Note that we take the variance in the MAE, after averaging over pre-

diction individuals, across data simulations.34 As illustrated in Panel D of Table 6,

accounting for the variance in prediction errors yields best performing specifications

that are very similar to those obtained from minimization of the average MAE. This

is likely to be the result of relatively small variances in the average prediction error.

To conclude, we focus attention on specifications of the weighted survivor predic-

tion method that consists of a small bandwidth (2% is the baseline) and Epanech-

nikov weights. For the baseline specification, used for comparison of the weighted

survivor prediction method to alternative profiling methods, we restrict attention to

Imbens’ optimal distance metric with linear probability model estimates for impor-

tance adjustment. In the empirical analyses, we additionally evaluate the perfor-

mance of the method when using Zhao’s distance with Cox estimates for importance

adjustment.

A of Table A.6 in Appendix A.4 shows that for some of the experiments, multiple specifications

perform equally well according to this definition. The best performing distance metric varies

across experiments, but most often comprises a variant of Imbens’ optimal distance metric or

Zhao’s distance metric.
34We considered various alternatives to account for the variance in the error over predictions. In

particular, Panel B of Table A.6 in Appendix A.4 shows specifications that minimize the variance

over all 30 × 17 prediction errors, without accounting for the average error. In Panel C of the

same table we show the specifications that minimize the variance in the average MAE of the 30

data simulations. These variance-minimizing distance metrics vary across experiments. Imbens’

optimal distance metric and Zhao’s distance metric often comprise the best specification, given the

use of a 2% bandwidth and Epanechnikov weights.

26



5.2 Comparison to other profiling methods

We compare the performance of the best specification of the weighted survivor pre-

diction method identified in the previous subsection (i.e., a 2% bandwidth, Epanech-

nikov weights and Imbens’ optimal distance metric with linear probability model

estimates for importance adjustment) to the performance of the two benchmark

profiling methods, i.e., linear probability model predictions of two survival proba-

bilities and a Cox prediction of the survivor function. Figure 1 provides a graphical

illustration of the average performance of the various methods across experiments. It

plots the average theoretical survivor function, the average linear probability model

predictions at four durations, the average Cox prediction of the survivor function

and the average weighted predicted survivor function.35 In general, the average

survivor function predictions are close to the average theoretical survivor function,

regardless of the profiling method that is used. Prediction quality of the various

methods differs in some Monte Carlo experiments. In particular, when correlation

between the covariates is added in MC 4 to MC 6, when the discrete covariate is re-

placed by a standard normally distributed covariates (MC 7), and when the sample

size is reduced (MC 8), performance differences appear.

In Table 7 we quantitatively compare the quality of the Cox prediction of the

survivor function and the predicted weighted survivor function generated using the

specification with Epanechnikov weights, a 2% bandwidth and Imbens’ optimal dis-

tance metric with linear probability model estimates for importance adjustment.

For each of the 30× 17 predictions we compute MAEw
d,p −MAECox

d,p , where d sub-

scripts the data simulation and p subscripts the prediction individual. The table

shows that the average difference in the MAE is typically negative but quite small

in comparison to the average MAE of the Cox prediction. A negative difference

means that the predicted weighted survivor function is closer to the theoretical sur-

vivor function than the Cox prediction of the survivor function. For most of the

experiments, the average difference in the MAE is significantly different from zero as

appears from reported p-values for one-sample t-tests. In only three of these cases,

namely MC 6 with additional covariates, MC 8 with a smaller number of sample

individuals and MC 12 where non-proportionality was introduced in a different way,

the average difference is positive. In those experiments for which we find a (sig-

nificant) negative average difference, the weighted survivor prediction is closer to

the theoretical survivor function than the Cox prediction in more than half of the

cases, although the fraction of negative differences is typically not far from 0.5. The

results thus illustrate that prediction quality of the Cox prediction and the weighted

35The figure shows averages of the 30×17 (i.e., # data simulations × # prediction individuals)

theoretical and predicted survival probabilities at each of the R duration grid points.
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Table 7: Difference in MAE of weighted survivor prediction and Cox prediction.

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

difference MAE −0.0018 −0.0024 −0.0028 −0.0018 −0.0022 0.0087

(0.0188) (0.0196) (0.0119) (0.0189) (0.0157) (0.0236)

frac difference ≤ 0 0.6000 0.5627 0.6078 0.5549 0.5824 0.4373

p-value 0.028 0.005 0.000 0.032 0.002 0.000

MAE Cox estimate 0.074 0.097 0.039 0.081 0.066 0.045

(0.039) (0.050) (0.011) (0.042) (0.033) (0.027)

MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

difference MAE 0.0009 0.0041 −0.0023 −0.0092 −0.0013 0.0014

(0.0195) (0.0293) (0.0179) (0.0469) (0.0231) (0.0123)

frac difference ≤ 0 0.5686 0.4824 0.5824 0.6137 0.5922 0.4255

p-value 0.281 0.002 0.004 0.000 0.220 0.011

MAE Cox estimate 0.058 0.074 0.071 0.063 0.061 0.169

(0.030) (0.036) (0.035) (0.067) (0.042) (0.118)

Notes: Reported are the average and standard deviation (in parentheses) of the difference

MAEw −MAECox over all 510 predictions (# data simulations × # prediction individuals).

The weighted survivor prediction is obtained using a 2% bandwidth, Epanechnikov weights and

Imbens’ optimal distance metric with linear probability model estimates for importance adjust-

ment. As a reference, the average and standard deviation of the MAE of the Cox survivor

function prediction are reported. The reported p-value is for testing the null hypothesis of the

mean difference in the MAE being equal to zero.

survivor function prediction are not substantially different, although the weighted

survivor prediction method provides a slight improvement, on average, in most of

the experiments.

Furthermore, we compare the weighted survivor function prediction to survival

probability predictions obtained from a linear probability model, the second bench-

mark profiling method discussed in subsection 2.1. For both methods, we consider

the absolute error, compared to the theoretical survival probabilities, in the pre-

dicted probabilities of survival up to duration equal to 25% of the censoring thresh-

old (t = 0.25 × T ) and 75% of the censoring threshold. Table 8 shows that, at

both durations, the differences are most often negative but quite small relative to

the average absolute error in the linear probability model prediction of the sur-

vival probability. Again a negative difference means that prediction quality of the

weighted survivor prediction method exceeds that of the linear probability model.

Panel A shows results for survival up to t = 0.25×T . There is a significant negative

average difference between the absolute errors of the two predictions for eight of the

experiments, meaning that, in these cases, the weighted survivor function prediction
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is on average closer to the theoretical survivor function.

The results in Panel B, at duration equal to 75% of the censoring threshold, show

significant negative average differences in the absolute errors in most of the exper-

iments. Exceptions are MC 3, where a covariate with zero effect is included, and

MC 12 where unobserved heterogeneity is added in a different way. For these exper-

iments we find a positive average difference in the absolute error. The results thus

illustrate that the weighted survivor prediction method yields modest improvements

in terms of prediction quality compared to predictions of the survival probability

obtained from linear probability models.

Overall, prediction quality of the weighted survivor prediction method seems

slightly better than the quality of alterative profiling methods in most experiments.

Exceptions are MC 3, where one covariate has a zero effect in the data generating

process, MC 8, where a small sample is used for construction of the predictions, and

MC 12, where unobserved heterogeneity was added to the data generating process.
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Table 8: Difference in absolute error of survival probability predictions from the weighted

survivor prediction method and the linear probability model.

Panel A: probability of survival up to 25% of the censoring threshold

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

difference abs. error −0.0040 −0.0016 −0.0017 −0.0026 −0.0028 −0.0148

(0.0226) (0.0215) (0.0170) (0.0219) (0.0236) (0.0717)

frac difference ≤ 0 0.6020 0.5196 0.5412 0.5765 0.5549 0.5843

p-value 0.000 0.100 0.025 0.008 0.007 0.000

abs error lin. prob. 0.105 0.124 0.060 0.115 0.095 0.078

(0.059) (0.069) (0.032) (0.063) (0.052) (0.063)

MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

difference abs. error −0.0091 0.0036 −0.0022 −0.0874 −0.0049 0.0016

(0.0352) (0.0471) (0.0257) (0.1027) (0.0334) (0.0183)

frac difference ≤ 0 0.6235 0.4824 0.5333 0.8667 0.6039 0.4451

p-value 0.000 0.085 0.055 0.000 0.001 0.044

abs error lin. prob. 0.088 0.106 0.103 0.147 0.086 0.199

(0.049) (0.056) (0.054) (0.088) (0.059) (0.135)

Panel B: probability of survival up to 75% of the censoring threshold

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

difference abs. error −0.0060 −0.0048 0.0039 −0.0052 −0.0103 −0.0383

(0.0309) (0.0259) (0.0124) (0.0269) (0.0378) (0.0758)

frac difference ≤ 0 0.5941 0.5902 0.3843 0.5843 0.6098 0.7549

p-value 0.000 0.000 0.000 0.000 0.000 0.000

abs error lin. prob. 0.051 0.080 0.009 0.056 0.045 0.076

(0.033) (0.045) (0.007) (0.029) (0.034) (0.057)

MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

difference abs. error −0.0105 −0.0041 −0.0117 −0.1032 −0.0144 0.0004

(0.0484) (0.0432) (0.0370) (0.1049) (0.0478) (0.0190)

frac difference ≤ 0 0.5608 0.5412 0.6569 0.8882 0.6608 0.5137

p-value 0.000 0.031 0.000 0.000 0.000 0.671

abs error lin. prob. 0.048 0.055 0.049 0.143 0.055 0.149

(0.040) (0.034) (0.034) (0.088) (0.043) (0.123)

Notes: Reported are the average and standard deviation (in parentheses) of the difference in absolute

error of the weighted and linear probability model predictions of the survival probability, computed

over all 510 predictions. A negative difference means higher quality of the weighted prediction method.

