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Abstract

I analyze welfare properties of mutual funds in the Diamond-Dybvig model

with two sources of aggregate risk: undiversifiable interest rate risk and shocks

to aggregate liquidity demand. Mutual funds are inefficient when the economy

faces undiversifiable interest rate risk. However, if only aggregate liquidity

demand is stochastic, mutual funds can implement the social optimum even

when liquidity demand is not directly observed.
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1 Introduction

The global financial crisis was a stark reminder that the way financial intermedi-
aries fund their operations can have dramatic consequences on financial markets
and the real economy. Runs on financial institutions financed by short-term debt
may be particularly debilitating (Brunnermeier, 2009; Duffie, 2010; Gorton and Met-
rick, 2012). It is therefore important to understand whether maturity mismatch and
the associated rollover risk is necessary for the efficient provision of liquidity in-
surance, or whether there exist mechanisms that create liquidity without negative
side effects on financial stability. Previous theoretical work suggests that mutual
funds may be one such mechanism. The question of whether mutual funds can
provide liquidity efficiently is not just of theoretical interest, as a number of recent
policy proposals place mutual funds — or banks with significantly higher capital
requirements — at the center of the financial system (e.g., Kotlikoff, 2010; Admati
and Hellwig, 2014; Cochrane, 2014).

In this paper I analyze whether mutual funds can provide liquidity insurance ef-
ficiently in an otherwise canonical Diamond and Dybvig (1983) model with aggre-
gate risk. As is standard, risk-averse consumers face privately observable liquidity
shocks. In addition, the economy is hit by two types of aggregate shocks: undiversi-
fiable interest rate risk and shocks to aggregate liquidity demand. The extensions to
the standard model are motivated by two basic empirical observations. First, banks,
being in the business of maturity transformation, are exposed to interest rate risk
(e.g., Flannery and James, 1984; Hellwig, 1994; English, Van den Heuvel, and Za-
krajšek, 2014; Begenau, Piazzesi, and Schneider, 2015). Second, aggregate liquidity
demand varies over time and has first-order effects on the functioning of markets
and intermediaries (e.g., Longstaff, 2004; Krishnamurthy, 2010; Krishnamurthy and
Vissing-Jorgensen, 2012; Nagel, 2014; Krishnamurthy and Vissing-Jorgensen, 2015;
Sunderam, 2015).

The current paper makes two contributions. First, I show that mutual funds are
inefficient when the economy faces undiversifiable interest rate risk. The reason is
that interest rate risk endogenously makes consumption in different periods imper-
fectly substitutable. Since the mutual fund provides liquidity insurance by driving
a wedge between the private and social rates of transformation, the resulting equi-
librium is inefficient. The second contribution is that shocks to aggregate liquidity
demand are not detrimental for the efficiency of mutual funds. Importantly, mu-
tual funds can implement the social optimum even if aggregate liquidity demand
is not directly observed. Intuitively, when aggregate liquidity demand is high and
the dividend paid by the mutual fund is constant, the price of mutual fund shares
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collapses. By increasing the dividend when the share price is low, the mutual fund
can undo the negative price impact and provide first-best risk sharing.

The paper contributes to a large literature initiated by Bryant (1980) and Dia-
mond and Dybvig (1983); for comprehensive overviews, see Gorton and Winton
(2003) and Bouwman (2013).1 The work of Diamond and Dybvig provides a classic
rationale for the existence of demandable debt: banks transform illiquid long-term
assets into liquid short-term liabilities in order to provide liquidity insurance. Such
liquidity provision, however, comes at a cost. Since the optimal funding structure is
fragile, the bank is subject to self-fulfilling panics. In a seminal study, Jacklin (1987)
challenged this view by showing that a dividend-paying mutual fund may be able
to implement the social optimum without risking a bank run.2 Given that banks
may fail to implement the social optimum because of runs, this raises the question
of whether deposit-taking banks are necessary in the world envisioned by Diamond
and Dybvig. In a setting without aggregate risk, Jacklin showed that mutual funds
can implement the first best if consumers have the original corner preferences stud-
ied by Diamond and Dybvig.3 Jacklin noted that mutual funds are inefficient with
a more general specification of preferences. In this paper, I show that mutual funds
are inefficient even with the original Diamond-Dybvig preferences when the inter-
est rate is risky. In addition, I argue that the inefficiency caused by interest rate risk
may be more important than the inefficiency identified by Jacklin. For bank runs
to be a Nash equilibrium in a model with smooth preferences, preferences should
be close to the corner preferences originally studied by Diamond and Dybvig. In
such cases, absent aggregate risk, mutual funds may lead to a negligible welfare
loss. This is important from a policy perspective because, to a first approximation,
run-prone banks can improve on mutual funds when returns are risky, but not oth-
erwise.

The two most closely related papers to my work are Jacklin (1993) and Lazopou-
los (2013).4 Jacklin (1993) compares mutual funds and demand deposits in a setting

1For examples of recent contributions that apply the Diamond-Dybvig framework to current
policy questions, see, among others, Freixas, Martin, and Skeie (2011), Gale and Yorulmazer (2013),
Allen, Carletti, and Gale (2014), and Martin, Skeie, and Von Thadden (2014).

2The mutual fund mechanism considered by Jacklin is also referred to as “equity contracts” or
“market rate deposits” in the literature.

3For the implementation result of Jacklin to obtain, it is key that contracts be exclusive (i.e., no
hidden trades). In Kucinskas (2015), I build on the work of Farhi, Golosov, and Tsyvinski (2009)
to show that when hidden trades are possible, mutual funds are constrained efficient and therefore
dominate deposit-taking banks when the probability of a bank run is non-zero.

4Hellwig (1994) analyzes a Diamond-Dybvig type model in which the return on short-term in-
vestment between period one and period two is stochastic. In that model, mutual funds are efficient
(Hellwig, 1994, p. 1382). In my setup, in contrast, the short-term rate is deterministic but the rate of
return on long-term investment is stochastic. Hazlett (1997) studies a Diamond-Dybvig type model
with a risky long-term investment technology. The model of Hazlett is similar to mine but she does
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with asymmetric information about the investment return and stochastic aggregate
liquidity demand. Jacklin (1993, p. 246) states (without proof) that mutual funds
are efficient even when the return is risky, provided that there is no asymmetric
information.5 I show that this statement is not true: when the long-term return is
risky, mutual funds are no longer efficient. Lazopoulos (2013) considers a Diamond-
Dybvig model with shocks to aggregate liquidity demand; the investment technol-
ogy in his model is riskless. Lazopoulos shows that demand deposit contracts are
superior to mutual funds when contracts cannot be state-contingent. Building on
previous work by Jacklin (1993), I show that the exogenous restriction on the con-
tract space is not without loss of generality. When the dividend is allowed to de-
pend on the stock price, mutual funds can implement the full-information first best
even when aggregate liquidity demand cannot be observed directly.

