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Abstract

We develop Hawkes models in which events are triggered through self as well as cross-
excitation. We examine whether incorporating cross-excitation improves the forecasts of ex-
tremes in asset returns compared to only self-excitation. The models are applied to US stocks,
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1 Introduction

We develop Hawkes models in which events are triggered through self as well as cross-excitement.
Exploiting the cross-sectional dependence between financial series, we aim to improve the fore-
casts of extremes and their sizes. It has already been shown that Hawkes models contribute to the
identification and prediction of extreme events in financial markets.! Currently, research in finance
pays much attention to the modeling of extremal dependence between financial markets, though
with an in-sample focus. We extend these studies on contagion, as we examine whether incorpo-
rating this dependence improves forecasts. For a wide range of assets, we find that Hawkes models
with spillover effects forecast the probability of crashes and the Value-at-Risk significantly more
accurately than models without.

Traders, regulators of financial markets and risk management benefit greatly from the accurate
forecasts of extreme price movements in financial markets. Nowadays, a large literature focuses
on modeling extremal dependence between financial markets.? This topic gained interest since the
financial crisis of 2008 as this crisis demonstrated the consequences of the cohesion between the
behavior of the prices in the financial markets. For example on September 29, October 15 and
December 1 in 2008 the S&P 500, the Dow Jones Industrial Average (DJI) and the NASDAQ,
all suffered top 20 percentage losses. Furthermore on September 29 the euro/dollar rate and the
pound/dollar rate also dropped by a large amount, while the US bond market boomed. On the 16th
of October, just one day after the major US stock markets crashed, and on the 1th of December
both currencies fell again sharply. Moreover 4 days after these dates US bond prices shifted sig-
nificantly. These joint extremes demonstrate the overlap of periods in which financial markets are
subject to tension with extreme price movements as a result.

A Hawkes model uses an inhomogeneous Poisson process to model the occurrence of events
above a certain threshold. The event rate increases with the arrival of a new event whereas the
event rate decays with the time passed since an event. As the probability of events increases when
an event occurs, the Hawkes process is called a self-exciting process. Characteristics typically
observed in processes that fit Hawkes models are the clustering of extremes and serial dependence.

Earthquakes, for which the Hawkes models were originally designed, exhibit clustering be-

haviour in space as well as in time (Ogata, 1998). Likewise, financial series seem to cluster in a

ISee amongst others: Bowsher, 2002, Chavez-Demoulin et al., 2005, Hewlett, 2006, Bowsher, 2007, Bauwens and
Hautsch, 2009, Herrera and Schipp, 2009, Embrechts et al., 2011, Chavez-Demoulin and McGill, 2012, Bormetti et
al., 2013, Ait-Sahalia et al., 2014, Gourieroux et al., 2014, Grothe et al., 2014. Ait-Sahalia et al., 2015, Gresnigt et al.

2015a
2See amongst others: Longin and Solnik, 2001, Poon et al., 2003, Poon et al., 2004, Bekaert et al., 2011, Grothe et

al., 2014., Ait-Sahalia et al., 2015



dimension other than the time dimension.®> Extreme stock returns across markets are found to be
more correlated than small returns (Bae et al., 2003). They occur more frequently at the same time
than expected under the assumption of a normal dependence structure (Mashal and Zeevi, 2002,
Hartmann, 2004, Sun et al., 2009). This suggests that financial markets experience stress at the
same time. For example, using the multivariate GARCH framework, volatility spillover effects
between stock markets have been detected in numerous studies.* Interpreting volatility as a mea-
sure for the tension, these findings indicate that stress from financial markets pours over to other
financial markets.

In this paper we extend Hawkes models to include contagion in financial markets. In the models
we allow extreme events in one financial market to trigger both the occurrence and the magnitude
of extreme events in other markets. Studies on Hawkes models for financial series in a multivariate
setting include Bormetti et al. (2013), Grothe et al. (2014) and Ait-Sahalia et al. (2015). Dif-
ferent from these and other in-sample studies on financial contagion, we explicitly examine the
effects of cross-excitation on out-of-sample forecasts. We assess its added value for the probability
forecast of an extreme event and for Value-at-Risk. Thereby we extend Chavez-Demoulin et al.
(2005), Herrera and Schipp (2009) and Chavez-Demoulin and McGill (2012), who showed using
Value-at-Risk and Expected Shortfall that univariate Hawkes models contribute to the modeling
and prediction of risk in finance. Moreover Bystrom (2004) finds that conditional models based on
Extreme Value Theory give particularly accurate VaR measures, which are superior to traditional
approaches such as GARCH for both standard and more extreme VaR quantiles.

In somewhat more detail, we use the Lagrange Multiplier principle (see Breusch and Pagan
(1980), Engle (1982) and Hamilton (1996)) as in Gresnigt at al. (2015b) to test whether the
spillovers contribute to the model fit. The correctness of the model specifications is further eval-
uated by means of the residual analysis methods as proposed in Ogata (1988). We assess the
quality of the probability forecasts by the Quadratic and Log Probability Scores and the adjusted
Mean Squared Error test of Clark and West (2007). For the evaluation of the VaR forecasts we use
the unconditional coverage, independence and conditional coverage test of Christoffersen (1998), a
Dynamic Quantile test in the line of Engle and Manganelli (2004) and the test designed by Diebold
and Mariano (1995) based on an asymmetric loss function as in Giacomini and Komunjer (2005).

We apply the models to extreme losses in three stock markets and to extreme losses and gains
in the US bond market and two exchange rates. Hence, for the stock market our analysis focuses

on long positions, whereas we consider both long and short positions for bond and FX markets.

3See amongst others: Eun and Shim, 1989, Fischer and Palasvirta, 1990, King and Wadhwani, 1990, Lin et al.,

1994, Connolly and Wang, 2003
4See amongst others: Hamao et al., 1990, Bae et al., 1994, Koutmos and Booth, 1995, Booth et al., 1997, Kanas,

1998.



In-sample, the LM test reject the absence of cross-excitation. Performing residual analysis, the fit
of the models for the various series is good, except for the bond market. Out-of-sample, models
with spillover effects provide significantly more accurate forecasts of the occurrence of an extreme
return and of the Value-at-Risk than the models without spillover effects. We conclude that in-
cluding cross-sectional dependence improves the forecasts of crashes, and hence cross-sectional
dependence should not be ignored. Furthermore, the predictability of event sizes adds to the fore-
casting performance of the models.

The rest of our paper is organized as follows. In Section 2 we give a brief introduction on
Hawkes models. Furthermore we propose an extension of the univariate Hawkes model which
incorporates cross-excitation and we discuss a Lagrange Multiplier test for dependence across
series. In section 3 we apply the models and the LM test to US stocks, bonds and exchange rate
data. Section 4 contains an in-sample assessment of the models by means of a residual analysis.
The models are evaluated out-of-sample on the basis of the prediction of the probability of an

extreme and the Value-at-Risk in Section 5. Section 6 concludes.