The weighted survivor prediction is obtained using a 2% bandwidth, Epanechnikov weights and Im-

bens’ optimal distance metric with linear probability model estimates for importance adjustment. As

a reference, the average and standard deviation of the absolute error of the linear probability model

prediction of the survival probabilities are reported. The p-value is for testing the null hypothesis of

the mean difference being equal to zero. 33



6 Empirical application

The goal of the profiling method is to apply it in practice. Therefore, we use adminis-

trative data on individual spells of collecting unemployment insurance (UI) benefits

to empirically test the performance of the proposed profiling method. The data set

contains information on inflow, outflow, reason for outflow, and a set of individual

characteristics. Appendix A.3 discusses sample selection and the construction of

covariates. We construct a sample of 267,795 UI spells starting in the years 2002

or 2003, for which we observe information on each of the covariates included in the

proposed profiling method.

Table 9 presents summary statistics on unemployment outcomes, reasons for

outflow from UI, and individual characteristics. The median duration on UI for

all individuals (including exits to states different from re-employment and censored

spells) is 6.2 months. For the individuals who return to work (i.e., 167,792 of 267,795

spells), the median UI duration is 4.9 months. Outflow from UI could have several

reasons, such as re-employment (62.7% of all exits), illness/DI benefits (5.7%), or

having reached the maximum UI duration (19%). Since we are interested in predic-

tion of the time it takes to find a new job, we treat exits to any other state than

re-employment (including an unknown state) as censored observations. As a result,

we record 40% of observations in the full sample as censored. 37% of individuals are

women, 60% of individuals are married and, on average, individuals in the sample

are 37 years old. The average number of hours for which UI benefits are collected

is 34.6 per week. The daily wage that is the basis for the determination of the level

of UI benefits level is around 93 euros.

We split the sample in five subsamples of equal size, i.e., 53,559 observations,

for computational reasons. For each subsample of 53,559 observations, we randomly

assign 3559 observations to a validation sample of individuals for whom we con-

struct a predicted survivor function. The remaining 50,000 observations36 are part

of the training sample that we use to construct the predictions. We construct three

survivor functions. First, as a reference, we consider the actually observed durations

for individuals in the validation sample. From these observations, we construct a

Kaplan-Meier estimate of the survivor function, ŜKM (t). Second, we estimate a Cox

proportional hazard model on the training sample37, obtain the estimated baseline

survivor function and construct a prediction of the survivor function, ŜCox (t|xi), for

each individual i in the validation sample. This is equivalent to the benchmark dis-

cussed in subsection 2.1. Finally, we apply the weighted survivor prediction method.

36A sample of 50,000 observations is used for comparability with the simulation study.
37Estimation results for the Cox model, using one particular subsample, are provided in Ta-

ble A.8 in Appendix A.4.
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Table 9: Descriptive statistics for the full sample.

mean std. dev.

Unemployment outcomes

median duration (in months) 6.247 (18.033)

median duration until outflow to work (in months) 4.866 (12.262)

fraction censored (i.e., no re-employment) 0.373 (0.484)

Reasons for outflow from UI

re-employment 0.627 (0.484)

retirement 0.001 (0.029)

illness 0.057 (0.232)

death 0.002 (0.040)

maximum UI duration 0.190 (0.392)

other/unknown 0.124 (0.329)

Individual characteristics

female 0.370 (0.483)

married 0.597 (0.490)

age (in years) 36.959 (9.243)

low educated 0.261 (0.439)

medium educated 0.449 (0.497)

high educated 0.290 (0.454)

elementary or low-skilled profession 0.416 (0.493)

intermediate-skilled profession 0.326 (0.469)

high-skilled or scientific profession 0.245 (0.430)

# hours per week collecting UI benefits 34.588 (7.238)

daily wage basis for UI benefits (in euros) 92.861 (38.160)

observations 267,795

Notes: For unemployment duration the median duration, instead of the mean

duration, is reported. Summary statistics for the individual characteristics

and reason for outflow are reported as fractions of individuals having a par-

ticular characteristic or outflow reason, unless stated differently.

We consider a selection of the specifications discussed in section 3, and, for each of

these specifications, construct a weighted predicted survivor function, Ŝw (t|xi), for

each individual i in the validation sample. Covariates, x, included in the Cox model

and in the weighted survivor prediction method are gender, marital status, age, a

dummy for being low educated and a dummy for being high educated (intermedi-

ate education level is the reference category), a dummy for having an elementary

or low-skilled profession and a dummy for having a high-skilled or scientific profes-

sion (intermediate-skilled profession is the reference category), the weekly number

of hours for which UI benefits are received and the daily wage (in euros) that is the
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basis for the level of UI benefits.

To compare the weighted and Cox prediction of the survivor function to the

Kaplan-Meier estimate of the survivor function, we average the individual-specific

survivor function predictions over all (P ) individuals in the validation sample. So,

we compute the average predicted survival probability at each duration, Ŝw (t) =
1
P

∑P
p=1 Ŝ

w (t|xp), and similarly for the Cox prediction of the survivor function. Sub-

sequently, as in the Monte Carlo simulation study, we consider the integrated abso-

lute error,

IAEw =

∫ ∞
0

∣∣∣ŜKM (t)− Ŝw (t)
∣∣∣dt (26)

which we approximate by

MAEw =
1

R

R∑
t=1

∣∣∣ŜKM (t)− Ŝw (t)
∣∣∣ (27)

that is, we compute the difference in the (average) survivor functions at each du-

ration and average this over all possible durations. For this, we consider durations

up to a threshold t that we fix at two years. We measure duration in days, so we

compute the absolute error at R = 730 durations.38 Similarly, we compute the mean

absolute error for the Cox prediction of the survivor function.

We obtain, for each subsample, a Kaplan-Meier estimate of the survivor function

and average predicted survivor functions. These can be averaged over all subsam-

ples.39. Figure 2 shows the Kaplan-Meier estimate of the survivor function, the

average Cox prediction of the survivor function and average weighted survivor func-

tion predictions for three specifications of this profiling method, all averaged over

the five subsamples. On average, there appear to be hardly any differences between

the average weighted and Cox survivor function predictions and both are very close

to the Kaplan-Meier estimate of the survivor function.

We first study the empirical performance of the proposed profiling method in

one of the subsamples of 53,559 observations. We obtain measures of the absolute

error between the average Cox prediction of the survivor function and the Kaplan-

Meier estimate of the survivor function and between the average weighted survivor

38In the full constructed sample, the UI duration exceeds 2 years in 22% of the cases. Durations

are likely to be somewhat upward biased because UI spells are administratively combined into

one spell when an intermediate job lasts for a short period of time only. Since we are ultimately

interested in sustainable outflow to work, we do not split these spells and, consequently, observe

UI durations that exceed the actual time spent on UI for certain individuals.
39Recall that the number of individuals in the validation sample is the same for each subsample.

Therefore, we compute averages of the survivor function outcomes by taking the average of the

five survival probabilities at each duration.
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Figure 2: K-M estimate and predicted survivor functions with various methods.
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function prediction and the Kaplan-Meier estimate at each duration (in days) up

to UI duration of two years.40 In Table 10, we provide descriptives for the absolute

errors of these methods. We consider various specifications of the weighted survivor

prediction method and take as the baseline specification a 2% bandwidth, Epanech-

nikov weights and Imbens’ optimal distance metric with linear probability model

estimates for importance adjustment, as in the simulation study. In general, the

mean absolute errors appear to be quite small. There are some differences across

specifications of the weighted survivor prediction method. Interesting to see is that

Zhao’s distance metric or Imbens’ optimal distance metric with Cox estimates for

importance adjustment yield sizeable reductions in the mean absolute error com-

pared to the baseline specification.