While both Jacklin (1993) and Lazopoulos (2013) consider the effects of aggre-
gate risk on the efficiency of mutual funds, they do so in settings that deviate from
the basic Diamond-Dybvig model (asymmetric information in the paper of Jacklin
and incomplete contracts in the paper of Lazopoulos). I isolate the effects of aggre-
gate risk by considering a benchmark model in which the only friction is private
information about the liquidity shock faced by the consumers. This turns out to
be important. While the previous literature suggests that it is shocks to liquidity
demand, not risky investment returns, that matter for efficiency, my results show
that in fact the opposite is true.

2 Model

I study a Diamond and Dybvig (1983) type model with a risky long-term invest-
ment technology. I first describe a model in which the level of aggregate liquidity
demand is fixed. Stochastic aggregate liquidity demand is introduced in Section 4.

not consider intermediation by mutual funds.
5Jacklin writes that “As Jacklin and Bhattacharya (1988) [...] discuss, such underlying uncertainty

is important only if interim information about the underlying asset returns becomes available at T = 1.
Otherwise, even if the underlying assets are risky, MRD contracts [i.e. mutual funds] can be used to achieve
the socially optimal allocation.”. It is not clear what part of the paper by Jacklin and Bhattacharya
(1988) is alluded to in this quote. Jacklin and Bhattacharya (1988, p. 571) seem to only point out that
with smooth preferences and a risky technology, mutual funds do not attain the socially efficient
allocation (which coincides with the banking allocation when deposits cannot be traded, see Jacklin
(1987)). The statement by Jacklin and Bhattacharya is clearly true, since aggregate risk does nothing
to remove the inefficiency of mutual funds caused by smooth preferences.
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2.1 Primitives

Preferences and Endowments. There are three periods: t = 0, 1, 2. The economy
is populated by a unit measure of ex ante identical consumers. Consumers are en-
dowed with e units of an infinitely divisible consumption good at the initial date
and maximize expected utility. At the beginning of period one, consumers expe-
rience a preference shock; the realization of the shock is private information. With
probability λ, the consumer is an early type and only cares about consumption in pe-
riod one, i.e. her utility function is given by u(c1). With complementary probability,
the consumer is a late type. For a late type, consumption goods in period one and
period two are perfect substitutes: the utility function of a late type is u(c1 + c2).
Utility function u(c) is twice continuously differentiable, strictly increasing, strictly
concave, and satisfies Inada conditions. Finally, a law of large numbers for a con-
tinuum of i.i.d. random variables holds, so that the realized fraction of early con-
sumers is equal to λ.

Technology. There is a single risky investment technology. The investment tech-
nology yields R(s) units of consumption good in period two per one unit invested
in period zero for all states of nature s ∈ S .6 Random return R̃ is characterized
by a distribution function F(R) with E[R̃] ≡

∫
R d F(R) > 1; I use tildes to denote

random variables. A fraction of the long-term investment may be liquidated after
observing the liquidity shock in period one. Liquidation is costless: for each unit
of the long-term investment liquidated, agents receive one unit of the consumption
good, as in the original Diamond and Dybvig setup.7

No Hidden Trades. I assume that there are no hidden trades, either because trades
among consumers or consumption levels themselves are observable. This assump-
tion is made to ensure that liquidity insurance is not arbitraged away by oppor-
tunistic consumers (Allen, 1985; Jacklin, 1987).8

2.2 Benchmark Allocations

I now define autarky, first-best, and second-best allocations in the present environ-
ment and describe some of their qualitative properties.

6Since consumption goods in different periods are perfect substitutes for the late types, it is with-
out loss of generality to assume that the there is no storage technology.

7The assumption is for simplicity only. The results carry through straightforwardly to the case of
more general investment technologies.

8See Allen and Gale (2004, Section 4) and Farhi, Golosov, and Tsyvinski (2009) for further discus-
sion. In related work I analyze welfare properties of mutual funds in a setting with hidden trades
and no aggregate risk (Kucinskas, 2015). The results of that paper easily generalize to the case of
interest rate risk if markets for aggregate risk are complete.
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2.2.1 Autarky

In autarky, consumers have no access to financial markets or intermediaries. Since
early consumers only derive utility from period one consumption, they liquidate
all of their investment in period one and consume the proceeds: caut

1E = e. The opti-
mal consumption profile for the late types is given by the solution to the following
optimization problem.

Problem 1 (Autarky problem of the late types).

max
c1L∈[0,1]

E
[
u(c1L + (e− c1L) R̃)

]
.

Optimal consumption of the late types caut
1L solves

E
[
u′(c1L + (e− c1L) R̃)(R̃−1)

]
≥ 0,

with equality if caut
1L > 0. Increasing consumption in period one makes the con-

sumption of a late agent more smooth across different states of nature. At the same
time, increasing c1L limits the potential for an upside gain from the long-term in-
vestment, and thereby consumption is smaller in expectation. At an interior opti-
mum these marginal effects have to be equal.

2.2.2 First-Best Allocation

Suppose that liquidity shocks are verifiable. The social planner maximizes expected
utility of the consumers subject to the resource constraint. The Pareto weights are
equal to the population frequencies of the types.

Problem 2 (First-best allocation).

max
c1E, c1L, i

λu(c1E) + (1− λ)E

[
u

(
c1L +

i R̃
1− λ

)]
s.t. λc1E + (1− λ)c1L + i = e

i, c1E, c1L ≥ 0.

Here i is the aggregate investment in the long-term technology at the end of period
one. At the optimum (cFB

1E , cFB
1L , iFB) solve

u′(c1E) = E
[
u′ (c1L + c̃2L) R̃

]
(1)

E
[
u′ (c1L + c̃2L)

]
≤ E

[
u′ (c1L + c̃2L) R̃

]
, (2)
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and the resource constraint, where c̃2L = i R̃ /(1− λ). The second condition holds
with equality if cFB

1L > 0. The first condition represents the standard inter-type
trade-off between liquidity provision and investment present in the original Dia-
mond and Dybvig model. If c1E is higher, there is more insurance against idiosyn-
cratic liquidity shocks, but less can be invested in the long-term technology. The
second condition is specific to the current model with aggregate risk about the in-
vestment return. It represents the intertemporal trade-off that late types are ex-
posed to: investing more in the risky technology makes consumption of the late
types less smooth across different states of nature, although the upside potential is
greater.

2.2.3 Second-Best Allocation

Since liquidity needs of the consumers are not observable, the solution to Problem 2
may not be implementable. By the Revelation Principle, it is without loss of gener-
ality to only consider allocations that satisfy the following incentive compatibility
constraints:

c1E ≥ c1L

E[u(c1L + c̃2L)] ≥ u(c1E).
(3)

It is easy to show that the first best is incentive compatible under the natural as-
sumption that the consumers are prudent (Kimball, 1990), i.e. marginal utility of
consumption is convex. Convex marginal utility is satisfied by most commonly
used preference specifications including power and exponential utility.9

Lemma 1. Assume that the consumers are prudent, that is, the marginal utility of con-
sumption is convex. Then, the solution to the first-best problem (Problem 2) is incentive
compatible.