2 Hawkes models

2.1 Univariate model

The Hawkes model is a branching model. Each event can trigger subsequent events, and these can
again trigger subsequent events. The model is based on the mutually self-exciting Hawkes point
process, which is an inhomogeneous Poisson process. For the Hawkes process, the intensity at
which events arrive at time ¢ depends on the history of events prior to time ¢.

Consider an event process (t1,m1),...,(tx, my) where ¢; defines the time and m; the mark of
event i. Let H; = {(t;,m;) : t; <t} represent the entire history of events up to time ¢. The

conditional intensity of jump arrivals following a Hawkes process is represented by

A(L6;He) = p+m Z gt — ti,my), (D
ity <t

where 1 > 0, 79 > 0 and g(s,m) > 0 whenever s, m > 0 and 0 elsewhere. The parameter -y,
controls the maximum triggering intensity and the expected number of events directly triggered
by an event. The conditional intensity consists of a constant term p and a self-exciting function
19(s, m), the latter function depends on the time passed since the jumps which occurred before
t and the size of these jumps. Thus the rate at which events arrive is separated in a long-term
background component and a short-term clustering component describing the temporal distribution

of aftershocks. The conditional intensity uniquely determines the distribution of the process.



It is usual to specify the triggering function as

Bsc(m) (2)

g(s,m) =e”

where [ determines how fast the possibility of triggering events decays depending on the time
passed since an event. The influence of the sizes of past events on the intensity is given by ¢(m).
For the influence of the sizes of past events on triggering of future events, ¢(m), it is common

to use the exponential form
c(m) = em=), 3)

where u represents the minimum magnitude of an event and « determines how the size of an event
affects the probability of triggering other events. When o > 0, larger events trigger more events
than smaller events, because the probability of triggering events increases with the size of past
events (m). The larger positive « is, the more pronounced is the influence of the size of events.

To enable an application to financial data, we choose a Generalized Pareto Distribution for the

sizes of the events®

m—u\ V¢
Prim<Mm>u;0;H,)=1—(1+¢ , %)
< o(t) )

where o(t) = ¢ + LA(¢[6;H;) and  # 0. In case n = 0 the size of an event is unpredictable,
whereas in case 7 # 0 the arrival times and sizes of previous events affect the distribution of the
sizes of subsequent events. We scale the mean and variance of the distribution of the sizes of
events with o(¢). When n > 0 the magnitude of events is expected to be more extreme, when the
conditional intensity is high. The larger positive 7 is, the more pronounced is the influence of the

history of events on the size of subsequent events.
The expected number of off-spring of an event, is given by the branching ratio. Using (2) the

branching ratio is equal to
fyl/ g(s,m)ds = ﬂc(m). ®)
0

A Hawkes process is stationary when the branching ratio is smaller than 1. When the ratio exceeds
1, the rate at which events arrive will grow to infinity over time.
The log-likelihood of the Hawkes model, specified in the conditional intensity and the proba-

bility distribution of the sizes of the events, is given by

N T N
log L() = ) log A(ti|0: H:) — / A(s(0: H.)ds + D log f(mi|0: Hy) (©6)

i=1 0 i=1

See amongst others: Poon et al., 2004, Herrera and Schipp, 2009, Chavez-Demoulin et al., 2005, and Chavez-
Demoulin and McGill ,2012, Grothe et al., 2014, Gresnigt et al., 2015a and b



where ¢; are the event arrival times in the interval [0, 7).
The probability of the occurrence of an event following a Hawkes process with conditional

intensity A(¢|60; H,) between ¢ — dt and ¢ is now given by

Pr(N(t) — N(t — ot) > 0|0; H,) =1 — Pr(N(t) — N(t — 6t) = 0]|0; H,)
=1—F(t" > 0t|0; H,)

t
= exp (—/ A(s|6; Hs)ds)
t—ot

We follow Gonzalo and Olmo (2004) to determine the threshold above which an event is ex-

(7)

treme. The selection of the threshold is important as a too low threshold gives inaccurate parameter
estimates. On the other hand, a threshold higher than necessary reduces the number of observa-
tions available to estimate the model, resulting in estimates that are inefficient and more sensitive
to aberrant observations. Gonzalo and Olmo (2004) define the weighted Picklands distance as the
maximum distance between the empirical distribution of observations above a certain threshold
and the maximum likelihood fit of the General Pareto Distribution to these observations multiplied
by a tuning parameter,

" (Fu,N, GPDEA%L(U),(}%L@)) =k nglfw‘Fu,N(y) - GPDE%L(u),&}\V,IL(u) (y)|, 8)
where 0 < € < % and k = Zfil I(y; > u). The parameter € determines the weight assigned by
d"'P to the tail observations defined by the corresponding u. When € = 0, the distance is equal
to the distance used by Pickands (1975). When € = % the distance is equal to the Kolmogorov-

Smirnov (KS) statistic. The optimal threshold minimizes this distance
* : WP R
uy = argmind” " (Fy N, GPDSJ]\VTIL(,M)@_%L(“)) )

Following Gonzalo and Olmo (2004), we set ¢ = % Other techniques for setting u have their
drawbacks. Graphical methods, such as the interpretation of mean-excess, threshold stability and
Hill plots, are ambiguous and depend on choices in earlier stages, which leads to subjective results.
Besides, these methods are time consuming. Block maxima methods are in general not applicable
to financial series as the anti-clustering condition is violated for those series. Many bootstrap
approaches set the threshold on the basis of biased parameter estimates. For a more extensive

discussion on threshold estimation see Scarrott and MacDonald (2012).

2.2 Spillover model

When events across series tend to arrive around the same time, the occurrence of an event in one

series could increase the probability that an event in another series arrives. A Hawkes model in
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which the conditional intensity of a series 7 is affected by the history of the event process of another
series j is represented as
MHOH) = p+m > glt —ti,m) + 72 Y h(t —t;,m;), (10)
ity <t jiti<t
where ~,h(t — t;,m;) presents the effect of an event in series j on the intensity at time ¢ in
series . The cross-exciting function h(s,m) can be specified in various ways. Here, we set
h(s,m) = g(s,m) to keep the model parsimonious and model parameters identified when there
are no spillovers, 72 = 0. The events in the series j also affect the probability distributions of the
sizes of events in series ¢ through (4) when 7 # 0.
We perform a Lagrange Multiplier test on the null-hypothesis that 7, = 0. As we deal with a
count process we define the score used for the LM test in event numbers and not in time points. The
score of the n-th event is defined as the derivative of the logarithm of the conditional likelihood (6)

with respect to the parameter vector 6,

o _ 0log p(yi]0; Hy)
gi(0) = ; (11)
00 00
which can be derived to be equal to
- 8 s10; Hs)ds 10: 10-
i10;Hy) 0=0 0=6

The score (12) consists of three terms that respectively reflect the change in the probability distri-
bution of the time between two consecutive events, the relative change in the rate at which events
occur and the change in probability to observe an event of a certain magnitude, when 0 is shifted
by a infinitesimal amount. We assess the added value of the parameters to the model in terms of
their contribution to the prediction of the occurrence times and magnitudes of events ¢; and m;.
Let z(t) = >, - h(t — t;,m;) denote the additional tension caused by all events in a series
j before time t. To test whether the cross-triggering effects are significant for a series ¢, we first
estimate the Hawkes model under the null-hypothesis of no cross-excitation, 7, = 0. Next, we use
(12) to compute the expected score from the derivative of the conditional intensity, the integrated

conditional intensity and the probability distribution of event sizes, given by

OA(t:|0; Hy) —y
8—’}/2 —fL‘(tz) (13)
8]:4 A(s|0;Hs)ds ti
7 :/ti1 x(s)ds (14)
i o) _ () (_E+(m—u) ) s
02 o (ti) \o(t:) +&§(mi — ;) .