The table shows that the mean absolute error from the baseline weighted survivor

prediction is twice as high as the MAE from a Cox prediction of the survivor function.

To study the relative performance of the Cox prediction of the survivor function and

the weighted predicted survivor function more formally, we compute the difference

40The choice to use a threshold of two years on UI for the computation of the difference in

survivor functions is quite arbitrary. We investigated the robustness of the results to this choice by

repeating the analysis for thresholds of 0.5 year and 1 year. The results are shown in Tables A.9

and A.10 in Appendix A.4. Overall, these results point in the direction of better performance of

the Cox prediction of the survivor function compared to the weighted survivor prediction method.
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Table 10: Deviations of the average predicted survivor functions from the Kaplan-

Meier estimate, up to duration of two years.

absolute error

mean (MAE) std.dev range p-value

Cox compared to K-M 0.0075 (0.0047) [0.0000 - 0.0164] -

Weighted survivor prediction compared to K-M

baseline 0.0152 (0.0053) [0.0000 - 0.0242] 0.0000

Alternative bandwidth choices

0.5% bandwidth 0.0145 (0.0053) [0.0000 - 0.0238] 0.0000

1% bandwidth 0.0144 (0.0052) [0.0000 - 0.0236] 0.0000

5% bandwidth 0.0146 (0.0055) [0.0000 - 0.0236] 0.0000

Alternative distance metrics

Mahalanobis distance 0.0173 (0.0063) [0.0000 - 0.0279] 0.0000

Zhao (Cox) distance 0.0124 (0.0055) [0.0000 - 0.0223] 0.0000

Imbens (Cox) distance 0.0101 (0.0050) [0.0000 - 0.0189] 0.0000

Notes: The baseline specification for the weighted survivor prediction method concerns a 2%

bandwidth, Epanechnikov weights and Imbens’ (linear probability) distances. Reported are p-

values for one-sample t-tests for equality of the mean of the absolute errors of the Cox prediction

and the mean of the absolute errors of the weighted survivor prediction. Note that we obtained

an absolute error at each possible duration from 1 to 730 days (2 years), so that the average is

computed over 730 observations.

in the absolute error of the weighted and Cox predictions of the survivor functions

at all durations up to two years and test whether the average of this difference is

equal to zero by means of a one-sample t-test. The reported p-values in the final

column of Table 10 illustrate that the mean of the difference in absolute errors of the

weighted and Cox predicted survivor functions is significantly different from zero for

all specifications of the weighted survivor prediction method.

However, when we repeat the same analysis for the other subsamples of 53,559

observations we find differences in the results across subsamples. Table 11 combines

the results for the five subsamples.41 The table shows that the average (over all five

subsamples) of the mean absolute error of the Cox prediction is somewhat smaller

than the average MAE of the baseline weighted survivor prediction. Also for other

specifications, the average MAE of the Cox prediction is slightly smaller in most

cases. In most of the five subsamples considered, the mean of the difference in

the absolute errors of the Cox prediction and the weighted survivor prediction is

41We did the same analyses for five subsamples of 5600 observations and five subsamples of

12,000 observations (i.e., predictions using roughly 5000 and 10,000 sample individuals, respec-

tively). Results are quite similar as shown in Table A.11.
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Table 11: Repetition for five subsamples.

mean absolute error comparison to Cox prediction

average std.dev frac 6= Cox MAE frac < Cox MAE

Cox 0.0068 (0.0047) − −

Weighted survivor prediction

baseline 0.0086 (0.0038) 1.0000 0.2000

0.5% bandwidth 0.0086 (0.0034) 0.8000 0.2000

1% bandwidth 0.0085 (0.0034) 1.0000 0.2000

5% bandwidth 0.0083 (0.0037) 1.0000 0.2000

Mahalanobis distance 0.0112 (0.0041) 1.0000 0.2000

Zhao (Cox) distance 0.0077 (0.0032) 0.8000 0.2000

Imbens (Cox) distance 0.0072 (0.0030) 0.8000 0.2000

Notes: The baseline specification for the weighted survivor prediction method concerns a 2%

bandwidth, Epanechnikov weights and Imbens’ (linear probability) distances. Statistics are ob-

tained using durations up to two years. The average and standard deviation in the MAE are

computed over the five subsamples. For each subsample, we tested for zero mean difference

between the absolute errors from the Cox prediction and the weighted survivor prediction (see

Table 10). The final two columns report in which fraction of the five subsamples these tests

lead to the conclusion that the mean difference is different from zero at a 5% significance level

(penultimate column) and that the mean is smaller than zero, meaning that the weighted sur-

vivor prediction method performs better than the Cox prediction (final column) using a 2.5%

significance level.

significantly different from zero, regardless of the specification used (column (3)).

However, in some cases the mean is smaller than zero, i.e., the weighted survivor

prediction method performs better than the Cox prediction of the survivor function,

while in other subsamples the mean difference is larger than zero, as appears from

the final column.

When we additionally test for equality of the averages of the mean absolute er-

rors from the various methods over the five subsamples, we conclude that there is

no significant difference in the mean of the MAE between methods, independent

of the specification of the weighted survivor prediction method that is used.42 The

variation across subsamples is like to be due to the fact that difference in (mean)

absolute errors is typically small for each of the methods. Hence, we conclude that

one method does not consistently outperform the other in this particular applica-

tion. This contrasts the findings from the simulation study, where we concluded

42We tested for this by applying a one-sample t-test for the mean (over the five subsamples) of

the difference in MAE measures of both methods being equal to zero. Results are not shown in

the table. The null hypothesis of the mean difference in the MAEs of the Cox and the weighted

survivor prediction being equal to zero cannot be rejected for any of the specifications of the

weighted survivor prediction method. P-values are in the range of 0.259 to 0.757.
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that the weighted survivor prediction method performed slightly better than the

Cox prediction of the survivor function and linear probability model predictions of

survival probabilities.

7 Conclusion

Classification of individuals into various target groups can be useful in a broad

range of applications, such as the allocation of active labor market programs to

unemployed individuals, the allocation of welfare-to-work programs, targeting of

programs that aim for poverty alleviation in developing countries, identification

of groups of individuals for whom preventive screening for certain diseases can be

valuable, or targeting of vaccination programs.

To stratify individuals into target groups, one would want to predict the out-

come of interest with and/or without the program or intervention. In many cases,

the outcome of interest is a duration outcome (e.g., unemployment duration, life

expectancy). Both in practice as well as in the literature, statistical profiling and

targeting methods are used to allocate programs or services based on such predic-

tions of the outcome of interest. These statistical methods rely on the idea that

individuals similar in terms of certain personal characteristics are likely to have sim-

ilar outcomes. Several statistical profiling models have been used, differing in terms

of the econometric model, the outcome variable and the covariates included, but in

general their predictive power turned out modest.

In this paper, we proposed a weighted survivor prediction method for profiling

that yields an individual-specific predicted survivor function. Using data on histori-

cal spells of individuals that have been in a particular state, we construct predictions

of the survival probabilities in that same state for individuals newly entering the

state. We weigh realized durations for the historically observed individuals. The

weights are determined by the comparability of these individuals and the prediction

individual in terms of a set of individual characteristics. Historical spells for indi-

viduals that are very similar to the prediction individual receive a larger weight in

the prediction than individuals that share less similarities. The prediction method

closely resembles the Kaplan-Meier estimator, but the weights are added to the

computation of the number of exits and the number of individuals at risk.

We considered many alternatives to construct the weights. More specifically,

we varied the distance metric, the weighting function and the choice of bandwidth.

In a simulation study, we analyzed the performance of alternative specifications

of the weighted survivor prediction method. An Epanechnikov weighting function

combined with a small bandwidth yields relatively small prediction errors. The
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choice of distance metric is less important and various distance metrics perform

equally well.

We compared the best performing specifications to two benchmark profiling

methods (i.e., Cox prediction of the survivor function and predicted survival prob-

abilities obtained from a linear probability model). The results from the simulation

study show small improvements in prediction quality from applying the weighted

survivor prediction method instead of the benchmark models. Moreover, we study

the performance of the proposed method performs in an empirical application using

data on spells of collecting unemployment insurance (UI) benefits and exit to work.

We do not find one method to perform consistently better than the other. In the

simulation study and in the empirical application, the Cox prediction of the survivor

function is fairly close to the theoretical or the empirical Kaplan-Meier estimate of

the survivor function, respectively. Allowing for flexible duration dependence might

be sufficient to deal with misspecification, for example due to ignoring unobserved

heterogeneity.
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Behncke, S., Frölich, M., and Lechner, M. (2010). Statistical assistance for pro-

gramme selection: For a better targeting of active labour market policies in

Switzerland. Unpublished manuscript.