Proof. In the Appendix.

In the rest of the paper, I assume that the first best is incentive compatible, using
the above result as the justification for doing so.

2.2.4 Decentralization by Competitive Banks

Since there are no hidden trades in the model, the second-best allocation can be de-
centralized by a competitive banking system, as has as has been shown in seminal

9In addition, as has been known since Leland (1968), prudence is a necessary condition for pre-
cautionary savings to be positive.
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papers by Prescott and Townsend (1984) in an abstract setting and Allen and Gale
(2004) in a model closer to the present one.10 As a result, we can compare mutual
funds to competitive banks by comparing mutual funds to the second-best alloca-
tion. For the decentralization result to hold, there must be no panic-based runs in
the banking economy. With panic-based runs, comparing banks and mutual funds
is more difficult. If mutual funds can implement the second-best allocation, then
mutual funds strictly dominate banks when the probability of a bank run is non-
zero. If mutual funds cannot implement the second best, then the welfare ordering
of banks and mutual funds depends on the relative size of the two inefficiencies.
Banks are better at providing liquidity insurance but may suffer from runs, whereas
mutual funds are run-proof but introduce a distortion in liquidity provision. Which
of the two modes of intermediation is better in such a situation is ultimately a quan-
titative question.

2.3 Mutual Funds

I now describe how mutual funds can be used to provide some liquidity insurance.
The exposition follows the classic work of Jacklin (1987) closely.

There is a competitive mutual fund sector with free entry. In period zero, the
representative mutual fund raises capital by issuing shares to the consumers in re-
turn for their endowment. I normalize holdings of the mutual fund shares by each
consumer at time zero to one. After the realization of liquidity shocks in period one,
the mutual fund pays out a dividend d ∈ [0, e] to each agent. Then, the agents trade
ex-dividend shares between themselves at some market-clearing price p. Because of
competition among funds and free entry, the dividend d chosen by the representa-
tive fund maximizes the ex ante utility of the agents. As in Jacklin (1993), d may be
a function of p. For now, since aggregate liquidity demand is constant, it is without
loss of generality to assume that d is constant. I relax this assumption in Section 4.
The timeline of the mutual fund mechanism is summarized in Figure 1.

I solve for the equilibrium by backwards induction. The market for shares has
to clear in period one:

λ =
(1− λ)(d− c1L)

p
. (4)

The left-hand side gives the aggregate supply of shares, while the right-hand side
is the aggregate demand.

10In general, for banks to be efficient, markets for aggregate risk should be complete (Allen and
Gale, 2004, see especially Section 6). In the present simple model, since all agents are identical at time
zero and there are no intermediary-specific shocks at time one, banks are efficient even if markets
for aggregate risk are incomplete.
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t = 0 t = 1 t = 2

1. Consumers deposit e,
get one share in exchange

2. Mutual fund chooses
dividend d to maximize
welfare

1. Idiosyncratic liquidity
shocks realized

2. Dividend d is
paid out

3. Consumers trade in
secondary market

1. Return of the
project is realized

2. Assets of the fund
paid out to shareholders
pro rata

Figure 1: Timeline of the mutual fund economy.

The individual problem of the early types is very simple. They sell their shares
for any price p > 0, and consume cMF

1E = d + p. The problem of the late types is
only somewhat more involved.

Problem 3 (Demand for shares).

max
c1L,α

E
[
u(c1L + α(e− d) R̃)

]
s.t. c1L + αp = d + p

c1L ≥ 0.

Here α denotes holdings of the mutual fund shares by the late types at the end of
period one. The optimal consumption at the interim date cMF

1L solves

p E[u′(c1L + c̃2L)] ≤ E[u′(c1L + c̃2L) R̃(e− d)], (5)

with equality if cMF
1L > 0, where c̃2L = R̃(e− d)(d + p− c1L)/p.

The optimal dividend d is chosen at the beginning of period zero to maximize
the ex ante utility of a representative agent. As discussed above, this outcome is
implied by perfect competition by mutual funds with free entry; see Kucinskas
(2015) for the details. The assumption that there are no hidden trades is essential for
the maximization of ex ante welfare to be an outcome of perfect competition. Let
p = p(d) be the price p as a function of the dividend d.11 The problem of finding
the optimal dividend is given below.

Problem 4 (Optimal choice of the dividend).

max
d∈[0,e]

λu
(
d + p(d)

)
+ (1− λ)E

[
u

(
d +

R̃(e− d)− λp(d)
1− λ

)]

Note that the mutual fund takes the general equilibrium effect on the share price
into account when choosing the optimal dividend.

11In Appendix B I show that the equilibrium in the mutual fund economy is indeed unique under
the realistic assumption that absolute risk aversion is decreasing in wealth.
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3 Inefficiencies With Interest Rate Risk

Jacklin (1987) famously pointed out that run-proof mutual funds can provide liq-
uidity insurance efficiently when consumers have the preferences originally stud-
ied by Diamond and Dybvig. I now show that Jacklin’s result depends critically on
the assumption that the long-term return is deterministic. If the long-term return is
risky because of, for example, macroeconomic risks, mutual funds generally cannot
implement the first best.

In this section, I first derive the inefficiency result. I contrast the inefficiency
caused by interest rate risk to the original implementation result of Jacklin as well
as illustrate the inefficiency by means of an analytical example. Then, I show that
the inefficiency result is not driven by the exogenously imposed asset structure.
Finally, I argue that the inefficiency caused by aggregate risk may be more impor-
tant quantitatively than the inefficiency identified by Jacklin (i.e., mutual funds are
inefficient with smooth preferences).

3.1 Inefficiency Result

Let us now turn to the analysis of welfare properties of mutual funds when the
long-term return is risky. We have the following result.

Proposition 1. If cFB
1L > 0, mutual funds can implement the first-best allocation if and

only if autarky and first-best allocations coincide. If cFB
1L = 0 and cFB

1E > e, mutual funds
can implement the first-best allocation if and only if the condition for implementation, given
in Eq. (11), holds; if cFB

1L = 0 and cFB
1E ≤ e, the first best is always implementable.

Proof. In the Appendix.

In words, if the first-best solution is interior (i.e, cFB
1L > 0), the mutual fund

is efficient if and only if the first best coincides with autarky. In such a case, of
course, there is no scope for liquidity provision to begin with, and intermediaries
are redundant. Even if cFB

1L = 0, the mutual fund may still fail to implement the first
best if the first-best allocation involves liquidity insurance. The precise condition
for implementation in such a case is given in Eq. (11).