The LM test is asymptotically x*(1) under the null of no cross-excitation.

7



3 Application to Financial Data

We consider daily returns of three US stock market indices, the S&P 500 (S&P), the NASDAQ
(NDQ) and the Dow Jones Industrial Average (DJI), the US bond index (BND), and two exchange
rates, the euro/dollar rate (€/$) and the pound/dollar rate (£/$) over the period from 1 January,
1990, to 1 July, 2015. We construct daily discrete returns as R, = (p;/p;—1 — 1) - 100, where p;
denotes the value of a series at t. The Hawkes models are estimated over the period that ranges
from 1 January, 1990, to 1 January, 2013, which corresponds to 6653 trading days. We use the data
thereafter for an out-of-sample evaluation of the models. Figure 1 displays the evolution of the
prices of the stock market indices, the bond market index and the exchange rates over the whole

period.
[Figure 1 about here.]

We apply the Hawkes models to negative extremes in the stock market indices and to negative
and positive extremes in the US bond index and the exchange rates. Employing the method of
Gonzalo and Olmo (2004) over the estimation period, we find that extremes above the 94.29%
among all series can be considered to be ‘really extreme’. We set the threshold for each series at
the value that corresponds to this quantile of their empirical distribution.

The estimated Hawkes models differ as the parameters «, 1 and/or v, are restricted to zero in
some of the models, while in other models these parameters are unrestricted. When o = 0 the sizes
of former events do not influence the conditional intensity of new event arrivals, whereas they do
when « # 0. When 7 = 0 the history of the event process does not have information on the sizes
of events in the future, while when 1 # 0 the sizes of events can be predicted from the past.

Our specific focus is on comparing the models in which ~, = 0 to the models in which v, # 0.
In the first set of models the occurrence of events in a series and the magnitudes of these events
are not affected by the occurrence of events in another series. In the second set of models the rate
at which events arrive in a series ¢ is amplified whenever an event in another series j arrives. The
effect scales with the size of the events in the series j whenever o % 0. Moreover, in case 1 # 0
the occurrence of events in the series j influences the distribution of the sizes of events in the series
1. In this paper we examine the impact of crashes in the S&P 500 index on extremes in the other
series. We choose to investigate the spillovers from the S&P 500 index as the index is one of the
most commonly followed equity indices and considered as one of the best representations of the
US stock market. Furthermore we investigate whether crashes in the NASDAQ provoke crashes in
the S&P 500 index. The NASDAQ is very well suited to serve as a proxy for spillover effects to the
S&P 500 index from other stock market indices as the NASDAQ is the second-largest exchange in

the world by market capitalization.



[Table 1 about here.]

Table 1 presents the parameter estimates for the Hawkes model in which v, # 0, 7 # 0 and
a = 0. As v # 0, crashes in the S&P 500 index are allowed to provoke extremes in the other
series, while crashes in the S&P 500 index can be triggered by crashes in the NASDAQ. Due to
space constraints we only display the parameter estimates for this model. This model turns out to
be the overall best performing model out-of-sample.

The estimates for 7 are positive and significant for all series. This suggests that a model which
incorporates the history of the event process to predict the sizes of subsequent events, matches the
extremes closer than a model which assumes that the sizes of events are independent of the past.
As n > 0, the size distribution has a higher mean and variance when the conditional intensity is
high such that the magnitude of events is expected to be more extreme in that case. This means
that, on average larger events are observed in turbulent periods in which more events occur than in
tranquil periods. As « is restricted to zero, the sizes of previous crashes do not affect the rate at
which new crashes occur.

The parameter 5 controls for the cross-triggering of events. As is clear from the bottom row
of Table 1, all estimated parameters are significant at the 5% level except for the parameter that
drives the effect of crashes in the S&P 500 index on crashes in the NASDAQ. Moreover, the
parameters linked to the spillovers from crashes in the S&P 500 index to extremes in the exchange
rates and crashes in the US bond market, are significant at a 1% level. The instantaneous effect of
the occurrence of events in one series on the event rate in another series is between 0.15 and 0.62
times as large as the effect of events in the series itself, where the ratio between the instantaneous
cross-excitation and self-excitation effect is the highest for extremes in the bond market and the
lowest for crashes in the NASDAQ.

To quantify the effects that extremes occurring in one market have on another market, we
examine the branching ratio of extremes in the markets, see (5). Amongst series, an event triggers
on average 0.11 to 0.41 events in another series, where the smallest amount of crashes are provoked
between the NASDAQ and the S&P 500 index. The expected number of bond crashes following a
S&P 500 crash is the highest. The percentage of events induced by events in another series ranges
between 12% and 34%.

Looking at the parameter estimates, the impact of crashes in the S&P 500 index on extremes
in other series and the impact of crashes in the NASDAQ on crashes in the S&P 500 index, seems
quite substantial such that it should not be ignored. We now perform an LM test to confirm the

indicated cross-excitation.

[Table 2 about here.]



Table 2 reports the LM statistics for testing the null-hypothesis of no spillover effects o = 0 in
various models. In accordance with the parameter estimates, we find that crashes in the S&P 500
index amplify the probability that crashes as well as booms in the bond market and the exchange
rate series occur. Thus, the LM test detects both stock-bond contagion as the flight-to-quality
phenomenon, that is, the outflow of capital from stock markets to bond markets when the first are
facing crises periods. The evidence for stock-bond contagion is more pronounced as the LM test
statistics for the effect of crashes in the S&P 500 to crashes US bond market are by far the highest,
ranging from 33.98 to 34.51.

Furthermore, as the parameter estimates already indicated, we discover that when Hawkes
models are applied in which the sizes of the past crashes have no impact on the occurrence of
future crashes, crashes in the S&P 500 index trigger crashes in the DJI index. However, the LM
test suggests that there is no such cross-excitement when models are employed in which sizes of
previous crashes matter for the arrival rate of new crashes. Also, according to the LM test, there
is a lack of spillover effects from the S&P 500 index to the NASDAQ. We do encounter evidence
for spillover effects the other way around. Both findings are reflected in the parameter estimates in
Table 1.

From the parameter estimates and the LM tests, we conclude that in-sample the impact of
the occurrence of crashes in the NASDAQ on the occurrence of crashes in the S&P 500 index
and the impact of the occurrence of crashes in the S&P 500 index on the occurrence of extremes
in other financial series is sizeable and important. We may thus expect that the Hawkes models
that account for the cross-triggering phenomenon perform better out-of-sample than the Hawkes

models that ignore it.