Bell, S. H. and Orr, L. L. (2002). Screening (and creaming?) applicants to job train-

ing programs: The AFDC homemaker-home health aide demonstrations. Labour

Economics, 9(2):279 – 301.

Bender, R., Augustin, T., and Blettner, M. (2005). Generating survival times to

simulate Cox proportional hazards models. Statistics in Medicine, 24(11):1713 –

1723.

Benitez-Silva, H., Buchinsky, M., and Rust, J. (2004). How large are the classifi-

cation errors in the Social Security Disability award process? NBER Working

Paper No. 10219.

41



Berger, M. C., Black, D., and Smith, J. A. (2001). Evaluating profiling as a means

of allocating government services. In Lechner, M. and Pfeiffer, F., editors, Econo-

metric Evaluation of Labour Market Policies. Heidelberg: Physica Verlag.

Black, D. A., Galdo, J., and Smith, J. A. (2007). Evaluating the Worker Profiling

and Reemployment Services system using a regression discontinuity approach.

American Economic Review, 97(2):104 – 107.

Black, D. A., Plesca, M., Smith, J. A., and Shannon, S. (2003a). Profiling UI

claimants to allocate reemployment services: Evidence and recommendations for

states. Final Report to United States Department of Labour.

Black, D. A., Smith, J. A., Berger, M. C., and Noel, B. J. (2003b). Is the threat of

reemployment services more effective than the services themselves? Evidence from

random assignment in the UI system. American Economic Review, 93(4):1313 –

1327.

Bolhaar, J., Ketel, N., and Van der Klaauw, B. (2015). Evaluating search periods

for welfare applicants: Evidence from a social experiment. Mimeo.

Cameron, A. C. and Trivedi, P. K. (2005). Microeconometrics: Methods and Appli-

cations. New York: Cambridge University Press.

Collewet, M., Gravesteijn, J., and De Koning, J. (2010). Screening the unemployed

for reintegration: Experiences from seven countries during the past 20 years.

SEOR Working Paper No. 2010/1.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical

Society Series B, 34(2):187 – 220.

Dehejia, R. H. (2005). Program evaluation as a decision problem. Journal of Econo-

metrics, 125(1-2):141 – 173.

Dickinson, K. P., Johnson, T. R., and West, R. W. (1986). An analysis of the

impact of CETA programs on participants’ earnings. Journal of Human Resources,

21(1):64 – 91.

Eberts, R. W. (2002). Using statistical assessment tools to target services to Work

First participants. In Eberts, R. W., O‘Leary, C. J., and Wandner, S. A., editors,

Targeting Employment Services. Kalamozoo, Michigan: W. E. Upjohn Institute.
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Appendices

A.1 Procedure

In each Monte Carlo experiment we simulate data 30 times and, for each data

set, we construct predictions for P prediction individuals. For data simulation,

the experiment-specific parameter values and distributional choices, summarized

in Tables 3 and 4 in subsection 4.3, are used. More specifically, the simulation

procedure consists of the following 11 steps:

1. Determine censoring threshold. Simulate duration data from the DGP in

equation (17) or (20) for a large sample of one million individuals. The censor

threshold, T , is set equal to the (1 − ζtarget)-quantile of simulated durations.

Furthermore, the threshold duration for the linear probability models used in

the computation of distances is set at the qt-quantile of simulated durations.

2. Simulate data. Simulate, covariate information, duration dependence pa-

rameters or unobserved heterogeneity and failure times for J sample individ-

uals and P prediction individuals from equation (17) or (20). For this, T

from step 1 is used. Moreover, generate censoring indicators according to

equation (22).

3. Theoretical survivor. Evaluate, for each prediction individual, equation (17)

or (20) at R grid points tr for duration in the range [0, T ], given draws for the

duration dependence parameters or unobserved heterogeneity and the covari-

ates.

4. Cox prediction of the survivor function. Estimate a Cox proportional

hazard model including all covariates on data for the sample individuals and

construct predicted survivor functions for each prediction individual (see sub-

section 2.1). Subsequently, compute the absolute error between the theoretical

survivor function and the Cox prediction of the survivor function and average

over R grid points for duration to obtain the mean absolute error (MAE).

5. Predicted survival probabilities from linear probability models. Con-

struct dummy variables for duration exceeding threshold t = fT ×T . Estimate

linear probability models expressing these dummies as a function of all covari-

ates and use the estimates to obtain the predicted survival probabilities for

each of the prediction individuals (see subsection 2.1). Compute the abso-

lute error between the theoretical survivor function and the linear probability

predictions of the survival probability at the durations t.
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6. Model estimation. Estimate the linear, linear probability and Cox propor-

tional hazards models discussed in subsection 3.1 and compute the sample

variance-covariance matrix of the covariates.

7. Distances, bandwidths and weights. Choose a particular distance metric,

bandwidth parameter and weighting function. Compute distances to predic-

tion individual i, {dij}Jj=1, for all sample individuals for this specification,

using the results from step 6. Then calculate the bandwidth distance h and

compute the weights, {wij}Jj=1, given this bandwidth and the distances.

8. Predicted survivor. Apply equation (5) using the set of weights from step 7

to obtain a weighted survivor function prediction for individual i. Compute

the absolute error between the theoretical survivor function and the weighted

predicted survivor function at each grid point for duration and average over

all R grid points to obtain the mean absolute error (MAE).

9. Loop over all specifications. Repeat steps 7 and 8 for all 510 specifications

(i.e., 17 distance metrics, 10 bandwidth parameters and 3 weighting functions)

of the weighted survivor prediction method.

10. Obtain P predictions. Repeat steps 7 to 9 for each of the P prediction

individuals.

11. Simulate data 30 times. Repeat steps 2 to 10 30 times.

A.2 Similarity in simulated distances

The distances are important determinants for the weights that sample individuals

receive in the construction of weighted predicted survivor functions. We considered

17 distance metrics that differ in terms of whether and how they correct for vari-

ance, covariance and importance of covariates (see Table 1 in subsection 3.1). This

appendix studies the distances in more detail. In particular, we consider differences

in the ranking of sample individuals in terms of their distance from the prediction

individual across distance metrics. For prediction individual i and distance metric

m the set of distances {dm (xi, xj)}Jj=1 can be translated in rankings rmj = {1, ...., J}
ordering sample individuals in ascending order of distance. We compute Spearman’s

rank correlation coefficients of the ranking of sample individuals implied by all pos-

sible combinations of distance metrics, ρid1,d2
. This results in correlation coefficients

for all combinations of distance metrics and for all prediction individuals.

Table A.1 reports the average and standard deviation, over all predictions, of

rank correlations for distance metrics that are similar in terms of the characteristics
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Table A.1: Average Spearman’s rank correlation coefficients between sets

of distance metrics for the baseline MC

Panel A: distance metrics without importance adjustment

distance metric

(a) (b) (c)

(a) Euclidean 1.000

(0.000)

(b) norm. Euclidean 0.946 1.000

(0.030) (0.000)

(c) Mahalanobis 0.946 1.000 1.000

(0.030) (0.000) (0.000)

Panel B: variants of Imbens’ optimal distance metric

distance metric

(n) (o) (p) (q)

(n) Imbens, ols estimates 1.000

(0.000)

(o) Imbens, linear prob. estimates 0.881 1.000

(0.088) (0.000)

(p) Imbens, Cox estimates 0.998 0.886 1.000

(0.002) (0.082) (0.000)

(q) Imbens, standardized Cox estimates 0.879 0.894 0.900 1.000

(0.099) (0.077) (0.084) (0.000)

Notes: Reported are the averages and standard deviations (in parentheses) of the

correlations over all 30× 17 predictions.

that they account for. The average rank correlations are typically large in the base-

line experiment. For Euclidean, normalized Euclidean and Mahalanobis distance

metrics this is different when considering an experiment in which covariates are

correlated. Table A.2 shows similar statistics for less comparable distance metrics

for each of the Monte Carlo experiments. Many of the rank correlations between

less similar distance metrics are still quite large. Only correlations with Imbens’

optimal distance metric using Cox estimates are substantially lower in most of the

Monte Carlo experiments. As a result, prediction quality may vary with the choice

of distance metric.

Many of the distance metrics use estimated (marginal) effects of the covariates

on the duration outcome to account for differences in the importance of covariates.

For this to be successful, estimates should correctly measure the relative importance

of covariates. In the simulations, the data generating process and true parameters

are known, so that we can compare estimates of the effects of the covariates to
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these true parameter values. Table A.3 shows average coefficient estimates and

standard deviations in these estimates (over all 30 data simulations) obtained from

various model specifications used in distance computation (see subsection 3.1). Most

interesting to focus on in this case, are the Cox model estimates, because of the

similarities between the Cox model and the data generating process. The table shows

that the average of the coefficient estimates is quite far from the true parameter

values in most of the Monte Carlo experiments. Only MC 12 seems an exception,

which may be explained by the unobserved heterogeneity in the DGP instead of

individual-specific duration dependence parameters. Results for the linear regression

model and linear probability models are less easy to compare to the true parameter

values, because the functional form is very different from the DGP.
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Table A.3: Estimated coefficients used in distance computation.