Proposition 1 is one of the central results of this paper. Intuitively, mutual funds
are inefficient because they provide liquidity insurance by driving a wedge between
private and social rates of return. The intuition is given by a second-best type ar-
gument. The mutual fund economy has incomplete markets for sharing liquidity
risk. If the mutual fund does not distort the rate of return, the resulting allocation
coincides with autarky. The mutual fund can increase welfare by distorting the rate
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of return faced by the consumers, effectively taxing long-term investment. Since the
late types invest more than the early types, distorting the rate of return has a redis-
tributive effect. A wedge on investment therefore mitigates the welfare loss from
missing markets and improves on autarky. However, if the late types are at an in-
terior solution at the first-best allocation, the wedge between the private and social
rates of return gives rise to inefficiencies as the late types react to the wedge. Even
if the first-best allocation calls for no consumption by the late types at the interim
date, the wedge gives the late types an incentive to increase their first period con-
sumption in the mutual fund economy and may thereby still cause an inefficiency.

In the original Diamond-Dybvig environment, the wedge between the private
and social interest rates does not lead to an inefficiency because all of the consumers
are at a corner solution. To see this formally, recall that in the original Diamond and
Dybvig environment, the investment project pays R > 1 with certainty; otherwise,
the model remains unchanged. In that case, a mutual fund that sets d = λcFB

1E

implements the first best. The late types spend all of their income on shares as long
as the return is weakly greater than one, which is the case if and only if p ≤ R(e− d).
By the resource constraint, cFB

2L = R(e− d)/(1− λ). Hence R(e− d) = (1− λ)cFB
2L >

(1− λ)cFB
1E = p because the first-best allocation satisfies cFB

2L > cFB
1E . Hence we see

that peq = (1− λ)cFB
1E is the market-clearing price.

The results above show that the private rate of return in the original Diamond-
Dybvig environment is

R(e− d)
p︸ ︷︷ ︸

private rate of return

Q R︸︷︷︸
technological rate of return

⇐⇒ e Q cFB
1E .

Therefore, private and social rates of return in the original Diamond-Dybvig envi-
ronment are the same if and only if the first best is the same as autarky. In general,
the private rate of return is distorted away from the social rate of return. Even
though the late consumers face a different rate of return than the social planner, the
wedge has no bearing on the efficiency of mutual funds because all consumers are
at a corner solution.

Example With a Closed-Form Solution

To get further intuition, consider the following example with exponential utility
and normally distributed returns. Utility is u(c) = − 1

ρ exp(−ρc), where ρ is the

coefficient of absolute risk aversion, and R̃ ∼ N (µ, σ2) with µ > 1 and σ > 0.
Let us start by working out what the first-best allocation looks like. Since the re-
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turn R̃ is normally distributed and utility is exponential, u(c1L + c̃2L) is log-normally
distributed, and so expected utility of the late types can be computed in closed
form.12 Taking first-order conditions and performing some algebraic manipula-
tions we get that at an interior solution13

cFB
1E = e +

(1− λ)(µ− 1)2

2ρσ2 and cFB
1L = e−

(
µ− 1
ρσ2

)(
1 +

λ(µ− 1)
2

)
.

A small calculation shows that aggregate consumption in period one is

λcFB
1E + (1− λ)cFB

1L = e− (1− λ)(µ− 1)
ρσ2 .

Now consider the mutual fund allocation. We work backwards. Late types in pe-
riod one solve what amounts to a textbook portfolio problem. Indeed, we can inter-
pret cMF

1L to be holdings of a riskless one-period bond that pays zero interest, and α

as the holdings of a risky security that pays off R̃(e− d) units of consumption good
in period two. Since consumption in period one cannot be negative, the consumer
is effectively facing a borrowing constraint.

Performing some algebra, we see that at an interior solution

α∗(d) =
µ(e− d)− p
ρσ2(e− d)2 and c∗1L(d) = d + p− (µ(e− d)− p)p

ρσ2(e− d)2 .

In equilibrium, α∗ = 1/(1 − λ). Solving for p shows that at an interior equilib-
rium (meaning that the first-order condition of the late types in Eq. (5) holds with
equality at the market clearing price)

peq(d) = µ(e− d)− ρσ2(e− d)2

1− λ
.

We can now see that the mutual fund is always inefficient whenever the first best
allocation is interior. Suppose the mutual fund sets d = d∗ where d∗ is the aggregate
consumption at the interim date in the first-best allocation, i.e. d∗ = λcFB

1E + (1−
λ)cFB

1L . Substitute the expression for peq(d∗) into the formula for c1L in the mutual

12Since the return is normally distributed c̃2L is negative with positive probability.
13A necessary and sufficient condition for the solution to be interior is ρσ2e ≥ 1

2 (µ − 1)
[
2 +

λ(µ − 1)
]
, which is satisfied whenever ρ, σ or e are sufficiently big, or µ is in (1, µ̄], where

µ̄ = [
√

1 + 2eλρσ2 − (1 − λ)]/λ. Since µ̄ is strictly greater than unity, the interval for µ is not
empty.

12



fund economy to obtain that

cMF
1L (d∗)− cFB

1L =
λ(µ− 1)2

2ρσ2 .

Hence, unless λ = 0 or µ = 1 — in which case the first best coincides with autarky
— mutual funds are inefficient.

3.2 Markets for Aggregate Risks

Financial markets for aggregate risks are incomplete in the mutual fund economy.
There is only one asset that can be traded at the interim date (mutual fund shares)
but there is more than one state that can realize in period two. As a result, it is
unclear whether the inefficiency result in Proposition 1 is not an artefact of the
exogenous asset structure. The answer is no: with the assumed preferences, the
restriction on financial assets turns out to be without loss of generality.

Let us consider the equilibrium in the mutual fund economy when trade in a
full set of Arrow-Debreu securities is allowed. For simplicity, assume that the set
S has a finite number of elements. Consumers maximize expected utility subject to
the modified period one budget constraint

d + p = c1θ + αθ p + ∑
s

q(s)Bθ(s), (6)

where q(s) is the price of an Arrow security that pays one unit of consumption
good if the state in period two is s and zero otherwise, and Bθ(s) is the holdings of
such Arrow-Debreu securities at the end of period one. In period two the following
budget constraints need to be satisfied:

c2θ(s) = αθ(e− d)R(s) + Bθ(s) for all types θ and states s. (7)

There is a full set of Arrow-Debreu securities that are in zero net supply.14 Market
clearing conditions for the Arrow-Debreu securities are given by

λBE(s) + (1− λ)BL(s) = 0 for all states s. (8)

As before, there is a secondary market for shares of the mutual fund.
We can now show that the restriction on the asset structure is without loss of

generality.

14To rule out hidden trades, I assume that consumers can only trade Arrow-Debreu securities with
other shareholders of the same mutual fund.
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Proposition 2. The equilibrium is unchanged by the addition of a full set of Arrow-Debreu
securities.

Proof. In the Appendix.

Intuitively, the result is not unexpected. Since early types only care about con-
sumption at the interim date, there are no obvious gains from trade in Arrow-
Debreu securities. The math reassures us that this indeed the case.