4 Residual analysis

We assess the goodness-of-fit of our models using the residual analysis technique of Ogata (1988).

If the event process {t;} is generated by the conditional intensity \(¢), the transformed times

t;
Ti:/ A(s)ds (16)
0

are distributed according to a homogeneous Poisson process with intensity 1. Furthermore the

transformed interarrival times

t;
Ty — Ti_1 = / A(s)ds 17

ti—1
are independent exponential random variables with mean 1. If the models are correctly specified,
A(t) can be approximated by /\(t|§ ; H:). The sequence {;} is called the residual process. In order

to verify whether the residual process derived from the models is Poisson with unit intensity, we

10



perform the Kolmogorov-Smirnov (KS) test. The null-hypothesis of our test is that the distribution

of the residual process and the unit Poisson distribution are equal.
[Table 3 about here.]

The KS tests are performed on the transformed times by applying the models to the extremes.
The p-values of the tests are reported in Table 3. The p-values indicate that the extremes do not
deviate from an event process specified by the models at a 5% level, except for the US bond crashes
and booms when spillover effects from crashes in the S&P 500 index are incorporated. Though p-
values are higher for the models without cross-excitation, they cannot be interpreted as a preference

for these models.

S Forecasting

5.1 Probability predictions

Traders, risk managers and regulators of financial markets can benefit from the accurate forecast
of a crash. The probability of an extreme event occurring between ¢ — 0t and ¢ is given by (7). We
evaluate the probability forecast of an extreme event during the next day in stock, bond and FX
markets out-of-sample from 1 January, 2013, to 1 July, 2015. We use the in-sample thresholds and
parameter estimates of the previous section to prevent any look-ahead bias.

To compare the probability forecasts, we compute the Quadratic Probability Score (QPS) and
the Log Probability Score (LPS) for each model, that is

QPS = %Zl ) > u))? (18)
LPS = Z [(1 = 1(r(t) > u))log (1 —p(t)) + 1(r(t) > u)log (p(t))], (19)

where ¢ is a day and 7' is the total number of days. Here p; represents the probability forecast of
an extreme on day ¢, and I(r(¢) > u) is an indicator function taking the value 1 when the return at
time ¢ exceeds the threshold and the value 0 otherwise. The QPS and LPS range respectively from
0 to 1 and from 0 to oo, with 0 indicating perfect accuracy. When the QPS or the LPS are higher,
the probability forecasts deviate more from a binary variable indicating the occurrence of events.

The LPS punishes large deviations heavier than small deviations.

[Table 4 about here.]
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The QPS and the LPS of the models for all series are displayed in Table 4. For all series, the
QPS and LPS are lower when spillover effects are included in the models, except for booms in the
bond market. The difference in scores between models with and without cross-excitation is most
visible for the LPS.

With the adjusted Mean Squared Prediction Error (adjusted-MSPE) of Clark and West (2007)
we check whether the probability forecasts of models with cross-excitation are significantly more
accurate than models without. Under the null, the unrestricted model produces forecasts that con-
tain more noise by estimating parameters which actually have the value zero. Therefore, the MSPE
of the restricted model is expected to be smaller. To account for this noise, the MSPE needs to be
adjusted. The test of Clark and West (2007) is one-sided, as the test only gives information about
whether the unrestricted model is significantly more accurate than the rectricted one. The adjusted-
MSPE statistics comparing probability predictions of models with and without cross-excitation are
given in Table 5. The adjusted-MSPE statistics comparing probability predictions of models with
and without influence of the event sizes on the conditional intensity and models with and without

influence of the history of the event process on the event sizes, are given in Table 6.
[Table 5 about here.]

From Table 5 we conclude that, the probability predictions of models with spillovers are signifi-
cantly more accurate for the extremes examined at a 5% level, except for booms in the bond market.
The adjusted-MSPE statistics are especially high for negative extremes in the pound/dollar-rate. In
line with the LM statistics and the parameter estimates, we find that the adjusted-MSPE statistics

are the lowest among the positive statistics for crashes in the NASDAQ.
[Table 6 about here.]

According to the the adjusted-MSPE statistics in Table 6, the probability predictions of models
with predictable event sizes are significantly more accurate for the extremes examined at a 5%
level. The adjusted-MSPE statistics show that the incorporation of a triggering effect that depends
on the size of events does not lead to more accurate probability predictions.

Our main result in this section is that, all in all, the Hawkes models that account for cross-
triggering effects deliver more accurate forecasts of the occurrence of extremes in financial markets

than the Hawkes models that ignore the existence of spillovers.

5.2 Value-at-Risk

To avoid large losses due to price changes and to meet regulatory requirements that limit expo-

sure to risk, investors in financial markets use Value-at-Risk to quantify the maximum of returns
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associated with a certain confidence level. The VaR,(t) is defined as the a-th quantile of a dis-
tribution at time ¢ which is the solution to Pr(m > ¢|0;H;) = 1 — a. As Pr(m > q|H;) =
Pr(N(t) — N(t — dt) > 0]|0; H;) x Pr(m > g|m > u;0;H,;) which are given in (7) and (4), we
have that

—¢
o(t) -«

g 1 —exp <— f:_& )\(S|O;H5)ds>

-1, (20)

where o (t) = ¢ + -LA(t[0; H;) and A(¢[0; H,) is given by (10).
[Figure 2 about here.]

Figure 2 shows the VaR predictions for the 95% confidence level out-of-sample from 1 January,
2013, to 1 July, 2015. From the graph we can conclude that the VaR predictions for the S&P
500 index produced by the models are quite different. For these series the Value-at-Risk for the
model without cross-excitation (v, # 0) and with predictable event sizes (1 # 0) being the highest
followed (i) by the model without restrictions, (ii) the model in which both parameters are restricted
and (iii) the model in which v # 0 and n = 0, over almost the entire forecast period. The
predictions of the models with cross-excitation vary more over time than the predictions of the
models without cross-excitation. For the two stock indices both the VaR predictions of the models
with unpredictable event sizes and the VaR predictions of the models with unpredictable event sizes
are close in value over time, where the value of the first is much higher than that of the second.
The VaR predictions for the bond market and the exchange rates behave similarly. For these series,
the same ranking as for the S&P 500 index applies.

We evaluate the VaR forecasts (20) by comparing the estimated conditional VaR for one day
time horizon, that is 6t = 1, for the confidence levels v = {0.95,0.99} with the actual returns.
To quantify the quality of the VaR forecasts we use the unconditional coverage (LR,.) test, the
independence (L R;,4) test and the conditional coverage (L R..) test of Christoffersen (1998) and a
Dynamic Quantile (DQ) test in the line of Engle and Manganelli (2004). Furthermore, to compare
the VaR forecasts of different models, we define an asymmetric loss function as Giacomini and
Komunjer (2005) and test whether the loss differentials are significant using the test designed by
Diebold and Mariano (1995) (DM test).