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6 MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

Linear regression model

β1 −0.065 −0.042 −0.175 −0.064 −0.068 −0.076 −0.080 −0.066 −0.068 0.051 −0.047 −0.028

(0.002) (0.001) (0.004) (0.001) (0.002) (0.002) (0.001) (0.005) (0.002) (0.001) (0.001) (0.001)

β2 −0.045 −0.018 −0.256 −0.044 −0.051 −0.076 −0.069 −0.049 −0.050 −0.022 −0.036 −0.058

(0.002) (0.001) (0.007) (0.003) (0.005) (0.006) (0.003) (0.008) (0.005) (0.002) (0.002) (0.002)

β3 −0.205 −0.121 −0.011 −0.198 −0.218 −0.249 −0.252 −0.206 −0.219 −0.152 −0.154 −0.108

(0.002) (0.001) (0.007) (0.003) (0.005) (0.006) (0.003) (0.008) (0.005) (0.002) (0.003) (0.002)

β4 . . . . . 0.581 . . . . . .

(.) (.) (.) (.) (.) (0.005) (.) (.) (.) (.) (.) (.)

β5 . . . . . −0.421 . . . . . .

(.) (.) (.) (.) (.) (0.005) (.) (.) (.) (.) (.) (.)

Linear probability model

β1 −0.154 −0.156 −0.147 −0.153 −0.158 −0.138 −0.136 −0.155 −0.159 0.164 −0.147 −0.082

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.002) (0.014) (0.004) (0.004) (0.004) (0.004)

β2 0.010 0.009 −0.054 0.003 0.013 0.024 0.001 0.002 0.022 0.080 0.012 −0.159

(0.007) (0.007) (0.007) (0.008) (0.013) (0.012) (0.007) (0.022) (0.013) (0.011) (0.007) (0.007)

β3 −0.369 −0.365 −0.025 −0.367 −0.364 −0.328 −0.348 −0.364 −0.371 −0.896 −0.368 −0.300

(0.007) (0.007) (0.007) (0.008) (0.013) (0.012) (0.007) (0.022) (0.013) (0.011) (0.013) (0.007)

β4 . . . . . 0.759 . . . . . .

(.) (.) (.) (.) (.) (0.009) (.) (.) (.) (.) (.) (.)

β5 . . . . . −0.436 . . . . . .

(.) (.) (.) (.) (.) (0.009) (.) (.) (.) (.) (.) (.)

Cox model

β1 0.506 0.532 0.443 0.513 0.509 0.501 0.496 0.514 0.511 −1.218 0.470 0.268

(0.010) (0.011) (0.010) (0.010) (0.010) (0.011) (0.005) (0.033) (0.010) (0.012) (0.010) (0.010)

β2 0.346 0.270 0.662 0.366 0.341 0.335 0.421 0.378 0.331 0.186 0.361 0.545

(0.017) (0.018) (0.017) (0.020) (0.032) (0.032) (0.017) (0.053) (0.032) (0.032) (0.016) (0.017)

β3 1.502 1.499 0.025 1.511 1.489 1.454 1.518 1.513 1.502 4.524 1.463 1.010

(0.018) (0.019) (0.017) (0.021) (0.032) (0.032) (0.018) (0.056) (0.032) (0.036) (0.032) (0.017)

β4 . . . . . −3.429 . . . . . .

(.) (.) (.) (.) (.) (0.026) (.) (.) (.) (.) (.) (.)

β5 . . . . . 2.361 . . . . . .

(.) (.) (.) (.) (.) (0.024) (.) (.) (.) (.) (.) (.)

Cox model, standardized covariates

β1 0.232 0.243 0.203 0.235 0.234 0.230 0.496 0.236 0.234 −0.559 0.215 0.123

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.015) (0.005) (0.006) (0.005) (0.005)

β2 0.100 0.078 0.191 0.106 0.098 0.097 0.122 0.109 0.095 0.054 0.208 0.157

(0.005) (0.005) (0.005) (0.006) (0.009) (0.009) (0.005) (0.015) (0.009) (0.009) (0.009) (0.005)

β3 0.434 0.433 0.007 0.436 0.430 0.420 0.439 0.437 0.433 1.306 0.422 0.292

(0.005) (0.005) (0.005) (0.006) (0.009) (0.009) (0.005) (0.016) (0.009) (0.010) (0.009) (0.005)

β4 . . . . . −0.857 . . . . . .

(.) (.) (.) (.) (.) (0.007) (.) (.) (.) (.) (.) (.)

β5 . . . . . 0.590 . . . . . .

(.) (.) (.) (.) (.) (0.006) (.) (.) (.) (.) (.) (.)

Notes: True parameter values used to simulate the data are β1 = 0.4, β2 = 0.8, β3 = 1.5, β4 = 0.65 and β5 = 1.95. Exceptions

are MC 3 (β3 = 0) and MC 11 (β1 = −2.2, β2 = 1.6, β3 = 6.5). The table reports the simulation averages of the coefficient

estimates and, in parentheses, the simulation average of the standard errors of the coefficient estimates. The averages are

computed over all 30 simulated data sets.

A.3 Construction of the data set and variables

We have administrative data on all outflows in the years 2002 to 2009, referred to

as the outflow sample, and all inflows in the years 2002 and 2003, referred to as

the inflow sample. For each spell in the outflow sample we have an identifier for

the individual and an identifier for the spell number. Furthermore, we observe the

dates at which the UI claim started and ended and the reason for exit from UI.

There are several reasons for which an UI spell may end, such as re-employment,

retirement, having reached the maximum duration of UI benefit receipt, or illness.

Only for the inflow sample we additionally observe information on a set of individual
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characteristics. Since the profiling method requires data on individual characteris-

tics, we restrict attention to matched inflow-outflow records. The outflow sample

consists of 1,873,685 UI spells, the inflow sample contains 405,573 records.43 Re-

stricting attention to matched entries only, we are left with a data set of 327,132

observations.44

We are interested in predicting the time it takes to find a new job for an individual

entering UI. From the inflow and outflow date we compute the UI duration in days.45

We have information on a set of individual characteristics including gender, marital

status, age, education level46, type of profession47, the wage basis for the level of UI

benefits48, and the number of hours per week for which UI benefits are collected.

We drop those spells registered as concerning seasonal unemployment. This results

in a loss of 36,057 observations (11.0%), leaving us with 291,071 UI spells.

The computation of distances in the weighted survivor prediction method asks

for observations on all individual characteristics. When values for some of the char-

acteristics are missing, the observed UI spell cannot be used in constructing the

prediction. Therefore, we remove observations for which any of the covariates is

missing. The usage of information on marital status and education level particu-

larly leads to some loss in the number of observations as illustrated in Table A.4. In

total, deleting entries with missing values for any of the covariates results in a loss

of 8.0% of observations. We are left with 267,795 observations in the data set.

Figure A.1 shows the distribution of UI duration for all spells in the constructed

43For some of the spells in the outflow sample the UI claim started and ended before January

1, 2002, started after December 31, 2009, or has an unknown start date. Of 1,905,891 UI spells in

the outflow sample in total, we remove 32,206 (1.7%) for these reasons.
44The data set containing inflows also contains information on outflow in some cases (11% of all

entries in the inflow data set). However, for matched entries, this outflow date was substantially

different from the outflow date registered for the outflow sample in 8.7% of these cases. This may

occur because previous spells are re-opened when a job lasts for a short period of time only.
45For four entries the resulting duration is non-positive, pointing at an error in either the date

of start or the end date of the UI spell. We remove these observations.
46We classify the education level in three categories. Low educated is defined as primary school

or lower vocational education, medium educated is defined as higher general secondary education,

pre-university education or intermediate vocational education. Finally, high educated is defined as

higher vocational education or a university Bachelor or Master degree.
47The data set contains a detailed classification of professions of individuals. We used a

broader classification, distinguishing between elementary professions or low-skilled professions,

intermediate-skilled professions, and high-skilled or scientific professions.
48The daily wage that forms the basis for the level of UI benefits is capped to a maximum,

which is around 178 euros. Some entries had a value considerably larger than this level, which we

replace with a missing value (7 (0.0%) observations). In addition, daily wages below four euros are

set to missing (694 (0.1%) observations).

52



Table A.4: Number of observations with missing information for a

particular covariate.