3.3 Smooth Preferences

In a setting without aggregate risk, Jacklin (1987, Theorems 2 and 3) shows that mu-
tual funds are no longer efficient when consumers have smooth preferences (i.e.,
consumers derive utility from consumption in both periods). However, I now ar-
gue that the inefficiency identified by Jacklin may not always be quantitatively im-
portant. For bank runs to be an equilibrium, preferences need to be close to the
ones originally analyzed by Diamond and Dybvig. Otherwise, there exists a simple
bankruptcy procedure that eliminates runs altogether. When preferences are close
to corner preferences, however, mutual funds may lead to a negligible welfare loss.

Before turning to the bankruptcy procedure, one must explain why it is impor-
tant for runs to be be a Nash equilibrium in the first place. The answer is two-fold.
From a policy perspective, banks are clearly better than mutual funds when runs
are not possible. When runs are possible, mutual funds are likely to lead to a small
welfare loss and hence dominate banks in a setting without aggregate risk. In con-
trast, with risky returns, banks may improve over mutual funds even when runs
are possible. A second motivation is empirical. As discussed above, an appealing
feature of the Diamond-Dybvig model is that it can jointly explain why banks exist
and why they are vulnerable to runs. If the model of Jacklin is to be consistent with
the observation of runs, then preferences should be close to corner preferences.15

With such preferences, the inefficiency identified by Jacklin is likely lead to a small
welfare loss.

Suppose that instead of the corner preferences, utility functions are given by

U(c1, c2; θ) = ρθ
c1−γ

1
1− γ

+ (1− ρθ)
c1−γ

2
1− γ

, θ ∈ {E, L}

with 1 > ρE > ρL > 0. As before, with probability λ, a consumer is early, and her
utility function is given by U(c1, c2; E). With probability 1−λ, her utility function is

15It is possible to change the model along other dimensions to explain runs, most prominently by
introducing fundamentals-based runs as in, for example, Allen and Gale (1998).
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U(c1, c2; L). The investment technology is riskless and pays R > 1 with probability
one. The social planner maximizes ex ante utility of a representative agent subject
to resource feasibility. Analytical expressions for optimal consumption levels can
be found easily, but the formulas are not very enlightening and hence omitted here
for brevity. The first-best allocation is always incentive compatible, and so it can be
implemented by a bank that cannot observe the liquidity needs of the consumers
directly (Jacklin and Bhattacharya, 1988, footnote 4). As in Diamond and Dybvig
(1983), I assume that the bank is subject to a sequential service constraint.

I now claim that, for a wide class of preferences, there exists a simple mechanism
that implements the first-best allocation uniquely. The mechanism does not call
for suspension of payments in the event of a run.16 Essentially, the first best can
often be implemented uniquely by giving seniority to the claims of the late types in
the event of a bankruptcy. This possibility of ruling out runs does not arise in the
original Diamond and Dybvig setup.

To that end, consider a simple numerical example. Let γ = 2, ρI = 0.95, ρP =

0.05, R = 1.5, λ = 0.5, and e = 1.17 Solving the first-order conditions shows that
the optimal allocation is given by

cFB
1E ≈ 0.90, cFB

1L ≈ 0.21, cFB
2E ≈ 0.25, and cFB

2L ≈ 1.10.

It can be verified that the allocation is incentive compatible. Assume that in period
one all consumers claim to be early: there is a run on the bank. Since the allocation
has cFB

1E < 1, the bank can make good on all of its period one promises. However, in
period two the bank can longer honour its promises: it only has R(1− cFB

1E ) ≈ 0.16
resources, while it has promised to pay 0.25 to everyone. Suppose, following Di-
amond and Dybvig, that in the second period the remaining assets are divided
equally between all of the depositors.18 With this bankruptcy procedure, if every-
one runs on the bank, it is a best response of a late type to also run. Thus, the
original Diamond and Dybvig mechanism (absent suspension of convertibility or

16As shown by Ennis and Keister (2009), suspension of payments (also called deposit freezes) may
not be a time-consistent policy.

17Note that the coefficient of relative risk aversion is greater than unity. In the original Diamond-
Dybvig environment, this would give rise to the possibility of panic-based runs.

18The key point is that, just as in Diamond-Dybvig, there is no sequential service constraint in
period two. Strictly speaking, since in the original Diamond-Dybvig environment a depositor gets
paid either in period one or period two, the scenario discussed in the text cannot happen in their
setup. Diamond and Dybvig (1983, p. 408) only write that “We are assuming throughout this paper that
the bank is mutually owned (a “mutual”) and liquidated in period 2, so that agents not withdrawing in period
1 get a pro rata share of the bank’s assets in period 2.” In the scenario I consider, everyone withdraws
in period one but there are still some resources left in period two. Note that if instead of being
distributed equally, payments are again made sequentially in period two, then a run on the bank
would still be a Nash equilibrium.
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possibly deposit insurance) cannot implement the first best uniquely.
However, the bank can implement the first-best allocation uniquely if it follows

an alternative bankruptcy policy. Suppose that if a bank is bankrupt in period two,
it first pays cFB

2L to all agents who claimed to be late in period one. If there are not
enough resources to do so, the assets are divided equally between the late types. If
there are still any assets left after serving the late types, they are divided equally
between the consumers who claimed to be early. Since cFB

1E ≤ e, even if all con-
sumers claim to be early, there are still enough resources to pay cFB

2L to a late agent
in period two. Since the first-best allocation is incentive compatible, this shows that
truth-telling is a (strictly) dominant strategy, and hence the first-best allocation can
be implemented uniquely by the bank.19

Although I used a specific example to make the point, the logic of this argument
is quite general. Whenever the socially efficient allocation has cFB

1E ≤ e, it is pos-
sible to use the bankruptcy procedure above to implement the first best uniquely.
Therefore, if one wants to compare banks and mutual funds in a setting with bank
runs, one needs to have a specification of the model that leads to cFB

1E > e. Unless
the return R is very high, the specification of preferences should thus be “close” to
the one used by Diamond and Dybvig. By continuity, we expect mutual funds and
banks to have similar welfare properties in such an environment.

4 Shocks to Aggregate Liquidity Demand

I now turn to the analysis of mutual funds when aggregate liquidity demand is
stochastic. The key result of this section is that mutual funds can implement the
full-information first best even when liquidity demand cannot be observed directly.
Note that if aggregate liquidity demand is observable, the implementation problem
is trivial, as we can apply the results of Jacklin (1987) state-by-state.

Instead of being fixed, the fraction of early consumers is now a random variable
λ̃ with support on (0, 1). To isolate the effect of stochastic liquidity demand, the
investment technology is riskless with R > 1. The social planner solves the follow-
ing problem (I assume that the planner can observe the realization of the aggregate
liquidity demand shock).