With the unconditional coverage (LR,.) test we check whether the actual fraction of VaR-
violations equals the theoretical proportion of 1 — a. We let x,(¢) denote an indicator function
taking the value 1 when the extreme is larger than the VaR,(t) and the value O otherwise. If
the models are correct E[z,(t)] = 1 — a. The independence (L R;,) test concerns independence

among the VaR-violations such that a violation today has no influence on the probability of a
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violation tomorrow. A combination of the LR, and LR;,  is given by the conditional coverage
(LR..) test. The LR,., LR;,q and LR, test statistics for the confidence levels 95% and 99% are
given in Table 7 and Table 8, respectively.

[Table 7 about here.]
[Table 8 about here.]

Table 7 shows that for the 95% confidence level, the unconditional and thereby conditional
coverage of the VaR predictions is a problem whenever the history of the event process has no
influence on the sizes of subsequent events (n = 0). The models that include the predictability of
event sizes (1 # 0) and cross-excitation (v, # 0) lead to the lowest statistics. While the effect of
past events on the size is largest, allowing for cross-excitation leads to a further improvement. The
effect of the size of events on the triggering intensity (the parameter o) has only a small effect.
The model with cross-excitation effects (7o # 0) and unpredictable event sizes (n = 0) fails the
unconditional and conditional coverage tests at a 5% level for almost all series. The same model
without cross-excitation effects fails the tests for more than half of the series. The unconditional
and conditional coverage test statistics are especially high for the NASDAQ. Moreover, in case
n = 0, the Hawkes models also do not pass the independence test at a 5% level for this series.
The VaR-violations are independent for all other series. When event sizes are predictable (n # 0),
the fraction of VaR-violations does not significantly deviate from the theoretical 5% at a 5% level
for all series except for the S&P 500 index. Furthermore, the VaR-violations do not suffer from
dependence such that the models pass the conditional coverage test except for the S&P 500 index.
The test statistics for the VaR predictions at the 99% confidence level, reported in Table 8, are,
with only a few exceptions, insignificant.

Besides the independence test of Christoffersen (1998), we use the Dynamic Quantile (DQ)
test of Engle and Manganelli (2004) to verify whether VaR-violations are predictable from the
history of the event process. If the models are correct, VaR-violations before time ¢ should have
no explanatory power for a VaR-violation at ¢t. The DQ test is implemented as in Berkowitz et al.

(2011), that is the errors €(t) from the regression

To(t) = Bo + Prwa(t — 1) + €(t) (21)

follow a logistic distribution. In this way we account for heteroscedasticity due to the binary nature
of the variable (). The null hypothesis that ; = 0 is tested with a Likelihood Ratio test.

[Table 9 about here.]
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The DQ test statistics for the VaR predictions at the confidence levels 95% and 99% are given
in Table 9. Almost all test statistics are insignificant. In accordance with the independence test of
Christoffersen (1998), the DQ test indicates that the models in which event sizes are unpredictable
fail to employ all information in the history of the event process to produce VaR predictions at the
confidence levels 95%.

To compare the VaR predictions made by the different models we use the test of Diebold and
Mariano (1995) (DM test) based on the asymmetric tick loss function of Giacomini and Komunjer
(2005)

Lien(t)) = (o = I(ex(t) < 0))es(t) (22)

«

where e¥(t) = r(t) — (—=VaREk(t)) is the difference between the actual return and the predicted
VaR at confidence level a and I(e*(¢) < 0) is an indicator function which takes the value 1 when
the negative of the return at time ¢ is larger than the predicted VaR at confidence level « and the
value 0 otherwise. As the loss function (22) is asymmetric, realized returns below the negative of

VaRE(t) lead to larger losses.
[Table 10 about here.]

The DM statistics comparing VaR predictions of models with and without cross-excitation
at the confidence levels 95% and 99% are given in Table 10. From the DM tests we conclude
that, at the 95% confidence level, the models with cross-excitation deliver significantly more ac-
curate VaR predictions for investors with a long position in the stock markets, the bond market
and the exchange rates and investors with a short position in the exchange rates. Moreover, these
investors should again employ the models with cross-excitation for their VaR predictions at the
99% confidence level when the event sizes in the models are unpredictable, as these models pro-
duce significantly more accurate VaR predictions than the models without cross-excitation. For
the investors with a long position in the S&P 500 index, VaR predictions of the models with cross-
excitation are also significantly more accurate when the event sizes in the models are predictable.
For other investors, VaR predictions are less accurate. Investors with a short position in the bond
market should only employ models with cross-excitation when the event sizes in the models are

predictable and when they are interested in predicting the VaR at the 95% confidence level.
[Table 11 about here.]

The DM statistics comparing probability predictions of models with and without influence of
the event sizes on the conditional intensity and models with and without influence of the history
of the event process on the event sizes, at the confidence levels 95% and 99% are given in Table

11. According to the DM tests, using models with influence of the history of the event process on
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the event sizes leads to significantly more accurate VaR predictions in almost all cases. Only the
VaR predictions for the S&P 500 index at the 99% confidence level are significantly less accurate.
For the incorporation of the influence of the event sizes on the conditional intensity, the results
are mixed. Roughly, investors with a long position in the NASDAQ, the Dow Jones Industrial
Average and investors with a short position in the bond market could benefit from employing these
models for their VaR predictions, while investors with a long position in the bond market and
the euro/dollar rate and investors with a short position in the exchange rates do better employing
models without influence of the event sizes on the conditional intensity.

Our key finding is that, all in all, the models that account for cross-triggering provide better
VaR predictions, especially at the 95% confidence level. This is not surprising as these models
are also ranked the highest in case the predictions of the probability of an extreme are evaluated.
Therefore we conclude that traders, regulators of financial markets and risk management should in-
corporate spillovers in their models when they are employing Hawkes models to forecast extremes
in financial markets. Also the predictability of event sizes adds to the model performance, whereas

incorporation of the influence of the event sizes on the conditional intensity delivers mixed results.

6 Conclusion

We extend Hawkes models to account for cross-excitation between financial markets. We assess
the contribution of including cross-excitation for forecasting extreme events and the Value-at-Risk.
We apply the models to extreme negative returns in the S&P 500 index, the NASDAQ and the Dow
Jones Industrial Average, and to extreme negative and positive returns in the US bond index, the
euro/dollar rate and the pond/dollar rate over the period from 1 January, 1990, to 1 January, 2013.
Our specific focus is on comparing models with and without spillover effects from the S&P 500
index, while for the S&P 500 index we investigate whether crashes in the index are provoked by
crashes in the NASDAQ. Within sample, a Lagrange Multiplier test rejectes the absence of cross-
excitation except for the cross-excitation to the NASDAQ. Residual analysis confirms the adequacy
of the models.