# missing values (%)

female 4 (0.0%)

married 19,559 (6.7%)

age (in years) 0 (0.0%)

education level 3,825 (1.3%)

type of profession 0 (0.0%)

# hours per week collecting UI benefits 0 (0.0%)

wage basis for UI benefits 134 (0.0%)

observations 291,071

data set (panel (a)) and for the spells resulting in outflow to work only (panel (b)).49

49The spikes in the panel (a) appear to be mostly due to spells ending because of the maximum

UI duration being reached, as spikes are much less prominent when we leave out spells with outflow

for this reason (around 51,000 spells).
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Figure A.1: Histograms of observed durations.

(a) all spells (N = 267,795)

0

.005

.01

.015

.02

fr
ac

tio
n 

of
 o

bs
er

va
tio

ns

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

UI duration (in days)

(b) only spells resulting in outflow to work (N = 167,792)

0

.005

.01

.015

.02

fr
ac

tio
n 

of
 o

bs
er

va
tio

ns

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750

UI duration (in days)

54



A.4 Additional tables and figures

Table A.5: Estimation results of the effect of distance metric and bandwidth on log

average prediction quality

MC 1 MC 2 MC 3 MC 4 MC 5 MC 6

Distance metrics (reference: Euclidean distance)

(b) norm. Eucl. −0.0062 −0.0041 −0.0070 −0.0041 −0.0215∗∗ 0.0394

(0.0112) (0.0109) (0.0074) (0.0047) (0.0103) (0.0470)

(c) Mahalanobis −0.0062 −0.0040 −0.0070 −0.0021 −0.0126 −0.1659∗∗∗

(0.0112) (0.0109) (0.0074) (0.0046) (0.0124) (0.0407)

(d) Zhao, ols −0.0357∗∗∗ −0.0280∗∗∗ −0.0184∗∗ −0.0115∗∗ −0.0442∗∗∗ −0.1855∗∗∗

(0.0104) (0.0096) (0.0091) (0.0045) (0.0113) (0.0455)

(e) Zhao, ols / s.e. −0.0304∗∗∗ −0.0247∗∗∗ −0.0174∗ −0.0102∗∗ −0.0215∗ −0.1289∗∗

(0.0099) (0.0092) (0.0090) (0.0044) (0.0130) (0.0499)

(f) Zhao, linear prob. −0.0118 −0.0264∗∗∗ −0.0219∗∗∗ −0.0051 −0.0339∗∗∗ −0.1450∗∗∗

(0.0099) (0.0092) (0.0073) (0.0045) (0.0104) (0.0448)

(g) Zhao, Cox −0.0356∗∗∗ −0.0278∗∗∗ −0.0183∗∗ −0.0115∗∗ −0.0428∗∗∗ −0.1794∗∗∗

(0.0104) (0.0095) (0.0092) (0.0045) (0.0111) (0.0452)

(h) Zhao, exp Cox −0.0351∗∗∗ −0.0257∗∗∗ −0.0217∗∗∗ −0.0112∗∗ −0.0402∗∗∗ 0.6355∗∗∗

(0.0104) (0.0091) (0.0071) (0.0045) (0.0110) (0.0680)

(i) Zhao, 1 - exp Cox −0.0287∗∗∗ −0.0248∗∗∗ −0.0200∗∗ −0.0085∗ −0.0437∗∗∗ 0.3672∗∗∗

(0.0100) (0.0094) (0.0096) (0.0046) (0.0110) (0.0415)

(j) Zhao, std Cox −0.0356∗∗∗ −0.0278∗∗∗ −0.0183∗∗ −0.0115∗∗ −0.0428∗∗∗ −0.1794∗∗∗

(0.0104) (0.0095) (0.0092) (0.0045) (0.0111) (0.0452)

(k) Zhao, exp std Cox −0.0210∗∗ −0.0139 −0.0155∗∗ −0.0070 −0.0255∗∗ 0.3148∗∗∗

(0.0097) (0.0091) (0.0067) (0.0046) (0.0104) (0.0421)

(l) Zhao, 1 - exp std Cox −0.0354∗∗∗ −0.0281∗∗∗ −0.0182∗∗ −0.0115∗∗ −0.0446∗∗∗ −0.1190∗∗

(0.0103) (0.0095) (0.0092) (0.0045) (0.0113) (0.0469)

(m) principal comp. −0.0122 −0.0115 0.0229∗∗ −0.0039 −0.0159 −0.3723∗∗∗

(0.0104) (0.0094) (0.0104) (0.0048) (0.0103) (0.0407)

(n) Imbens, ols −0.0028 −0.0084 0.0327∗∗∗ 0.0116∗∗ −0.0245∗∗ −0.6071∗∗∗

(0.0109) (0.0094) (0.0095) (0.0053) (0.0111) (0.0685)

(o) Imbens, linear prob. 0.0056 −0.0235∗∗ 0.0607∗∗∗ −0.0074 0.0135 −0.3520∗∗∗

(0.0114) (0.0094) (0.0191) (0.0049) (0.0146) (0.0513)

(p) Imbens, Cox −0.0060 −0.0033 0.0361∗∗∗ 0.0136∗∗ −0.0272∗∗ −0.5915∗∗∗

(0.0106) (0.0095) (0.0099) (0.0056) (0.0111) (0.0657)

(q) Imbens, std Cox 0.0235∗∗ 0.0159 −0.0154∗ 0.0253∗∗∗ 0.0174 −0.3953∗∗∗

(0.0113) (0.0108) (0.0085) (0.0060) (0.0137) (0.0521)

Bandwidth choices (reference: 10% bandwidth)

q = 0.005 0.0093∗∗ 0.0103∗∗ 0.2228∗∗∗ 0.0253∗∗∗ 0.0160∗∗∗ −0.3435∗∗∗

(0.0041) (0.0050) (0.0079) (0.0024) (0.0061) (0.0424)

q = 0.01 −0.0056 −0.0042 0.1152∗∗∗ 0.0075∗∗∗ −0.0082 −0.3196∗∗∗

(0.0045) (0.0046) (0.0086) (0.0020) (0.0058) (0.0365)

q = 0.02 −0.0122∗∗∗ −0.0095∗∗ 0.0415∗∗∗ −0.0031∗ −0.0156∗∗∗ −0.2500∗∗∗

(0.0045) (0.0041) (0.0072) (0.0017) (0.0053) (0.0294)

q = 0.05 −0.0128∗∗∗ −0.0072∗∗∗ −0.0027 −0.0039∗ −0.0099∗∗ −0.1200∗∗∗

(0.0037) (0.0025) (0.0042) (0.0023) (0.0041) (0.0164)

q = 0.075 −0.0074∗∗ −0.0038∗ −0.0041 −0.0028 −0.0052 −0.0522∗∗∗

(0.0034) (0.0021) (0.0040) (0.0021) (0.0039) (0.0128)

q = 0.125 0.0080∗∗∗ 0.0046∗ 0.0086 0.0041∗∗∗ 0.0045 0.0432∗∗

(0.0028) (0.0024) (0.0055) (0.0015) (0.0037) (0.0194)

q = 0.15 0.0163∗∗∗ 0.0107∗∗∗ 0.0205∗∗∗ 0.0091∗∗∗ 0.0091∗∗ 0.0806∗∗∗

(0.0032) (0.0029) (0.0062) (0.0014) (0.0040) (0.0236)

q = 0.20 0.0336∗∗∗ 0.0263∗∗∗ 0.0523∗∗∗ 0.0216∗∗∗ 0.0219∗∗∗ 0.1444∗∗∗

(0.0049) (0.0042) (0.0064) (0.0021) (0.0056) (0.0306)

q = 0.25 0.0536∗∗∗ 0.0447∗∗∗ 0.0868∗∗∗ 0.0365∗∗∗ 0.0415∗∗∗ 0.1989∗∗∗

(0.0066) (0.0054) (0.0071) (0.0034) (0.0081) (0.0355)

constant −2.6022∗∗∗ −2.3318∗∗∗ −3.3572∗∗∗ −2.5250∗∗∗ −2.7031∗∗∗ −2.4337∗∗∗

(0.0094) (0.0084) (0.0071) (0.0044) (0.0101) (0.0383)

observations 170 170 170 170 170 170

Notes: Robust standard errors are in parentheses.
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Table A.5: Estimation results of the effect of distance metric and bandwidth on log

average prediction quality (continued)

MC 7 MC 8 MC 9 MC 10 MC 11 MC 12

Distance metrics (reference: Euclidean distance)

(b) norm. Eucl. −0.0254 −0.0051 0.0000 −0.0923∗∗ −0.0628∗∗∗ −0.0010

(0.0190) (0.0095) (0.0048) (0.0429) (0.0145) (0.0022)

(c) Mahalanobis −0.0254 −0.0049 −0.0056 0.0996∗ 0.0017 −0.0010

(0.0190) (0.0095) (0.0041) (0.0584) (0.0197) (0.0022)