19See De Nicolo (1996) for a model in which a priority-of-claims provision on final date assets of
the banks may be used to implement a nearly optimal allocation in a much richer environment.
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Problem 5 (Full-information first-best allocation).

max
c1E(ω)

λ(ω)u
(
c1E(ω)

)
+
(
1− λ(ω)

)
u
(

e− λ(ω)c1E(ω)

1− λ(ω)
R
)

s.t. 0 ≤ c1E(ω) ≤ e
λ(ω)

for all states of nature ω ∈ Ω.

Since the return is fixed, I have already imposed cFB
1L = 0. Since we can solve the

optimization problem point-wise, we see that the optimal unique solution cFB
1E (ω)

satisfies

u′
(
c1E(ω)

)
= u′

(
e− λ(ω)c1E(ω)

1− λ(ω)
R
)

R for all states of nature ω ∈ Ω. (9)

If the mutual fund can observe the aggregate demand for liquidity directly, it can
easily implement the first best. This is a direct corollary of the implementation re-
sult of Jacklin (1987) that was already discussed in Section 3. Specifically, the mutual
fund can implement the full-information first best by setting d(ω) = λ(ω)cFB

1E (ω).
Even if the mutual fund cannot observe aggregate liquidity demand directly, it

may be able to infer the state of nature by observing the market-clearing price of
the mutual fund shares. Jacklin (1993, Proposition 1) shows that if consumers have
power utility, mutual funds can implement the first best by allowing the dividend
to vary with the price of the shares in a monotone fashion. The formulation used
by Jacklin does not require the mutual fund to observe the realized state. It is only
necessary that the price of the shares be revealing of the state at the optimal divi-
dend policy.20 Intuitively, if the dividend is fixed, then for a high realization λ the
price of the shares is low. There is less liquidity insurance in precisely those states
of nature in which such insurance is most desired (Lazopoulos, 2013). However, if
the dividend depends on the price, the mutual fund may be able to offset the price
impact of a higher supply of shares.

I follow Jacklin (1993) in allowing the dividend of the mutual fund to depend on
the market clearing price in a monotone way. The following proposition shows that
such mutual funds can implement the social optimum whenever consumers are
sufficiently risk averse, an assumption typically made in the literature. To the best
of my knowledge, the result of Jacklin (1993, Proposition 1) has not been extended
beyond special case of power utility. Since Jacklin proves his result by explicitly
solving for the first-best and mutual fund allocations, the method of my proof is
quite different.

Proposition 3. Suppose that the fraction of early consumers follows an arbitrary distribu-
tion with support on (0, 1), and the long-term return is fixed. Let −u′′(c)c/u′(c) > 1 for

20Formally, the market clearing price must be a bijective function of the dividend.
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all c ≥ e. If the dividend of the mutual fund can depend on the market-clearing price of the
mutual fund shares, the mutual fund can implement the first-best allocation. The optimal
dividend is a strictly decreasing function of the price.

Proof. In the Appendix.
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Figure 2: Left panel: Consumption of the early types, the price of shares, and the
optimal dividend as a function of the fraction of early consumers λ. Right panel:
market-clearing price of mutual fund shares and the optimal dividend d∗ = λc1E(λ)
as λ varies from zero (bottom left) to one (top right). The example has u(c) =
1− exp(− c

4); endowment is e = 1 and the long-term return is non-stochastic with
R = 3

2 .

Intuitively, the proof uses the implicit function theorem to show that if the mu-
tual fund sets d(ω) = λ(ω)cFB

1E (ω), there is a one-to-one mapping between the
dividend d(ω) and the equilibrium price p

(
d(ω)

)
. Note that some restrictions on

either the class of utility functions or distributions of λ are necessary for mutual
funds to implement the first best. Suppose that u(c) = 1 − exp(−c/4) and the
long-term return is non-stochastic with R = 3/2. Figure 2 shows that with this
specification, the market-clearing price p is not monotone in d∗ = λc1E(λ). Hence,
p−1(d) is not defined. Non-implementability is driven by the fact that the optimal
consumption of early types is increasing in λ, as shown in the left panel of Figure 2.
Intuitively, when λ is higher, two things happen. First, the optimal dividend is now
higher. Since late consumers spend all of the dividend on buying shares, a higher
dividend puts an upward pressure on the price. However, since λ is higher, there is
now a higher supply of shares in the market, which mechanically pushes the price
down. In the example shown in Figure 2, the first effect dominates for low values
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of λ, while the second effect dominates for high values of λ. In contrast, under the
assumptions of Proposition 3, the second effect dominates for all values of λ.

5 Conclusions

The global financial crisis was a stark reminder that the way financial intermedi-
aries finance their operations can have important consequences for the real econ-
omy. It is therefore important to understand under what conditions banks are ac-
tually better than other means of providing liquidity insurance. In this paper, I
investigated the welfare properties of mutual funds, a mechanism for providing liq-
uidity that has received significant attention both in previous theoretical work and
policy discussions. The main contribution of the paper is that, in contrast to what
the previous literature suggests, it is risk about returns, not liquidity demand, that
matters for the efficiency of mutual funds. Mutual funds are inefficient at provid-
ing liquidity insurance when returns are risky. If only aggregate liquidity demand
is stochastic, however, mutual funds can implement the first best with a suitable
dividend policy even when aggregate liquidity demand is not directly observed.

From a policy perspective, the results of the paper are useful for thinking about
the current debate on the level of optimal capital requirements and the possible
effects of high capital requirements on liquidity creation. This paper suggests that
banks may be better than mutual funds at creating liquidity when the following
conditions are met: (i) contracts are exclusive; (ii) interest rate risk is high; and (iii)
the frequency of bank runs is not too high. If contracts are not exclusive, mutual
funds dominate banks (Kucinskas, 2015). If there is no undiversifiable interest rate
risk, mutual funds are optimal if the consumers have the original Diamond-Dybvig
preferences (or have preferences that are close to the Diamond-Dybvig preferences),
as shown by Jacklin (1987). Finally, the probability of bank runs should not be too
high, since if runs happen too frequently, mutual funds are superior to banks, a
corollary of the results in Cooper and Ross (1998). Looking forward, an important
open question lies in quantifying these trade-offs and developing the implications
for optimal macroprudential policy.
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equity valuations. Working Paper, Federal Reserve Board.

Ennis, H. M., Keister, T., 2009. Bank runs and institutions: The perils of intervention.
The American Economic Review 99 (4), 1588–1607.

Farhi, E., Golosov, M., Tsyvinski, A., 2009. A theory of liquidity and regulation of
financial intermediation. The Review of Economic Studies 76 (3), 973–992.

Flannery, M. J., James, C. M., 1984. The effect of interest rate changes on the common
stock returns of financial institutions. Journal of Finance 39 (4), 1141–1153.

Freixas, X., Martin, A., Skeie, D., 2011. Bank liquidity, interbank markets, and mon-
etary policy. Review of Financial Studies 24 (8), 2656–2692.

Gale, D., Yorulmazer, T., 2013. Liquidity hoarding. Theoretical Economics 8 (2), 291–
324.