Out-of-sample, we evaluate the forecasts of the probability of an extreme and the Value-at-
Risk forecasts at the 95% and 99% confidence level from the models from 1 January, 2013, to 1
July, 2015. The probability scores and the adjusted Mean Squared Prediction Error test show that
the Hawkes models with spillover effects and predictable event sizes provide the most accurate
forecasts of the probability of an extreme event for all series except for positive extremes in the
bond market. The incorporation of triggering effect that depends on the size of past events, does
not necessarily lead to more accurate probability predictions. The results for the VaR forecasts also

indicate the added value of cross-excitation.
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Our results show more generally that extreme events in financial markets should not be mod-
elled or forecast in isolation but in joint models. Though our attention is restricted to cross-
excitation from one process to another, our results provide an incentive for further research into

multivariate Hawkes models.
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Table 2: LM statistics dependence test

a=0 a#0

n=0 n#0 n=0 n#0

S&P vs. NDQ | 350 433 4.10 5.46
NDQ vs. S&P | 086 099 0.52 0.62
DII vs. S&P | 444 594 133 1.62
BND(-) vs. S&P | 33.98 3449 3438 3451
€/$(-) vs. S&P | 17.56 1820 15.18 15.00
£/$(-) vs. S&P | 13.60 13.89 12.33 12.18
BND(+) vs. S&P | 10.73 1120 11.06 11.56
€/$(+) vs. S&P | 17.07 17.69 14.15 14.09
£/$(+) vs. S&P | 1592 1622 842 17.87

LM statistics for testing the null-hypothesis of no spillover effects from the NASDAQ to the S&P
500 index and from the S&P 500 index to the NASDAQ, the DJI index, the US bond index, the
euro/dollar rate and the pound/dollar rate. The tests are applied to extreme returns above the
94.29% quantile over a period that starts at January 1, 1990 and ends at January 1, 2013. In the
Hawkes models with the parameter restriction o = 0, the magnitude of events have no influence
on the triggering subsequent events. In the Hawkes models with the parameter restriction n = 0,
the history of the events has no influence on the magnitude of subsequent events. The critical value

corresponding to a 5% significance level is equal to 3.84.
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Table 3: Results residual analysis

a=0 a#0
n=0 n#0 n=0 n#0

12=0 72#0 12=0 1%#0 72=0 72#0 1%=0 7»#0

S&P 0.595 0.102 0.641 0.076 0385 0.226 0.294 0.227

NDQ 0453 0.171 0596 0.179 0332 0.183 0491 0.262

DJI 0.519 0.167 0.547 0323 0230 0.134 0405 0.262

BND(-) | 0.566 0.028 0576 0.038 0.683 0.028 0.717 0.034

€/8(-) | 0.662 0.192 0.654 0.237 0.708 0.212 0.686 0.213

£$C¢-) | 0390 0.119 0426 0.159 0305 0.074 0365 0.120

BND(+) | 0411 0.038 0428 0.040 0411 0.038 0416 0.040

€/8(+) | 0.648 0.157 0.663 0.113 0.641 0.168 0.647 0.120

£/$(+) | 0432 0.126 0453 0.105 0480 0.203 0487 0.165
The p-values of the Kolmogorov-Smirnov tests performed on the transformed times {7;} specified
by the models. The null-hypothesis of the test states that the transformed times {7;} are distributed
according to a homogeneous Poisson process with intensity 1. The models are applied to extreme
negative returns in three US stock market indices and extreme negative and positive returns in the
US bond market and two exchange rates over a period that starts at January 1, 1990 and ends at
January 1, 2013. The threshold above which extremes are considered, is set at 94.29% quantile
employing a procedure of Gonzalo and Olmo (2004). For the S&P 500 index, -2 controls the
spillover effect from crashes in the NASDAQ, while for the DJI index, the US bond index, the
euro/dollar rate and the pound/dollar this parameter controls the spillover effect from crashes in
the S&P 500. In the Hawkes models with the parameter restriction o = 0, the magnitude of events
have no influence on the triggering subsequent events. In the Hawkes models with the parameter
restriction 77 = 0, the history of the events has no influence on the magnitude of subsequent events.

27



Table 4: Probability scores

a=0 a#0
n=20 n#0 n=20 n#0
Y2o=0 7% #0 7% =0 7%#0 7%=0 7%#0 7%=0 1%#0

Series  Scores
S&P QPS | 0.0002 0.0001 0.0003 0.0001 0.0002 0.0001 0.0003 0.0001
LPS | 0.0092 0.0066 0.0099 0.0068 0.0093 0.0064 0.0104 0.0066
NDQ QPS | 0.0005 0.0005 0.0006 0.0006 0.0004 0.0004 0.0005 0.0005
LPS |0.0137 0.0134 0.0144 0.0141 0.0128 0.0127 0.0135 0.0133
DIJI QPS | 0.0015 0.0013 0.0017 0.0015 0.0014 0.0013 0.0015 0.0014
LPS | 0.0254 0.0240 0.0265 0.0252 0.0242 0.0238 0.0253 0.0249
BND(-) QPS | 0.0016 0.0013 0.0016 0.0013 0.0015 0.0013 0.0015 0.0013
LPS | 0.0250 0.0221 0.0252 0.0224 0.0248 0.0221 0.0252 0.0225
€/$(-) QPS | 0.0039 0.0030 0.0039 0.0031 0.0037 0.0030 0.0036 0.0030
LPS | 0.0368 0.0313 0.0367 0.0318 0.0361 0.0315 0.0361 0.0324
£/$(-) QPS | 0.0026 0.0020 0.0028 0.0023 0.0022 0.0018 0.0024 0.0020
LPS | 0.0323 0.0276 0.0335 0.0295 0.0306 0.0269 0.0317 0.0286
BND(+) QPS | 0.0008 0.0009 0.0008 0.0010 0.0008 0.0009 0.0008 0.0010
LPS |0.0191 0.0202 0.0193 0.0211 0.0191 0.0202 0.0192 0.0211
€/$(+) QPS | 0.0021 0.0017 0.0021 0.0017 0.0020 0.0017 0.0021 0.0017
LPS | 0.0268 0.0239 0.0271 0.0240 0.0267 0.0240 0.0271 0.0243
£/$(+) QPS | 0.0014 0.0011 0.0014 0.0012 0.0013 0.0011 0.0014 0.0012
LPS | 0.0227 0.0203 0.0233 0.0208 0.0233 0.0210 0.0241 0.0219
QPS and LPS of the probability predictions of crashes the next day in the S&P 500 index, the
NASDAQ and the Dow Jones Industrial Average, and crashes and booms in the US bond index,
the euro/dollar rate and the pond/dollar rate out-of-sample from 1 January, 2013, to 1 July, 2015.
The QPS and LPS are given in (18) and (19). The QPS and LPS range respectively from 0 to 1 and
from 0 to oo, with 0 indicating perfect accuracy.