(d) Zhao, ols −0.0997∗∗∗ −0.0336∗∗∗ −0.0314∗∗∗ −0.1041∗∗ −0.0589∗∗∗ −0.0035∗

(0.0176) (0.0093) (0.0041) (0.0435) (0.0141) (0.0019)

(e) Zhao, ols / s.e. −0.0290 −0.0303∗∗∗ −0.0314∗∗∗ −0.0438 −0.0390∗∗ −0.0033∗

(0.0222) (0.0088) (0.0041) (0.0577) (0.0154) (0.0019)

(f) Zhao, linear prob. −0.0501∗∗∗ −0.0158∗ −0.0407∗∗∗ −0.1168∗∗∗ 0.0116 −0.0036∗

(0.0183) (0.0085) (0.0035) (0.0441) (0.0144) (0.0019)

(g) Zhao, Cox −0.1004∗∗∗ −0.0339∗∗∗ −0.0318∗∗∗ −0.0967∗∗ −0.0600∗∗∗ −0.0036∗

(0.0177) (0.0092) (0.0042) (0.0434) (0.0142) (0.0019)

(h) Zhao, exp Cox −0.1002∗∗∗ −0.0337∗∗∗ −0.0280∗∗∗ 0.5992∗∗∗ −0.0635∗∗∗ −0.0030

(0.0178) (0.0091) (0.0040) (0.0641) (0.0144) (0.0019)

(i) Zhao, 1 - exp Cox −0.0726∗∗∗ −0.0278∗∗∗ −0.0366∗∗∗ 0.4650∗∗∗ −0.0416∗∗∗ −0.0027

(0.0179) (0.0086) (0.0039) (0.0858) (0.0135) (0.0019)

(j) Zhao, std Cox −0.1004∗∗∗ −0.0339∗∗∗ −0.0318∗∗∗ −0.0967∗∗ −0.0600∗∗∗ −0.0036∗

(0.0177) (0.0092) (0.0042) (0.0434) (0.0142) (0.0019)

(k) Zhao, exp std Cox −0.0484∗∗∗ −0.0204∗∗ −0.0102∗∗∗ −0.0414 −0.0575∗∗∗ −0.0019

(0.0173) (0.0083) (0.0038) (0.0470) (0.0138) (0.0020)

(l) Zhao, 1 - exp std Cox −0.1014∗∗∗ −0.0333∗∗∗ −0.0334∗∗∗ −0.0495 −0.0584∗∗∗ −0.0036∗

(0.0176) (0.0093) (0.0042) (0.0447) (0.0141) (0.0019)

(m) principal comp. −0.0719∗∗∗ −0.0051 0.0045 . −0.0484∗∗∗ −0.0007

(0.0172) (0.0094) (0.0060) . (0.0141) (0.0021)

(n) Imbens, ols −0.1060∗∗∗ −0.0268∗∗∗ −0.0227∗∗∗ −0.1545∗∗∗ −0.0177 −0.0100∗∗∗

(0.0215) (0.0096) (0.0039) (0.0530) (0.0156) (0.0030)

(o) Imbens, linear prob. −0.0585∗∗∗ −0.0241∗∗∗ −0.0274∗∗∗ 0.0335 0.1306∗∗∗ −0.0088∗∗∗

(0.0197) (0.0083) (0.0037) (0.0488) (0.0304) (0.0034)

(p) Imbens, Cox −0.1060∗∗∗ −0.0224∗∗ −0.0238∗∗∗ −0.1586∗∗∗ −0.0190 −0.0099∗∗∗

(0.0217) (0.0097) (0.0039) (0.0517) (0.0156) (0.0030)

(q) Imbens, std Cox 0.3079∗∗∗ −0.0018 −0.0237∗∗∗ 0.0804∗ −0.0007 −0.0064∗∗

(0.0260) (0.0112) (0.0039) (0.0477) (0.0157) (0.0025)

Bandwidth choices (reference: 10% bandwidth)

q = 0.005 −0.0566∗∗∗ 0.3004∗∗∗ 0.0855∗∗∗ −0.2238∗∗∗ −0.0042 −0.0066∗∗∗

(0.0122) (0.0064) (0.0036) (0.0451) (0.0122) (0.0015)

q = 0.01 −0.0733∗∗∗ 0.1400∗∗∗ 0.0373∗∗∗ −0.1964∗∗∗ −0.0284∗∗∗ −0.0110∗∗∗

(0.0088) (0.0046) (0.0025) (0.0347) (0.0105) (0.0015)

q = 0.02 −0.0715∗∗∗ 0.0509∗∗∗ 0.0151∗∗∗ −0.1522∗∗∗ −0.0342∗∗∗ −0.0115∗∗∗

(0.0094) (0.0022) (0.0019) (0.0267) (0.0090) (0.0013)

q = 0.05 −0.0458∗∗∗ −0.0031 0.0033∗∗ −0.0993∗∗∗ −0.0234∗∗∗ −0.0068∗∗∗

(0.0075) (0.0034) (0.0013) (0.0310) (0.0071) (0.0005)

q = 0.075 −0.0231∗∗∗ −0.0061∗∗ 0.0005 −0.0540∗ −0.0124∗ −0.0032∗∗∗

(0.0056) (0.0030) (0.0009) (0.0292) (0.0072) (0.0004)

q = 0.125 0.0230∗∗∗ 0.0078∗∗∗ −0.0002 0.0629∗∗∗ 0.0132∗ 0.0030∗∗∗

(0.0049) (0.0024) (0.0012) (0.0235) (0.0069) (0.0007)

q = 0.15 0.0459∗∗∗ 0.0164∗∗∗ 0.0003 0.1263∗∗∗ 0.0287∗∗∗ 0.0059∗∗∗

(0.0062) (0.0030) (0.0015) (0.0236) (0.0076) (0.0009)

q = 0.20 0.0906∗∗∗ 0.0331∗∗∗ 0.0039∗ 0.2477∗∗∗ 0.0607∗∗∗ 0.0112∗∗∗

(0.0094) (0.0044) (0.0021) (0.0316) (0.0093) (0.0013)

q = 0.25 0.1338∗∗∗ 0.0529∗∗∗ 0.0111∗∗∗ 0.3579∗∗∗ 0.0943∗∗∗ 0.0163∗∗∗

(0.0124) (0.0058) (0.0026) (0.0427) (0.0106) (0.0016)

constant −2.7192∗∗∗ −2.5707∗∗∗ −2.6569∗∗∗ −2.8846∗∗∗ −2.8344∗∗∗ −1.7572∗∗∗

(0.0162) (0.0079) (0.0033) (0.0438) (0.0134) (0.0018)

observations 170 170 170 160 170 170

Notes: Robust standard errors are in parentheses.
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Table A.6: Best performing distance metric, given Epanechnikov weights and a 2%

bandwidth; alternative definitions

Panel A: Distance metric most often performing better than the Cox prediction of

the survivor function.

error distance metric

MC 1 0.0718 (0.0489) (o) Imbens, linear prob. estimates

0.0717 (0.0424) (m) principal components distance

MC 2 0.0938 (0.0552) (k) Zhao, exponent of standardized Cox estimates

MC 3 0.0360 (0.0180) (m) principal components distance

MC 4 0.0790 (0.0464) (l) Zhao, one minus exponent of standardized Cox estimates

MC 5 0.0641 (0.0361) (j) Zhao, standardized Cox estimates

0.0641 (0.0361) (g) Zhao, Cox estimates

MC 6 0.0440 (0.0272) (p) Imbens, Cox estimates

MC 7 0.0556 (0.0357) (i) Zhao, one minus exponent of Cox estimates

MC 8 0.0788 (0.0483) (k) Zhao, exponent of standardized Cox estimates

MC 9 0.0686 (0.0397) (f) Zhao, linear prob. estimates

MC 10 0.0441 (0.0571) (j) Zhao, standardized Cox estimates

0.0441 (0.0571) (g) Zhao, Cox estimates

MC 11 0.0543 (0.0498) (c) Mahalanobis

MC 12 0.1696 (0.1164) (b) norm. Euclidean

0.1696 (0.1164) (a) Euclidean

Notes: The table shows, for each Monte Carlo experiment, the average MAE (over all 30 × 17

predictions), the standard deviation in the MAE, and the distance metric for the best performing

specification, given the use of Epanechnikov weights and a 2% bandwidth. In MC 2, various

specifications have an equal number of predictions in which they perform better than the Cox

prediction of the survivor function. All of these specifications are listed in the table.
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Table A.6: Best performing distance metric, given Epanechnikov weights and a 2%

bandwidth; alternative definitions (continued)

Panel B: Distance metric minimizing the overall variance.