Gorton, G., Metrick, A., 2012. Securitized banking and the run on repo. Journal of
Financial Economics 104 (3), 425–451.

Gorton, G., Winton, A., 2003. Financial intermediation. In: Constantinides, G., Har-
ris, M., Stulz, R. (Eds.), The Handbook of the Economics of Finance: Corporate
Finance. Elsevier, pp. 431–552.

Hazlett, D., 1997. Deposit insurance and regulation in a Diamond-Dybvig banking
model with a risky technology. Economic Theory 9 (3), 453–470.

Hellwig, M., 1994. Liquidity provision, banking, and the allocation of interest rate
risk. European Economic Review 38 (7), 1363–1389.

Jacklin, C. J., 1987. Demand deposits, trading restrictions and risk sharing. In:
Prescott, E. D., Wallace, N. (Eds.), Contractual Arrangements for Intertemporal
Trade. Minnesota: University of Minnesota Press, pp. 26–47.

Jacklin, C. J., 1993. Market rate versus fixed rate demand deposits. Journal of Mon-
etary Economics 32 (2), 237–258.

Jacklin, C. J., Bhattacharya, S., 1988. Distinguishing panics and information-based
bank runs: Welfare and policy implications. The Journal of Political Economy
96 (3), 568–592.

Kimball, M. S., 1990. Precautionary saving in the small and in the large. Economet-
rica 58 (1), 53–73.

21



Kotlikoff, L. J., 2010. Jimmy Stewart is Dead: Ending the World’s Ongoing Financial
Plague with Limited Purpose Banking. New Jersey: John Wiley & Sons.

Krishnamurthy, A., 2010. How debt markets have malfunctioned in the crisis. Jour-
nal of Economic Perspectives 24 (1), 3–28.

Krishnamurthy, A., Vissing-Jorgensen, A., 2012. The aggregate demand for treasury
debt. Journal of Political Economy 120 (2), 233–267.

Krishnamurthy, A., Vissing-Jorgensen, A., 2015. The impact of Treasury supply on
financial sector lending and stability. Journal of Financial Economics, forthcom-
ing.

Kucinskas, S., 2015. Liquidity creation without banks. Working Paper, VU Univer-
sity Amsterdam.

Lazopoulos, I., 2013. Liquidity uncertainty and intermediation. Journal of Banking
& Finance 37 (2), 403–414.

Leland, H. E., 1968. Saving and uncertainty: The precautionary demand for saving.
The Quarterly Journal of Economics 82 (3), 465–473.

Longstaff, F. A., 2004. The flight-to-liquidity premium in US treasury bond prices*.
The Journal of Business 77 (3), 511–526.

Martin, A., Skeie, D., Von Thadden, E.-L., 2014. Repo runs. Review of Financial
Studies 27 (4), 957–989.

Nagel, S., 2014. The liquidity premium of near-money assets. Working Paper, NBER.

Prescott, E. C., Townsend, R. M., 1984. Pareto optima and competitive equilibria
with adverse selection and moral hazard. Econometrica 52 (1), 21–45.

Sunderam, A., 2015. Money creation and the shadow banking system. Review of
Financial Studies, forthcoming.

Wakker, P. P., 2010. Prospect Theory: For Risk and Ambiguity. Cambridge: Cam-
bridge University Press.

22



Appendix A Proofs

Proof of Lemma 1

The proof is by applying Jensen’s inequality twice. Suppose that the incentive com-
patibility constraint does not hold for the late types at the first best, i.e. u(cFB

1E ) >

E[u(cFB
1L + c̃FB

2L )]. This implies that

cFB
1E > u−1(E[u(cFB

1L + c̃FB
2L )]

)
> cFB

1L + E[c̃FB
2L ],

where I used Jensen’s Inequality and the fact that u−1(·) exists, is strictly increasing
and strictly concave. But since u′ is strictly decreasing and convex,

u′(cFB
1E ) < u′

(
cFB

1L + E[c̃FB
2L ]
)
≤ E[u′(cFB

1L + c̃FB
2L )],

where I used Jensen’s inequality in the second step. However, from Eq. (1) and Eq.
(2) we have that

u′(cFB
1E ) ≥ E[u′(cFB

1L + c̃FB
2L )], (10)

a contradiction. Hence, the incentive constraint must be satisfied for the late types.
If the incentive-compatibility constraint does not hold for the early types, i.e. cFB

1L >

cFB
1E , then we immediately get a contradiction to Eq. (10).

Proof of Proposition 1

I consider two cases. First, I look at the case of an interior solution, meaning that
the non-negativity constraint on cFB

1L is not binding at the first-best solution. Then, I
consider the case when cFB

1L is zero.
Interior solution: cFB

1L > 0. Suppose, for contradiction, that the mutual fund and
first-best allocations are identical at some appropriately chosen dividend. Then,
first-order conditions in Eq. (2) and Eq. (5) imply that d = e − p. Now by the
budget constraint of the early types, cMF

1E = d + p. As a result, for the mutual fund
and first-best allocations to coincide it is necessary to have cFB

1E = e. In that case, the
first-best allocation equals autarky.

For the other direction, suppose that the first-best and autarky allocations are
the same. Let the mutual fund set d = λe + (1− λ)cMF

1L . Then, the market clearing
price is p = (1− λ)(e− cMF

1L ) and therefore d + p = e. Therefore, cMF
1E = e and, in

addition, the solutions to Problem 1 and Problem 3 are the same. Thus, the mutual
fund implements the first best.
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Non-interior solution: cFB
1L = 0. Let c∗ denote the solution to

u′(c∗) = E

[
u′
(

e− λc∗

1− λ
R̃
)

R̃
]

.

A small calculation shows that cFB
1L = 0 if and only if

E

[
u′
(

e− λc∗

1− λ
R̃
)
(1− R̃)

]
≤ 0.

Turning to the mutual fund allocation, a necessary and sufficient condition to im-
plement cFB

1L = 0 is given by

E

[
u′
(

e− λcFB
1E

1− λ
R̃

)(
1−

R̃(e− λcFB
1E )

(1− λ)cFB
1E

)]
≤ 0. (11)

It is evident that even if cFB
1L = 0, the implementability condition in Eq. (11) may fail

to hold if the first-best allocation involves liquidity insurance (cFB
1E > e). If cFB

1L = 0
and cFB

1E ≤ e, the mutual fund can always implement the first best.

Proof of Proposition 2

Since early types derive no utility from period two consumption, we know that
c2E(s) = 0 for all states s. Multiply both sides of the second period budget con-
straint in Eq. (7) by q(s), and sum get αE ∑s q(s)R(s)(e− d) = −∑s q(s)BE(s). By
no arbitrage, p = ∑s q(s)R(s)(e− d), and so αE p + ∑s q(s)BE(s) = 0. Thus, the first
period budget constraint of the early types in Eq. (6) implies that c1E = d + p.