28



Table 5: Adjusted MSPE statistics testing cross-excitation

a=0 a#0

n=0 n#0 n=0 n#0

S&P 13.57 13.55 15.70 20.25

NDQ 6.53 579 599 535

DJI 8.66 781 6.67 6.24

BND(-) | 16.36 1592 13.15 14.48

€/$(-) | 1433 1496 1436 14.76

£/$(-) | 21.56 20.88 28.93 29.24

BND(+) | -3.24 -8.19 -324 -8.75

€/8(+) | 1099 10.33 11.08 10.26

£$+) | 11.26 10.60 21.34 19.38
Adjusted MSPE statistics comparing probability predictions of models with and without cross-
excitation. The models predict the probability of crashes the next day in the S&P 500 index, the
NASDAQ and the Dow Jones Industrial Average, and crashes and booms in the US bond index, the
euro/dollar rate and the pond/dollar rate out-of-sample from 1 January, 2013, to 1 July, 2015. We
use the adjusted MSPE test of Clark and West (2007) as we compare nested models. The critical

value corresponding to a 5% significance level is equal to 1.64.
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Table 6: Adjusted MSPE statistics testing the influence on/of sizes

n (a = 0) a(n=0) n (a #0) a (n #0)

12=0 72#0 72=0 72#0 %=0 %#0 12=0 7#0

S&P | 794 350 -3.64 -521 1771 351 029 -451
NDQ | 551 542 -987 -1024 555 550 -831 -8.54
DII 695 776 -1197 -448 702  7.67 -10.63 -4.60
BND(-) | 9.23 9.75 -6.61 -3.48 9.22 7.32 -4.14 -1.09
€/$(-) | 832 1046 -648 -1.80 531 765 -629 -1.94
£/$(-) | 863 1050 -12.76 -11.89 873  10.88 -11.43 -10.70
BND(+) | 10.51 26.05 -10.70 -36.46 10.02 26.05 -741 -31.49
€/$(+) | 640 282 470 048 667 373 -399  0.96
£/$(+) 9.54 10.53  -3.51 240 2055 2331 -3.16 -1.51

Adjusted MSPE statistics comparing probability predictions of models with and without influence
of the the history of the events on the magnitude of subsequent events (1) and models with and
without influence of the magnitude of events triggering subsequent events («). The models predict
the probability of crashes the next day in the S&P 500 index, the NASDAQ and the Dow Jones
Industrial Average, and crashes and booms in the US bond index, the euro/dollar rate and the
pond/dollar rate out-of-sample from 1 January, 2013, to 1 July, 2015. We use the adjusted MSPE
test of Clark and West (2007) as we compare nested models. The critical value corresponding to a

5% significance level is equal to 1.64.
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Table 7: LR,,., LR;,; and LR, test statistics VaR o5

a=0 a#0
n=20 n#0 n=20 n#0
12=0 72#0 72=0 7#0 7%=0 1%#0 12=0 1#0
S&P LR, | 0.01 14.69 2238  6.98 0.01 11.39 2238  6.98
LR;nq | 2.68 1.06 0.31 1.14 3.02 0.71 0.31 1.14
LR.. | 2.69 15776 22.69  8.12 3.03 12.10 22.69  8.12
NDQ LR,. | 87.29 94.53 1.07 0.72 8493 9453 0.72 0.72
LR;,q | 5.39 9.76 0.01 0.04 4.57 8.13 0.04 0.04
LR. | 92.68 104.29 1.09 0.76 ~ 89.50 102.66 0.76 0.76
DI LR, | 593 5.93 2.02 0.72 3.80 5.93 1.51 0.72
LR;nq | 0.12 0.79 0.00 0.49 0.37 0.79 0.00 0.49
LR, | 6.05 6.71 2.02 1.20 4.17 6.71 1.51 1.20
BND(-) LR, | 2.63 5.17 2.02 0.22 1.65 5.17 2.02 0.43
LR;,q | 0.03 0.02 2.00 2.90 1.23 0.02 2.00 2.71
LR.. | 2.66 5.19 4.02 3.12 2.89 5.19 4.02 3.14
€/$(-) LR, | 090 2663 0.06 0.18 0.36 9.40 0.06 0.36
LR;,q | 0.28 1.10 0.03 0.64 0.00 0.28 0.03 0.50
LR, | 118 2773  0.09 0.82 0.36 9.68 0.09 0.87
£$(-) LR, | 593 31.25 1.07 1.65 6.73  20.96 1.07 0.90
LR, | 0.12 2.37 2.44 0.13 0.07 2.02 244 0.28
LR.. | 605 33.62 351 1.78 6.79 2298 3.51 1.18
BND(+) LR, | 10.37 4.46 1.51 0.22 1037  4.46 1.07 0.22
LR;nq | 0.19 0.00 0.78 1.60 0.19 0.00 0.62 1.60
LR, | 10.57 447 2.28 1.83 10.57 447 1.69 1.83
€/8(+) LR, | 2.63 1245 043 1.25 3.19 11.39 043 0.06
LR;nq | 1.83 2.77 1.86 2.69 1.58 3.10 1.86 0.79
LR.. | 445 1523  2.29 3.94 4.77 1450  2.29 0.86
£/$(+) LR, | 0.60 3.19 2.02 0.72 0.01 0.60 2.62 0.22
LR;,q | 0.01 0.49 2.00 0.04 0.35 0.39 1.84 0.27
LR. | 0.61 3.68 4.02 0.76 0.35 0.99 4.46 0.49
Statistics for the unconditional coverage, independence and conditional coverage tests on the VaR
predictions at a 95% confidence level produced by the different Hawkes models. The models
predict the maximum of returns associated with a 95% confidence level the next day in the S&P
500 index, the NASDAQ and the Dow Jones Industrial Average, and crashes and booms in the US
bond index, the euro/dollar rate and the pond/dollar rate out-of-sample from 1 January, 2013, to
1 July, 2015. The critical value corresponding to a 5% significance level is equal to 3.84 for the
unconditional coverage test and the independence test (asymptotic x*(1)-distribution) and 5.99 for
the conditional coverage test (asymptotic x?(2)-distribution).
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Table 8: LR,,., LR;,; and LR, test statistics VVa R g9