error distance metric

MC 1 0.0735 (0.0400) (p) Imbens, Cox estimates

MC 2 0.0969 (0.0511) (p) Imbens, Cox estimates

MC 3 0.0360 (0.0180) (m) principal components distance

MC 4 0.0816 (0.0435) (p) Imbens, Cox estimates

MC 5 0.0654 (0.0337) (n) Imbens, ols estimates

MC 6 0.0435 (0.0250) (n) Imbens, ols estimates

MC 7 0.0580 (0.0317) (p) Imbens, Cox estimates

MC 8 0.0786 (0.0458) (o) Imbens, linear prob. estimates

MC 9 0.0700 (0.0380) (n) Imbens, ols estimates

MC 10 0.0434 (0.0544) (b) norm. Euclidean

MC 11 0.0573 (0.0455) (p) Imbens, Cox estimates

MC 12 0.1696 (0.1164) (b) norm. Euclidean

Panel C: Distance metric minimizing the variance in the data simulation-specific

mean error.

error distance metric

MC 1 0.0735 (0.0085) (q) Imbens, standardized Cox estimates

MC 2 0.0969 (0.0132) (p) Imbens, Cox estimates

MC 3 0.0363 (0.0039) (i) Zhao, one minus exponent of Cox estimates

MC 4 0.0790 (0.0111) (i) Zhao, one minus exponent of Cox estimates

MC 5 0.0654 (0.0095) (n) Imbens, ols estimates

MC 6 0.0440 (0.0049) (p) Imbens, Cox estimates

MC 7 0.0579 (0.0068) (c) Mahalanobis

MC 8 0.0797 (0.0111) (m) principal components distance

MC 9 0.0704 (0.0075) (m) principal components distance

MC 10 0.0448 (0.0129) (n) Imbens, ols estimates

MC 11 0.0573 (0.0104) (n) Imbens, ols estimates

MC 12 0.1700 (0.0281) (m) principal components distance

Notes: The table shows, for each Monte Carlo experiment, the average MAE (over all 30 × 17

predictions), the standard deviation in the MAE, and the distance metric for the best performing

specification, given the use of Epanechnikov weights and a 2% bandwidth
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Table A.7: Censoring thresholds and % with

α = α1 for each Monte Carlo experiment.

experiment T % α = α1

MC 1 0.4632 36.63 0.20

MC 2 0.2608 36.69 0.20

MC 3 1.2856 36.68 0.22

MC 4 0.4385 37.00 0.22

MC 5 0.5114 36.23 0.28

MC 6 0.7468 37.07 0.18

MC 7 0.6198 43.13 0.20

MC 8 0.4629 36.96 0.55

MC 9 0.5105 36.22 0.26

MC 10 0.2149 36.19 0.23

MC 11 0.3801 63.76 0.18

MC 12 0.3516 - -

Notes: Reported is the censoring threshold, T ,

used in each of the Monte Carlo experiments.

Furthermore, the average (standard deviation)

of the % of individuals (both sample and predic-

tion individuals) with α = α1 (computed over

all 30 data simulations) is reported.
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Table A.8: Estimation results for the Cox model using the

training sample.

exit rate to work

female −0.1072∗∗∗

(0.0134)

married 0.1442∗∗∗

(0.0121)

age −0.0372∗∗∗

(0.0007)

low educated −0.2097∗∗∗

(0.0156)

high educated 0.0803∗∗∗

(0.0154)

elementary or low-skilled profession −0.2006∗∗∗

(0.0144)

high-skilled or scientific profession −0.0237

(0.0167)

# hours UI (per week) 0.0024∗∗

(0.0011)

daily wage basis UI 0.0025∗∗∗

(0.0002)

log likelihood -314,462.2

observations 50,000

Notes: Standard errors are in parentheses. The reference education

category is an intermediate education level and the reference type

of profession is an intermediate-skilled profession. Results are for

the same subsample of 53,559 observations used to construct the

results in Table 10.

60



Table A.9: Deviations of the average predicted survivor functions from the Kaplan-

Meier estimate, up to duration of half a year.

absolute error

mean (MAE) std.dev range p-value

Cox compared to K-M 0.0066 (0.0042) [0.0000 - 0.0137] -

Weighted survivor prediction compared to K-M

baseline 0.0104 (0.0054) [0.0000 - 0.0184] 0.0000

Alternative bandwidth choices

0.5% bandwidth 0.0107 (0.0058) [0.0000 - 0.0193] 0.0000

1% bandwidth 0.0107 (0.0056) [0.0000 - 0.0189] 0.0000

5% bandwidth 0.0086 (0.0050) [0.0000 - 0.0163] 0.0000

Alternative distance metrics

Mahalanobis distance 0.0142 (0.0076) [0.0000 - 0.0241] 0.0000

Zhao (Cox) distance 0.0105 (0.0057) [0.0000 - 0.0188] 0.0000

Imbens (Cox) distance 0.0090 (0.0048) [0.0000 - 0.0163] 0.0000

Notes: The baseline specification for the weighted survivor prediction method concerns a 2%

bandwidth, Epanechnikov weights and Imbens’ (linear probability) distances. Reported are p-

values for one-sample t-tests for equality of the mean of the absolute errors of the Cox prediction

and the mean of the absolute errors of the weighted survivor prediction. Note that we obtained

an absolute error at each possible duration from 1 to 180 days (0.5 years), so that the average is

computed over 180 observations.
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Table A.10: Deviations of the average predicted survivor functions from the Kaplan-

Meier estimate, up to duration of one year.

absolute error

mean (MAE) std.dev range p-value

Cox compared to K-M 0.0100 (0.0048) [0.0000 - 0.0164] -

Weighted survivor prediction compared to K-M

baseline 0.0154 (0.0066) [0.0000 - 0.0242] 0.0000

Alternative bandwidth choices

0.5% bandwidth 0.0155 (0.0066) [0.0000 - 0.0238] 0.0000

1% bandwidth 0.0154 (0.0064) [0.0000 - 0.0236] 0.0000

5% bandwidth 0.0141 (0.0069) [0.0000 - 0.0236] 0.0000

Alternative distance metrics

Mahalanobis distance 0.0196 (0.0077) [0.0000 - 0.0279] 0.0000

Zhao (Cox) distance 0.0150 (0.0062) [0.0000 - 0.0223] 0.0000

Imbens (Cox) distance 0.0125 (0.0051) [0.0000 - 0.0189] 0.0000

Notes: The baseline specification for the weighted survivor prediction method concerns a 2%

bandwidth, Epanechnikov weights and Imbens’ (linear probability) distances. Reported are p-

values for one-sample t-tests for equality of the mean of the absolute errors of the Cox prediction

and the mean of the absolute errors of the weighted survivor prediction. Note that we obtained

an absolute error at each possible duration from 1 to 365 days (1 year), so that the average is

computed over 365 observations.
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Table A.11: Repetition for five subsamples; alternative sample sizes.

mean absolute error comparison to Cox prediction

average std.dev frac 6= Cox MAE frac < Cox MAE

Panel A: Random sample of 5600 observations

Cox 0.0177 (0.0103) − −

Weighted survivor prediction

baseline 0.0236 (0.0126) 1.0000 0.0000

0.5% bandwidth 0.0236 (0.0133) 1.0000 0.0000

1% bandwidth 0.0247 (0.0135) 1.0000 0.0000

5% bandwidth 0.0234 (0.0121) 1.0000 0.0000

Mahalanobis distance 0.0301 (0.0114) 1.0000 0.0000

Zhao (Cox) distance 0.0237 (0.0117) 1.0000 0.0000

Imbens (Cox) distance 0.0242 (0.0134) 1.0000 0.0000

Panel B: Random sample of 12,000 observations

Cox 0.0091 (0.0036) − −

Weighted survivor prediction

baseline 0.0129 (0.0048) 1.0000 0.2000

0.5% bandwidth 0.0133 (0.0049) 1.0000 0.2000

1% bandwidth 0.0132 (0.0049) 1.0000 0.2000

5% bandwidth 0.0127 (0.0045) 1.0000 0.2000

Mahalanobis distance 0.0174 (0.0082) 1.0000 0.2000

Zhao (Cox) distance 0.0116 (0.0053) 1.0000 0.2000

Imbens (Cox) distance 0.0115 (0.0035) 1.0000 0.2000

Notes: The baseline specification for the weighted survivor prediction method concerns a 2%

bandwidth, Epanechnikov weights and Imbens’ (linear probability) distances. Statistics are

obtained using durations up to two years. The average and standard deviation in the MAE

are computed over the five subsamples. For each subsample, we tested for zero mean difference

between the absolute errors from the Cox prediction and the weighted survivor prediction. The

final two columns report in which fraction of the five subsamples these tests lead to the conclusions

that the mean difference is different from zero at a 5% significance level (penultimate column)

and that the mean is smaller than zero, meaning that the weighted survivor prediction method

performs better than the Cox prediction (final column) using a 2.5% significance level.
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