Now multiply the market clearing condition in Eq. (8) by q(s), and sum over s to
get λ ∑s q(s)BE(s) + (1− λ)∑s q(s)BL(s) = 0. Market clearing for the shares in Eq.
(4) implies that λαE p+(1−λ)αL p = p. Adding up the two equations and using the
fact that αE p + ∑s q(s)BE(s) = 0, yields ∑s q(s)BL(s) = p (1/(1− λ)− αL). Thus,
period one budget constraint for the late types shows that c1L = d− λp/(1− λ). It
remains to be shown that BL(s) + R(s)(e− d)αL = R(s)(e− d)/(1− λ). To do so,
multiply the second period budget constraint by π(θ), sum over θ and use market
clearing and c2E(s) = 0 to obtain c2L(s) = R(s)(e− d)/(1− λ), which is the obtain
the desired result. Combining the facts above we see that in equilibrium c1E =

d + p, c1L + c2L(s) = d− λp/(1− λ) + R(s)(1− d)/(1− λ), and p = (1− λ)(d−
c1L)/λ. Hence, the equilibrium is unchanged by the addition of Arrow-Debreu
securities.
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Proof of Proposition 3

An application of the implicit function theorem shows that c1E(λ) is a continuously
differentiable function for all λ ∈ (0, 1) with

c′1E(λ) =
(e− c1E)R2u′′ (c2L)

(1− λ) (λR2u′′ (c2L) + (1− λ)u′′(c1E))
< 0 since c1E > e, 21

where c2L = (e − λc1E)/(1 − λ)R. Since the market-clearing price is equal to
p(λ) = (1 − λ)c1E(λ), p′(λ) = −c1E(λ) + (1 − λ)c′1E(λ) < 0. Rewrite Eq. (9)
as u′ (d(λ)/λ) = u′ ((e− d(λ))/(1− λ)R) R. Another application of the implicit
function theorem shows that d(λ) is a continuously differentiable function for all
λ ∈ (0, 1) with

d′(λ) =
u′′(c2L)R2(e− d)/(1− λ)2 + u′′(c1E)d/λ2

u′′(c1E)/λ + u′′(c2L)R2/(1− λ)
> 0.

By the inverse function theorem, λ(p) is well-defined, continuously differentiable,
and strictly decreasing. Hence, we can write d(λ) = d(λ(p)) ≡ h(p). Since d(λ)
is strictly increasing and λ(p) is strictly decreasing, their composition is strictly
decreasing.

21To see this, note that −u′′(c)c/u′(c) > 1 implies that u′(Rc)c is strictly decreasing in R for c ≥ e.
Therefore, u′(c)− u′(Re)R > u′(c)− u′(1 · c) · 1 = 0.
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Appendix B Existence and Uniqueness

When the return is riskless, it is immediate that a competitive equilibrium in the
mutual fund economy exists and is unique. Things are a bit more complicated when
the return is risky. I now give a direct proof that an equilibrium always exists in the
mutual fund economy. Moreover, the equilibrium is unique under the empirically
plausible assumption that absolute risk aversion is decreasing in wealth (Wakker,
2010, p. 83).22 This result is important because one appealing feature of mutual
funds is that they, in contrast to demand deposits, do not give rise self-fulfilling
panics.

I call an equilibrium interior if the first-order condition of the late types in Eq.
(5) holds with equality at the market clearing price. The equilibrium price p at an
interior optimum is given by the solution to f (p) = 0 where

f (p) = p E

[
u′
(

d− λ

1− λ
p +

R̃(e− d)
1− λ

)]
−

E

[
u′
(

d− λ

1− λ
p +

R̃(e− d)
1− λ

)
R̃(e− d)

]
.

(12)

In what follows, the domain of f is taken to be [0, (1 − λ)d/λ]. From the mar-
ket clearing condition (4), (1− λ)d/λ is a trivial upper bound for the equilibrium
price. Clearly, f is well-defined and continuously differentiable for all p in its do-
main. Finally, note that if f

(
(1− λ)d/λ

)
< 0, there exists an equilibrium that is not

interior.
The following lemma shows that f ′(p∗) > 0 at all p∗ that solve f (p) = 0, if any

such p∗’s exist:

Lemma 2. Suppose that absolute risk aversion is decreasing in wealth. Let f (p∗) = 0. At
any such p∗, f ′(p∗) > 0.

Proof. Denote absolute risk aversion at consumption c by ρ(c) ≡ −u′′(c)/u′(c).
Taking the derivative gives

f ′(p) =
λ

1− λ

(
E[u′′(c1L + c̃2L) R̃](e− d)−E[u′′(c1L + c̃2L)]p

)
+ E[u′(c1L + c̃2L)].

To prove the result, it is enough to show that the term in the brackets is positive
at p∗. To that end, rewrite the term in the brackets as

∫
ρ
(
c1L + c2L(R)

)
u′(c1L +

22As is standard, absolute risk aversion is decreasing in wealth if for cH ≥ cL > 0, −u′′(cH)/u′(cH) ≤
−u′′(cL)/u′(cL).
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c2L(R))(p− R(e− d))d F(R),. Let R ≡ p/(e− d). Note that c1L + c2L(R) = d + p.
There are two cases two consider:

• R ≤ R. Then, ρ
(
c1L + c2L(R)

)
≥ ρ(d + p) and p− R(e− d) ≥ 0.

• R ≥ R. Then, ρ
(
c1L + c2L(R)

)
≤ ρ(d + p) and p− R(e− d) ≤ 0.

In any case, we see that the product of the two terms is ρ
(
c1L + c2L(R)

)(
p− R(e−

d)
)
≥ ρ

(
d + p

)(
p − R(e − d)

)
. Since ρ

(
d + p

)
does not depend on R, we get the

following estimate∫
ρ
(
c1L + c2L(R)

)
u′(c1L + c2L(R))(p− R(e− d))d F(R) ≥

ρ
(
d + p

) ∫
u′(c1L + c2L(R))(p− R(e− d))d F(R) ≥ 0,

where we use the fact that the first-order condition of the late types in Eq. (5) holds
with equality at p∗ in the last step.

An immediate corollary is the following:

Corollary. If absolute risk aversion is decreasing in wealth, there can be at most one interior
equilibrium.

Now, since f (0) < 0, there are two cases to consider given the results above.

• There is some p∗ ∈ (0, (1− λ)d/λ) that solves f (p) = 0. Then, by the Corol-
lary above we know that f ((1− λ)d/λ) > 0, which means that there is no
non-interior equilibrium.

• For all p ∈ [0, (1− λ)d/λ), f (p) < 0. In this case, the equilibrium has c1L = 0.
By assumption, there is no other equilibrium with c1L > 0.

Thus, we have proved the desired result.

Proposition 4. For all d ∈ (0, e) an equilibrium in the mutual fund economy always exists.
Moreover, if absolute risk aversion is decreasing in wealth, the equilibrium is unique.
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