a=0 a#0
n=20 n#0 n=20 n#0
12=0 1%#0 12=0 12#0 72=0 72#0 7=0 7% #0
S&P LR, | 0.32 2.58 2.40 0.03 0.32 3.73 2.40 0.03
LR;,q | 0.20 0.38 0.03 0.15 0.20 0.45 0.03 0.15
LR.. | 052 2.96 243 0.19 0.52 4.18 243 0.19
NDQ LR,. | 2.58 2.58 0.85 0.03 2.58 2.58 0.85 0.32
LR;,q | 1.86 1.86 0.25 0.15 1.86 1.86 0.25 0.20
LR.. | 4.44 4.44 1.10 0.19 4.44 4.44 1.10 0.52
DJI LR,. | 1.14 1.14 0.04 0.39 1.14 1.14 0.04 0.39
LR;nq | 0.05 0.05 0.11 0.08 0.05 0.05 0.11 0.08
LR. | 1.19 1.19 0.15 0.47 1.19 1.19 0.15 0.47
BND(-) LR,. | 0.04 0.03 0.03 0.03 0.39 0.03 0.03 0.03
LR, | 0.11 0.15 0.15 0.15 0.08 0.15 0.15 0.15
LR.. | 0.15 0.19 0.19 0.19 0.47 0.19 0.19 0.19
€/$(-) LR, | 0.04 0.03 5.05 0.85 0.04 0.32 3.73 0.85
LR;nq | 0.11 0.15 1.31 0.25 0.11 0.20 1.57 0.25
LR, | 0.15 0.19 6.35 1.10 0.15 0.52 5.29 1.10
£/$(-) LR, | 240 0.39 2.58 0.04 2.40 1.14 2.58 0.03
LR;,q | 0.03 0.08 1.86 0.11 0.03 0.05 1.86 0.15
LR.. | 243 0.47 4.44 0.15 243 1.19 4.44 0.19
BND(+) LR, | 0.04 1.14 0.85 1.14 0.04 1.14 0.85 1.14
LR;,q | 0.11 0.05 0.25 0.05 0.11 0.05 0.25 0.05
LR, | 0.15 1.19 1.10 1.19 0.15 1.19 1.10 1.19
€/$(+) LR, | 0.03 0.32 3.73 2.58 0.03 0.85 2.58 2.58
LR;nq | 0.15 0.20 0.45 0.38 0.15 0.25 0.38 0.38
LR.. | 0.19 0.52 4.18 2.96 0.19 1.10 2.96 2.96
£/$(+) LR, | 0.04 0.03 0.32 0.03 0.04 0.03 0.32 0.32
LR;,q | 0.11 0.15 0.20 0.15 0.11 0.15 0.20 0.20
LR.. | 0.15 0.19 0.52 0.19 0.15 0.19 0.52 0.52
Statistics for the unconditional coverage, independence and conditional coverage tests on the VaR
predictions at a 99% confidence level produced by the different Hawkes models. The models
predict the maximum of returns associated with a 99% confidence level the next day in the S&P
500 index, the NASDAQ and the Dow Jones Industrial Average, and crashes and booms in the US
bond index, the euro/dollar rate and the pond/dollar rate out-of-sample from 1 January, 2013, to
1 July, 2015. The critical value corresponding to a 5% significance level is equal to 3.84 for the
unconditional coverage test and the independence test (asymptotic x*(1)-distribution) and 5.99 for
the conditional coverage test (asymptotic x?(2)-distribution).
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Table 9: DQ test statistics

a=0 a#0
n=20 n#0 n=20 n#0
2=0 12#0 1=0 1#0 =0 %#0 =0 1% #0

Quantile  Series

95% S&P 1.90 1.09 -040  -0.77 2.04 0.88 -0.40  -0.77

NDQ 245 3.35 -0.12  -0.19 2.25 3.04 -0.19  -0.19

DIJI 0.35 0.94 0.04 0.76 0.64 0.94 -0.04 0.76

BND(-) | 0.19 -0.15  -1.02 -123 -099 -0.15 -1.02 -1.19

€/5(-) 0.56 1.09 0.18 0.86 0.01 0.55 0.18 0.76

£/%(-) 0.35 1.63 1.86 0.37 0.26 1.52 1.86 0.56

BND(+) | 0.45 -0.07 0.98 1.44 0.45 -0.07 0.87 1.44

€/8(+) 1.49 1.82 1.57 1.86 1.37 1.94 1.57 0.97

£/$(+) | -0.08 074 -1.02 -0.19 -0.55 0.66 -0.98 0.55

99% S&P -032  -044 -0.12 -028 -032 -048 -0.12 -0.28

NDQ 1.92 192 -036 -0.28 1.92 1.92 -0.36  -0.32

DIJI -0.16 -0.16 -024 -020 -0.16 -0.16 -0.24 -0.20

BND(-) | -0.24 -0.28 -0.28 -0.28 -0.20 -0.28 -0.28  -0.28

€/$(-) | 024 -0.28 1.48 -036 -0.24  -0.32 1.69 -0.36

£/%(-) -0.12  -0.20 1.92 -0.24  -0.12  -0.16 1.92 -0.28

BND(+) | -0.24 -0.16 -036 -0.16 -024 -0.16 -036 -0.16

€/$(+) | -028 -032 -048 -044 -028 -036 -044 -044

£$+) | 024 -028 -032 -028 -024 -028 -032 -0.32
Statistics for the Dynamic Quantile test on the VaR predictions at a 95% and 99% confidence
level produced by the different Hawkes models. The models predict the maximum of returns
associated with a 95% confidence level the next day in the S&P 500 index, the NASDAQ and the
Dow Jones Industrial Average, and crashes and booms in the US bond index, the euro/dollar rate
and the pond/dollar rate out-of-sample from 1 January, 2013, to 1 July, 2015. The critical value

corresponding to a 5% significance level is equal to £1.96.
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Table 11: DM statistics testing the influence on/of sizes

n (a = 0) an=0) n (a # 0) a(n #0)
2=0 12#0 12=0 1#0 1=0 1%#0 =0 1 #0

Quantile  Series

95% S&P | -65.03 -56.95 -8.38 1.39  -65.70 -59.48 32.53 56.22

NDQ | -4293 -40.17 11.32 1098 -46.60 -43.07 2436 20.87

DIJI -26.77 -28.71  8.58 430 -30.16 -28.55 33.04 12.43

BND(-) | -23.01 -21.80 -1.17 -0.33 -23.63 -21.03 -532 -7.71

€/$(-) | -11.60 -1587 -252 -6.12 -12.15 -1530 -0.57 -5.65

£/$C-) | -15.79 -16.66 245 -246  -1891 -17.68  7.69 3.36

BND(+) | -39.91 -3392 580 3292 -3949 -3392 1452 3949

€/$(+) | -1996 -17.81 -523 -822 -20.19 -17.29 -552 -8.04

£8(+) | -27.67 -24.69 -891 -10.39 -31.52 -26.61 -870 -9.08

99% S&P -7.01 -18.64 -8.87 0.97 -8.19  -19.10 -22.57 5.67

NDQ 4.40 3.27 11.03 1043  3.09 2.03 6.36 6.68

DJI 22.63  29.71 8.27 429 2331 2833 -1431 -0.16

BND(-) | 19.17 1323 -1.70 -447 18.63 1098 -3.64 -4.02

€/$(-) | 20.08 543 -235 -630 2059 4.70 -8.12  -5.66

£$(-) | 2296  9.67 230  -3.10 2545 1389 -12.33  0.77

BND(+) | 20.27 2286 833 31.77 20.07 2286 -7.10 23.64

€/$(+) | 1578  5.88 -541  -859 15.62  4.29 -7.82  -9.69

£/$(+) | 1628  9.83 -9.00 -10.54 21.12 13.84 -954 -9.13
DM statistics comparing VaR predictions at the 95-99% confidence level of models with and with-
out influence of the the history of the events on the magnitude of subsequent events (1) and models
with and without influence of the magnitude of events triggering subsequent events (o). The mod-
els predict the probability of crashes the next day in the S&P 500 index, the NASDAQ and the
Dow Jones Industrial Average, and crashes and booms in the US bond index, the euro/dollar rate
and the pond/dollar rate out-of-sample from 1 January, 2013, to 1 July, 2015. The critical value

corresponding to a 5% significance level is equal to +1.96 (asymptotic N (0, 1)-distribution).
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